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Abstract. Recently, codes in the sum-rank metric attracted attention
due to several applications in e.g. multishot network coding, distributed
storage and quantum-resistant cryptography. The sum-rank analogs of
Reed–Solomon and Gabidulin codes are linearized Reed–Solomon codes.
We show how to construct h-folded linearized Reed–Solomon (FLRS)
codes and derive an interpolation-based decoding scheme that is capa-
ble of correcting sum-rank errors beyond the unique decoding radius.
The presented decoder can be used for either list or probabilistic unique
decoding and requires at most O(sn2) operations in Fqm , where s ≤ h

is an interpolation parameter and n denotes the length of the unfolded
code. We derive a heuristic upper bound on the failure probability of
the probabilistic unique decoder and verify the results via Monte Carlo
simulations.

1 Introduction

The sum-rank metric was first encountered in the context of space-time cod-
ing [11, Sec. III] and can be seen as a hybrid between the Hamming and the
rank metric. Codes in the sum-rank metric are of interest for error control in
multishot network coding [16], for the construction of locally repairable codes [15]
and in the context of quantum-resistant cryptography [17]. The family of lin-
earized Reed–Solomon (LRS) codes was first described by Mart́ınez-Peñas [13],
independently studied in [6], and fulfills the Singleton-like bound in the sum-rank
metric with equality. A Welch–Berlekamp-like decoder that can correct errors of
sum-rank weight t ≤ ⌊n−k

2 ⌋, where n is the length and k the dimension of the
code, was proposed in [14]. In [1], a speed-up was achieved by using approximant
bases. Recently, it was shown in [2] and [3] that interleaved LRS codes allow to
correct sum-rank errors beyond the unique decoding radius.

Our Contribution: We introduce a folded variant of LRS codes and provide
an interpolation-based algorithm allowing to decode errors of sum-rank weight

up to t < s
s+1

(

N(h−s+1)−k+1
h−s+1

)

, where h is the blockwise folding parameter, N

the code length, k the dimension of the code, and s ≤ h a decoding parameter.
Therefore, our approach allows to correct sum-rank errors beyond the unique
decoding radius in quadratic complexity. Even though the worst-case list size
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is exponential, we show that a unique solution is obtained with high probabil-
ity which allows to use the scheme as a probabilistic unique decoder. We de-
rive a heuristic upper bound on the decoding failure probability and verify the
findings by Monte Carlo simulations. It is worth noting that the proposed de-
coding scheme generalizes known decoders for folded Reed–Solomon and folded
Gabidulin codes in the Hamming and the rank metric, respectively.

2 Preliminaries

Let q be a prime power and Fq a finite field of order q. For any m ∈ N
∗, let

Fqm ⊇ Fq denote an extension field with qm elements. We call α ∈ Fqm primitive
in Fqm if it generates the multiplicative group F

∗
qm := Fqm \ {0}.

In this paper, we mostly consider matrices whose N columns are divided
into ℓ ∈ N

∗ blocks of the same length Λ := N
ℓ
∈ N

∗. Fix h ∈ N
∗ and let X =

(X(1) | · · · | X(ℓ)) ∈ F
h×N
qm be a matrix with X(i) ∈ F

h×Λ
qm for all i ∈ {1, . . . , ℓ}.

Then, the sum-rank weight of X is defined as wtΣR(X) :=
∑ℓ

i=1 rkq
(

X(i)
)

,

where rkq
(

X(i)
)

is the maximum number of Fq-linearly independent columns

of X(i). The sum-rank distance of two comparable elements is computed as the
sum-rank weight of their difference and forms indeed a metric. We are concerned
with sum-rank codes C being subsets of an Fqm-vector space equipped with the
sum-rank metric. If C is an Fqm-linear subspace, the code is called linear and its
minimum (sum-rank) distance is dΣR(C) = min{wtΣR(c) : c ∈ C, c 6= 0}.

