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ABSTRACT
The field of adversarial machine learning has experienced a near
exponential growth in the amount of papers being produced since
2018. This massive information output has yet to be properly pro-
cessed and categorized. In this paper, we seek to help alleviate
this problem by systematizing the recent advances in adversarial
machine learning black-box attacks since 2019. Our survey summa-
rizes and categorizes 20 recent black-box attacks. We also present a
new analysis for understanding the attack success rate with respect
to the adversarial model used in each paper. Overall, our paper
surveys a wide body of literature to highlight recent attack develop-
ments and organizes them into four attack categories: score based
attacks, decision based attacks, transfer attacks and non-traditional
attacks. Further, we provide a new mathematical framework to
show exactly how attack results can fairly be compared.

CCS CONCEPTS
• Security and privacy; → Computing methodologies;Machine
Learning;

KEYWORDS
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1 INTRODUCTION
One of the first works to popularize Convolutional Neural Networks
(CNN) [32] for image recognition was published in 1998. Since then,
CNNs have been widely employed for tasks like image segmenta-
tion [24], object detection [49] and image classification [29]. Al-
though CNNs are the de facto choice for machine learning tasks
in the imaging domain, they have been shown to be vulnerable
to adversarial examples [23]. In this paper, we discuss adversarial
examples in the context of images. Specifically, an adversarial ex-
ample is an input image which is visually correctly recognized by
humans, but has a small noise added such that the classifier (i.e. a
CNN) misclassifies the image with high confidence.

Attacks that create adversarial examples can be divided into two
basic types, white-box and black-box attacks. White-box attacks
require knowing the structure of the classifier as well as the associ-
ated trained model parameters [23]. In contrast to this, black-box
attacks do not require directly knowing the model and trained pa-
rameters. Black-box attacks rely on alternative information like
query access to the classifier [12], knowing the training dataset [46],

or transferring adversarial examples from one trained classifier to
another [58].

In this paper, we survey recent advances in black-box adversarial
machine learning attacks. We select this scope for two main reasons.
First, we choose the black-box adversary because it represents a
realistic threat model where the classifier under attack is not directly
visible. It has been noted that a black-box attacker represents a
more practical adversary [10] and one which corresponds to real
world scenarios [46]. The second reason we focus on black-box
attacks is due to the large body of recently published literature. As
shown in Figure 1, many new black-box attack papers have been
proposed in recent years. These attacks are not included in current
surveys or systematization of knowledge papers. Hence, there is
a need to categorize and survey these works, which is precisely
the goal of this paper. To the best of our knowledge, the last major
survey [4] on adversarial black-box attacks was done in 2020. A
graphical overview of the coverage of some of the new attacks we
provide (versus the old attacks previously covered) are shown in
Figure 2. The complete list of important attack papers we survey
are graphically shown in Figure 1 and also listed in Table 1.

While each new attack paper published contributes to the litera-
ture, they often do not compare with other state-of-art techniques,
or adequately explain how they fit within the scope of the field. In
this survey, we summarize 20 recent black-box attacks, categorize
them into four basic groups and create a mathematical framework
under which results from different papers can be compared.

1.1 Advances in Adversarial Machine Learning
In this subsection we briefly discuss the history and development
of the field of adversarial machine learning. Such a perspective
helps illuminate how the field went from a white-box attack like
FGSM [23] in 2014 which required complete knowledge of the
classifier and trained parameters, to a black-box attack in 2021 like
SurFree [43] which can create an adversarial example with only
query access to the classifier using 500 queries or less.

The inception point of adversarial machine learning can be traced
back to several source papers. However, identifying the very first
adversarial machine learning paper is a difficult task as the first
paper in the field depends on how the term "adversarial machine
learning" itself is defined. If one defines adversarial machine learn-
ing as exclusive to CNNs, then in [53] the vulnerability of CNNs
to adversarial examples was first demonstrated in 2013. However,
others [5] claim adversarial machine learning can be traced back
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Figure 1: Timeline of recent black-box attack developments. The transfer based attacks are show in red. The original transfer
attack (Local Substitute Model) was proposed in [46]. The score based attacks are shown in blue. One of first widely adopted
score based attacks (ZOO) was proposed in [12]. The decision based attacks are shown in green. One of the first decision based
attacks (Boundary Attack) was proposed in [6].

as early as 2004. In [5], the authors claim evading linear classi-
fiers which constituted email spam detectors was one of the first
examples of adversarial machine learning.

Regardless of the ambiguous starting point of adversarial exam-
ples, it remains a serious open problemwhich occurs acrossmultiple
machine learning domains including image recognition [23] and
natural language processing [26]. Adversarial machine learning
is also not just limited to neural networks. Adversarial examples
have been shown to be problematic for decision trees, k-nearest
neighbor classifiers and support vector machines [45].

The field of adversarial machine learning with respect to com-
puter visions and imaging related tasks, first developed with respect
to white-box adversaries. One of the first and most fundamental
attacks proposed was the Fast Gradient Sign Method (FGSM) [23].
In the FGSM attack, the adversary uses the neural network model
architecture 𝐹 , loss function 𝐿, trained weights of the classifier𝑤
and performs a single forward and backward pass (backpropaga-
tion) on the network to obtain an adversarial example from a clean
example 𝑥 . Subsequent work included methods like the Projected
Gradient Descent (PGD) [40] attack, which used multiple forward
and backward passes to better fine tune the adversarial noise. Other
attacks were developed to better determine the adversarial noise by

forming an optimization problem with respect to certain 𝑙𝑝 norms,
such as in the Carlini & Wagner [8] attack, or the Elastic Net at-
tack [11]. Even more recent attacks [16] have focused on breaking
adversarial defenses and overcoming false claims of security which
are caused by a phenomena known as gradient masking [3].

All of the aforementioned attacks are considered white-box at-
tacks. That is, the adversary requires knowledge of the network
architecture 𝐹 and trained weights𝑤 in order to conduct the attack.
Creating a less capable adversary (i.e., one that did not know the
trained model parameters) was a motivating factor in developing
black-box attacks. In the next subsection, we discuss black-box
attacks and the categorization system we develop in this paper.

1.2 Black-box Attack Categorization
We can divide black-box attacks according to the general adversarial
model that is assumed for the attack. The four categories we use
are transfer attacks, score based attacks, decision based attacks and
non-traditional attacks. We next describe what defines the different
categorizations and also mention the primary original attack paper
in each category.
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Figure 2: Graph of different black-box attacks with the respective date they were proposed (e-print made available). The query
number refers to the number of queries used in the attack on an ImageNet classifier. The orange points are attacks covered in
previous survey work [4]. The blue points are attacks covered in this work. We further denote whether the attack is targeted
or untargeted by putting a U or T next to the text label in the graph. A square point represents an attack done with respect to
the 𝑙2 norm and a circular point represents attacks done with respect to the 𝑙∞ norm.

Transfer Attacks: One of the first of black-box attacks was
called the local substitute model attack [46]. In this attack, the ad-
versary was allowed access to part of the original training data used
to train the classifier, as well as query access to the classifier. The
idea behind this attack was that the adversary would query the
classifier to label the training data. After this was accomplished,
the attacker would train their own independent classifier, which it
is often referred to as the synthetic model [42]. Once the synthetic
model was trained, the adversary could run any number of white-
box attacks on the synthetic model to create adversarial examples.
These examples were then submitted to the unseen classifier in the
hopes the adversarial examples would transfer over. Here transfer-
ability is defined in the sense that adversarial examples that are
misclassified by the synthetic model will also be misclassified by
the unseen classifier.

Recent advances in transfer based attacks include not needing
the original training data like in the DaST attack [58] and using
methods that generate adversarial example with higher transfer-
ability (Adaptive [42] and PO-TI [37]).

Score Based Attacks: The zeroth order optimization based
black-box attack (ZOO) [12] was one of the first accepted works to
rely on a query based approach to creating adversarial examples.
Unlike transfer attacks which require a synthetic model, score based
attacks repeatedly query the unseen classifier to try and craft the
appropriate adversarial noise. As the name implies, for score based
attacks to work, they require the output from the classifier to be the
score vector (either probabilities or in some cases the pre-softmax
logits output).

