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Abstract—Algorithms for signal recovery in compressed sens-
ing (CS) are often improved by stabilization techniques, such
as damping, or the less widely known so-called fractional ap-
proach, which is based on the expectation propagation (EP)
framework. These procedures are used to increase the steady-
state performance, i.e., the performance after convergence, or
assure convergence, when this is otherwise not possible. In this
paper, we give a thorough introduction and interpretation of
several stabilization approaches. The effects of the stabilization
procedures are examined and compared via numerical simula-
tions and we show that a combination of several procedures can
be beneficial for the performance of the algorithm.

Index Terms—Compressed sensing, VAMP, damping, frac-
tional approach

I. INTRODUCTION

Compressed sensing (CS) [3], [4] deals with an underdeter-

mined system of linear combinations of the transmit symbols

in noise, where the signal to be recovered is assumed to

be sparse, i.e., has few non-zero entries. This imposes two

constraints on the problem. Iterative algorithms for signal

recovery in CS generally solve the problem by ignoring one

constraint, while solving the other and vice versa. The state-

of-the-art iterative algorithm is currently, besides approximate

message passing (AMP) [9], the so-called vector approximate

message passing (VAMP) [14], which can be derived from the

expectation propagation (EP) framework [10].

It has been reported that damping can increase the steady-

state performance of VAMP or even tip the scale in terms of

convergence at all, especially in challenging scenarios, e.g.,

for ill-conditioned measurements [14]. Generally, damping is

a widely used approach to enable convergence of recovery

algorithms in CS, when this is otherwise not given [2], [7],

[22]. From the EP framework another approach, known as

fractional EP or power EP [11], [12] is known to improve

performance if standard EP fails [8], [16]. For the CS scenario,

this has successfully been applied in [17].

In the literature, a thorough understanding and interpretation

of the principles is missing. In this paper, we examine the

effects of several damping approaches and show that in the

CS setting the fractional approach leads to a procedure similar

to damping. We give an interpretation of the approaches

and show by numerical simulations how performance can be

improved by combining the techniques.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) — FI 982/16-1.

The paper is organized as follows. In Sec. II we introduce

the system model for CS and state the recovery problem. In

Sec. III, VAMP is briefly motivated by the EP framework.

Section IV introduces the different stabilization techniques,

which are compared and interpreted in Sec. V. We show results

of numerical simulations in Sec. VI, and conclude our work

in Sec. VII.

This paper is an extended version of [19].

II. SYSTEM MODEL FOR COMPRESSED SENSING

We model the noisy CS measurements by1

y = Ax+ n ∈ R
M , (1)

where the sensing matrix A ∈ R
M×N , M ≪ N , is assumed

to be known and the noise n ∼ N (0, σ2
n
IM ) is i.i.d. Gaussian.

The elements xj of x = [x1, . . . , xN ]⊤ are assumed to be i.i.d.

with marginal probability density function (pdf) fx(xj), i.e.,

fx(x) =
∏N

j=1
fx(xj) . (2)

We assume a sparse signal x, which is reflected by a Dirac

delta function at zero in the marginal pdf. Hence, the overall

problem is specified by the posterior

fx|y(x) =
1

fy(y)
fx(x) · fy|x(y | x) , (3)

where fy|x(y | x) = 1√
(2πσ2

n
)M

exp
(
− 1

2σ2
n

‖y −Ax‖22
)

due

to the additive Gaussian noise n. We omit the argument y in

the posterior distribution for brevity. The task of recovering

the signal x is given by the estimation problem

Ex,fx|y

{
x | y, A, σ2

n

}
=

∫
x fx|y(x) dx , (4)

which is infeasible for high-dimensional x. Hence, there is a

need for suitable algorithms.

1We denote scalars by small letters, e.g., x, vectors by bold ones, e.g., x,
matrices by upper case bold, e.g., X, and random variables in sans-serif font,
i.e., x, x, and X, respectively. Im: m×m identity matrix, 0: all-zero vector,
diag(·): diagonal matrix with given entries, E

x,fx{·}: expectation of random
variable x w.r.t. pdf fx(x), π(·): random permutation, [·]j : jth entry, ln(·):
natural logarithm.
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III. DERIVATION OF VAMP BASED ON EP

The main idea of expectation propagation (EP) [10] is to

simplify the estimation (4) by approximating the distribution

fx|y(x) (globally) by iteratively simplifying parts of it (locally)

and projecting [12] this simplification onto the global approx-

imation, which we call q(x). The projection is motivated by

the use of exponential families [1] in combination with the

Kullback-Leibler divergence

DKL

(
fx|y(x) || q(x)

)
=

∫
fx|y(x) ln

fx|y(x)

q(x)
dx , (5)

which causes a so-called matching of moments [13].