Let σ be an Fq-linear automorphism on Fqm , that is σ(a) = aq
s

for all a ∈ Fqm

and a particular s ∈ {0, . . . ,m−1}. Two elements a, b ∈ Fqm are called conjugate
if there is a c ∈ F

∗
qm such that ac := σ(c)ac−1 = b. The set C(a) :=

{

ac : c ∈ F
∗
qm

}

is called conjugacy class of a and Fqm is partitioned into qgcd(s,m) of these classes.
If s = 1 and α ∈ F

∗
qm is a primitive element, the set {1, α, . . . , αq−2} contains

representatives of all q − 1 distinct nontrivial conjugacy classes.
The skew polynomial ring Fqm [x, σ] (with zero derivation) is defined as the

set of polynomials
∑

i fix
i with finitely many nonzero coefficients fi ∈ Fqm . It

forms a non-commutative ring with respect to ordinary polynomial addition and
multiplication determined by the rule xfi = σ(fi)x for all fi ∈ Fqm . We define
the degree of a skew polynomial f(x) =

∑

i fix
i as deg(f) := max{i : fi 6= 0}

and write Fqm [x, σ]<k := {f ∈ Fqm [x, σ] : deg(f) < k} for k ≥ 0. We further
introduce the operator Da(b) := σ(b)a for any a, b ∈ Fqm and its powers Di

a(b) :=
σi(b)σi−1(a) · · ·σ(a)a for i ∈ N

∗. For a vector x = (x(1) | · · · | x(ℓ)) ∈ F
K
qm with

ℓ blocks of length κ := K/ℓ ∈ N
∗, a vector a = (a1, . . . , aℓ) ∈ F

ℓ
qm , and a

parameter d ∈ N
∗ the generalized Moore matrix is defined as

Md(x)a :=
(

md(x
(1))a1

md(x
(2))a2

· · · md(x
(ℓ))aℓ

)

∈ F
d×K
qm , (1)

where md(x
(i))ai

:=











x
(i)
1 x

(i)
2 · · · x

(i)
κ

Dai
(x

(i)
1 ) Dai

(x
(i)
2 ) · · · Dai

(x
(i)
κ )

...
...

. . .
...

Dd−1
ai

(x
(i)
1 ) Dd−1

ai
(x

(i)
2 ) · · · Dd−1

ai
(x

(i)
κ )











for 1 ≤ i ≤ ℓ.
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If a contains representatives of pairwise distinct nontrivial conjugacy classes of
Fqm and rkq(x

(i)) = κ for all 1 ≤ i ≤ ℓ, we have by [13, Thm. 2] and [9, Thm 4.5]
that rkqm(Md(x)a) = min(d, ℓκ).

The generalized operator evaluation of a skew polynomial f ∈ Fqm [x, σ] at
b ∈ Fqm with respect to a ∈ Fqm is defined as f(b)a =

∑

i fiD
i
a(b). Let a1, . . . , aℓ

be representatives of distinct nontrivial conjugacy classes of Fqm and consider ni

Fq-linearly independent elements ζ
(i)
1 , . . . , ζ

(i)
ni

∈ Fqm for each i = 1, . . . , ℓ. Then

any nonzero f ∈ Fqm [x, σ] satisfying f(ζ
(i)
j )ai

= 0 for all 1 ≤ j ≤ ni and all

1 ≤ i ≤ ℓ has degree at least
∑ℓ

i=1 ni (see e.g. [6]).

3 Interpolation-Based Decoding of Folded Linearized

Reed–Solomon Codes

Motivated by the results for folded Reed–Solomon codes [8,19] and folded Gabi-
dulin codes [4, 12] we define folded linearized Reed–Solomon (FLRS) codes as
follows. We start from a linearized Reed–Solomon code of length n ∈ N

∗ with
ℓ ∈ N

∗ same-sized blocks of length λ := n
ℓ
≤ m over Fqm , and transform each

block into an (h× λ
h
)-matrix for a folding parameter h ∈ N

∗ dividing λ.

