
On the Convergence of Projected Alternating Maximization for

Equitable and Optimal Transport

Minhui Huang∗ Shiqian Ma† Lifeng Lai∗

October 4, 2021

Abstract

This paper studies the equitable and optimal transport (EOT) problem, which has many
applications such as fair division problems and optimal transport with multiple agents etc.
In the discrete distributions case, the EOT problem can be formulated as a linear program
(LP). Since this LP is prohibitively large for general LP solvers, Scetbon et al. [21] suggests to
perturb the problem by adding an entropy regularization. They proposed a projected alternating
maximization algorithm (PAM) to solve the dual of the entropy regularized EOT. In this paper,
we provide the first convergence analysis of PAM. A novel rounding procedure is proposed to help
construct the primal solution for the original EOT problem. We also propose a variant of PAM
by incorporating the extrapolation technique that can numerically improve the performance of
PAM. Results in this paper may shed lights on block coordinate (gradient) descent methods for
general optimization problems.

Keywords— Equitable and Optimal Transport, Fairness, Saddle Point Problem, Projected
Alternating Maximization, Block Coordinate Descent, Acceleration, Rounding.

1 Introduction

Optimal transport (OT) is a classical problem that recently finds many emerging applications in
machine learning and artificial intelligence, including generative models [3], representation learning
[19], reinforcement learning [4] and word embeddings [2] etc. More recently, Scetbon et al. [21]
proposed an equitable and optimal transport (EOT) problem that targets to fairly distribute the
workload of OT when there are multiple agents. In this problem, there are multiple agents working
together to move mass from measures µ to ν and each agent has its unique cost function. A very
important issue that needs to be considered here is the fairness, which aims at finding transportation
plans such that the workloads among all the agents are equal to each other. This can be achieved
by minimizing the largest transportation cost among all agents, which leads to a convex-concave
saddle point problem. The EOT problem has wide applications in economics and machine learning,
such as fair division or the cake-cutting problem [16, 6], multi-type resource allocation [15], internet
minimal transportation time and sequential optimal transport [21].

We now describe the EOT problem formally. Given two discrete probability measures µn =∑n
i=1 aiδxi and νn =

∑n
i=1 biδyi , the EOT studies the problem of transporting mass from µ to

ν by N agents. Here, {x1, x2, ..., xn} ⊂ Rd and {y1, y2, ..., yn} ⊂ Rd are the support points of
each measure and a = [a1, a2, ..., an]> ∈ ∆n, b = [b1, b2, ..., bn]> ∈ ∆n are corresponding weights

∗Department of Electrical and Computer Engineering, University of California, Davis
†Department of Mathematics, University of California, Davis

1

ar
X

iv
:2

10
9.

15
03

0v
2

 [
m

at
h.

O
C

]
 1

 O
ct

 2
02

1

for each measure, where ∆n denotes the probability simplex in Rn. Moreover, throughout this
paper, we assume bi > 0,∀1 ≤ i ≤ n . For each agent k, we denote its unique cost function as
ck(x, y), k ∈ [N] = {1, . . . , N} and its cost matrix as Ck, where Cki,j = ck(xi, yj). Moreover, we
define the following coupling decomposition set

ΠN
a,b :=

{
πππ = (πk)k∈[N]

∣∣∣∣∣ r
(∑

k

πk

)
= a, c

(∑
k

πk

)
= b, πkij ≥ 0, ∀i, j ∈ [n]

}
,

where r(π) = π1, c(π) = π>1 are the row sum and column sum of matrix π respectively. Mathe-
matically, the EOT problem can be formulated as

min
πππ∈ΠNa,b

max
1≤k≤N

〈πk, Ck〉. (1)

When N = 1, (1) reduces to the standard OT problem. Note that (1) minimizes the point-wise
maximum of a finite collection of functions. It is easy to see that (1) is equivalent to the following
constrained problem:

min
πππ∈ΠNa,b

max
λ∈∆N

+

`(πππ, λ) :=
N∑
k=1

λk〈πk, Ck〉. (2)

The following proposition shows an important property of EOT: at the optimum of the minimax
EOT formulation (2), the transportation costs of the agents are equal to each other.

Proposition 1 [21, Proposition 1] Assume that all cost matrices Ck, k ∈ [N] have the same sign.
Let πππ∗ ∈ ΠN

a,b be the optimal solution of (2). It holds that

〈(π∗)i, Ci〉 = 〈(π∗)j , Cj〉, ∀i, j ∈ [N]. (3)

Note that Proposition 1 requires all cost matrices to have the same sign. When the cost matrices
are all non-negative, (2) solves the transportation problem with multiple agents. When the cost
matrices are all non-positive, the cost matrices are interpreted as the utility functions and (2) solves
the fair division problem [16].

The discrete OT is a linear programming (LP) problem (in fact, an assignment problem) with a
complexity of O(n3 log n) [25]. Due to this cubic dependence on the dimension n, it is challenging to
solve large-scale OT in practice. A widely adopted compromise is to add an entropy regularizer to
the OT problem [7]. The resulting problem is strongly convex and smooth, and its dual problem can
be efficiently solved by the celebrated Sinkhorn’s algorithm [22, 7]. This strategy is now widely used
in the OT community due to its computational advantages as well as improved sample complexity
[9]. Similar ideas were also used for computing the Wasserstein barycenter [5], projection robust
Wasserstein distance [20, 14, 12], projection robust Wasserstein barycenter [11]. Motivated by these
previous works, Scetbon et al. [21] proposed to add an entropy regularizer to (2), and designed
a projected alternating maximization algorithm (PAM) to solve its dual problem. However, the
convergence of PAM has not been studied. Scetbon et al. [21] also proposed an accelerated projected
gradient ascent algorithm (APGA) for solving a different form of the dual problem of the entropy
regularized EOT. Since the objective function of this new dual form has Lipschitz continuous
gradient, APGA is essentially the Nesterov’s accelerated gradient method and thus its convergence
rate is known. However, numerical experiments conducted in [21] indicate that APGA performs
worse than PAM. We will discuss the reasons in details later.

Our Contributions. There are mainly three issues with the PAM and APGA algorithms in
[21], and we will address all of them in this paper. Our results may shed lights on designing new
block coordinate descent algorithms. Our main contributions are given below.

2

• The PAM algorithm in [21] only returns the dual variables. How to find the primal solution
of (2), i.e., the optimal transport plans πππ, was not discussed in [21]. In this paper, we propose
a novel rounding procedure to find the primal solution. Our rounding procedure is different
from the one widely used in the literature [1].

• We provide the first convergence analysis of the PAM algorithm, and analyze its iteration
complexity for finding an ε-optimal solution to the EOT problem (2). In particular, we show
that it takes at most O(Nn2ε−2) arithmetic operations to find an ε-optimal solution to (2).
This matches the rate of the Sinkhorn’s algorithm for computing the Wasserstein distance
[8].

• We propose a variant of PAM that incorporates the extrapolation technique as used in Nes-
terov’s accelerated gradient method. We name this variant as Projected Alternating Maxi-
mization with Extrapolation (PAME). The iteration complexity of PAME is also analyzed.
Though we are not able to prove a better complexity over PAM at this moment, we find that
PAME performs much better than PAM numerically.

Notation. For vectors a and b with the same dimension, a./b denotes their entry-wise division.
We denote c∞ := maxk ‖Ck‖∞. Throughout this paper, we assume vector b > 0, and we denote
ι := minj log(bj). We use 1n to denote the n-dimensional vector whose entries are all equal to
one. We use IX (x) to denote the indicator function of set X , i.e., IX (x) = 0 if x ∈ X , and
IX (x) = ∞ otherwise. We denote ct = c(

∑N
k=1 π

k(f t+1, gt, λt)). For integer N > 0, we denote
[N] := {1, . . . , N}. We also denote πππ(f, g, λ) = [πk(f, g, λ)]k∈[N].

2 Projected Alternating Maximization Algorithm

The PAM algorithm proposed in [21] aims to solve the entropy regularized EOT problem, which is
given by

min
πππ∈ΠNa,b

max
λ∈∆N

+

`η(πππ, λ) :=
N∑
k=1

pkη(π
k, λ) (4)

where η > 0 is a regularization parameter, pkη(π
k, λ) := λk〈πk, Ck〉 − ηH(πk), and the entropy

function H is defined as H(π) = −
∑

i,j πi,j(log πi,j−1). Note that (4) is a strongly-convex-concave
minimax problem whose constraint sets are convex and bounded, and thus the Sion’s minimax
theorem [24] guarantees that

min
πππ∈ΠNa,b

max
λ∈∆N

+

`η(πππ, λ) = max
λ∈∆N

+

min
πππ∈ΠNa,b

`η(πππ, λ). (5)

Now we consider the dual problem of minπππ∈ΠNa,b
`η(πππ, λ). First, we add a redundant constraint∑

k,i,j π
k
i,j = 1 and consider the dual of

min
πππ∈ΠNa,b,

∑
k,i,j π

k
i,j=1

`η(πππ, λ). (6)

The reason for adding this redundant constraint is to guarantee that the dual objective function is
Lipschitz smooth. It is easy to verify that the dual problem of (6) is given by

max
f,g

min∑
k,i,j π

k
i,j=1,

πππ∈(Rn×n+)
N

N∑
k=1

λk〈πk, Ck〉 − ηH(πππ) + f>

(
a− r

(∑
k

πk

))
+ g>

(
b− c

(∑
k

(πk)>

))
, (7)

3

where f and g are the dual variables and H(πππ) =
∑

kH(πk). It is noted that problem (7) admits
the following solution:

πk(f, g, λ) =
ζk(f, g, λ)∑
k ‖ζk(f, g, λ)‖1

, ∀k ∈ [N], (8)

where

ζk(f, g, λ) = exp

(
f1>n + 1ng

> − λkCk

η

)
, ∀k ∈ [N]. (9)

By plugging (8) into (7), we obtain the following dual problem of (6):

max
f∈Rn, g∈Rn

〈f, a〉+ 〈g, b〉 − η log

(
N∑
k=1

‖ζk(f, g, λ)‖1

)
− η. (10)

Plugging (10) into (5), we know that the entropy regularized EOT problem (4) is equavalent to a
pure maximization problem:

max
f∈Rn, g∈Rn, λ∈∆N

F (f, g, λ) := 〈f, a〉+ 〈g, b〉 − η log

(
N∑
k=1

‖ζk(f, g, λ)‖1

)
− η. (11)