Score based attacks represent an improvement over transfer
attacks in the sense that no knowledge of the dataset is needed

since no synthetic model training is required. In very broad terms,
the recent developments in score based attacks mainly focus on
reducing the number of queries required to conduct the attack
and/or reducing the magnitude of the noise required to generate
a successful adversarial example. New score based attacks include
qMeta [19], P-RGF [13], ZO-ADMM [57], TREMBA [27], Square
attack [2], ZO-NGD [56] and PPBA [36].

Decision Based Attacks: We consider the type of attack that
does not rely on a synthetic model and does not require the score
vector output to be a decision based attack. Compared to either
transfer based or score based attacks, decision based attacks repre-
sent an even more restricted adversarial model, as only the hard
label output from the unseen classifier is required. The first promi-
nent decision based attack paper was the Boundary Attack [6]. Since
then, numerous decision based attacks have been proposed to im-
prove upon the number of queries to successfully attack the unseen
classifier, or reduce the noise required in the adversarial examples.
The new decision attacks we cover in this paper include qFool [38],
HSJA [10], GeoDA [47], QEBA [35], RayS [9], SurFree [43] and
NonLinear-BA [33].

Non-traditional Attacks: The last category of attacks that we
cover in this paper are called non-traditional black-box attacks.
Here, we use this category to group the attacks that do not use stan-
dard black-box adversarial models. Transfer based attacks, score
based attacks, and decision based attacks typically focus on design-
ing the attack with respect the 𝑙2 and/or the 𝑙∞ norm. Specifically,
these attacks either directly or indirectly seek to satisfy the fol-
lowing condition: | |𝑥 − 𝑥𝑎𝑑𝑣 | |𝑝 ≤ 𝜖 where 𝑥 is the original clean
example, 𝜖 is the maximum allowed perturbation and 𝑝 = 2,∞.
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Score based Attacks
Attack Name Date Author
qMeta 6-Jun-19 Du et al. [19]
P-RGF 17-Jun-19 Cheng et al. [13]
ZO-ADMM 26-Jul-19 Zhao et al. [57]
TREMBA 17-Nov-19 Huang et al. [27]
Square 29-Nov-19 Andriushchenko et al. [2]
ZO-NGD 18-Feb-20 Zhao et al. [56]
PPBA 8-May-20 Liu et al. [36]

Decision based Attacks
Attack Name Date Author
qFool 26-Mar-19 Liu et al. [38]
HSJA 3-Apr-19 Chen et al. [10]
GeoDA 13-Mar-20 Rahmati et al. [47]
QEBA 28-May-20 Li et al. [35]
RayS 23-Jun-20 Chen et al. [9]
SurFree 25-Nov-20 Maho et al. [43]
NonLinear-BA 25-Feb-21 Li et al. [33]

Transfer based Attacks
Attack Name Date Author
Adaptive 3-Oct-19 Mahmood et al. [42]
DaST 28-Mar-20 Zhou et al. [58]
PO-TI 13-Jun-20 Li et al. [37]

Non-traditional Attacks
Attack Name Date Author
CornerSearch 11-Sep-19 Croce et al. [15]
ColorFool 25-Nov-19 Shamsabadi et al. [52]
Patch 12-Apr-20 Yang et al. [54]

Table 1: Attacks covered in this survey, their correspond-
ing attack categorization, publication date (when the first
e-print was released) and author.

However, there are attacks that work outside of this traditional
scheme.

CornerSearch [15] proposes a black-box attack based on finding
an adversarial example with respect to the 𝑙0 norm. Abandoning
norm based constraints completely, Patch Attack [54] replaces a
certain area of the image with an adversarial patch. Likewise, Col-
orFool [52] disregards norms and instead recolors the image to
make it adversarial. While the non-traditional norm category is
not strictly defined, it gives us a concise grouping that highlights
the advances being made outside of the 𝑙2 and 𝑙∞ based black-box
attacks.

1.3 Paper Organization and Major
Contributions

In this paper we survey state-of-the-art black-box attacks that have
recently been published. We provide three major contributions in
this regard:

(1) In-Depth Survey: We summarize and distill the knowl-
edge from 20 recent significant black-box adversarial ma-
chine learning papers. For every paper, we include explana-
tion of the mathematics necessary to conduct the attacks

and describe the corresponding adversarial model. We also
provide an experimental section that brings together the re-
sults from all 20 papers, reported on three datasets (MNIST,
CIFAR-10 and ImageNet).

(2) Attack Categorization:We organize the attacks into four
different categories based on the underlying adversarial
model used in each attack. We present this organization so
the reader can clearly see where advances are being made
under each of the four adversarial threat models. Our break
down concisely helps new researchers interpret the rapidly
evolving field of black-box adversarial machine learning.

(3) Attack Analysis Framework: We analyze how the at-
tack success rate is computed based on different adversarial
models and their corresponding constraints. Based on this
analysis, we develop an intuitive way to define the threat
model used to compute the attack success rate. Using this
framework, it can clearly be seen when attack results re-
ported in different papers can be compared, and when such
evaluations are invalid.

The rest of our paper is organized as follows: in Section 2, we
summarize score based attacks. In Section 3, we cover the papers
that propose new decision based attacks. In Section 4, we discuss
transfer attacks. The last type of attack, non-traditional attacks
are described in Section 5. After covering all the new attacks, we
turn our attention to analyzing the attack success rate in Section 6.
Based on this analysis, we compile the experimental results for all
the attacks in Section 7, and give the corresponding threat model
developed from our new adversarial model framework. Finally, we
offer concluding remarks in Section 8.

2 SCORE BASED ATTACKS
In this section we summarize recent advances in adversarial ma-
chine learning with respect to attacks that are score based or logit
based. The adversarial model for these attacks allow the attacker to
query the defense with input 𝑥 and receive the corresponding prob-
ability outputs 𝑝1 (𝑥), ..., 𝑝𝑘 (𝑥), where 𝑘 is the number of classes.
We also include logit based black-box attacks in this section. The
logits are the pre-softmax outputs from the model, 𝑙1 (𝑥), ..., 𝑙𝑘 (𝑥).

We cover 7 recently proposed score type attacks. These attacks
include the square attack [2], the Zeroth-Order Natural Gradient
Descent attack (ZO-NGD) [56], the Projection and Policy Driven
Attack (PPBA) [36], the Zeroth-order Optimization Alternating
Direction Method of Multiplers (ZO-ADMM) attack [57], the prior-
guided random gradient-free (P-RGF) attack [13], the TRansferable
EMbedding based Black-box Attack (TREMBA) [27] and the qMeta
attack [19].

2.1 Square Attack
The Square attack is a score based, black-box adversarial attack pro-
posed in [2] that focuses primarily on being query efficient while
maintaining a high attack success rate. The novelty of the attack
comes in the usage of square shaped image perturbations which
have a particularly strong impact on the predicted outputs of CNNs.
This works in tandem with the implementation of the randomized
search optimization protocol. The protocol is independent of model
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gradients and greedily adds squares to the current image pertur-
bation if they lead to an increase in the target model’s error. The
attack solves the following optimization problem:

min
𝑥 ∈[0,1]𝑑

𝐿(𝑓 (𝑥), 𝑦), s.t. ∥𝑥 − 𝑥 ∥𝑝 ≤ 𝜖 (1)

Where 𝑓 is the classifier function, 𝐾 is the number of classes, 𝑥 is
the adversarial input, 𝑥 is the clean input, 𝑦 is the ground truth
label, and 𝜖 is the maximum perturbation.

Untargeted : 𝐿(𝑓 (𝑥), 𝑦) = 𝑓𝑦 (𝑥) −max𝑘≠𝑦 𝑓𝑘 (𝑥)

Targeted : 𝐿(𝑓 (𝑥), 𝑡) = −𝑓𝑡 (𝑥) + log(
∑𝐾
𝑖=1 𝑒

𝑓𝑖 (𝑥) )
(2)

The attack algorithm begins by first applying random noise to the
clean image. Then an image perturbation, 𝛿 , is generated according
to a perturbation generating algorithm defined by the attacker. If
𝐿(𝑓 (𝑥 +𝛿), 𝑦) < 𝐿(𝑓 (𝑥), 𝑦) 𝛿 is applied to the current 𝑥 . This step is
done iteratively until the targeted model outputs the desired label
or until the max number of iterations are reached.

The distributions used for the iterative and initial image pertur-
bations are chosen by the attacker. In [2] two different initial and
iterative perturbation algorithms algorithms are proposed for the
𝑙2 and 𝑙∞ norm attacks.