Definition 1 (Folded Linearized Reed–Solomon Codes). Consider a prim-
itive element α of Fqm and let a = (a1, . . . , aℓ) ∈ F

ℓ
qm contain representatives

of pairwise distinct nontrivial conjugacy classes of Fqm . An h-folded linearized
Reed–Solomon code of length N := n

h
and dimension k ≤ n is defined as

FLRS[a, α, ℓ, h;N, k] :=
{(

C(1)(f) | · · · | C(ℓ)(f)
)

: f ∈ Fqm [x, σ]<k

}

(2)

with C(i)(f) :=











f(1)ai
f(αh)ai

· · · f(αλ−h)ai

f(α)ai
f(αh+1)ai

· · · f(αλ−h+1)ai

...
...

. . .
...

f(αh−1)ai
f(α2h−1)ai

· · · f(αλ−1)ai











∈ F
h×Λ
qm (3)

for all i ∈ {1, . . . , ℓ}. We denote the length of a folded block by Λ := λ
h
= n

hℓ
.

Note that this definition can easily be generalized to different block lengths and
more general Fq-linearly independent code locators. FLRS codes are naturally
embedded in Fqmh but linearity is only guaranteed over the subfield Fqm .

Lemma 1 (Minimum Distance). The code FLRS[a, α, ℓ, h;N, k] has min-
imum distance dΣR(FLRS[a, α, ℓ, h;N, k]) = N −

⌈

k
h

⌉

+ 1. It is a maximum
sum-rank distance (MSRD) code if and only if h divides k.

Proof. For every nonzero codewordC ∈ FLRS[a, α, ℓ, h;N, k] with message poly-

nomial f ∈ Fqm [x, σ]<k, there are z, z1, . . . , zℓ ≥ 0 with z =
∑ℓ

i=1 zi such that
wtΣR(C) = N − z and rkq(C

(i)) = Λ − zi for i = 1, . . . , ℓ. The column-reduced
echelon form of C(i), whose entries can still be expressed as evaluations of f

3



at evaluation parameter ai, has exactly zi zero columns. In the blockwise re-
duced matrix are hence z zero columns in total. Since the sum of the number
of Fq-linearly independent roots of f per evaluation parameter is bounded by
its degree, we get zh ≤ k − 1 and equivalently z ≤

⌊

k−1
h

⌋

=
⌈

k
h

⌉

− 1. It follows

dΣR(FLRS[a, α, ℓ, h;N, k]) ≥ wtΣR(C) ≥ N −
⌈

k
h

⌉

+ 1. On the other hand, the

Singleton-like bound [13, Prop. 34] yields dΣR(FLRS[a, α, ℓ, h;N, k]) ≤ N− k
h
+1

and the claim follows. ⊓⊔

As channel model we consider a sum-rank channel with fixed error weight
t ∈ N where the input C ∈ FLRS[a, α, ℓ, h;N, k] is related to the output R by
R = C+E ∈ F

h×N
qm . The error matrix E ∈ F

h×N
qm is chosen uniformly at random

from the set of all matrices in F
h×N
qm having sum-rank weight t. In the following

we write

R =
(

R(1) | · · · | R(ℓ)
)

and R(i) =







r
(i)
1 r

(i)
h+1 · · · r

(i)
λ−h+1...

...
. . .

...

r
(i)
h r

(i)
2h · · · r

(i)
λ






∈ F

h×Λ
qm (4)

for i ∈ {1, . . . , ℓ} and proceed to our interpolation-based decoder.