Function F (f, g, λ) is a smooth concave function with three block variables (f, g, λ). We use
(f∗, g∗, λ∗) to denote an optimal solution of (11), and we denote F ∗ = F (f∗, g∗, λ∗). The PAM
algorithm proposed in [21] is essentially a block coordinate descent (BCD) algorithm for solving
(11). More specifically, the PAM updates the three block variables by the following scheme:

f t+1 ∈ argmax
f

F (f, gt, λt), (12a)

gt+1 ∈ argmax
g

F (f t+1, g, λt), (12b)

λt+1 := Proj∆N

(
λt + τ∇λF (f t+1, gt+1, λt)

)
. (12c)

Each iteration of PAM consists of two exact maximization steps followed by one projected gradi-
ent step. Importantly, the two exact maximization problems (12a)-(12b) have numerous optimal
solutions, and we choose to use the following ones:

f t+1 = f t + η log

 a

r
(∑N

k=1 ζ
k(f t, gt, λt)

)
 , (13)

gt+1 = gt + η log

 b

c
(∑N

k=1 ζ
k(f t+1, gt, λt)

)
 . (14)

Furthermore, the optimiality conditions of (12a)-(12b) imply that

a−
r
(∑N

k=1 ζ
k(f t+1, gt, λt)

)
∑

k ‖ζk(f t+1, gt, λt)‖1
= 0, b−

c
(∑N

k=1 ζ
k(f t+1, gt+1, λt)

)
∑

k ‖ζk(f t+1, gt+1, λt)‖1
= 0, ∀t. (15)

However, we need to point out that the PAM (12) only returns the dual variables (f t, gt, λt). One
can compute the primal variable πππ using (8), but it is not necessarily a feasible solution. That is,
πππ computed from (8) does not satisfy πππ ∈ ΠN

a,b. How to obtain an optimal primal solution from the

4

dual variables was not discussed in [21]. For the OT problem, i.e., N = 1, a rounding procedure
for returning a feasible primal solution has been proposed in [1]. However, this rounding procedure
cannot be applied to the EOT problem directly. In the next section, we propose a new rounding
procedure for returning a primal solution based on the dual solution (f t, gt, λt). This new rounding
procedure involves a dedicated way to compute the margins.

2.1 The Rounding Procedure and the Margins

Given a ∈ ∆n, b ∈ ∆n, and πππ = {πk}k∈[N] satisfying r(
∑

k π
k) = a, we construct vectors ak, bk ∈

Rn, k ∈ [N] from the procedure

(ak, bk)k∈[N] = Margins(πππ, a, b). (16)

The details of this procedure is given below. First, we set ak = r(πk), which immediately implies∑N
k=1 a

k = a. We then construct bk such that the following properties hold (these properties are
required in our convergence analysis later):

(i) bk ≥ 0;

(ii)
∑N

k=1 b
k = b;

(iii)
∑n

i=1 a
k
i =

∑n
j=1 b

k
j , ∀k ∈ [N];

(iv) For any fixed j ∈ [n], the quantities bkj − [c(πk)]j have the same sign for all k ∈ [N]. That is,
for any k and k′, we have

(bkj − [c(πk)]j) · (bk
′
j − [c(πk

′
)]j) ≥ 0, (17)

which provides the following identity that is useful in our convergence analysis later:

N∑
k=1

‖bk − c(πk)‖1 =
N∑
k=1

n∑
j=1

|bkj − [c(πk)]j | =
n∑
j=1

∣∣∣∣∣
N∑
k=1

(bkj − [c(πk)]j)

∣∣∣∣∣
=

n∑
j=1

∣∣∣∣∣∣bj −
[
c

(
N∑
k=1

πk

)]
j

∣∣∣∣∣∣ =

∥∥∥∥∥b− c
(

N∑
k=1

πk

)∥∥∥∥∥
1

.

(18)

The procedure on constructing (bk)k∈[N] satisfying these four properties is provided in Appendix
A.

After (ak, bk)k∈[N] are constructed from (16) with πππ = πππ(fT , gT−1, λT−1), we adopt the rounding

procedure proposed in [1] to output a primal feasible solution (π̂k)k∈[N]. The rounding procedure
is described in Algorithm 2.

With this new procedure for rounding and computing the margins ak, bk, we now formally
describe our PAM algorithm in Algorithm 1.

2.2 Connections with BCD and BCGD Methods

We now discsuss the connections between PAM and the block coordinate descent (BCD) method
and the block coordinate gradient descent (BCGD) method. For the ease of presentation, we now

5

Algorithm 1 Projected Alternating Maximization Algorithm

1: Input: Cost matrices {Ck}1≤k≤N , vectors a, b ∈ ∆n
+ with b > 0, accuracy ε. f0 = g0 =

[1, ..., 1]>, λ0 = [1/N, ..., 1/N]> ∈ ∆N
+ . t = 0

2: Choose parameters as

η = min

{
ε

3(log(n2N) + 1)
, c∞

}
, τ = η/c2

∞. (19)

3: while (45) is not met do
4: Compute f t+1 by (13)
5: Compute gt+1 by (14)
6: Compute λt+1 by (12c)
7: t← t+ 1
8: end while
9: Assume stopping condition (45) is satisfied at the T -th iteration. Compute (ak, bk)k∈[N] =

Margins(πππ(fT , gT−1, λT−1), a, b) as in Section 2.1.
10: Output: (π̂, λ̂) where π̂k = Round(πk(fT , gT−1, λT−1), ak, bk), ∀k ∈ [N], λ̂ = λT−1.

Algorithm 2 Round(π, a, b)

1: Input: π ∈ Rn×n, a ∈ Rn+, b ∈ Rn+.
2: X = Diag (x) with xi = ai

r(π)i
∧ 1

3: π′ = Xπ
4: Y = Diag (y) with yj =

bj
c(π′)j

∧ 1

5: π′′ = π′Y
6: erra = a− r(π′′), errb = b− c(π′′)
7: Output: π′′ + erraerr

>
b /‖erra‖1.

assume that we are dealing with the following general convex optimization problem with m block
variables:

min
xi∈Xi,i=1,...,m

J(x1, x2, . . . , xm), (20)

where Xi ⊂ Rdi and J is convex and differentiable. The BCD method for solving (20) iterates as
follows:

xt+1
i = argmin

xi∈Xi
J(xt+1

1 , xt+1
2 , . . . , xt+1

i−1, xi, x
t
i+1, . . . , x

t
m), (21)

and it assumes that these subproblems are easy to solve. The BCGD method for solving (20)
iterates as follows:

xt+1
i = argmin

xi∈Xi
〈∇xiJ(xt+1

1 , xt+1
2 , . . . , xt+1

i−1, xi, x
t
i+1, . . . , x

t
m), xi − xti〉+

1

τ
‖xi − xti‖22, (22)

where τ > 0 is the step size. The PAM (12) is a hybrid of BCD (21) and BCGD (22), in the sense
that some block variables are updated by exactly solving a maximization problem (the f and g
steps), and some other block variables are updated by taking a gradient step (the λ step). Though
this hybrid idea has been studied in the literature [10, 26], their convergence analysis requires the
blocks corresponding to exact minimization to be strongly convex. However, in our problem (11),
the negative of the objective function is merely convex. Hence we need to develop new convergence

6

proofs to analyze the convergence of PAM (Algorithm 1). How to extend our convergence results
of PAM (Algorithm 1) to more general settings is a very interesting topic for future study.

3 Convergence Analysis of PAM

In this section, we analyze the iteration complexity of Algorithm 1 for obtaining an ε-optimal
solution to the original EOT problem (2). The ε-optimal solution to (2) is defined as follows.

Definition 2 (see, e.g., [17]) We call (π̂ππ, λ̂) ∈ ΠN
a,b × ∆N an ε-optimal solution to the EOT

problem (2) if the following inequality holds:

max
λ∈∆N

`(π̂ππ, λ)− min
πππ∈ΠNa,b

`(πππ, λ̂) ≤ ε.

Note that the left hand side of the inequality is the duality gap of (2).

3.1 Technical Preparations

We first give the partial gradients of F .

[∇fF (f, g, λ)]i = ai −
∑

k,j exp((fi + gj − λkCkij)/η)∑
k ‖ζk(f, g, λ))‖1

= ai −

[
r

(∑
k

πk(f, g, λ)

)]
i

, (23a)

[∇gF (f, g, λ)]j = bj −
∑

k,i exp((fi + gj − λkCkij)/η)∑
k ‖ζk(f, g, λ))‖1

= bj −

[
c

(∑
k

πk(f, g, λ)

)]
j

, (23b)

[∇λF (f, g, λ)]k =

∑
i,j C

k
ij exp((fi + gj − λkCkij)/η)∑

k ‖ζk(f, g, λ))‖1
= 〈πk(f, g, λ), Ck〉. (23c)

Since (13) and (14) renormalize the row sum and column sum of
∑

k ζ
k(f, g, λ) to be a and b, we

immediately have

N∑
k=1

‖ζk(f t+1, gt, λt)‖1 = 1,

N∑
k=1

‖ζk(f t+1, gt+1, λt)‖1 = 1,∀t, (24)

which, combined with (8), yields

πk(f t+1, gt, λt) = ζk(f t+1, gt, λt), πk(f t+1, gt+1, λt) = ζk(f t+1, gt+1, λt),∀t. (25)

The following lemma gives an error bound for Algorithm 2 (see [1]).

Lemma 3 (Rounding Error) Let a, b ∈ Rn+ with
∑n

i=1 ai =
∑n

j=1 bj = q, π ∈ Rn×n+ , and π̂ =
Round(π, a, b). The following inequality holds:

‖π̂ − π‖1 ≤ 2(‖r(π)− a‖1 + ‖c(π)− b‖1).

Proof. The proof is a slight modification from [1, Lemma 7]. Note that Lines 2-5 in Algorithm 2
renormalize the row sum and column sum that are larger than the corresponding ai and bj . It is
easy to verify that π̂, π′′, erra and errb are nonnegative with ‖erra‖1 = ‖errb‖1 = q − ‖π′′‖1 and

r(π̂) = r(π′′) + r(erraerr
>
b /‖erra‖1) = r(π′′) + erra = a ,

7

and likewise c(π̂) = b. Denote ∆ = ‖π‖1 − ‖π′′‖1. Since we remove mass from a row of π when
ri(π) ≥ ai, and from a column when cj(π

′) ≥ bj , we have

∆ =
n∑
i=1

(ri(π)− ai)+ +
n∑
j=1

(cj(π
′)− bj)+ .

Firstly, a simple calculation shows

n∑
i=1

(ri(π)− ai)+ =
1

2
[‖r(π)− a‖1 + ‖π‖1 − q] .

Secondly, the fact that the vector c(π) is entrywise larger than c(π′) leads to

n∑
j=1

(cj(π
′)− bj)+ ≤

n∑
j=1

(cj(π)− bj)+ ≤ ‖c(π)− b‖1.