For the 𝑙∞ norm the perturbation is initialized by applying one
pixel wide vertical stripes to the clean image. The color of each
stripe is sampled uniformly from {−𝜖, 𝜖}𝑐 where c is the number of
color channels. The distribution used in the iterative step generates
a square of a given size at a random location such that themagnitude
of the perturbation in each color channel is chosen randomly from
{−2𝜖, 2𝜖}. The resulting, clipped adversarial image will then differ
from the clean image by either 𝜖 or −𝜖 at each modified point.

The 𝑙2 norm attack is initialized by generating a grid-like tiling
of squares on the clean image. The perturbation is then rescaled
to have 𝑙2 norm 𝜖 and is clipped to [0, 1]𝑑 . The iterative perturba-
tion is motivated by the realization that classifiers are particularly
susceptible to large, localized perturbations rather than smaller,
more sparse ones. Thus the iterative attack places two squares of
opposite sign either vertically or horizontally in line with each
other, where each square has a large magnitude at its center that
swiftly drops off but never reaches zero. After each iteration of the
attack the current 𝑥𝑎𝑑𝑣 is clipped such that ∥𝑥𝑎𝑑𝑥 − 𝑥 ∥𝑝 < 𝜖 and
𝑥𝑎𝑑𝑣 ∈ [0, 1]𝑑 , where d is the dimensionality of the clean image.

The attack is tested on contemporary models like ResNet-50,
Inception v3, and VGG-16-BN which are trained on ImageNet. It
achieves a lower attack failure rate while requiring significantly less
queries to complete than attacks like Bandits, Parsimonious, DFO-
MCA, and SignHunter. Similarly the square attack is compared to
the white box Projected Gradient Descent (PGD) attacks on the
MNIST and CIFAR-10 datasets where it performs similarly to PGD
in terms of attack success rate despite operating within a more
difficult threat model.

2.2 Zeroth-Order Natural Gradient Descent
Attack

The Zeroth-Order Natural Gradient Descent (ZO-NGD) attack is a
score-based, black box attack proposed in [56] as a query efficient

attack utilizing a novel attack optimization technique. In particu-
lar the attack approximates a Fisher information matrix over the
distribution of inputs and subsequent outputs of the classifier. The
attack solves the following optimization problem:

min
𝛿

𝑓 (𝑥 + 𝛿, 𝑡), ∥𝛿 ∥∞ ≤ 𝜖 (3)

𝑓 (𝑥 + 𝛿, 𝑡) = max{log 𝑝 (𝑡 |𝑥 + 𝛿) −max
𝑖≠𝑡
{log 𝑝 (𝑖 |𝑥 + 𝛿))},−𝑘} (4)

Where 𝑥 is the clean image, 𝛿 is an image perturbation, 𝜖 is the
maximum allowed image perturbation, t is the clean image’s ground
truth label, 𝑝 (𝑖 |𝑥) is the classifier’s predicted score for class 𝑖 given
input 𝑥 , and 𝑓 is the attack’s loss. The attack is an iterative algorithm
that initializes the image perturbation, 𝛿 , as a matrix of all zeros.
At each step the algorithm first approximates the gradient of the
loss function, 𝑓 , according to the following equation:

∇̂𝑓 (𝛿) = 1
𝑅

𝑅∑︁
𝑗=1

𝑓 (𝛿 + 𝜇𝑢 𝑗 , 𝑡) − 𝑓 (𝛿, 𝑡)
𝜇

𝑢 𝑗 (5)

Where each 𝑢 𝑗 ∼ 𝑁 (0, 𝐼𝑑 ) is a random perturbation chosen i.i.d.
from the unit sphere, 𝜇 is a smoothing parameter, and 𝑅 is a hyper
parameter for the number of queries used in the approximation.
Next, the attack approximates the gradient of the log-likelihood
function. This is necessary for calculating the Fisher information
matrix and subsequently the perturbation update.

∇̂log 𝑝 (𝑡 |𝑥 + 𝛿) = 1
𝑅𝜇

𝑅∑︁
𝑗=1
(log 𝑝 (𝑡 |𝑥 + 𝛿 + 𝜇𝑢 𝑗 )

− log 𝑝 (𝑡 |𝑥 + 𝛿))𝑢 𝑗 (6)

Here the notation is consistent with the notation seen in Equation 5.
This can be calculated using the same queries that were used in
Equation 5. The Fisher information matrix is approximated and 𝛿
is updated according to the following equations:

𝐹 = ∇̂log 𝑝 (𝑡 |𝑥 + 𝛿)∇̂log 𝑝 (𝑡 |𝑥 + 𝛿)𝑇 + 𝛾𝐼 (7)

𝛿𝑘+1 =
∏
(𝛿𝑘 − 𝜆𝐹−1∇̂𝑓 (𝛿𝑘 )) (8)

Where 𝛾 is a constant and 𝜆 is the attack learning rate.
∏

is the
projection function which projects its input onto the set 𝑆 = {𝛿 |
(𝑥 + 𝛿) ∈ [0, 1]𝑑 , ∥𝛿 ∥∞ ≤ 𝜖}. It is also worth recognizing that 𝛿 is
represented as a matrix since images, like 𝑥 , are also represented
as matrices. This makes the addition seen in Equation 8 valid. The
iterative process can be continued for a predetermined number of
iterations or until the perturbation yields a satisfactory result. The
Fisher information matrix is a powerful tool, however its size can
prove it impractical for use on datasets with larger inputs, thus an
approximation of 𝛿𝑘+1 may be necessary.

The attack is tested on the MNIST, CIFAR-10, and ImageNet
datasets where it achieves a similar attack success rate to the ZOO,
Bandits, and NES-PGD attacks while requiring less queries to be
successful. The attack is then also shown to have an extremely high
attack success rate within 1200 queries on all three aforementioned
datasets.
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2.3 Projection and Probability Driven Attack
The Projection and Probability-driven Black-box Attack (PPBA)
proposed in [36] is a score based, black box attack that achieves high
attack success rates while being query efficient. It achieves this by
shrinking the solution space of possible adversarial inputs to those
which contain low-frequency perturbations. This is motivated by
an observation that contemporary neural networks are particularly
susceptible to low frequency perturbations. The attack solves the
following optimization problem:

min
𝛿

𝐿(𝛿) = [𝑓 (𝑥 + 𝛿)𝑡 −max
𝑗≠𝑡

𝑓 (𝑥 + 𝛿) 𝑗 ]+ (9)

Where 𝑓 (𝑥) 𝑗 is the model’s predicted probability that the input is
of class 𝑗 , 𝑥 is the clean image, 𝑡 is the ground truth label, 𝛿 is the
adversarial perturbation, and [·]+ is shorthand for max(·, 0). The
attack utilizes a sensing matrix, 𝐴, which is composed of a Discrete
Cosine Transform matrix, Ψ, and a Measurement matrix, Φ, along
with the corresponding measurement vector, 𝑧. The exact design
of the measurement matrix varies according to practice [1] [48].
The relationship between all these variables is as follows: 𝐴 = ΨΦ,
𝑧 = 𝐴𝛿 , 𝛿 ≈ 𝐴𝑇 𝑧.