3.1 Interpolation Step

We perform (s+1)-variate skew polynomial interpolation with respect to a chosen
interpolation parameter s ∈ N

∗ with s ≤ h. The set P of interpolation points is
defined by means of a blockwise sliding window approach, whose eligible starting
positions are collected in the index set W . Namely, we consider

W := {(j − 1)h+ l : j ∈ {1, . . . , Λ}, l ∈ {1, . . . , h− s+ 1}}

and P :=
{(

αw−1, r(i)w , r
(i)
w+1, . . . , r

(i)
w+s−1

)

: w ∈ W , i ∈ {1, . . . , ℓ}
}

.
(5)

We wish to find a multivariate skew interpolation polynomial of the form

Q(x, y1, . . . , ys) = Q0(x) +Q1(x)y1 + · · ·+Qs(x)ys, (6)

where Qr(x) ∈ Fqm [x, σ] for all r ∈ {0, . . . , s}, that satisfies certain interpo-
lation constraints. The generalized operator evaluation of such a polynomial
Q ∈ Fqm [x, y1, . . . , ys, σ] at a given interpolation point (w, i) is defined as

EQ(w, i) := Q0(α
w−1)ai

+Q1(r
(i)
w )ai

+ · · ·+Qs(r
(i)
w+s−1)ai

(7)

where w ∈ W and 1 ≤ i ≤ ℓ as in (5).

Problem 1 (Interpolation Problem). For a chosen parameter D ∈ N
∗ find a

nonzero (s+ 1)-variate skew polynomial Q of the form (6) satisfying

1. EQ(w, i) = 0 for all w ∈ W and i ∈ {1, . . . , ℓ} as well as
2. deg(Q0) < D and deg(Qr) < D − k + 1 for all r ∈ {1, . . . , s}.

4



The second condition of the interpolation problem allows us to write

Q0(x) =
∑D−1

j=0 q0,jx
j and Qr(x) =

∑D−k
j=0 qr,jx

j for r ∈ {1, . . . , s} (8)

with all coefficients from Fqm . For each block index 1 ≤ i ≤ ℓ, we collect all
Λ(h − s + 1) interpolation points originating from R(i) as rows in a matrix

Pi ∈ F
Λ(h−s+1)×(s+1)
qm and denote its columns by pi,0, . . . ,pi,s. Define further

pr = (p⊤
1,r | · · · | p⊤

l,r) for 0 ≤ r ≤ s. Then, Problem 1 can be written as

Sq⊤

I = 0 (9)

with S =
(

(MD(p0)a)
⊤
(MD−k+1(p1)a)

⊤
· · · (MD−k+1(ps)a)

⊤

)

and qI = (q0,0 · · · q0,D−1 | q1,0 · · · q1,D−k | · · · | qs,0 · · · qs,D−k) .

The interpolation system (9) can be solved using skew Kötter interpolation
from [10] (similar as in [5, Sec. V]) requiring at most O(sn2) operations in Fqm .

Lemma 2 (Existence). A nonzero solution to Problem 1 exists if

D =

⌈

N(h− s+ 1) + s(k − 1) + 1

s+ 1

⌉

. (10)

Proof. A nontrivial solution of (9) exists if less equations than unknowns are
involved. That is, if N(h− s+ 1) < D(s+ 1)− s(k − 1). ⊓⊔

Lemma 3 (Roots of Polynomial). Define the univariate skew polynomial

P (x) := Q0(x) +Q1(x)f(x) +Q2(x)f(x)α + · · ·+Qs(x)f(x)α
s−1 (11)

= Q(x, f(x), f(x)α, . . . , f(x)αs−1) ∈ Fqm [x, σ]

and write ti := rkq(E
(i)) for 1 ≤ i ≤ ℓ. Then there exist Fq-linearly indepen-

dent elements ζ
(i)
1 , . . . , ζ

(i)
(Λ−ti)(h−s+1) ∈ Fqm for each i ∈ {1, . . . , ℓ} such that

P (ζ
(i)
j )ai

= 0 for all 1 ≤ i ≤ ℓ and all 1 ≤ j ≤ (Λ− ti)(h− s+ 1).

Proof. Since rkq(E
(i)) = ti, there exists a nonsingular matrix Ti ∈ F

Λ×Λ
q such

that E(i)Ti has only ti nonzero columns for every i ∈ {1, . . . , ℓ}. Without loss
of generality assume that these columns are the last ones of E(i)Ti and define
ζ(i) = L · Ti with L ∈ F

h×Λ
qm containing the code locators 1, . . . , αλ−1 (cp. (3)).