Therefore we conclude

‖π̂ − π‖1 ≤ ∆ + ‖erraerr>b ‖1/‖erra‖1 = ∆ + q − ‖π′′‖1 = 2∆ + q − ‖π‖1

≤ ‖r(π)− a‖1 + 2‖c(π)− b‖1 ≤ 2
[
‖r(π)− a‖1 + ‖c(π)− b‖1

]
.

�

The following lemma shows that ∇λF is Lipschitz continuous.

Lemma 4 For any f, g ∈ Rn and λ1, λ2 ∈ ∆N , the following inequality holds

‖∇λF (f, g, λ1)−∇λF (f, g, λ2)‖2 ≤ c2
∞‖λ1 − λ2‖2/η, (26)

which immediately implies

F (f, g, λ1) ≥ F (f, g, λ2) + 〈∇λF (f, g, λ2), λ1 − λ2〉 − c2
∞

2η
‖λ1 − λ2‖22. (27)

Proof. The proof essentially follows [21]. It is easy to verify that the (q, k)-th entry of the Hessian
of F (f, g, λ) with respect to λ is

∂2F

∂λq∂λk
=

1

ην2
[σq,1(λ)σk,1(λ)− ν(σk,2(λ)11k=q)]

where 11k=q = 1 iff k = q and 0 otherwise, for all k ∈ {1, ..., N} and p ≥ 1

σk,p(λ) =
∑
i,j

(Cki,j)
p exp

(
fi + gj − λkCki,j

η

)
,

ν =
N∑
k=1

∑
i,j

exp

(
fi + gj − λkCki,j

η

)
.

8

Let v ∈ RN satisfying ‖v‖2 = 1, and by denoting ∇2
λF the Hessian of F with respect to λ for fixed

f, g, we obtain

v>∇2
λFv =

1

ην2

(N∑
k=1

vkσk,1(λ)

)2

− ν
N∑
k=1

v2
kσk,2


≤ 1

ην2

(
N∑
k=1

vkσk,1(λ)

)2

− 1

ην2

 N∑
k=1

|vk|

√√√√∑
i,j

exp

(
fi + gj − λkCki,j

η

)√√√√∑
i,j

(Cki,j)
2 exp

(
fi + gj − λkCki,j

η

)2

≤ 1

ην2

(N∑
k=1

vkσk,1(λ)

)2

−

 N∑
k=1

|vk|
∑
i,j

|Cki,j | exp

(
fi + gj − λkCki,j

η

)2 ≤ 0,

where the last three inequalities come from Cauchy Schwartz inequality. Moreover we have

vT∇2
λFv =

1

ην2

(N∑
k=1

vkσk,1(λ)

)2

− ν
N∑
k=1

v2
kσk,2

 ≥ −∑N
k=1 v

2
kσk,2

ην
≥ −c

2
∞
η
,

which completes the proof. �

The next lemma gives a bound for g.

Lemma 5 Let (f t, gt, λt) be the sequence generated by Algorithm 1. For any t ≥ 0, it holds that

max
j
gtj −min

j
gtj ≤ c∞ − ηι, (28a)

max
j
g∗j −min

j
g∗j ≤ c∞ − ηι. (28b)

Proof. We prove (28a) first. When t = 0, (28a) holds because of the initialization g0. When t ≥ 1,
from (15) we have

N∑
k=1

e−λ
t−1
k Ckij/η ≥

N∑
k=1

e−λ
t−1
k ‖Ck‖∞/η ≥

N∑
k=1

e−‖C
k‖∞/η ≥ Ne−c∞/η, (29)

where the second inequality is due to 0 ≤ λt−1
k ≤ 1. Combining (29) and (24) we get

eg
t
j/η ·Ne−c∞/η〈1, ef t/η〉 ≤

∑
i

eg
t
j/η

(
N∑
k=1

e−λ
t−1
k Ckij/η

)
ef

t
i /η = bj ≤ 1,

which leads to
max
j
gtj ≤ c∞ − η log(N〈1, ef t/η〉). (30)

Moreover, note that e−λ
t−1
k Ckij/η ≤ 1, therefore 1

N

∑N
k=1 e

−λt−1
k Ckij/η ≤ 1. This fact leads to:

eg
t
j/η · 〈1, ef t/η〉 ≥

∑
i

eg
t
j/η

(
1

N

N∑
k=1

e−λ
t−1
k Ckij/η

)
ef

t
i /η =

1

N
bj ,

which gives

min
j
gtj ≥ ηι− η log(N〈1, ef t/η〉). (31)

Combining (30) with (31) yields (28a). The bound for g∗ (28b) can be obtained similarly, by noting
that πππ∗ ∈ ΠN

a,b. We omit the details for brevity. �

9

Lemma 6 Let {f t, gt, λt} be generated by PAM (Algorithm 1). The following equality holds.

N∑
k

‖πk(f t+1, gt+1, λt)− πk(f t+1, gt, λt)‖1 =
∥∥ct − b∥∥

1
,∀t.

Proof. By (25), we have

N∑
k

‖πk(f t+1, gt+1, λt)− πk(f t+1, gt, λt)‖1

=

N∑
k

∑
i,j

|e(f
t+1
i +gt+1

j −λtkC
k
i,j)/η − e(f

t+1
i +gtj−λtkC

k
i,j)/η|

=
N∑
k

∑
i,j

[πk(f t+1, gt, λt)]i,j
∣∣bj/ctj − 1

∣∣ =
∑
j

ctj |bj/ctj − 1| =
∥∥ct − b∥∥

1
.

�

3.2 Key Lemmas

In this subsection, we provide a few useful lemmas that will lead to our main theorem on the
iteration complexity of PAM (Algorithm 1). These lemmas yield the following results: the function
F is monotonically increasing (Lemmas 7), the suboptimality of the dual problem can be upper
bounded (Lemma 8-10), and the PAM returns an ε-optimal solution under conditions (45) (Lemma
11). In Theorem 12 we will show that these conditions can indeed be satisfied.

Lemma 7 [Increase of F] Let {f t, gt, λt} be generated by PAM (Algorithm 1). The following
inequalities hold:

F (f t+1, gt, λt)− F (f t, gt, λt) ≥ 0 (32a)

F (f t+1, gt+1, λt)− F (f t+1, gt, λt) ≥ η

2

∥∥ct − b∥∥2

1
(32b)

F (f t+1, gt+1, λt+1)− F (f t+1, gt+1, λt) ≥ c2
∞‖λt+1 − λt‖2/(2η). (32c)

Proof.
First, (32a) is a direct consequence of (12a).
Next, we prove (32b). We have

F (f t+1, gt+1, λt)− F (f t+1, gt, λt)

= 〈gt+1 − gt, b〉 − η log

(
N∑
k=1

‖ζk(f t+1, gt+1, λt)‖1

)
+ η log

(
N∑
k=1

‖ζk(f t+1, gt, λt)‖1

)

= 〈gt+1 − gt, b〉 = η

n∑
j=1

bj log(bj/c
t
j) = ηK(b||ct) ≥ η

2
‖ct − b‖21,

where K(x||y) denotes the KL divergence of x and y, the second equality is due to (24), the third
equality is due to (14), and the last inequality follows the Pinsker’s inequality.

Finally, we prove (32c). From the optimality condition of (12c), we know that there exists

h(λt+1) ∈ ∂I∆N
(λt+1) (33)

10

such that

∇λF (f t+1, gt+1, λt)− 1

τ
(λt+1 − λt)− h(λt+1) = 0. (34)

From (27) we have

F (f t+1, gt+1, λt+1)− F (f t+1, gt+1, λt) ≥ 〈∇λF (f t+1, gt+1, λt), λt+1 − λt〉 − c2
∞

2η
‖λt+1 − λt‖2

= 〈1
τ

(λt+1 − λt) + h(λt+1), λt+1 − λt〉 − c2
∞

2η
‖λt+1 − λt‖2

≥ 〈1
τ

(λt+1 − λt), λt+1 − λt〉 − c2
∞

2η
‖λt+1 − λt‖2

= c2
∞‖λt+1 − λt‖2/(2η),

where the first equality is due to (34), the second inequality is due to (33), and the last equality is
due to the definition of τ in (19). �

Before we bound the suboptimality gap, we need the following lemma.

Lemma 8 Let {f t, gt, λt} be generated by PAM (Algorithm 1). For any λ ∈ ∆N , the following
inequality holds: 〈

λ− λt,∇λF (f t+1, gt, λt)
〉
≤ 3c2

∞‖λt+1 − λt‖2/η + c∞
∥∥ct − b∥∥

1
. (35)

Proof. The optimality condition of (12c) is given by:

〈λ− λt+1,
1

τ
(λt+1 − λt)−∇λF (f t+1, gt+1, λt)〉 ≥ 0, ∀λ ∈ ∆N , (36)

which implies that

〈λt+1 − λ,−∇λF (f t+1, gt+1, λt)〉

≤ 〈λ− λt+1,
1

τ
(λt+1 − λt)〉 ≤ 1

τ
‖λ− λt+1‖2‖λt+1 − λt‖2 ≤ 2c2

∞‖λt+1 − λt‖2/η,
(37)

where the last inequality is due to the fact that the diameter of ∆N is bounded by
√

2 ≤ 2.
Moreover, we have

〈λt − λ,∇λF (f t+1, gt+1, λt)−∇λF (f t+1, gt, λt)〉

=
N∑
k

(λtk − λk) · 〈πk(f t+1, gt+1, λt)− πk(f t+1, gt, λt), Ck〉

≤
N∑
k

‖πk(f t+1, gt+1, λt)− πk(f t+1, gt, λt)‖1‖Ck‖∞

≤ c∞‖ct − b‖1,

(38)

where the equality is due to (23c), and the last inequality is due to Lemma 6. Finally, we have〈
λt − λ,−∇λF (f t+1, gt, λt)

〉
=
〈
λt − λt+1,−∇λF (f t+1, gt+1, λt)

〉
+
〈
λt+1 − λ,−∇λF (f t+1, gt+1, λt)

〉
+〈

λt − λ,∇λF (f t+1, gt+1, λt)−∇λF (f t+1, gt, λt)
〉

≤‖λt − λt+1‖2 · ‖∇λF (f t+1, gt+1, λt)‖2 + 2c2
∞‖λt+1 − λt‖2/η + c∞‖ct − b‖1,

(39)

11

where the first inequality is due to (37) and (38). From (23c) we have ‖∇λF (f t+1, gt+1, λt)‖2 ≤ c∞,
which, combined with (39) and the fact that η ≤ c∞, yields the desired result. �

The suboptimality of (11) is defined as: F̃ (f, g, λ) = F (f∗, g∗, λ∗) − F (f, g, λ). Note that
F̃ (f, g, λ) ≥ 0, ∀f, g, λ ∈ ∆N .