A. Exponential Families

An exponential family is parameterized by the so-called nat-

ural parameters θ and given by [1]

q(x) =
1

Z(θ)
exp

(
θ⊤g(x)

)
, (6)

where Z(θ) =
∫
exp(θ⊤g(x)) dx serves as normalization.

When specifying the exponential family by the first two

moments, i.e., defining the sufficient statistics as g(x) =
[x, −x2/2]⊤ (with corresponding θ = [λ, Λ]⊤) the family

of Gaussian distributions is obtained. The connection between

natural and moment parameters (mean m and variance σ2) is

then given by

λ =
m

σ2
, Λ =

1

σ2
. (7)

The projection onto an exponential family, inherently causes

a matching of moments [13]. We explain the matching of

moments for the given problem below.

B. Structure of the Problem

The structure (3), shows a factorization into two parts (that

depend on x). We denote the part based on signal prior fx(x)
by “s” for signal constraint and the second one by “c” for

channel constraint, i.e.,

fx|y(x) =
1

Z
fs(x) · fc(x) . (8)

The (local) approximations are then obtained by replacing

either of the factors by an exponential family [1], i.e.,

we define the tilted exponential family [16] q\•(x) =
1

Z•(θ\•)
f•(x) exp((θ

\•)⊤g(x)) for • ∈ {c, s}. We choose this

notation for brevity, since θ\• captures the moments obtained

from the other (complementary) constraint. Considering the

overall approximation q(x), we obtain these approximations

by first removing the part of the approximation that represents

the respective factor (exclusion) and then inserting the actual

factor f•(x) for • ∈ {c, s} (inclusion). Note that, since

we consider two factors, the EP approach coincides with

expectation-consistent (EC) approximate inference [13].

C. Procedure

Either of the parts in (8) is iteratively replaced by a pdf from an

exponential family, followed by the respective projection [12]

q•(x) = argmin
q(x)

DKL

(
q\•(x) || q(x)

)
, • ∈ {c, s} . (9)

Eq. (9) is solved by the matchings of moments [13], which

reads

Ex,q\•{g(x)} = Ex,q•{g(x)} • ∈ {c, s} . (10)

This way, the infeasible computation (4) is replaced by two

feasible ones (left hand-side of (10)).

The exchange between the parameters of both subproblems

is justified by considering exclusions and inclusions from

q(x). In terms of natural parameters inclusion and exclusion

transform to simple additions and subtractions. This means, for

the given structure with only two factors, the update between

the overall approximation, represented by θ and the partial

approximations is given by the connection [13] θ = θ\c+θ\s.
In order to distinguish the natural parameters obtained from

the different projections, we may resort to using indices, i.e.,

θs and θc, respectively, instead of θ, i.e.,

θ
\c = θs − θ

\s , θ
\s = θc − θ

\c . (11)

All in all, the procedure is given by computing one of the

left hand-side expectations in (10), mapping from the moment

parameters to the natural parameters, e.g., via (7) to obtain θc,

or θs, respectively, and compute the parameters for the other

expectation by (11).

D. Expectations

We stick to Gaussian distributions, when using exponential

families, i.e., we define for j ∈ {1, . . . , N}, • ∈ {c, s}:

gj(xj) = [xj ,−x2
j/2]

⊤ , (12)

θj = [λj , Λj]
⊤ = [mj/σ

2
j , 1/σ

2
j ]

⊤ . (13)

For this case, it is useful to consider all natural parameters as

a 2×N -matrix, e.g., θ = [θ1, . . . , θN ]. Keeping the channel-

constrained part, while replacing the prior, yields a joint linear

estimator (LE) given by (Φ̃c = diag(σ̃2
c,j))

mc = x̃c +
(
A⊤A+ σ2

n
Φ̃

−1

c

)−1

A⊤(y −Ax̃c) , (14)

Φc = σ2
n

(
A⊤A+ σ2

n
Φ̃

−1

c

)−1

, σ2
c,j = [Φc]jj . (15)

Since the signal prior (2) is separable, the estimation for the

signal-constrained part can be calculated individually for each

variable xj (j ∈ {1, . . . , N}). Hence, we obtain individual,

non-linear estimators (NLEs)

ms,j =
1

Zs,j

∫
x fx(x) exp

(
x̃s,j

σ̃2

s,j

x− x2

2σ̃2

s,j

)
dx , (16)

σ2
s,j =

1
Zs,j

∫
(x−ms,j)

2fx(x) exp
(

x̃s,j

σ̃2

s,j

x− x2

2σ̃2

s,j

)
dx, (17)

with Zs,j =
∫
fx(x) exp(

x̃s,j

σ̃2

s,j

x− x2

2σ̃2

s,j

) dx.