Note that the first Λ− ti columns of R(i)Ti = C(i)Ti +E(i)Ti are noncorrupted
leading to (Λ− ti)(h−s+1) noncorrupted interpolation points according to (5).
Now, for each 1 ≤ i ≤ ℓ, the first entries of the (Λ− ti)(h− s+1) noncorrupted
interpolation points (i.e. the top left submatrix of size (Λ − ti) × (h− s+ 1) of
ζ(i)) are by construction both Fq-linearly independent and roots of P (x). ⊓⊔

Theorem 1 (Decoding Radius). Let Q(x, y1, . . . , ys) be a nonzero solution
of Problem 1. If t = wtΣR(E) satisfies

t <
s

s+ 1

(

N(h− s+ 1)− k + 1

h− s+ 1

)

, (12)

5



then P ∈ Fqm [x, σ] is the zero polynomial, that is for all x ∈ Fqm

P (x) = Q0(x) +Q1(x)f(x) +· · ·+Qs(x)f(x)α
s−1 = 0. (13)

Proof. By Lemma 3, there exist elements ζ
(i)
1 , . . . , ζ

(i)
(Λ−ti)(h−s+1) in Fqm that

are Fq-linearly independent for each i ∈ {1, . . . , ℓ} such that P (ζ
(i)
j )ai

= 0 for
1 ≤ i ≤ ℓ and 1 ≤ j ≤ (Λ−ti)(h−s+1). By choosingD ≤ (N−t)(h−s+1), P (x)
exceeds the degree bound from [6, Prop. 1.3.7] which is possible only if P (x) = 0.
Combining the above inequality with N(h− s+ 1) < D(s+ 1)− s(k − 1) from
the proof of Lemma 2 yields the stated decoding radius. ⊓⊔

3.2 Root-Finding Step

By Theorem 1, the message polynomial f ∈ Fqm [x, σ]<k satisfies (13) if t satis-
fies (12). Therefore, we consider the following root-finding problem.

Problem 2 (Root-Finding Problem). Let Q ∈ Fqm [x, y1, . . . , ys, σ] be a nonzero
solution of Problem 1 and let t satisfy constraint (12). Find all skew polynomials
f ∈ Fqm [x, σ]<k that satisfy (13).

Problem 2 is equivalent to an Fqm -linear system of equations in the unknown

f := (f0, σ
−1(f1), . . . , σ

−k+1(fk−1))
⊤. (14)

As e.g. in [4, 20], we use a basis of the interpolation problem’s solution space
instead of choosing only one solution Q of system (9). This improvement is
justified by the following result.

Lemma 4 (Number of Interpolation Solutions). For dI := dimqm(ker(S))
with S defined in (9), it holds dI ≥ s(D − k + 1)− t(h− s+ 1).

Proof. The first D columns of S are given as (MD(p0)a)
⊤. Since the ℓ blocks of

p0 consist of pairwise distinct powers of α, the elements of a single block are Fq-
linearly independent. Hence rkqm(MD(p0)a) = min(D,N(h−s+1)) = D. With
the absence of an error, the remaining columns consist of linear combinations of
the first D ones and do not increase the rank. If the error E with wtΣR(E) = t
is introduced, at most t(h− s+ 1) interpolation points are corrupted according
to Lemma 3. As a consequence, these columns can increase the rank of S by at
most t(h−s+1). Thus, rkqm(S) ≤ D+ t(h−s+1) and the rank-nullity theorem
directly yields dI = D(s+1)−s(k−1)−rkqm(S) ≥ s(D−k+1)−t(h−s+1). ⊓⊔

Let now Q(1), . . . , Q(dI) ∈ Fqm [x, y1, . . . , ys, σ] form a basis of the solution

space of Problem 1 and denote the coefficients of Q(u) by q
(u)
i,j for all 1 ≤ u ≤ dI