One point to note is that Φ should be an orthonormal matrix
which allows 𝛿 ≈ 𝐴𝑇 𝑧 to be true. Once 𝐴 is calculated the attack
utilizes a query efficient version of the random walk algorithm.
In particular, the attack stores a Confusion matrix 𝐶 𝑗 for each
dimension 𝑗 of Δ𝑧, which is the change in 𝑧 at each iteration. 𝐶 𝑗
can be seen below:

−𝜌 0 𝜌

# effective steps 𝑒−𝜌 𝑒0 𝑒𝜌
# ineffective steps 𝑖−𝜌 𝑖0 𝑖𝜌

Where 𝜌 is a predefined step size, 𝑒𝑣 is the number of times the loss
function descended when Δ𝑧 𝑗 = 𝑣 , and 𝑖𝑣 is the number of times
the loss function increased or remained the same when Δ𝑧 𝑗 = 𝑣

for 𝑣 ∈ {−𝜌, 0, 𝜌}. The algorithm then uses 𝐶 to determine its
sampling probability for Δ𝑧 𝑗 as seen below:

𝑃 (𝑎 |Δ𝑧 𝑗 = 𝑣) =
𝑒𝑣

𝑒𝑣 + 𝑖𝑣
, 𝑣 ∈ {−𝜌, 0, 𝜌} (10)

𝑃 (Δ𝑧 𝑗 = 𝑣) =
𝑃 (a|Δ𝑧 𝑗 = 𝑣)∑
𝑢 𝑃 (a|Δ𝑧 𝑗 = 𝑢)

, 𝑢, 𝑣 ∈ {−𝜌, 0, 𝜌} (11)

Where 𝑎 is a probabilistic variable that is true when the step is
determined to be effective. The attack algorithm begins by first cal-
culating 𝐴 and then initializing all values of𝐶 to be 1. The iterative
part of the algorithm then begins, at each step the algorithm gener-
ates a new Δ𝑧 according to the probability distribution described
in Equation 11. If 𝐿(𝐴𝑇 (𝑧 + Δ𝑧)) < 𝐿(𝐴𝑇 𝑧) then 𝑧 is updated as
𝑧 = clip(𝑧+Δ𝑧). Here the clip function forces 𝑥 +𝑧 to remain within
the clean image’s input space, [0, 1]𝑑 . If at any point the perturba-
tion generated causes the model to output an incorrect class label
the attack terminates and returns the penultimate perturbation.

PPBA is tested on the ImageNet dataset with the classifiers
ResNet50, Inception v3 and VGG-16. PPBA achieves high attack
success rates while maintaining a low query count. It is also tested
on Google Cloud Vision API where it achieves a high attack success
rate in this more realistic setting.

2.4 Alternating Direction Method of Multiplers
Based Black-Box Attacks

A new black-box attack framework is proposed in [57] based on
the distributed convex optimization technique, the Alternating
Direction Method of Multiplers (ADMM). The advantage of using
the ADMM technique is that it can be directly combined with
the zeroth-order optimization attack (ZOO-ADMM) or Bayesian
optimization (BO-ADMM) to create a query-efficient, gradient free
black-box attack. The attack can be run with score based or decision
based output from the defense.

Themain concept presented in [57] is the conversion of the black-
box attack optimization problem from a traditional constrained
optimization problem, into an unconstrained objective function that
can be iteratively solved using ADMM. The original formulation of
the black-box attack optimization problem can be written as:

minimize
𝛿

𝑓 (𝑥0 + 𝛿, 𝑡) + 𝛾𝐷 (𝛿)

subject to (𝑥0 + 𝛿) ∈ [0, 1]𝑑 , ∥𝛿 ∥∞ ≤ 𝜖
(12)

where 𝑓 (·) is the loss function of the classifier, 𝛿 is the perturbation
added to the original input 𝑥0, 𝑡 is the target class that the adversar-
ial example (𝑥0 + 𝛿) should be misclassified as and 𝐷 is a distortion
function to limit the difference between the adversarial example
and 𝑥0. In Equation 12, 𝛾 controls the weight given to the distortion
function and 𝜖 specifies the maximum tolerated perturbation.

Instead of directly solving Equation 12, the constraints can be
moved into the objective function and an auxiliary variable 𝑧 can be
introduced in order to write the optimization problem in an ADMM
style form:

minimize
𝛿,𝑧

𝑓 (𝑥0 + 𝛿, 𝑡) + 𝛾𝐷 (𝛿) + I(𝑧)

subject to 𝑧 = 𝛿
(13)

where I(𝑧) is 0 if (𝑥0 + 𝑧) ∈ [0, 1]𝑑 , ∥𝑧∥∞ ≤ 𝜖 and ∞ otherwise.
The augmented Lagrangian of Equation 13 is written as:

L(𝑧, 𝛿,𝑢) = 𝛾𝐷 (𝑧) + I(𝑧) + 𝑓 (𝑥0 + 𝛿, 𝑡)

+ 𝜌
2
∥𝑧 − 𝛿 + 1

𝜌
𝑢∥ − 1

2𝜌
∥𝑢∥22

(14)

where 𝑢 is the Lagrangian multiplier and 𝜌 is a pentalty parameter.
Equation 14 can be iteratively solved using ADMM in the 𝑘𝑡ℎ step
through the following update equations:

𝑧𝑘+1 = arg min
𝑧
L(𝑧, 𝛿𝑘 , 𝑢𝑘 ) (15)

𝛿𝑘+1 = arg min
𝛿

L(𝑧𝑘+1, 𝛿,𝑢𝑘 ) (16)

𝑢𝑘+1 = 𝑢𝑘 + 𝜌 (𝑧𝑘+1 − 𝛿𝑘+1) (17)
While Equation 15 has a closed form solution, minimizing Equa-
tion 16 requires a gradient descent technique like stochastic gradi-
ent decent, as well as access to the gradient of 𝑓 (𝑥0 + 𝛿, 𝑡). In the
black-box setting this gradient is not available to the adversary and
hence must be estimated using a special approach. If the gradient
is estimated using the random gradient estimation technique, then
the attack is referred to as ZOO-ADMM. Similarly, if the gradient
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is estimated using bayesian optimization, the attack is denoted as
BO-ADMM.

The new attack framework is experimentally verified on the
CIFAR-10 and MNIST datasets. The results of the paper [57] show
ZOO-ADMM outperforms both BO-ADMM and the original bound-
ary attack presented in [7]. This performance improvement comes
in the form of smaller distortions for the 𝑙1, 𝑙2 and 𝑙∞ threat models
and in terms of less queries used for the ZOO-ADMM attack.

2.5 Improving Black-box Adversarial Attacks
with Transfer-based Prior

Initial adversarial machine learning black-box attacks were devel-
oped based on one of two basic principles. In query based black-box
attacks [7], the gradient is directly estimated through querying. In
transfer based attacks, the gradient is computed based on a trained
model’s gradient that is available to the attacker [46]. In [13] they
propose combining the query and transfer based attacks to create a
more query efficient attack which they call the prior-guided random
gradient-free method (P-RGF).

The P-RGF attack is developed around accurately and efficiently
estimating the gradient of the target model 𝑓 . The original random
gradient-free method [44] estimates the gradient as follows:

𝑔 =
1
𝑞

𝑞∑︁
𝑖=1

𝑓 (𝑥 + 𝜎𝑢𝑖 , 𝑦) − 𝑓 (𝑥,𝑦)
𝜎

· 𝑢𝑖 (18)

where 𝑞 is the number of queries used in the estimate, 𝜎 is a pa-
rameter to control the sampling variance, 𝑥 is the input with cor-
responding label 𝑦 and {𝑢𝑖 }𝑞𝑖=1 are random vectors sampled from
distribution P. It is important to note that by selecting {𝑢𝑖 }𝑞𝑖=1 care-
fully (according to priors) we can create a better estimate of 𝑔. In
P-RGF this choice of {𝑢𝑖 }𝑞𝑖=1 is done by biasing the sampling using a
transfer gradient 𝑣 . The transfer gradient 𝑣 comes from a surrgoate
model that has been independently trained on the same data as the
model whose gradient is currently being estimated. In the attack it
is assumed that we have white-box access to the surrogate model
such that 𝑣 is known.

The overall derivation of the rest of the attack from [13] goes
as follows: first we discuss the appropriate loss function 𝐿(·) for 𝑔.
We then discuss how to pick {𝑢𝑖 }𝑞𝑖=1 such that 𝐿(·) is minimized.
To determine how closely 𝑔 (the estimated gradient) follows 𝑔 (the
true model gradient) the following loss function is used [13]:

min
𝑏≥0

E∥∇𝑥 𝑓 (𝑥) − 𝑏𝑔∥22 (19)

where 𝑏 is a scaling factor included to compensate for the change
in magnitude caused by 𝑔 and the expectation is taken over the ran-
domness of the estimation algorithm. For notational convenience
we write ∇𝑥 𝑓 (𝑥) as ∇𝑓 (𝑥) in the remainder of this subsection. It
can be proven that if 𝑥 is differentiable at 𝑓 then the loss function
given in Equation 19 can be expressed as:

lim
𝜎→0

𝐿(𝑔) = ∥∇𝑓 (𝑥)∥22 −
𝐻 (C, 𝑥)2

(1 − 1
𝑞 )𝐻 (C2, 𝑥) + 1

𝑞𝐻 (C, 𝑥)2)
(20)

where 𝐻 (C, 𝑥) = ∇𝑓 (𝑥)𝑇C∇𝑓 (𝑥) and C = E[𝑢𝑖𝑢𝑇𝑖 ]. Through care-
ful choice of C, 𝐿(𝑔) can be minimized to accurately estimate the

gradient, thereby making the attack query efficient. C can be de-
composed in terms of the transfer gradient 𝑣 as:

C = 𝜆𝑣𝑣𝑇 + 1 − 𝜆
𝐷 − 1

(I − 𝑣𝑣𝑇 ) (21)

where {𝜆𝑖 }𝐷𝑖=1 and {𝑣𝑖 }𝐷𝑖=1 are the eigenvalues and orthonormal
eigenvectors of C. To exploit the gradient information of the trans-
fer model, 𝑢𝑖 is then randomly generated in terms of 𝑣 to satisfy
Equation 21:

𝑢𝑖 =
√
𝜆 · 𝑣 +

√
1 − 𝜆 · (I − 𝑣𝑣𝑇 )𝜉𝑖 (22)

where 𝜆 controls the magnitude of the transfer gradient 𝑣 and 𝜉𝑖 is
a random variable sampled uniformly from the unit hypersphere.