E. VAMP

Employing the expectations above into the EP framework,

yields a form of the so-called vector approximate message

passing (VAMP) [14] algorithm with individual variances;

which was already introduced in [6]. The standard approach

as given in [14] uses average variances

σ2
• =

1

N

∑N

j=1
σ2
•,j , • ∈ {c, s} . (18)

For the connection to the moments specified in g(x), see [18].

The updates between the estimations are then performed with

averaged values of the variances, instead of the individual

ones. We will call the version with average and individual

variances, VAMPavg and VAMPind, respectively.

IV. STABILIZATION TECHNIQUES

The introduced procedures are very powerful recovery al-

gorithms. However, for VAMPind numerical issues with the

variances have been reported [5], causing a degradation in

performance. Furthermore, also VAMPavg underlies a drop in

performance, when a non-uniform power distribution over the

components of x is present [20]. We examine two strategies

for the stabilization of these algorithms. So-called damping is

widely used in the CS literature, whenever algorithms have

problems to converge [2], [7], [14]. The second approach is

known as fractional approach [23] or power EP [11] and

closely related to damping, as we will show in the following.

A. Damping Procedures

Damping is based on convex combination of previous and

current estimates. There are several possibilities for such com-

binations. We consider the following ones, using d ∈ (0, 1]
as damping parameter (d = 1 means no damping) and k as

iteration index

oNLE) θs = dθs + (1− d)θc

oLE) θc = dθc + (1− d)θs

cNLE) θ
[k]
s = dθ[k]

s + (1− d)θ[k−1]
s

The first two strategies, oNLE and oLE, oppose each other;

one is applied after the LE, one after the NLE. The effect

can be thought of as partly (depending on d) removing the

effects of one of the estimations and replacing it by the other

one. oNLE omits (for d → 0) the NLE, oLE omits the LE.

The third strategy cNLE is often used in the literature, e.g.,

in [14], and also partly removes the current estimates but sticks

to the NLEs—it combines the NLEs of successive iterations.

The corresponding opposing strategy, which would combine

the linear estimates, does not yield good results, because the

linear estimate is usually the less reliable one. The procedure

is therefore not considered here.

B. Fractional Approach

The idea of the fractional approach is to introduce a parameter,

we call it e, that enables to partly remove and insert the

approximation and factor parts from and to (8), respectively.

Since the expectations for the signal-constrained part cannot

be straightforwardly computed for arbitrary e, we consider

only the case of partially removing and inserting the channel-

constrained part fc(x). The parameter e is applied such that

1/e specifies by what fraction (in the domain of natural

parameters) the current approximation of fc(x) is removed

in order to be replaced by a respective fraction of the actual

factor. In particular, the tilted exponential family becomes

q
\c
e (x) = 1

Zc(θ\c)
f
1/e
c (x) exp((θ\c)⊤g(x)). The updates for

the natural parameters turn to [15]

θ\c = θs −
1

e
θ\s , θ\s = e(θc − θ\s) . (19)

The respective expectations become

mc =
1

Zc(θ\c)

∫
xf1/e

c (x) exp

(
x̃⊤
c Φ̃

−1

c x− 1

2
x⊤Φ̃

−1

c x

)
dx

= x̃c +
(
A⊤A+ eσ2

n
Φ̃

−1

c

)−1

A⊤(y −Ax̃c) , (20)

Φc = eσ2
n

(
A⊤A+ eσ2

n
Φ̃

−1

c

)−1

(21)

C. Clipping

Another standard procedure for numerical stability is clip-

ping [14], i.e., bounding the range of possible values for

respective parameters. This needs to be performed for the

variances, respectively precisions (inverse variances), in order

to keep useful values. Especially negative variances are not

reasonable and must therefore be forbidden. In the following,

we do not examine the effect of different clipping bounds.

Instead, we restrict to the following procedure, which turned

out to be relatively stable for a wide range of parameters;

we clip Λs,j = 1/σ2
s,j to the interval [10−8, 108] and other

precisions to [10−12, 1012].

D. Complete Algorithm

We combine the stabilization techniques in the following

algorithm, which we state for the individual variances case.