Lemma 9 Let (f t, gt, λt) be generated by PAM (Algorithm 1). The following inequality holds:

F̃ (f t+1, gt, λt) ≤ (2c∞ − ηι)‖ct − b‖1 + 3c2
∞‖λt+1 − λt‖2/η.

Proof. Denote ut = (maxj g
t
j + minj g

t
j)/2, u

∗ = (maxj g
∗
j + minj g

∗
j)/2. From (25) we get

〈1, ct − b〉 =
n∑
i=1

ai −
n∑
j=1

bj = 0,

which further implies〈
gt − g∗, ct − b

〉
=
〈
(gt − ut1)− (g∗ − u∗1), ct − b

〉
≤
(
‖gt − ut1‖∞ + ‖g∗ − u∗1‖∞

) ∥∥ct − b∥∥
1
≤ (c∞ − ηι)

∥∥ct − b∥∥
1
,

(40)

where the last inequality is due to Lemma 5. Now we set λ = λ∗ in (35), and we obtain〈
λt − λ∗,−∇λF (f t+1, gt, λt)

〉
≤ 3c2

∞‖λt+1 − λt‖2/η + c∞
∥∥ct − b∥∥

1
. (41)

Since F (f, g, λ) is a concave function, we have

F (f∗, g∗, λ∗) ≤ F (f t+1, gt, λt) + 〈∇F (f t+1, gt, λt), (f∗, g∗, λ∗)− (f t+1, gt, λt)〉,

which, combining with (23) yields

F̃ (f t+1, gt, λt) = F (f∗, g∗, λ∗)− F (f t+1, gt, λt)

≤ 〈f t+1 − f∗, r(
∑N

k=1 π
k(f t+1, gt, λt))− a〉+

〈
gt − g∗, ct − b

〉
+
〈
λt − λ∗,−∇λF (f t+1, gt, λt)

〉
≤ (2c∞ − ηι)‖ct − b‖1 + 3c2

∞‖λt+1 − λt‖2/η,

where the last inequality follows from (15), (25), (40) and (41). �

The next lemma shows that the suboptimality gap F̃ (f, g, λ) can be bounded by O(1/t).

Lemma 10 Let (f t, gt, λt) be generated by PAM (Algorithm 1). The following inequality holds:

F̃ (f t+1, gt+1, λt+1) ≤ 4/(ηγ0)

t+ 1 + 4/(ηγ0F̃ (f0, g0, λ0))
,

where γ0 = min
{

1
(2c∞−ηι)2

, 1
9c2∞

}
is a constant.

Proof. Combining (32b) and (32c), we have

F (f t+1, gt+1, λt+1)− F (f t+1, gt, λt) ≥ η

2

∥∥ct − b∥∥2

1
+ c2
∞
∥∥λt+1 − λt

∥∥2

2
/(2η). (42)

12

Therefore, we have

F̃ (f t+1, gt+1, λt+1)− F̃ (f t+1, gt, λt)

≤− η

2

∥∥ct − b∥∥2

1
− c2
∞
∥∥λt+1 − λt

∥∥2

2
/(2η)

≤− η

2
γ0 ·

(
((2c∞ − ηι)‖ct − b‖1)2 + (3c2

∞‖λt+1 − λt‖2/η)2
)

≤− η

4
γ0

(
(2c∞ − ηι)‖ct − b‖1 + 3c2

∞‖λt+1 − λt‖2/η
)2

≤− η

4
γ0F̃ (f t+1, gt, λt)2,

(43)

where the last inequality is from Lemma 9. Dividing both sides of (43) by F̃ (f t+1, gt+1, λt+1) ·
F̃ (f t+1, gt, λt), we have

1

F̃ (f t+1, gt+1, λt+1)
≥ 1

F̃ (f t+1, gt, λt)
+
η

4
γ0 ·

F̃ (f t+1, gt, λt)

F̃ (f t+1, gt+1, λt+1)

≥ 1

F̃ (f t+1, gt, λt)
+
η

4
γ0 ≥

1

F̃ (f t, gt, λt)
+
η

4
γ0,

(44)

where the second inequality is due to (43) and the last inequality is from (32a). Summing (44)
from 0 to t leads to

1

F̃ (f t+1, gt+1, λt+1)
≥ 1

F̃ (f0, g0, λ0)
+
η(t+ 1)

4
γ0,

which implies the desired result. �

The next lemma gives sufficient conditions for the PAM algorithm to return an ε-optimal solution
to the original EOT problem (2).

Lemma 11 Assume at the T -iteration of PAM, we have the following inequalities hold:

‖cT−1 − b‖1 ≤ ε/(6(6c∞ − ηι)), (45a)∥∥λT − λT−1
∥∥

2
≤ ηε/(18c2

∞), (45b)

F̃ (fT , gT−1, λT−1) ≤ ε/6. (45c)

Then the output (π̂, λ̂) of PAM (Algorithm 1), i.e., π̂k = Round(πk(fT , gT−1, λT−1), ak, bk), ∀k ∈
[N], λ̂ = λT−1, is an ε-optimal solution of the original EOT problem (2).

Proof. According to Definition 2, it is sufficient to show that the output (π̂ππ, λ̂) ∈ ΠN
a,b×∆N satisfies

the following two inequalities:

max
λ∈∆N

` (π̂ππ, λ)− `(π̂ππ, λ̂) ≤ ε

2
, (46a)

`(π̂ππ, λ̂)− min
πππ∈ΠNa,b

`(πππ, λ̂) ≤ ε

2
. (46b)

We prove (46a) first. For ease of presentation, we denote π̃ππ = πππ(fT , gT−1, λT−1), πππ∗ = πππ(f∗, g∗, λ∗).
Note that π̂k = Round(π̃k, ak, bk), ∀k ∈ [N]. We also denote

λ̄(πππ) := argmax
λ∈∆N

{
`(πππ, λ) =

N∑
k=1

λk〈πk, Ck〉

}
. (47)

13

Note that the term on the left hand side of (46a) can be rewritten as

`
(
π̂ππ, λ̄(π̂ππ)

)
− `
(
π̂ππ, λ̂

)
= (`(π̂ππ, λ̄(π̂ππ))− `(π̃ππ, λ̄(π̃ππ)))︸ ︷︷ ︸

(I)

+ ([`(π̃ππ, λ̄(π̃ππ))− ηH(π̃ππ)]− [`(πππ∗, λ∗)− ηH(πππ∗)])︸ ︷︷ ︸
(II)

+ ([`(πππ∗, λ∗)− ηH(πππ∗)]− [`(π̃ππ, λ̂)− ηH(π̃ππ)])︸ ︷︷ ︸
(III)

+ (`(π̃ππ, λ̂)− `(π̂ππ, λ̂))︸ ︷︷ ︸
(IV)

.

(48)

We now provide upper bounds for these four terms. Denote

k̂∗ = argmax
k∈[N]

〈π̂k, Ck〉, k̃∗ = argmax
k∈[N]

〈π̃k, Ck〉. (49)

Since (1) and (2) are equivalent, we have the following for the term (I):

(I) =
∑
k

[λ̄(π̂ππ)]k〈π̂k, Ck〉 −
∑
k

[λ̄(π̃ππ)]k〈π̃k, Ck〉 = 〈π̂k̂∗ , C k̂∗〉 − 〈π̃k̃∗ , C k̃∗〉

≤〈π̂k̂∗ , C k̂∗〉 − 〈π̃k̂∗ , C k̂∗〉 ≤ ‖π̂k̂∗ − π̃k̂∗‖1‖Ck‖∞ ≤ c∞
∑
k

‖π̂k − π̃k‖1

≤2c∞
∑
k

(‖r(π̃k)− ak‖1 + ‖c(π̃k)− bk‖1) = 2c∞‖cT−1 − b‖1,

(50)

where the first inequality follows from the definition of k̃∗ in (49), the fourth inequality is from
Lemma 3, and the last equality follows from (15) and (17).

For the term (II), recall thatH(πππ) = −
∑

k,i,j π
k
i,j(log πki,j−1) and π̃k = exp

(
fT 1>+1(gT−1)>−λT−1

k Ck

η

)
due to (25), and define uT−1 =

maxj g
T−1
j +minj g

T−1
j

2 . We have

(II) =
∑
k

λ̄(π̃ππ)k〈π̃k, Ck〉+ η
∑
k,i,j

π̃ki,j

(
fTi + gT−1

j − λT−1
k Ckij

η
− 1

)
− F ∗

=
∑
k

(λ̄(π̃ππ)k − λ̂k)〈π̃k, Ck〉+
∑
k,i,j

π̃ki,j

(
fTi + gT−1

j − η
)
− F ∗

=
〈
λ̄(π̃ππ)− λ̂,∇λF (fT , gT−1, λT−1)

〉
+
〈
fT , a

〉
+
〈
gT−1, cT−1

〉
− η

∑
i,j,k π̃

k
i,j − F ∗

=
〈
λ̄(π̃ππ)− λ̂,∇λF (fT , gT−1, λT−1)

〉
+
〈
fT , a

〉
+
〈
gT−1, cT−1

〉
− log

(∑
k

‖π̃k‖1

)
− η − F ∗

=
〈
λ̄(π̃ππ)− λ̂,∇λF (fT , gT−1, λT−1)

〉
+ 〈gT−1, cT−1 − b〉+ F (fT , gT−1, λT−1)− F ∗

≤
〈
λ̄(π̃ππ)− λ̂,∇λF (fT , gT−1, λT−1)

〉
+ 〈gT−1, cT−1 − b〉

≤c∞‖cT−1 − b‖1 + 3c2
∞‖λT − λT−1‖2/η + 〈gT−1 − uT−11, cT−1 − b〉

≤c∞‖cT−1 − b‖1 + 3c2
∞‖λT − λT−1‖2/η + ‖gT−1 − uT−11‖∞‖cT−1 − b‖1

≤(3c∞/2− ηι/2)‖cT−1 − b‖1 + 3c2
∞‖λT − λT−1‖2/η,

(51)
where the third equality uses (25), (23c) and (15), the second inequality follows from Lemma 8 by
setting λ = λ̄(π̃ππ) and t = T − 1, and the last inequality uses Lemma 5.