The overall P-RGF method for estimating the gradient 𝑔 is as
follows: First 𝛼 , the cosine similarity between the transfer gradient
𝑣 and the model gradient 𝑔 is estimated through a specialized query
based algorithm [13]. Next 𝜆 is computed as a function of 𝛼 , 𝑞
and the input dimension size 𝐷 . Note we omitted the 𝜆 equation
and explanation in our summary for brevity. After computing 𝜆,
the estimate of the gradient 𝑔 is iteratively done 𝑄 times in a two
step process. In the first step of the 𝑞𝑡ℎ iteration, 𝑢𝑞 is generated
using Equation 22. In the second step 𝑔 is calculated as: 𝑔 = 𝑔 +
𝑓 (𝑥+𝜎𝑢𝑞 ,𝑦)−𝑓 (𝑥,𝑦)

𝜎 · 𝑢𝑞 , where 𝑞 denotes the 𝑞𝑡ℎ iteration. After 𝑄
iterations have been complete, the final gradient estimate is given
as 𝑔← 1

𝑄
𝑔.

The P-RGF attack is tested on ImageNet. The surrogate model to
get the transfer gradient in the attack is set as ResNet-152. Attacks
are done on different ImageNet CNNs which include Inception
v3, VGG-16 and ResNet50. The P-RGF attack outperforms other
completing techniques in terms of having a higher attack success
rate and lower number of queries for most networks.

2.6 Black-Box Adversarial Attack with
Transferable Model-based Embedding

The TRansferable EMbedding based Black-boxAttack (TREMBA) [27]
is an attack that uniquely combines transfer and query based black-
box attacks. In conventionally query based black-box attacks, the
adversarial image is modified by iteratively fine tuning the noise
that is directly added to the pixels of the original image. In TREMBA,
instead of directly altering the noise, the embedding space of a pre-
trained model is modified. Once the embedding space is modified,
this is translated into noise for the adversarial image. The advantage
of this approach is that by using the pre-trained model’s embedding
as a search space, the amount of queries needed for the attack can
be reduced and the attack efficiency can be increased.

The attack generates the perturbation 𝛿 for input 𝑥 using a
generator network G. The generator network is comprised of two
components, an encoder E and a decoder D. The encoder maps 𝑥
to 𝑧, a latent space i.e., 𝑧 = E(𝑥). The decoder D takes 𝑧 as input.
The outputs of the decoderD is used to compute the perturbation 𝛿
which is defined as 𝛿 = 𝜖tanh(D(𝑧)). The tanh function is used to
normalize the output of the decoder D(𝑧) between −1 and 1 such
that the final adversarial perturbation 𝛿 is bounded i.e. | |𝛿 | |∞ ≤ 𝜖 .

To begin the untargeted version of the attack, the generator
network G is first trained. For an individual sample (𝑥𝑖 , 𝑦𝑖 ), we
denote the probability score associated with the correct class label
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during training as:

𝑃𝑡𝑟𝑢𝑒 (𝑥𝑖 , 𝑦𝑖 ) = 𝐹𝑠 (𝜖 · tanh(G(𝑥𝑖 )) + 𝑥𝑖 ))𝑦𝑖 (23)

where 𝜖 is the maximum allowed perturbation, G(·) is the output
from the generator and 𝐹𝑠 (·)𝑖 is the 𝑖𝑡ℎ component of the output
vector of the source model 𝐹𝑠 . In this attack formulation the adver-
sary is assumed to have white-box access to a pre-trained source
model 𝐹𝑠 which is different from the target model under attack. The
incorrect class label with the maximum probability during training
is:

𝑃𝑓 𝑎𝑙𝑠𝑒 (𝑥𝑖 , 𝑦𝑖 ) = max
𝑗≠𝑦𝑖

𝐹𝑠 (𝜖 · tanh(G(𝑥𝑖 )) + 𝑥𝑖 )) 𝑗 (24)

Using Equation 23 and Equation 24 the loss function for training
the generator for an untargeted attack is given as:

L𝑢𝑛𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥𝑖 , 𝑦𝑖 ) = max(𝑃𝑡𝑟𝑢𝑒 (𝑥𝑖 , 𝑦𝑖 ) − 𝑃𝑓 𝑎𝑙𝑠𝑒 (𝑥𝑖 , 𝑦𝑖 ),−𝜅) (25)

where (𝑥𝑖 , 𝑦𝑖 ) are individual training samples in the training dataset
and 𝜅 is a transferability parameter (higher 𝜅 makes the adversarial
examples more transferable to other models [8]).

Once G is trained the perturbation 𝛿 can be calculated as a func-
tion of the embedding space 𝑧. The embedding space 𝑧 is iteratively
computed:

𝑧𝑡 = 𝑧𝑡−1 −
𝜂

𝑏

𝑏∑︁
𝑖=1
L𝑢𝑛𝑡𝑎𝑟𝑔𝑒𝑡∇𝑧𝑡−1 log(N (𝑣𝑖 |𝑧𝑡−1, 𝜎

2)) (26)

where 𝑡 is the iteration number,𝜂 is the learning rate,𝑏 is the sample
size, 𝑣𝑖 is a sample from the gaussian distribution N(𝑧𝑡−1, 𝜎2) and
∇𝑧𝑡−1 is the gradient of 𝑧𝑡 estimated using the Natural Evolution
Strategy (NES) [28].

Experimentally TREMBA is tested on both the MNIST and Ima-
geNet datasets. The attack is also tested on the Google Cloud Vision
API. In general, TREMBA achieves a higher attack success rate and
uses less queries for MNIST and ImageNet, as compared to other
attack methods. These other attack methods compared in this work
include P-RGF, NES and AutoZOOM.

2.7 Query-Efficient Meta Attack
In the query-efficient meta attack [19], high query-efficiency is
achieved through the use of meta-learning to observe previous
attack patterns. This prior information is then leveraged to infer
new attack patterns through a reduced number of queries. First, a
meta attacker is trained to extract information from the gradients
of various models, given specific input, with the goal being to infer
the gradient of a new target model using few queries. That is, an
image x is input to models M1, ...,M𝑛 and a max-margin logit
classification loss is used to calculate losses 𝑙1, ..., 𝑙𝑛 as follows:

𝑙𝑖 (x) = max [log[M𝑖 (x)]𝑡 − max
𝑗≠𝑡

log[M𝑖 (x)] 𝑗 , 0] (27)

where 𝑡 is the true label, 𝑗 is the index of other classes, [M𝑖 (x)]𝑡
is the probability score produced by the modelM𝑖 , and [M𝑖 (x)] 𝑗
refers to the probability scores of the subsequent classes.