(cp. (8)). Define further the ordinary polynomials

B
(u)
j (x) = q

(u)
1,j + q

(u)
2,j x+ · · ·+ q

(u)
s,j x

s−1 ∈ Fqm [x] (15)

for j ∈ {0, . . . , D − k} and u ∈ {1, . . . , dI} and the additional notations

bj,a =
(

σ−a
(

B
(1)
j (σa(α))

)

, . . . , σ−a
(

B
(dI)
j (σa(α))

))⊤

and qa =
(

σ−a
(

q
(1)
0,a

)

, . . . , σ−a
(

q
(dI)
0,a

))⊤

6



for 0 ≤ j ≤ D − k and 0 ≤ a ≤ D − 1. Then the root-finding system is given as

B · f = −q (16)

with B :=























b0,0

b1,1 b0,1
... b1,2

. . .

bD−k,D−k

... b0,k−1

bD−k,D−k+1 b1,k

. . .
...

bD−k,D−1























and q :=







q0

...
qD−1






.

The root-finding system (16) can be solved by back substitution in at mostO(k2)
operations in Fqm since we can focus on (at most) k nontrivial equations from
different blocks of dI rows. Note also that the transmitted message polynomial
f(x) is always a solution of (16) as long as t satisfies the decoding radius in (12).

3.3 Interpolation-Based List and Probabilistic Unique Decoding

The interpolation-based scheme from above can be used for list decoding or as
a probabilistic unique decoder. The list decoder returns all solutions of (16).

Lemma 5 (Worst-Case List Size). The list size is upper bounded by qm(s−1).

Proof. With dRF := dimqm(ker(B)), the list size equals qm·dRF and dRF =
k−rkqm(B) due to the rank-nullity theorem. Let B△ denote the lower triangular
matrix consisting of the first dIk rows of B. Then, rkqm(B) ≥ rkqm(B△) and
the latter is lower bounded by the number of nonzero vectors on its diagonal.
These vectors are b0,0, . . . ,b0,k−1 and we focus on their first components while

neglecting application of σ. Each of them is given as the evaluation of B
(1)
0 at

another conjugate of α. Since B
(1)
0 can have at most s−1 roots, it follows that at

most s− 1 of the vectors on the diagonal can be zero. Thus, rkqm(B) ≥ k− s+1
and, as a consequence, dRF ≤ s− 1. ⊓⊔

Note that, despite the exponential worst-case list size, an Fqm -basis of the
list can be found in polynomial time. Theorem 2 summarizes the results for list
decoding of FLRS codes and Figure 1 illustrates the achievable decoding region.
In particular, the significant improvement of the normalized decoding radius
τ := t/N of FLRS codes upon LRS codes is shown.

Theorem 2 (List Decoding). Consider a folded linearized Reed–Solomon code
FLRS[a, α, ℓ, h;N, k] and a codeword C that is transmitted over a sum-rank chan-
nel with fixed error weight

t <
s

s+ 1

(

N(h− s+ 1)− k + 1

h− s+ 1

)

for an interpolation parameter 1 ≤ s ≤ h. Then, list decoding with a list size of
at most qm(s−1) can be achieved in at most O(sn2) operations in Fqm .
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Fig. 1. Normalized decoding radius τ := t

N
vs. code rate R := k

N
for an FLRS code

with h = 25 and optimal decoding parameter s ≤ h for each code rate.

A different concept is probabilistic unique decoding where the decoder either
returns a unique solution or declares a failure. In our setting, a failure occurs
exactly when the root-finding matrix B is rank-deficient. Similar to [4] we now
derive a heuristic upper bound on this probability P (rkqm(B) < k).

Lemma 6 (Decoding Failure Probability). Assume that the coefficients of

the polynomials B
(u)
0 (x) ∈ Fqm [x] from (15) for u ∈ {1, . . . , dI} are independent

and have a uniform distribution among Fqm . Then it holds that

P (rkqm(B) < k) . k ·

(

k

qm

)dI

, (17)

where . indicates that the bound is a heuristic approximation.