14

For the term (III), we have

(III) ≤

∣∣∣∣∣∣
∑
k

λ̂k〈π̃k, Ck〉+ η
∑
i,j

π̃ki,j

(
fTi + gT−1

j − λT−1
k Ck

η
− 1

)
− F ∗

∣∣∣∣∣∣
=|〈gT−1, cT−1 − b〉+ F (fT , gT−1, λT−1)− F ∗|
≤(c∞/2− ηι/2)‖cT−1 − b‖1 + |F (fT , gT−1, λT−1)− F ∗|,

(52)

where the last inequality follows from Lemma 5.
Finally, for the term (IV), we have

(IV) =
∑
k

〈π̃k − π̂k, λ̂kCk〉 ≤
∑
k

‖π̃k − π̂k‖1‖Ck‖∞

≤2c∞
∑
k

(‖r(π̃k)− ak‖1 + ‖c(π̃k)− bk‖1) = 2c∞‖cT−1 − b‖1,
(53)

where the first inequality uses |λ̂k| ≤ 1, the second inequality uses Lemma 3 and (17). Plugging
(50) - (53) into (48), and using (45), we obtain (46a).

Now we prove (46b). For ease of presentation, we denote

π̄ππ(λ) := argmin
πππ∈ΠNa,b

`(πππ, λ). (54)

We also denote b̃ = cT−1 =
∑

k c
(
π̃k
)

and π′k = Round(π̄(λ̂)k, ãk, b̃k), where

(ãk, b̃k)k∈[N] := Margins(π̄ππ(λ̂), a, b̃),

as defined in (16). From (18) we know that

∑
k

∥∥∥c((π̄(λ̂))k
)
− b̃k

∥∥∥
1

=

∥∥∥∥∥∑
k

c
(

(π̄(λ̂))k
)
−
∑
k

b̃k

∥∥∥∥∥
1

= ‖b− b̃‖1 = ‖b− cT−1‖1, (55)

where the second equality is due to π̄ππ(λ̂) ∈ ΠN
a,b and thus c(

∑
k(π̄ππ(λ̂))k) = b, and the fact that∑

k b̃
k = b̃ due to Property (ii) of the Margins procedure in Section 2.1. By the Sinkhorn’s theorem

[23], π̃̃π̃π is the unique optimal solution of minπππ∈ΠN
a,b̃
`η(πππ, λ̂). Therefore∑

k

λ̂k〈π̃k, Ck〉 − ηH(π̃̃π̃π) ≤
∑
k

λ̂k〈π′k, Ck〉 − ηH(π′π′π′). (56)

Now, note that the left hand side of (46b) can be arranged into three parts:

`(π̂̂π̂π, λ̂)− `(π̄ππ(λ̂), λ̂)

=

(∑
k

λ̂k〈π̂k, Ck〉 −
∑
k

λ̂k〈π̃k, Ck〉

)
︸ ︷︷ ︸

(V)

+

(∑
k

λ̂k〈π̃k, Ck〉 −
∑
k

λ̂k〈π′k, Ck〉

)
︸ ︷︷ ︸

(V I)

+

(∑
k

λ̂k〈π′k, Ck〉 −
∑
k

λ̂k〈(π̄(λ̂))k, Ck〉

)
︸ ︷︷ ︸

(V II)

.

(57)

15

We now upper bound these three terms. First note that the term (V) is the same as the term (IV)
and thus has the same upper bound in (53). Since 0 ≤ H(πππ) ≤ log(n2N) + 1, from (56) we have
that

(V I) =
∑
k

λ̂k〈π̃k, Ck〉 −
∑
k

λ̂k〈π′k, Ck〉 ≤ η
∣∣H(π̃ππ)−H(π′π′π′)

∣∣ ≤ 1

3
ε, (58)

where the last step uses the definition of η in (19).
For the term (VII), we have

(V II) =
∑
k

λ̂k〈π′k, Ck〉 −
∑
k

λ̂k〈(π̄(λ̂))k, Ck〉 ≤
∑
k

‖π′k − (π̄(λ̂))k‖1‖Ck‖∞

≤2c∞
∑
k

(‖r((π̄(λ̂))k)− ãk‖1 + ‖c((π̄(λ̂))k)− b̃k‖1) = 2c∞‖cT−1 − b‖1,
(59)

where the second inequality follows from Lemma 3, the second equality uses (55) and the fact that
r((π̄(λ̂))k) = ãk due to the property of the Margins procedure in (16).

Finally, plugging (53) (note (V)=(IV)), (58) and (59) into (57), and using (45a) and noting
ι < 0, we obtain (46b). This completes the proof. �

3.3 Main Result

We now present our main theorem, which gives the iteration complexity of PAM such that (45) is
satisfied, and as a result of Lemma 11, an ε-optimal solution to the original EOT problem (2) is
obtained.

Theorem 12 Define ε′ = ε/(6c∞ − ηι), and set T as

T = 5 +
36

η
√
γ0ε′

+
648c2

∞
ηε

+
28

ηγ0ε
= O

(
c2
∞ε
−2
)
, (60)

where γ0 is defined in Lemma 10 and we know γ0 = O(c−2
∞). The output pair of Algorithm 1 is an

ε-optimal solution of the EOT problem (2).

Proof. According to Lemma 11, we only need to show that (45) holds after T iterations as defined
in (60). To guarantee (45a) and (45b), we follow the ideas of Dvurechensky et al. [8] and construct
a switching process. We first reduce F̃ from F̃ (f0, g0, λ0) to a constant s by running t1 steps. In
this process, Lemma 10 indicates

t1 ≤ 1 +
4

ηγ0s
− 4

ηγ0F̃ (f0, g0, λ0)
. (61)

Secondly, starting from s, we continue running the algorithm, and assume that there are t2 iterations
in which (45a) fails. By (32b) we have

t2 ≤ 1 +
72s

ηε′2
.

Therefore, we know that the total iteration number that (45a) fails is upper bounded by

T1 = t1 + t2 ≤ 2 +
72s

ηε′2
+

4

ηγ0s
− 4

ηγ0F̃ (f0, g0, λ0)

16

iterations. By choosing s = ε′/(6
√
γ0), we know that

T1 ≤

{
2 + 12

η
√
γ0ε′

+ 24
η
√
γ0ε′
− 4

ηγ0F̃ (f0,g0,λ0)
≤ 2 + 36

η
√
γ0ε′

if F̃ (f0, g0, λ0) ≥ ε′

6
√
γ0

2 + 12
η
√
γ0ε′

+ 24
η
√
γ0ε′
− 4

ηγ0F̃ (f0,g0,λ0)
≤ 2 + 12

η
√
γ0ε′

otherwise.

Therefore, we have T1 ≤ 2 + 36
η
√
γ0ε′

. Similarly, starting from s, the number of iterations that (45b)

fails can be bounded by

t3 ≤ 1 +
648sc2

∞
ηε2

,

where we apply (32b). By choosing s = ε, we know that the total iteration number that (45b) fails
is upper bounded by

T2 = t1 + t3 ≤ 2 +
648c2

∞
ηε

+
4

ηγ0ε
− 4

ηγ0F̃ (f0, g0, λ0)

iterations. Finally, by letting s = ε/6 in (61), we know that

F̃ (fT3−1, gT3−1, λT3−1) ≤ ε/6

after

T3 = 1 +
24

ηγ0ε

iterations. From (32a) we know that after T3 iterations, we have

F̃ (fT3 , gT3−1, λT3−1) ≤ F̃ (fT3−1, gT3−1, λT3−1) ≤ ε/6,

i.e., (45c) holds. Combining the above discussions, we know that after T = T1 + T2 + T3 + 1
iterations, there must exist at least one iteration such that (45) holds, and thus the output of PAM
is an ε-optimal solution to the original EOT problem (2). �

4 Projected Alternating Maximization with Extrapolation

In this section, we discuss how to accelerate the PAM algorithm (Algorithm 1). It can be shown
that the gradient of F in (11) is Lipschitz continuous1. Therefore, Scetbon et al. [21] proposed to
adopt Nesterov’s accelerated gradient method [18] to solve (11). Their algorithm, named APGA
(Accelerated Projected Gradient Ascent algorithm), iterates as follows:

(v, w, z)> ← (f t−1, gt−1, λt−1)> +
t− 2

t+ 1

(
(f t−1, gt−1, λt−1)> − (f t−2, gt−2, λt−2)>

)
(62a)

(f t, gt)> ← (v, w)> +
1

L
∇(f,g)F (v, w, z) (62b)

(λt)> ← Proj∆N

(
z +

1

L
∇λF (v, w, z)

)
, (62c)

where L is the Lipschitz constant of ∇F . Note that APGA treats the problem (11) as a generic
convex and smooth problem, and does not take advantage of the special structures of (11). In
particular, f and g are updated using gradient ascent steps. This is in contrast to PAM in which

1In Lemma 4 we proved that ∇λF is Lipschitz continuous. The Lipschitz continuity of ∇fF and ∇gF can be
proved similarly.

17

f and g are obtained by exact maximizations, which is expected to improve the function value
of F more significantly. In the following, we will design an accelerated algorithm that utilizes
this property. Our method is called PAME (PAM with Extrapolation) and it incorporates the
extrapolation technique to the gradient step for updating λ, and f and g are still updated using
exact maximizations. We note that currently we are not able to prove a better complexity for
PAME. Our iteration complexity result in Theorem 18 is in the same order as that of PAM, but
numerically we have observed great improvement of PAME over PAM. It is an interesting future
topic to study other accelerations to PAM that can provably achieve improved complexity.

A typical iteration of our PAME algorithm is given below:

f t+1 = f t + η log

(
a

r (
∑

k ζ
k(f t, gt, λt))

)
, (63a)

gt+1 = gt + η log

(
b

c (
∑

k ζ
k(f t+1, gt, λt))

)
, (63b)

yt+1 = Proj∆N

(
λt + (1− θ)(λt − λt−1)

)
, (63c)

λt+1 = Proj∆N

(
yt+1 + τ∇λF (f t+1, gt+1, yt+1)

)
. (63d)

Here θ ∈ (0, 1) is a given parameter for the extrapolation step. We see that steps (63a)-(63b)
are the same as (13)-(14) and they are solutions to the exact maximizations (12a)-(12b). Steps
(63c)-(63c) give extrapolation to the gradient step for λ, similar to Nesterov’s accelerated gradient
method. Note that PAME (63) solves the dual entropy-regularized EOT problem (11). We use the
same rounding procedure in Section 2.1 to generate a primal solution to the original EOT problem
(1). The complete PAME algorithm is described in Algorithm 3.