After one step back-propagation is performed, 𝑛 training groups
for the universal meta attacker are assembled, consisting of input
images X = {x} and gradients G𝑖 = {g𝑖 }, 𝑖 = 1, ..., 𝑛 where g𝑖 =
∇x𝑙𝑖 (x). In each training iteration, 𝐾 samples are drawn from a
task T𝑖 = (X,G𝑖 ). For meta attacker model A with parameters 𝜽 ,

the updated parameters 𝜽
′
are computed as: 𝜽

′
𝑖 := 𝜽 −𝛼∇𝜽L𝑖 (A𝜽 ),

where L𝑖 is the loss corresponding to task T𝑖 .
The meta attack parameters are optimized by incorporating 𝜽

′
𝑖

across all tasks {T𝑖 }𝑖 = 1, ..., 𝑛 according to:

𝜽 := 𝜽 + 𝜖 1
𝑛

𝑛∑︁
𝑖=1
(𝜽
′
𝑖 − 𝜽 ) (28)

The training loss of this meta attacker A𝜽 employs mean-squared
error, as given below:

L𝑖 (A𝜽 ) =∥A𝜽 (X𝑠 ) − G𝑠𝑖 ∥
2
2 (29)

where the set (X𝑠 ,G𝑠𝑖 ) refers to the 𝐾 samples selected for training
from (X,G𝑖 ) for 𝜽 to 𝜽

′
𝑖 .

The high-level objective of such a meta attacker model A is to
produce a helpful gradient map for attacking that is adaptable to
the gradient distribution of the target model. To accomplish this
efficiently, a subsection𝑞 of the total 𝑝 gradient map coordinates are
used to fine-tune A every𝑚 iterations [19], where 𝑞 ≪ 𝑝 . In this
manner,A is trained to be able to produce the gradient distribution
of various input images and learns to predict the gradient from only
a few samples through this selective fine-tuning. It is of importance
to note that query efficiency is further reinforced by performing
the typically query-intensive zeroth-order gradient estimation only
every𝑚 iterations.

Empirical results on MNIST, CIFAR-10, and tiny-ImageNet attain
comparable attack success rates to other untargeted black-box at-
tacks. However, the attack significantly outperforms prior attacks in
terms of the number of queries required in the targeted setting [19].

3 DECISION BASED ATTACKS
In this section, we discuss recent developments in adversarial ma-
chine learning with respect to attacks that are decision based. The
adversarial model for these attacks allows the attacker to query
the defense with input 𝑥 and receive the defense’s final predicted
output. In contrast to score based attacks, the attacker does not
receive any probabilistic or logit outputs from the defense.

We cover 7 recently proposed decision based attacks. These
attacks include the Geometric decision-based attack [47], Hop Skip
JumpAttack [10], RayS Attack [9], Nonlinear Black-Box Attack [33],
Query-Efficient Boundary-Based Black-box Attack [35], SurFree
attack [43], and the qFool attack [38].

3.1 Geometric Decision-based Attacks
Geometric decision-based attacks (GeoDA) are a subset of decision
based black box attacks proposed in [47] that can achieve high
attack success rates while requiring a small number of queries. The
attack exploits a low mean curvature in the decision boundary
of most contemporary classifiers within the proximity of a data
point. In particular the attack uses a hyperplane to approximate
the decision boundary in the vicinity of a data point to effectively
find the local normal vector of the decision boundary. The normal
vector can then be used to modify the clean image in such a way
that the model outputs an incorrect class label. Thus the attack
solves the following optimization problem:

min
𝑣

∥𝑣 ∥𝑝
s.t. 𝑤𝑇 (𝑥 + 𝑣) −𝑤𝑇 𝑥𝐵 = 0

(30)
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Where 𝑤 is a normal vector to the decision boundary, and 𝑥𝐵 is
point on the decision boundary and close to the clean image, 𝑥 . 𝑥𝐵
can be found by adding random noise, 𝑟 , to 𝑥 until the classifier’s
predicted label changes, then performing a binary search in the
direction of 𝑟 to get 𝑥𝐵 as close to the decision boundary as possible:

𝑥𝐵 = 𝑥 +min
𝑟
∥𝑟 ∥2

s.t. 𝑘 (𝑥𝐵) ≠ 𝑘 (𝑥)
(31)

Where 𝑘 (·) returns the top-1 label of the target classifier. The
normal vector to the decision boundary is found in the following
way: 𝑁 image perturbations, 𝜂𝑖 , are randomly drawn from a multi-
variate normal distribution 𝜂𝑖 ∼ N(0, Σ) [39]. The model is then
queried on the top-1 label of each 𝑥𝐵 + 𝜂𝑖 where 𝑥𝑏 is a boundary
point close to the clean image, 𝑥 . Each𝜂𝑖 is then classified as follows:

S𝑎𝑑𝑣 = {𝜂𝑖 | 𝑘 (𝑥𝑏 + 𝜂𝑖 ) ≠ 𝑘 (𝑥)} (32)

S𝑐𝑙𝑒𝑎𝑛 = {𝜂𝑖 | 𝑘 (𝑥𝑏 + 𝜂𝑖 ) = 𝑘 (𝑥)} (33)
From here the normal vector to the decision boundary can then

be estimated as:
𝑤̂𝑁 =

𝜇𝑁

∥𝜇𝑁 ∥2
(34)

where 𝜇𝑁 = 1
𝑁

∑𝑁
𝑖=1 𝜌𝑖𝜂𝑁

and 𝜌𝑖 =

{
1 𝜂𝑖 ∈ 𝑆𝑎𝑑𝑣
−1 𝜂𝑖 ∈ 𝑆𝑐𝑙𝑒𝑎𝑛

(35)

Finally the image can be modified using the following update:

𝑥𝑎𝑑𝑣 = 𝑥 + 𝑟𝑤̂𝑁 (36)

where 𝑟 = min{𝑟 > 0 | 𝑘 (𝑥 + 𝑟𝑣) ≠ 𝑘 (𝑥)}

and 𝑣 = 1
∥𝑤̂𝑁 ∥𝑎 ⊙ sign(𝑤̂)

(37)

Here ⊙ refers to the point-wise product and 𝑎 =
𝑝
𝑝−1 . This

process is done iteratively, at each iteration the previous iteration’s
𝑥𝑎𝑑𝑣 is used to calculate 𝑤̂ which is then added to the original 𝑥 to
find the current iteration’s 𝑥𝑎𝑑𝑣 as seen above.

The attack is experimentally tested on the ImageNet dataset.
The experiments show GeoDA outperforms the Hop Skip Jump
Attack, Boundary Attack, and qFool by producing smaller image
perturbations and requiring less iterations, and thus less queries,
to complete.

3.2 Hop Skip Jump Attack
The Hop Skip Jump Attack (HSJA) is a decision based, black-box
attack proposed in [10] that achieves both a high attack success rate
and a low number of queries. The attack is an improvement on the
previously developed Boundary Attack [6] in that it implements
gradient estimation techniques at the edge of a model’s decision
boundary in order to more efficiently create adversarial inputs to
the classifier. Similarly to many other adversarial attacks, HSJA
attempts to change the predicted class label of a given input, 𝑥 ,
while minimizing the perturbation applied to the input. Thus the
following optimization problem is proposed:

min
𝑥 ′

𝑑 (𝑥 ′, 𝑥∗) s.t. 𝜙𝑥∗ (𝑥 ′) = 1 (38)

𝜙𝑥∗ (𝑥 ′) = sign(𝑆𝑥∗ (𝑥 ′)) (39)

𝑆𝑥∗ (𝑥 ′) =


max
𝑐≠𝑐∗

𝐹𝑐 (𝑥 ′) − 𝐹𝑐∗ (𝑥 ′) (Untargeted)

𝐹𝑐† (𝑥 ′) −max
𝑐≠𝑐†

𝐹𝑐 (𝑥 ′) (Targeted) (40)

Here 𝐹𝑐 is the predicted probability of class 𝑐 , 𝑥 ′ is the adversarial
input, 𝑥∗ is the clean input, and 𝑑 is a distance metric. This unique
optimization formulation allows HSJA to approximate the gradient
of Equation 40 and thus more accurately and efficiently solve the
optimization problem.