Proof. Define B△ as in the proof of Lemma 5 and note that P (rkqm(B) < k) ≤
P (rkqm(B△) < k) allows to focus on the latter. rkqm(B△) = k is equivalent
to all vectors b0,0, . . . ,b0,k−1 being nonzero. Because application of σ can be
neglected, these vectors can be interpreted as codewords of a Reed–Solomon
code. The proof of [4, Lemma 8] deals with this setting and yields the result. ⊓⊔

We introduce a threshold parameter µ ∈ N
∗ and enforce dI ≥ µ which yields

a degree constraint D=
⌈

N(h−s+1)+s(k−1)+µ

s+1

⌉

. Theorem 3 provides a summary
for probabilistic unique decoding of FLRS codes incorporating this threshold.

Theorem 3 (Probabilistic Unique Decoding). Consider the FLRS code

FLRS[a, α, ℓ, h;N, k] and assume that the coefficients of the polynomials B
(u)
0 (x)

for u ∈ {1, . . . , µ} are independent and uniformly distributed among Fqm . For an
interpolation parameter 1 ≤ s ≤ h and a dimension threshold µ ∈ N

∗, transmit
a codeword C over a sum-rank channel with fixed error weight

t ≤
s

s+ 1

(

N(h− s+ 1)− k + 1

h− s+ 1

)

−
µ

(s+ 1)(h− s+ 1)
. (18)
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Then, C can be uniquely recovered with complexity O(sn2) in Fqm and with an
approximate probability of at least

1− k ·

(

k

qm

)µ

. (19)

4 Simulation Results

We ran simulations in SageMath [18] to empirically verify the heuristic upper
bound for probabilistic unique decoding from Theorem 3. We chose a 3-folded
FLRS code of length N = 4 and dimension k = 2 over F36 with ℓ = 2 blocks.
Its minimum distance 4 implies a unique decoding radius of 1.5, whereas our
probabilistic unique decoder allows to correct errors of weight t = 2 for s = 2
and µ ∈ {1, 2} (t ≤ 2.17 and t ≤ 2, respectively). We investigated the case µ = 1
and collected 100 decoding failures within about 4.23 ·107 randomly chosen error
patterns. The observed failure probability is hence about 2.36 · 10−6, while the
heuristic yields an upper bound of 5.49 · 10−3. Note that the parameter set is
explicitly designed to obtain an experimentally observable failure probability.

We also tracked the distribution χ of the coefficients of the polynomials

B
(u)
0 (x) ∈ F729[x] from (15) for 1 ≤ u ≤ µ for multiple transmissions and

computed the Kullback–Leibler divergence DKL with respect to the uniform
distribution unifF729

, which gives the number of additional bits needed to rep-
resent the approximated instead of the actual distribution (see e.g. [7, Sec.
2.3]). After 106 transmissions using the above code with µ = 1, the result
DKL(χ || unifF729

) ≈ 3.32 · 10−4 bits shows that the measured distribution χ
is remarkably close to unifF729

. This justifies the assumption in Theorem 3.

5 Conclusion

We considered the construction of folded linearized Reed–Solomon codes and
proposed an efficient interpolation-based decoding scheme that is capable of
correcting errors beyond the unique decoding radius in the sum-rank metric.
The proposed algorithm can either be used as a (not necessarily polynomial-time)
list decoder or as a probabilistic unique decoder that returns a unique solution
with high probability. We analyzed the interpolation-based decoding scheme and
derived both an upper bound on the worst-case list size and a heuristic upper
bound on the decoding failure probability. The derivation of an upper bound on
the failure probability that incorporates the distribution of the error matrices, a
Justesen-like scheme for improved decoding of high-rate codes, and a comparison
with decoding schemes for interleaved LRS codes are subject to future work.

The results in this paper can be extended to obtain more general code con-
structions over skew polynomial rings with derivations and/or codes with dif-
ferent block sizes. In particular, lifted FLRS codes and their properties in the
sum-subspace metric can be used for error control in random linear multishot
network coding. The construction of folded skew Reed–Solomon codes and the
transfer of the presented decoder to the skew metric are other open problems.
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