Algorithm 3 Projected Alternating Maximization with Extrapolation Algorithm

1: Input: Cost matrices {Ck}1≤k≤N , accuracy ε, θ ∈ (0, 1).
2: Initialization: f0 = g0 = [1, ..., 1]>, λ0 = [1/N, ..., 1/N]> ∈ ∆N .
3: Choose parameters as

η = min

{
ε

3(log(n2N) + 1)
, c∞

}
, τ =

η

2c2
∞
. (64)

4: while (83) is not met do
5: Compute f t+1 by (63a)
6: Compute gt+1 by (63b)
7: Compute yt+1 by (63c)
8: Compute λt+1 by (63d)
9: t← t+ 1

10: end while
11: Assume the stop condition (83) is satisfied at the T -th iteration. Compute (ak, bk)k∈[N] =

Margins(πππ(fT , gT−1, λT−1), a, b) as in Section 2.1.
12: Output: (π̂, λ̂) where π̂k = Round(πk(fT , gT−1, λT−1), ak, bk), ∀k ∈ [N], λ̂ = λT−1.

4.1 Convergence Analysis of PAME Algorithm

In this section, we analyze the iteration complexity of PAME (Algorithm 3) for obtaining an ε-
optimal solution to the original EOT problem (1). The proof for PAME is different from that of

18

PAM, and here we need to analyze the behavior of the following Hamiltonian, inspired by Jin et
al. [13].

E(f, g, λ1, λ2) = F (f, g, λ1)− 1

2τ
‖λ1 − λ2‖22. (65)

The following simple fact is useful for our analysis later.

‖yt+1 − λt‖2 = ‖Proj∆N

(
λt + (1− θ)(λt − λt−1)

)
− Proj∆N

(
λt
)
‖2 ≤ (1− θ)‖λt − λt−1‖2, (66)

where the equality follows from the definition of yt+1 in (63c), and the inequality is due to the
non-expansiveness of the projection operator.

The following lemma shows that the Hamiltonian E(f t, gt, λt, λt−1) is monotonically increasing
when updating λ in Algorithm (3).

Lemma 13 [Sufficient increase in λ] Let {f t, gt, yt, λt} be generated by PAME (Algorithm 3). The
following inequality holds:

E(f t+1, gt+1, λt+1, λt)− E(f t+1, gt+1, λt, λt−1) ≥ 2θ − θ2

2τ
‖λt − λt−1‖22 +

1

4τ
‖λt+1 − yt+1‖22. (67)

Note that since θ ∈ (0, 1), the right hand side of (67) is always nonnegative.

Proof. From the optimality condition of (63d) we know that, there exists h(λt+1) ∈ ∂I∆N (λt+1)
such that

∇λF (f t+1, gt+1, yt+1)− 1

τ
(λt+1 − yt+1)− h(λt+1) = 0. (68)

By the convexity of the indicator function I∆N (λt+1), we have

〈yt+1 − λt+1, h(λt+1)〉 ≤ 0, 〈λt − λt+1, h(λt+1)〉 ≤ 0. (69)

Moreover, we have the following inequality:

‖λt+1 − λt‖22 = ‖λt+1 − yt+1 + yt+1 − λt‖22
= ‖yt+1 − λt‖22 + 2〈λt+1 − yt+1, yt+1 − λt〉+ ‖λt+1 − yt+1‖22
≤ (1− θ)2‖λt − λt−1‖22 + 2〈λt+1 − yt+1, yt+1 − λt〉+ ‖λt+1 − yt+1‖22,

(70)

where the inequality is from (66). We then have the following inequality:

F (f t+1, gt+1, λt)− F (f t+1, gt+1, λt+1)

≤
(
F (f t+1, gt+1, yt+1) + 〈∇λF (f t+1, gt+1, yt+1), λt − yt+1〉

)
−(

F (f t+1, gt+1, yt+1) + 〈∇λF (f t+1, gt+1, yt+1), λt+1 − yt+1〉 − c2
∞‖λt+1 − yt+1‖22/(2η)

)
= 〈∇λF (f t+1, gt+1, yt+1), λt − λt+1〉+ c2

∞‖λt+1 − yt+1‖22/(2η)

≤ 〈∇λF (f t+1, gt+1, yt+1)− h(λt+1), λt − λt+1〉+ c2
∞‖λt+1 − yt+1‖22/(2η)

=
1

τ
〈λt+1 − yt+1, λt − λt+1〉+

1

4τ
‖λt+1 − yt+1‖2

=
1

τ
〈λt+1 − yt+1, λt − yt+1 + yt+1 − λt+1〉+

1

4τ
‖λt+1 − yt+1‖2

= − 1

τ
〈λt+1 − yt+1, yt+1 − λt〉 − 3

4τ
‖λt+1 − yt+1‖2,

(71)

19

where the first inequality is from the concavity of F with respect to λ and (27), the second inequality
is due to (69), the second equality is due to (68). Combining (70) and (71) leads to

E(f t+1, gt+1, λt+1, λt) = F (f t+1, gt+1, λt+1)− 1

2τ
‖λt+1 − λt‖22

≥ F (f t+1, gt+1, λt) +
1

τ
〈λt+1 − yt+1, yt+1 − λt〉+

3

4τ
‖λt+1 − yt+1‖2

− (1− θ)2

2τ
‖λt − λt−1‖22 −

1

τ
〈λt+1 − yt+1, yt+1 − λt〉 − 1

2τ
‖λt+1 − yt+1‖22

= F (f t+1, gt+1, λt)− 1

2τ
‖λt − λt−1‖22 +

2θ − θ2

2τ
‖λt − λt−1‖22 +

1

4τ
‖λt+1 − yt+1‖2

= E(f t+1, gt+1, λt, λt−1) +
2θ − θ2

2τ
‖λt − λt−1‖22 +

1

4τ
‖λt+1 − yt+1‖2,

which completes the proof. �

Now we define the following function Ẽ, and later we will prove that Ẽ(f t, gt, λt, λt−1) can be
upper bounded by O(1/t).

Ẽ(f, g, λ1, λ2) = F (f∗, g∗, λ∗)− E(f, g, λ1, λ2).

The next lemma is useful for obtaining the upper bound for Ẽ(f t, gt, λt, λt−1). Moreover, it is noted
that Ẽ(f, g, λ1, λ2) ≥ 0, ∀f, g, λ1, λ2, and Ẽ(f, g, λ, λ) = F̃ (f, g, λ), ∀f, g, λ.

Lemma 14 Let {f t, gt, yt, λt} be generated by PAME (Algorithm 3). For any λ ∈ ∆N , the follow-
ing inequality holds〈

λ− λt,∇λF (f t+1, gt, λt)
〉
≤ c∞‖ct − b‖1 + 7c2

∞‖λt+1 − yt+1‖2/η + 5(1− θ)c2
∞‖λt − λt−1‖2/η.

(72)

Proof. From the optimality condition of (63d), we have the following inequality:〈
λ− λt+1,

1

τ
(λt+1 − yt+1)−∇λF (f t+1, gt+1, yt+1)

〉
≥ 0, ∀λ ∈ ∆N . (73)

The left hand side of (72) can be rearranged to three terms.

〈λ− λt,∇λF (f t+1, gt, λt)〉
= 〈λt − λ,−∇λF (f t+1, gt+1, yt+1)〉︸ ︷︷ ︸

(I)

+ 〈λt − λ,∇λF (f t+1, gt+1, yt+1)−∇λF (f t+1, gt+1, λt)〉︸ ︷︷ ︸
(II)

+ 〈λt − λ,∇λF (f t+1, gt+1, λt)−∇λF (f t+1, gt, λt)〉︸ ︷︷ ︸
(III)

.

(74)

We now bound these three terms one by one. To bound the term (I), we first note that from (23c)
and (15), we have

‖∇λF (f t+1, gt+1, λt)‖2 ≤ c∞ ≤ c2
∞/η, (75)

20

where the second inequality is due to the definition of η (64). Now we can bound the term (I) as
follows:

(I) =
〈
λt − λt+1,−∇λF (f t+1, gt+1, λt)

〉
+
〈
λt − λt+1,∇λF (f t+1, gt+1, λt)−∇λF (f t+1, gt+1, yt+1)

〉
+
〈
λt+1 − λ,−∇λF (f t+1, gt+1, yt+1)

〉
≤
∥∥λt − λt+1

∥∥
2
·
∥∥∇λF (f t+1, gt+1, λt)

∥∥
2

+
c2
∞
η

∥∥λt − λt+1
∥∥

2
·
∥∥λt − yt+1

∥∥
2

+
1

τ

∥∥λt+1 − λ
∥∥

2
·
∥∥λt+1 − yt+1

∥∥
2

≤3c2
∞‖λt − λt+1‖2/η + 4c2

∞‖λt+1 − yt+1‖2/η,
(76)

where the first inequality uses Lemma 4 and (73), the second inequality uses (75) and the facts
that

∥∥λt − yt+1
∥∥

2
≤ 2 and

∥∥λt − λ∥∥
2
≤ 2.

For the term (II), Lemma 4 yields:

(II) ≤2
∥∥∇λF (f t+1, gt+1, yt+1)−∇λF (f t+1, gt+1, λt)

∥∥
2
≤ 2c2

∞
∥∥yt+1 − λt

∥∥
2
/η. (77)

For the term (III), it can be bounded as:

(III) =

N∑
k=1

(λtk − λk) · 〈πk(f t+1, gt+1, λt)− πk(f t+1, gt, λt), Ck〉

≤
N∑
k=1

‖πk(f t+1, gt+1, λt)− πk(f t+1, gt, λt)‖1‖Ck‖∞ ≤ c∞‖ct − b‖1,

(78)

where the last inequality is due to Lemma (6). Plugging (76) - (78) into (74) and applying the
triangle inequality, we obtain〈

λ− λt,∇λF (f t+1, gt, λt)
〉
≤ c∞‖ct − b‖1 + 7c2

∞‖λt+1 − yt+1‖2/η + 5c2
∞‖yt+1 − λt‖2/η,

which immediately implies (72) by noting (66). �

Lemma 15 Let (f t, gt, yt, λt) be generated by PAME (Algorithm 3). The following inequality holds:

Ẽ(f t+1, gt, λt, λt−1) ≤ (2c∞ − ηι)‖ct − b‖1 + 7c2
∞‖λt+1 − yt+1‖2/η + (7− 5θ)c2

∞‖λt − λt−1‖2/η.