The attack algorithm starts by adding random noise, 𝛿 , to the
clean image, 𝑥∗, until the model’s predicted class label changes to
the desired label. Once a desired random perturbation is found the
iterative process is initiated and 𝑥∗+𝛿 is stored in 𝑥0 which becomes
an iterative parameter written as 𝑥𝑡 for step number 𝑡 . From here a
binary search is performed to find the decision boundary between
𝑥∗ and 𝑥𝑡 . At the decision boundary the following operation is used
to approximate the gradient of the decision boundary:

Δ̂𝑆 (𝑥𝑡 , 𝛿𝑡 ) =
1

1 − 𝐵

𝐵∑︁
𝑏=1
(𝜙𝑥∗ (𝑥𝑡 + 𝛿𝑡𝑢𝑏 ) − 𝜙𝑥∗ )𝑢𝑏 (41)

𝜙𝑥∗ =
1
𝐵

𝐵∑︁
𝑏=1

𝜙𝑥∗ (𝑥𝑡 + 𝛿𝑡𝑢𝑏 ) (42)

Where 𝛿𝑡 = 𝑑−1
𝑡 ∥𝑥𝑡−1 −𝑥∗∥𝑝 and 𝑑0 = ∥𝑥0 −𝑥∗∥ is a small, positive

parameter. Each𝑢𝑏 is randomly drawn i.i.d. from the uniform distri-
bution over the d-dimensional sphere. The additional term, 𝜙𝑥∗ , is
used to attempt to mitigate the bias induced into the estimation by
𝛿 . Once the gradient of the decision boundary is found an update
direction is found using the following formulation:

𝑣𝑡 (𝑥𝑡 , 𝛿𝑡 ) =
{

Δ̂𝑆 (𝑥𝑡 , 𝛿𝑡 )/∥Δ̂𝑆 (𝑥𝑡 , 𝛿𝑡 )∥2 if 𝑝 = 2
sign(Δ̂𝑆 (𝑥𝑡 , 𝛿𝑡 )) if 𝑝 = ∞ (43)

Once this update direction is found a step size must be determined.
The step size is initialized as 𝜉𝑡 = ∥𝑥𝑡 − 𝑥∗∥𝑝/

√
𝑡 and is halved

until 𝜙𝑥∗ (𝑥𝑡 + 𝜉𝑡𝑣𝑡 ) ≠ 0. Then 𝑥𝑡 is updated by 𝑥𝑡 = 𝑥𝑡 + 𝜉𝑡𝑣𝑡 and
𝑑𝑡 is updated by 𝑑𝑡 = ∥𝑥𝑡 − 𝑥∗∥𝑝 . This process is continued for a
predetermined 𝑇 iterations.

In [10] HSJA is tested on the MNIST, CIFAR-10, CIFAR-100, and
ImageNet datasets. HSJA outperforms the Boundary Attack and
Opt Attack in terms of median perturbation magnitude and attack
success rate. HSJA is also tested against multiple defenses on the
MNIST dataset, where it performs better than Boundary Attack and
Opt Attack when all attacks are given an equal number of queries.

3.3 RayS Attack
The RayS attack is a query efficient, decision based, black-box at-
tack proposed in [9] as an alternative to zeroth-order gradient
attacks. The attack employs an efficient search algorithm to find
the nearest decision boundary that requires less queries then other
contemporary decision based attacks while maintaining a high
attack success rate. Specifically, the attack formulation turns the
continuous problem of finding the closest decision boundary into a
discrete optimization problem:

min
𝑑∈{−1,1}𝑛

𝑔(𝑑) = arg min
𝑟

1{𝑓 (𝑥 + 𝑟𝑑

∥𝑑 ∥2
) ≠ 𝑦} (44)

Where 𝑥 is the clean sample which is assumed to be a vector with-
out loss of generality,𝑦 is the ground truth label of the clean sample,
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𝑓 is the classifier’s prediction function, 𝑑 is a direction vector de-
termining the direction of the perturbation in the input space, 𝑟 is
a scalar projected onto 𝑑 determining the magnitude of the pertur-
bation, and 𝑛 is the dimensionality of the input. This converts the
continuous problem of finding the direction to the closest decision
boundary into a discrete optimization problem over 𝑑 ∈ {−1, 1}𝑛
which contains 2𝑛 possible options.

The attack algorithm finds a direction, 𝑑 , and a radius, 𝑟 , in the
input space as its final output for the attack. They can then be
converted into a perturbation by projecting 𝑟 onto 𝑑 . The attack
begins by choosing some initial direction vector, 𝑑 , and setting
𝑟 = ∞. The iterative process comes in multiple stages, 𝑠 , where
at each stage 𝑑 is cut into 2𝑠 equal and uniformly placed blocks.
The algorithm then iterates through each of these blocks, swapping
the sign of each value in the current block at a given iteration
and storing the modified 𝑑 into 𝑑𝑡𝑒𝑚𝑝 . If 𝑓 (𝑥 + 𝑟 · 𝑑𝑡𝑒𝑚𝑝 ) = 𝑦 the
algorithm skips searching 𝑑𝑡𝑒𝑚𝑝 as it requires a larger perturbation
than𝑑 to change the classifier’s predicted label. If 𝑓 (𝑥+𝑟 ·𝑑𝑡𝑒𝑚𝑝 ) ≠ 𝑦
the algorithm performs a binary search in the direction of 𝑑𝑡𝑒𝑚𝑝
to find the smallest 𝑟 such that 𝑓 (𝑥 + 𝑟 · 𝑑𝑡𝑒𝑚𝑝 ) ≠ 𝑦 remains true.
Finally 𝑑 is updated to 𝑑𝑡𝑒𝑚𝑝 and 𝑟 is updated to be the smallest
radius found in the binary search.

The RayS attack is experimentally tested in [9] on the MNIST,
CIFAR-10, and ImageNet datasets. It outperforms other black-box
attacks like HSJA and SignOPT in terms of both average number
of queries and attack success rate on the MNIST and CIFAR-10
datasets. On the ImageNet dataset, HSJA achieves a lower number
of average queries than RayS, but attains a significantly lower attack
success rate. The RayS attack is also compared to white box attacks
like Projected Gradient Descent (PGD) where it outperforms the
attack on the MNIST and CIFAR-10 datasets, in terms of the attack
success rate.

3.4 Nonlinear Projection Based Gradient
Estimation for Query Efficient Blackbox
Attacks

The Nonlinear Black-box Attack (NonLinear-BA) is a query ef-
ficient, nonlinear gradient projection-based boundary blackbox
attack [33]. This attack innovatively overcomes the gradient in-
accessibility of blackbox attacks by utilizing vector projection for
gradient estimation. AE, VAE, andGAN are used to perform efficient
projection-based gradient estimation. [33] shows that NonLinear-
BA can outperform the corresponding linear projections of HSJA
and QEBA, as NonLinear-BA provides a higher lower bound of
cosine similarity between the estimated and true gradients of the
target model.

There are three components of NonLinear-BA: the first is gra-
dient estimation at the target model’s decision boundary. While
high-dimensional gradient estimation is computationally expensive,
requiring numerous queries [33], projecting the gradient to lower
dimensional supports greatly improves the estimation efficiency of
NonLinear-BA. This desired low dimensionality is achieved through
the latent space representations of generative models, e.g., AE, VAE,
and GAN.

The gradient projection function f is defined as f : R𝑛 → R𝑚 ,
which maps the lower-dimensional representative space R𝑛 to the

original, high-dimensional space R𝑚 , where 𝑛 ≤ 𝑚. The sample
unit latent vectors 𝑣𝑏 ’s in R𝑛 are randomly sampled to generate the
perturbation vectors 𝑢𝑏 = f(𝑣𝑏 ) ∈ R𝑚 .

Thus, the gradient estimator is as follows:

∇̃𝑆 (𝑥 (𝑡 )
𝑎𝑑𝑣
) = 1

𝐵

𝐵∑︁
𝑏=1

sgn(𝑆 (𝑥 (𝑡 )
𝑎𝑑𝑣
+ 𝛿f(𝑣𝑏 )))f(𝑣𝑏 ) (45)

where ∇̃𝑆 is the estimated gradient, 𝑥𝑎𝑑𝑣 is the boundary image at
iteration t, 𝑆 is the difference function that indicates whether the
image has been successfully perturbed from the original label to
the malicious label, the function sgn(𝑆 (·)) denotes the sign of this
difference function, and 𝛿 is the size of the random perturbation to
control the gradient estimation error.