Due to the generalization by the fractional approach, we

call it fracVAMPind. Note that the natural parameters are

considered to be 2 × N -matrices, analogously to above we

define θ• = [θ•,1, . . . , θ•,N ] with • ∈ {c, s}. We do not

explicit state clipping here; in the simulations, the procedure

described above is used. The variant with average variances,

fracVAMPavg, needs additionally the calculations in (18).

V. DISCUSSION

A. Estimation Theoretic Interpretation

The expectations (14), (15) for the EP approach under a

Gaussian assumption are identical to the linear minimum

mean-squared error (LMMSE) solution, i.e., conditional ex-

pectations. This means, we estimate the signal x from an

observation y in Gaussian noise, given by the channel (1),

where we assume that x is Gaussian distributed. This as-

sumption might be far from reality, if, e.g., discrete priors

as in [5], [20] are used. The fractional approach can be seen

as a way to compensate for that inaccuracy. As we see in the

expectations (20) and (21), the main change to (14) and (15) is

that we have an effective noise variance σ̃2
n
= eσ2

n
. Hence, for



Algorithm 1: ms = fracVAMPind(y, A, σ2
n
, σ2

x
, e, d)

1 Φ̃c = σ2
x
IN , x̃c = 0, θs = [0, [1/σ2

x
, . . . , 1/σ2

x
]⊤]⊤ ∈ R

2×N

2 while stopping criterion not met do

3 mc = x̃c + (A⊤A+ eσ2
n
Φ̃

−1

c )−1A⊤(y −Ax̃c)

4 Φc = eσ2
n
(A⊤A+ eσ2

n
Φ̃

−1

c )−1

5 θc,j = [mc,j/[Φc]jj , 1/[Φc]jj ]⊤ ∀j ∈ {1, . . . , N}
6 if damping case = oLE // Damping Case oLE

7 then
8 θc = dθc + (1 − d)θs

9 θ\s = e(θc − θ\c) // Parameter Update (19)

10 ms = E
x,q\s{x} // NLE, cf. (16), (17)

11 σ2

s,j = E
x,q

\s
j

{(x −ms,j)
2} ∀j ∈ {1, . . . , N}

12 θs,old = θs

13 θs,j = [ms,j/σ
2

s,j , 1/σ
2

s,j ]
⊤ ∀j ∈ {1, . . . , N}

14 switch damping case do

15 case oNLE // Damping Case oNLE

16 do

17 θs = dθs + (1 − d)θc

18 case cNLE // Damping Case cNLE

19 do

20 θs = dθs + (1 − d)θs,old

21 θ\c = θs − θ\s/e // Parameter Update (19)

22 x̃c,j = [θ
\c
j
]1/[θ

\c
j
]2 ∀j ∈ {1, . . . , N}

23 Φ̃c = diag(1/[θ
\c
1
]2, . . . , 1/[θ

\c
N
]2)

e = 1 the standard case is recovered. For e > 1, we assume a

larger noise variance than actually given, the estimate might

hence be less sure about its estimation, which gives room for

corrections. For e < 1, the opposite behavior is given, i.e., a

lower noise variance than actually given is assumed.

B. Comparison of Damping and Fractional Approach

Combining the two fractional updates from (19) (using itera-

tion index k), we obtain

θ\s,[k+1] = e(θ[k+1]
c − θ[k]

s +
1

e
θ\s,[k])

= e(θ[k+1]
c − θ

[k]
s ) + θ

\s,[k] . (22)

This resembles very closely the computation, obtained from

combining the parameter update (11) with damping using

case oLE for e = 1

θ\s,[k+1] = dθ[k+1]
c + (1− d)θ[k]

s − θ\c,[k]

= d(θ[k+1]
c − θ[k]

s ) + θ\s,[k] . (23)

Both parameters, d and e, thus cause the same update here.

The difference is that in the fractional approach the estimations

have a different effective noise variance σ̃2
n
= eσ2

n
and the e

is also considered in the second update derived from (19).

C. Numerical Considerations

The main problem in VAMPind, that causes stability problems

is the fact that the subtraction (11) of the precision parameter

(see (13)) Λ
\c
j = Λs,j−Λ

\s
j turns frequently negative, resulting

in negative (extrinsic) variances, which have no reasonable

meaning. Even with clipping, a degradation in performance
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Fig. 1. Performance over damping parameter d for damping case oNLE,
N = 258, M = 129, s = 12, evaluated after 20 iterations.

may be visible in comparison to the average case VAMPavg

for certain scenarios [5]. The fractional version stated above,

adjusts the update to Λ
\c
j = Λs,j − Λ

\s
j /e. For e ↑, we

expect the performance of fracVAMPind to increase, since the

subtrahend and therefore the probability of a negative result

decreases.