Proof. Since F (f, g, λ) is a concave function, we have

F (f∗, g∗, λ∗) ≤ F (f t+1, gt, λt) +
〈
∇F (f t+1, gt, λt), (f∗, g∗, λ∗)− (f t+1, gt, λt)

〉
,

which implies that

F̃ (f t+1, gt, λt) ≤〈gt − g∗, ct − b〉+ 〈λt − λ∗,−∇λF (f t+1, gt, λt)〉
≤(c∞ − ηι)‖ct − b‖1 + c∞‖ct − b‖1 + 7c2

∞‖λt+1 − yt+1‖2/η
+ 5(1− θ)c2

∞‖λt − λt−1‖2/η.
(79)

where in the first inequality we have used (25), and the second inequality follows from (40) and
setting λ = λ∗ in (72). From (79) we immediately get

Ẽ(f t+1, gt, λt, λt−1) = F̃ (f t+1, gt, λt) +
1

2τ
‖λt − λt−1‖22

≤ c2
∞‖λt − λt−1‖22/η + (2c∞ − ηι)‖ct − b‖1 + 7c2

∞‖λt+1 − yt+1‖2/η + 5(1− θ)c2
∞‖λt − λt−1‖2/η

≤ 2c2
∞‖λt − λt−1‖2/η + (2c∞ − ηι)‖ct − b‖1 + 7c2

∞‖λt+1 − yt+1‖2/η + 5(1− θ)c2
∞‖λt − λt−1‖2/η,

21

where the second inequality is due to ‖λt − λt−1‖2 ≤ 2. This completes the proof. �

The following lemma bounds Ẽ(f t+1, gt+1, λt+1, λt) by O(1/t).

Lemma 16 Let {f t, gt, ytλt} be generated by PAME (Algorithm 3). The following inequality holds:

Ẽ(f t+1, gt+1, λt+1, λt) ≤ 6/(ηγ1)

t+ 1 + 6/(ηγ1F̃ (f0, g0, λ0))
, ∀t ≥ 0,

where we assume λ−1 = λ0, and

γ1 = min

{
1

(2c∞ − ηι)2 ,
2(2θ − θ2)

(7− 5θ)2c2
∞
,

1

49c2
∞

}
(80)

is a constant.

Proof. Combining (32b) and Lemma 13, we have

E(f t+1, gt+1, λt+1, λt)− E(f t+1, gt, λt, λt−1)

=
(
E(f t+1, gt+1, λt+1, λt)− E(f t+1, gt+1, λt, λt−1)

)
+
(
F (f t+1, gt+1, λt)− F (f t+1, gt, λt)

)
≥ η

2
‖ct − b‖21 +

2θ − θ2

2τ

∥∥λt − λt−1
∥∥2

2
+

1

4τ

∥∥λt+1 − yt+1
∥∥2

2
,

which implies that

Ẽ(f t+1, gt+1, λt+1, λt)− Ẽ(f t+1, gt, λt, λt−1)

≤ − η

2
‖ct − b‖21 − (2θ − θ2)

c2
∞
η
‖λt − λt−1‖22 −

c2
∞

2η
‖λt+1 − yt+1‖22

≤ − η

2
γ1

[(
(2c∞ − ηι)

∥∥ct − b∥∥
1

)2
+
(
(7− 5θ)c2

∞‖λt − λt−1‖2/η
)2

+
(
7c2
∞‖λt+1 − yt+1‖2/η

)2]
≤ − η

6
γ1

[
(2c∞ − ηι)

∥∥ct − b∥∥
1

+ (7− 5θ)c2
∞‖λt − λt−1‖2/η + 7c2

∞‖λt+1 − yt+1‖2/η
]2

≤ − η

6
γ1Ẽ(f t+1, gt, λt, λt−1)2,

(81)
where the last inequality applies Lemma 15. We then divide both sides of (81) by Ẽ(f t+1, gt+1, λt+1, λt)·
Ẽ(f t+1, gt, λt, λt−1), and we obtain

1

Ẽ(f t+1, gt+1, λt+1, λt)
≥ 1

Ẽ(f t+1, gt, λt, λt−1)
+
η

6
γ1 ·

Ẽ(f t+1, gt, λt, λt−1)

Ẽ(f t+1, gt+1, λt+1, λt)

≥ 1

Ẽ(f t+1, gt, λt, λt−1)
+
η

6
γ1 ≥

1

Ẽ(f t, gt, λt, λt−1)
+
η

6
γ1,

(82)

where the second inequality holds because (81) implies that Ẽ(f t+1, gt, λt, λt−1) ≥ Ẽ(f t+1, gt+1, λt+1, λt),
and the last inequality follows from (32a). Summing (82) from 0 to t leads to

1

Ẽ(f t+1, gt+1, λt+1, λt)
≥ 1

Ẽ(f0, g0, λ0, λ−1)
+
η(t+ 1)

6
γ1 =

1

F̃ (f0, g0, λ0)
+
η(t+ 1)

6
γ1,

which immediately leads to the desired result. �

Similar to Lemma 11, the following lemma provides some sufficient conditions for the PAME
algorithm to return an ε-optimal solution to the original EOT problem (2).

22

Lemma 17 Assume at the T -iteration of PAME, we have the following inequalities hold:

‖cT−1 − b‖1 ≤ ε/(6(6c∞ − ηι), (83a)

‖λT−1 − λT−2‖2 ≤ ηε/(60(1− θ)c2
∞), (83b)

‖λT − yT ‖2 ≤ ηε/(42c2
∞), (83c)

F̃ (fT , gT−1, λT−1) ≤ ε/6. (83d)

Then the output (π̂, λ̂) of PAME (Algorithm 3), i.e., π̂k = Round(πk(fT , gT−1, λT−1), ak, bk), ∀k ∈
[N], λ̂ = λT−1, is an ε-optimal solution of the original EOT problem (2).

Proof. The proof is essentially the same as that of Lemma 11. More specifically, we again need to
show that the output of PAME (π̂ππ, λ̂) satisfies (46). The proof of (46b) is exactly the same as the
proof of Lemma 11. The proof of (46a) only requires to develop a new bound for〈

λ̄(π̃ππ)− λ̂,∇λF (fT , gT−1, λT−1)
〉

(84)

that is used in (51). Other parts are again exactly the same as the ones in Lemma 11. The new
bound of (84) can be obtained by applying Lemma 14 with λ = λ̄(π̃ππ) and t = T − 1, which yields

〈λ̄(π̃ππ)− λ̂,∇λF (fT , gT−1, λT−1)〉
≤ c∞‖cT−1 − b‖1 + 5(1− θ)c2

∞‖λT−1 − λT−2‖2/η + 7c2
∞‖λT − yT ‖2/η.

(85)

By combining (85) with (50)-(53), we can bound the left hand side of (46a) by

`
(
π̂ππ, λ̄(π̂ππ)

)
− `(π̂ππ, λ̂)

≤ (6c∞ − ηι)
∥∥cT−1 − b

∥∥
1

+ 5(1− θ)c2
∞
∥∥λT−1 − λT−2

∥∥
2
/η + 7c2

∞‖λT − yT ‖2/η
+
∣∣F (fT , gT−1, λT−1)− F ∗

∣∣
≤
(

1

6
+

1

12
+

1

12
+

1

6

)
ε =

1

2
ε,

(86)

where in the last inequality we have used all the sufficient conditions (83a)-(83d). �

Theorem 18 Define ε′ = ε/(6c∞ − ηι), and set T to be

T = 8 +
48

η
√
γ1ε′

+

(
3600(1− θ)2 + 882

)
c2
∞s

ηε2
+

48

ηγ1ε
= O

(
c2
∞ε
−2
)
, (87)

where γ1 is defined in (80) and we know γ1 = O(c−2
∞). At least one of the iterations in Algorithm

3, after rounding, is an ε-saddle point of the EOT problem (2).

Proof. According to Lemma 17, we only need to show that (83) holds after T iterations as defined
in (87). We follow the same idea as the proof of Theorem 12. First we reduce Ẽ(f t+1, gt+1, λt+1, λt)
from Ẽ(f0, g0, λ0, λ−1) = F̃ (f0, g0, λ0) to a constant s by running t1 steps. By Lemma 16, we have

t1 ≤ 1 +
6

ηγ1s
− 6

ηγ1F̃ (f0, g0, λ0)
. (88)

23

Secondly, starting from s, we continue running the algorithm, and assume that there are t2 iteration
in which (83a) fails. By (32b) we have

t2 ≤ 1 +
72s

ηε′2
.

Therefore, we know that the total iteration number that (83a) fails can be upper bounded by

T1 = t1 + t2 ≤ 2 +
72s

ηε′2
+

6

ηγ1s
− 6

ηγ1F̃ (f0, g0, λ0)

iterations. By choosing s = ε′

6
√
γ1

, we know that

T1 ≤

{
2 + 12

η
√
γ1ε′

+ 36
η
√
γ1ε′
− 6

ηγ1F̃ (f0,g0,λ0)
≤ 2 + 48

η
√
γ1ε′

if F̃ (f0, g0, λ0) ≥ ε′

6
√
γ1
,

2 + 12
η
√
γ1ε′

+ 36
η
√
γ1ε′
− 6

ηγ1F̃ (f0,g0,λ0)
≤ 2 + 12

η
√
γ1ε′

otherwise.

Therefore, we have T1 ≤ 2 + 48
η
√
γ1ε′

. Similarly, from Lemma 13 we know that, starting from s, the

number of iterations that (83b) and (83c) fail can be respectively bounded by

t3 ≤ 1 +
3600(1− θ)2c2

∞s

ηε2(2θ − θ2)
, and t4 ≤ 1 +

3528c2
∞s

ηε2
.

By choosing s = ε, we have the total iteration numbers that (83b) and (83c) fail can be respectively
bounded by

T2 = t1 + t3 ≤ 2 +
3600(1− θ)2c2

∞
ηε(2θ − θ2)

+
6

ηγ1ε
− 6

ηγ1F̃ (f0, g0, λ0)
≤ 2 +

3600(1− θ)2c2
∞

ηε(2θ − θ2)
+

6

ηγ1ε

and

T3 = t1 + t4 ≤ 2 +
3528c2

∞
ηε

+
6

ηγ1ε
− 6

ηγ1F̃ (f0, g0, λ0)
≤ 2 +

3528c2
∞

ηε
+

6

ηγ1ε
.

Finally, by letting s = ε/6 in (88), we know that

Ẽ(fT4−1, gT4−1, λT4−1, λT4−2) ≤ ε/6 (89)

after

T4 = 1 +
36

ηγ1ε

iterations. From (89) we know that

F̃ (fT4−1, gT4−1, λT4−1) ≤ ε/6,

which implies that (83d) holds with T = T4 by noting (32a). Combining the above discussions, we
know that after T = T1 + T2 + T3 + T4 + 1 iterations, there must exist at least one iteration such
that the sufficient condition (83) holds, and thus the output of PAME is an ε-optimal solution to
the original EOT problem (2). �

5 Numerical Experiments

In this section, we compare the performance of PAME with PAM and APGA (62) [21] on two
synthetic datasets: the fragmented hypercube dataset and the Gaussian distributions.