VI. NUMERICAL RESULTS

We examine the behavior of the above introduced algorithms

over the parameters d and e.

As prior pdf, we use the Bernoulli-Gaussian distribution

with sparsity s = 12 and variance s/N = 0.0465 and Dirac

delta function δ(·) given by

fx(x) = (1 − s/N)δ(x) + s
N

1√
2π

exp(−x2/2) . (24)

The 129×258-sensing matrix A is i.i.d. Gaussian distributed.

We consider a non-uniform power distribution for the transmit

powers of signal x and amplify the columns of A accordingly.

The power distribution is described by the scaling rp =
v(p−1)/(N−1) (p ∈ {1, . . . , N}); the assignment to the jth

column is obtained from a random permutation j = π(p). The

simulations are obtained for a factor v = 0.2. After applying

the power profile (by A · diag(rπ(p))), the sensing matrix

is scaled such that it has Frobenius norm ||A||F =
√
N .

The average condition number of the obtained matrices is

κavg = 6.33, for the simulations the condition number ranges

in κ ∈ [5.46, 7.83]. The signal-to-noise ratio is fixed to

−10 log10(σ
2
n
) =̂ 17 dB in all simulations.

Since the sparsity s is assumed to be known, we utilize

the knowledge and set the smallest N − s values in ms to 0,

cf. [21], before evaluating the performance. As performance

measure we average the per-symbol normalized mean-squared

error (NMSE), NMSE = ‖x−ms‖22 / ‖x‖
2
2 /N . We evaluate

the performance after 20 iterations.

Figure 1 examines the behavior of both introduced algo-

rithms over the damping parameter d for the damping version

oNLE. Especially VAMPavg (fracVAMPavg with e = 1)

profits from the damping. Furthermore, the performance can

be increased by additionally using the fractional approach. In

the case of fracVAMPavg, e < 1 leads to an improvement,
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Fig. 2. Performance over damping parameter d for damping case oLE, N =
258, M = 129, s = 12, evaluated after 20 iterations. For the legend of the
colored curves, see Fig. 1.

TABLE I
MINIMA IN NMSE OVER GRID OF d ∈ [0.2, 1], e ∈ [0.6, 3.5] FOR THE

DIFFERENT DAMPING CASES.

fracVAMPavg fracVAMPind

d e NMSE d e NMSE

— 1 1 1.2229e-03 1 1 3.9304e-04

oNLE 0.51 0.65 3.9894e-04 0.58 3.31 3.5036e-04

oLE 0.55 0.65 3.9970e-04 0.39 3.34 3.4939e-04

cNLE 0.53 0.64 3.9759e-04 0.62 3.30 3.5025e-04

whereas fracVAMPind requires e > 1. The last part confirms

the conjecture from Sec. V-C that fracVAMPind benefits from

decreasing the probability of negative variances.

In Fig. 2, the damping variant oLE is considered. Here, we

additionally plot e = d, which gives us the chance to compare

the cases of a pure fractional approach (triangles) with the re-

spective pure damping procedure (circles), as was theoretically

compared in Sec. V-B. Although sharing a common update the

behavior of both strategies differs significantly, which can be

explained by the fact that the fractional approach also adjusts

the estimations.

Apart from that, we can see that fracVAMPind is more

sensitive to changes in d than for case oNLE, especially for

small e, which is due to the similarity of the updates in

this case, i.e., the effect of damping and fractional approach

superimpose.

The third damping version cNLE is not shown here, because

it behaves similarly to the first two cases (for fracVAMPind

the behavior is close to the case oNLE, for fracVAMPavg it

is close to oLE).

In order to get a complete picture, a grid over d ∈ [0.2, 1]
and e ∈ [0.6, 3.5] was simulated. The resulting minima in

NMSE within this area are given in Table I and compared

to the non-stabilized case (d = e = 1 in the first row). The

behavior over the fractional parameter e is shown in Fig. 3.

This example shows that the steady-state performance can

be increased by factor 2-3 in terms of NMSE.
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— , d = 1

1 2 3
e −→

fracVAMPind

oLE, d = 0.39

oNLE, d = 0.58

cNLE, d = 0.62

— , d = 1

Fig. 3. Performance over fractional parameter e for N = 258, M = 129,
s = 12, evaluated after 20 iterations.

VII. CONCLUSION

This work considered stabilization techniques for iterative

algorithms in compressed sensing. The procedures of damping

and fractional updates were examined and interpreted in detail.

In numerical simulations it was shown that a combination

of both strategies can supersede each of the stabilization

approaches as well as the standard procedure.
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