24

Figure 1: Computational time comparison between PAM, PAME and APGA algorithms on the
Fragmented Hypercube dataset. Upper Left: N = 5, n = 100, η = 0.2, Upper Right: N = 5, n =
500, η = 0.2, Bottom Left: N = 5, n = 100, η = 0.1, Bottom Right: N = 10, n = 100, η = 0.2.

Fragmented Hypercube: We first consider transferring mass between a uniform distribution
over a hypercube µ = U([−1, 1]d) and a distribution ν obtained by a pushforward ν = T]µ defined by

T (x) = x+2sign(x)�
(∑m∗

m=1 em

)
. Here sign(·) is taken elementwisely, m∗ ∈ [d] and ei, i ∈ [d] is the

canonical basis of Rd. In our experiments, we set d = 10,m∗ = 2 and sample two base support sets
{xbasei }i∈[n], {ybasej }j∈[n] independently from µ, ν. To obtain the cost matrix for one agent, we first

add Gaussian noise sampled from N (0, 1) to the base support sets to get {xnoisyi }i∈[n], {y
noisy
j }j∈[n]

and compute the cost using the noisy support sets. For instance, for the k-th agent, we have
(xnoisyi)k = xbasei +N (0, 1) , (ynoisyj)k = ybasej +N (0, 1) and Cki,j = ‖(xnoisyi)k − (ynoisyj)k‖22.

Gaussian Distribution: Consider the case when two sets of discrete support {xi}i∈[n], {yj}j∈[n]

are independently sampled from Gaussian distributions

N
((

1
1

)
,

(
10 1
1 10

))
and N

((
2
2

)
,

(
1 −0.2
−0.2 1

))
(90)

respectively. The base cost matrix Cbase is computed by Cbasei,j = ‖xi − yj‖22. Assume we have N
agents. The cost matrix of each agent can be obtained by adding Gaussian noise sampled from

25

Figure 2: Computational time comparison between PAM, PAME and APGA algorithms on Gaus-
sian distributions. Upper Left: N = 10, n = 100, η = 0.1, Upper Right: N = 10, n = 500, η =
0.1, Bottom Left: N = 10, n = 100, η = 0.5, Bottom Right: N = 5, n = 100, η = 0.1.

N (0, 10) to each element of the base cost. For instance, for the k-th agent with a cost matrix Ck,
we have Cki,j = |Cbasei,j +N (0, 10)|.

We then set a = b = [1/n, ..., 1/n] for all experiments. For all algorithms, we set τ = 5η
c2∞

and

we set θ = 0.1 for the PAME algorithm. We consider the EOT error as a measure of optimality.
The EOT error at iteration t is defined by

Error = |`(π(f t, gt, λt), λt)− `∗|, (91)

where `∗ is the approximated optimal value of EOT (2) obtained by running the PAM algorithm
for 20000 iterations. Figures 1 and 2 plot the EOT error against the execution time for the two
datasets. We run each algorithm for 2000 iterations for different parameter settings. In all cases,
the PAME and PAM perform significantly better than APGA, and PAME also shows significant
improvement over PAM.

Figure 3 shows the optimal couplings obtained from the standard OT and EOT of two Gaussian
distributions under three different metrics: the Euclidean cost (‖ · ‖2), the square Euclidean cost
(‖ · ‖22) and the L1.5

1 norm (‖ · ‖1.51) respectively. We set n = 4, η = 0.05 and generate samples
independently according to (90). For the EOT problem, we consider three agents with cost matrices
computed by the three metrics mentioned above. Note that the entropy regularized models lead to
a dense transportation plan and Figure 3 only plots the couplings with a probability larger than

26

Figure 3: Optimal couplings of standard OT (first row) and EOT (second row). OT Square
Euclidean Cost: 5.935; OT Euclidean Cost: 2.158; OT L1.5

1 Cost: 5.030; EOT Cost: 0.906.

10−3. We see that all the agents have the same total cost in the EOT model, and as expected, the
cost is smaller than the other three OT costs obtained by using the same metric.

6 Conclusion

In this paper, we provided the first convergence analysis of the PAM algorithm for solving the EOT
problem. Specifically, we have shown that it takes at most O(ε−2) iterations for the PAM algorithm
to find an ε-saddle point. We proposed a PAME algorithm which incorporates the extrapolation
technique to PAM. The PAME shows significant numerical improvement over PAM. Results in this
paper might shed lights on designing new BCD type algorithms.

References

[1] Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time approximation
algorithms for optimal transport via Sinkhorn iteration. In Advances in neural information
processing systems, pages 1964–1974, 2017.

[2] David Alvarez-Melis, Stefanie Jegelka, and Tommi S Jaakkola. Towards optimal transport
with global invariances. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 1870–1879. PMLR, 2019.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In International conference on machine learning, pages 214–223. PMLR, 2017.

27

[4] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. In International Conference on Machine Learning, pages 449–458, 2017.

[5] Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré.
Iterative Bregman projections for regularized transportation problems. SIAM Journal on
Scientific Computing, 37(2):A1111–A1138, 2015.

[6] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D Procaccia. Handbook
of computational social choice. Cambridge University Press, 2016.

[7] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances
in neural information processing systems, pages 2292–2300, 2013.

[8] Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal trans-
port: Complexity by accelerated gradient descent is better than by Sinkhorn’s algorithm. In
International Conference on Machine Learning, pages 1367–1376. PMLR, 2018.

[9] Aude Genevay, Lénaic Chizat, Francis Bach, Marco Cuturi, and Gabriel Peyré. Sample com-
plexity of sinkhorn divergences. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 1574–1583, 2019.

[10] M. Hong, X. Wang, M. Razaviyayn, and Z.-Q. Luo. Iteration complexity analysis of block
coordinate descent method. Mathematical Programming Series A, 163(1):85–114, 2017.

[11] Minhui Huang, Shiqian Ma, and Lifeng Lai. Projection robust Wasserstein barycenters. In
Proceedings of the 38th International Conference on Machine Learning, volume 139, pages
4456–4465. PMLR, 2021.

[12] Minhui Huang, Shiqian Ma, and Lifeng Lai. A Riemannian block coordinate descent method for
computing the projection robust Wasserstein distance. In Proceedings of the 38th International
Conference on Machine Learning, volume 139, pages 4446–4455. PMLR, 2021.

[13] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes
saddle points faster than gradient descent. In Conference On Learning Theory, pages 1042–
1085. PMLR, 2018.

[14] Tianyi Lin, Chenyou Fan, Nhat Ho, Marco Cuturi, and Michael Jordan. Projection robust
Wasserstein distance and Riemannian optimization. In NeurIPS, volume 33, 2020.

[15] Erika Mackin and Lirong Xia. Allocating indivisible items in categorized domains. arXiv
preprint arXiv:1504.05932, 2015.

[16] Hervé Moulin. Fair division and collective welfare. MIT press, 2003.

[17] A. Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities with
Lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 15(1):229–251, 2005.

[18] Y. E. Nesterov. Introductory lectures on convex optimization: A basic course. Applied Opti-
mization. Kluwer Academic Publishers, Boston, MA, 2004.

[19] Sherjil Ozair, Corey Lynch, Yoshua Bengio, Aaron Van den Oord, Sergey Levine, and Pierre
Sermanet. Wasserstein dependency measure for representation learning. In Advances in Neural
Information Processing Systems, pages 15604–15614, 2019.

28

[20] François-Pierre Paty and Marco Cuturi. Subspace robust Wasserstein distances. In Interna-
tional Conference on Machine Learning, pages 5072–5081, 2019.

[21] Meyer Scetbon, Laurent Meunier, Jamal Atif, and Marco Cuturi. Equitable and optimal
transport with multiple agents. In International Conference on Artificial Intelligence and
Statistics, pages 2035–2043. PMLR, 2021.

[22] R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices.
Pacific J. Math., 21:343–348, 1967.

[23] Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums.
The American Mathematical Monthly, 74(4):402–405, 1967.

[24] Maurice Sion. On general minimax theorems. Pacific Journal of mathematics, 8(1):171–176,
1958.

[25] Robert E Tarjan. Dynamic trees as search trees via Euler tours, applied to the network simplex
algorithm. Mathematical Programming, 78(2):169–177, 1997.

[26] Y. Xu and W. Yin. A block coordinate descent method for regularized multi-convex optimiza-
tion with applications to nonnegative tensor factorization and completion. SIAM Journal on
Imaging Sciences, 63(3):1758–1789, 2013.

A Constructing bk in the Margins Procedure (16)

In the section, we show how to construct (bk)k∈[N] in the Margins procedure (16) such that the
four properties in Section 2.1 are satisfied.

First, we set

bk = c
(
πk(fT , gT−1, λT−1)

)
+
b− c

(∑
k π

k(fT , gT−1, λT−1)
)

N
.

It is easy to verify that properties (ii)-(iv) are satisfied. But it is possible that (i) is violated. We
now describe a procedure to iteratively update bk to achieve (i) while keeping (ii)-(iv) satisfied. If
(i) does not hold, then there exist k and j, such that bkj < 0, which further implies bkj − [c(πk)]j < 0.
Since ∑

j

bkj = ‖ak‖1, and
∑
j

[c(πk)]j =
∑
ij

πkij = ‖ak‖1,

there must exist an j′ such that bkj′ − [c(πk)]j′ > 0, which further implies bkj′ > 0. Moreover, since∑
k b

k
j = bj > 0, there must also exists an k′ such that bk

′
j > 0. We then update the following

quantities:

bkj ← bkj + θ

bkj′ ← bkj′ − θ

bk
′
j ← bk

′
j − θ

bk
′
j′ ← bk

′
j′ + θ,

where
θ = min{|bkj |, |bk

′
j |, |bkj′ − [c(πk)]j′ |}.

29

Note that this update maintains that (ii)-(iv) are satisfied. From our discussion above, it is guar-
anteed that θ > 0. Therefore, bkj is improved, i.e., it is getting closer to 0, if not equal. Repeating

this procedure leads to bk, k ∈ [N] such that (i) is also satisfied.

30

	1 Introduction
	2 Projected Alternating Maximization Algorithm
	2.1 The Rounding Procedure and the Margins
	2.2 Connections with BCD and BCGD Methods

	3 Convergence Analysis of PAM
	3.1 Technical Preparations
	3.2 Key Lemmas
	3.3 Main Result

	4 Projected Alternating Maximization with Extrapolation
	4.1 Convergence Analysis of PAME Algorithm

	5 Numerical Experiments
	6 Conclusion
	A Constructing bk in the Margins Procedure (16)