The second component of NonLinear-BA ismoving the boundary-
image 𝑥𝑎𝑑𝑣 along the estimated gradient direction:

𝑥𝑡+1 = 𝑥
(𝑡 )
𝑎𝑑𝑣
+ 𝜉𝑡 ·

∇̃𝑆
∥∇̃𝑆 ∥2

(46)

where 𝜉𝑡 is a step size chosen by searching with queries.
Finally, in order to enable the gradient estimation in the next

iteration and move closer to the target image, the adversarial image
𝑥𝑎𝑑𝑣 is mapped back to the decision boundary through binary
search. This search is aided by queries which seek to find a fitting
weight 𝛼𝑡 :

𝑥
(𝑡+1)
𝑎𝑑𝑣

= 𝛼𝑡 · 𝑥𝑡𝑔𝑡 + (1 − 𝛼𝑡 ) · 𝑥𝑡+1 (47)
where 𝑥𝑡𝑔𝑡 is the target image, i.e., the original image whose correct
label 𝑥𝑎𝑑𝑣 seeks to achieve with a crafted perturbed image.

TNonLinear-BA is evaluated on both offline model ImageNet,
CelebA, CIFAR10 and MNIST datasets, as well as commercial online
APIs. The nonlinear projection-based gradient estimation black-box
attacks achieve better performance compared with the state-of-the-
art baselines. The authors in [33] discover that when the gradient
patterns are more complex, the NonLinear-BA-GAN method fails
to keep reducing the MSE after a relatively small number of queries
and converges to a poor local optima.

3.5 QEBA: Query-Efficient Boundary-Based
Blackbox Attack

Black-box attacks can be query-free or query-based. Query-free
attacks are transferability based; query access is not required, as
this type of attack assumes the attacker has access to the training
data such that a substitute model may be constructed. Query-based
attacks can be further categorized into score-based or boundary-
based attacks. In a score-based attack, the attacker can access the
class probabilities of the model. In a boundary-based attack, only
the final model prediction label, rather than the set of prediction
confidence scores, is made accessible to the attacker. Both score-
based and boundary-based attacks require a substantial number of
queries.

One challenge of reducing the number of queries needed for a
boundary-based attack is that it is difficult to explore the decision
boundary of high-dimensional data without making many queries.
TheQuery-Efficient Boundary-based BlackboxAttack (QEBA) seeks
to reduce the queries needed by generating queries through adding
perturbations to an image [35]. Thus, probing the decision boundary
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is reduced to searching a smaller, representative subspace for each
generated query. Three representative subspaces are studied by [35]:
spatial transformed subspace, low frequency subspace, and intrinsic
component subspace. The optimality analysis of gradient estimation
query efficiency in these subspaces is shown in [35].

QEBA performs an iterative algorithm comprised of three steps:
first, estimate the gradient at the decision boundary, which is based
on the given representative subspace, second, move along the esti-
mated gradient, and third, project to the decision boundary with
the goal of moving towards the target adversarial image. These
steps follow the same mathematical details as given in Equation 45
to 47 in Section 3.4. Representative subspace optimizations from
spatial, frequency, and intrinsic component perspectives are then
consequently explored; these subspace-based gradient estimations
are shown to be optimal as compared to estimation over the original
space [35].

Results for the attack are provided for models trained on Ima-
geNet and models trained on the CelebA dataset. The results show
the MSE vs the number of queries, indicating that the three pro-
posed query efficient methods outperform HSJA significantly. The
authors also show that the proposed QEBA significantly reduces the
required number of queries. In addition, the attack yields high qual-
ity adversarial examples against both offline models (i.e. ImageNet)
and online real-world APIs such as Face++ and Azure.

3.6 SurFree: a Fast Surrogate-free Blackbox
Attack

Many black-box attacks rely on substitution, i.e., a surrogate model
is used in place of the target model, the aim being that adversar-
ial examples crafted to attack this surrogate model will effectively
transfer to the target classifier. Accordingly, an accurate gradient es-
timate to create the substitute model requires a substantial number
of queries.

By contrast, SurFree is a geometry-based black-box attack that
does not query for a gradient estimate [43]. Instead, SurFree as-
sumes that the boundary is a hyperplane and exploits subsequent
geometric properties as follows. Consider the pre-trained classifier
to be 𝑓 : [0, 1]𝐷 → R𝐶 . A given input image x produces the label
𝑐𝑙 (x) := arg max𝑘 𝑓𝑘 (x), where 𝑓𝑘 (x) is the predicted probability
of class class 𝑘, 1 ≤ 𝑘 ≤ 𝐶 . The goal of an untargeted attack is to
find an adversarial image x𝑎 that is similar to a classified image
x𝑜 such that 𝑐𝑙 (x𝑎) ≠ 𝑐𝑙 (x𝑜 ). Thus, an outside region is defined as
O := {x ∈ R𝐷 : 𝑐𝑙 (x) ≠ 𝑐𝑙 (x𝑜 )} The desired, optimal adversarial
image is then:

x∗𝑎 = arg min
x∈O

| |x − x𝑜 | | (48)

A key assumption of SurFree is that if a point y ∈ O, then there
exists a point x𝑏 ∈ 𝑥𝑜𝑦which can be found that lies on the boundary,
denoted as 𝜕O. Further, it is assumed that the boundary 𝜕O is an
affine hyperplane that passes through x𝑏,1 inR𝐷 with normal vector
N. Considering a random basis with span (x𝑏,1 − x𝑜 )⊥ composed
of 𝐷 − 1 vectors {v𝑖 }𝐷−1

𝑖=1 , the inner product between N and (x𝑏,𝑘 −
x𝑜 ) ∝ u𝑘 can be iteratively increased by:

N⊤u𝑘 =

𝐷−𝑘∏
𝑖=1

cos(𝜓𝐷−𝑖 ) (49)

where u𝑘 is the vector that spans the plane containing x𝑜 , and
x𝑏,𝐷 ∈ O and (x𝑏,𝐷 − x𝑜 ) is colinear with N, which points to the
projection of x𝑜 along the boundary of the hyperplane.

Additionally, restricting perturbations to a low dimensional sub-
space improve the estimation of the projected gradient. The low
dimensional subspace is carefully chosen to incorporate meaning-
ful, prior information about the visual content of the image. This
further aids in implementing a low query budget.

It is experimentally shown that SurFree bests state-of-the-art
techniques for limited query amounts (e.g., one thousand queries)
while attaining competitive results in unlimited query scenarios [43].
The geometric details of approximating a hyperplane surrounding
a boundary point are left to [43].

The authors present attack results using the criteria of num-
ber of queries, and the resulting distortion on the attacked image,
on the MNIST and ImageNet datasets. SurFree drops significantly
faster than other compared attacks (QEBA and GeoDA) to lower
distortions (most notably from 1 to 750 queries.

3.7 A Geometry-Inspired Decision-Based
Attack

qFool is a decision-based attack that requires few queries for both
non-targeted and targeted attacks [38]. qFool relies on exploiting
the locally flat decision boundary around adversarial examples. In
the non-targeted attack case, the gradient direction of the decision
boundary is estimated based upon the top-1 label result of each
query. An adversarial example is then sought in the estimated direc-
tion from the original image. In the targeted attack case, gradient
estimations are made iteratively from multiple boundary points
from a starting target image. Query efficiency is further improved
by seeking perturbations in low-dimensional subspace.

Prior literature [20] has shown that the decision boundary has
only a small curvature near the presence of adversarial examples.
This observation is thus exploited by [38] to compute an adver-
sarial perturbation 𝑣 . It conceptually follows that the direction of
the smallest adversarial perturbation 𝑣 for the input sample 𝑥0 is
the gradient direction of the decision boundary at 𝑥𝑎𝑑𝑣 . Due to the
blackbox nature of attack, this gradient cannot be computed di-
rectly; however, from the knowledge that the boundary is relatively
flat, the classifier gradient at point 𝑥𝑎𝑑𝑣 will be nearly identical
to the gradient of other neighboring points along the boundary.
Therefore, the direction of 𝑣 can be suitably approximated by 𝜉 ,
the gradient estimated at a neighbor point 𝑃 . Thus, an adversarial
example 𝑥𝑎𝑑𝑣 from 𝑥0 is sought along 𝜉 .

The three components of the untargeted qFool attack involve
an initial point, gradient estimation, and a directional search. To
begin with, the original image 𝑥0 is perturbed by a small, random
Gaussian noise to produce a starting point P on the boundary:

P := 𝑥0 +min
𝑟
∥𝑟 ∥2 s.t. 𝑓𝜃 (P) ≠ 𝑓𝜃 (𝑥0), 𝑟 ∼ N(0, 𝜎) (50)

Noise continues to be added (P = 𝑥0 + 𝑟 𝑗 ) until the image is
misclassified. Next, the top-1 label of the classifier is used to estimate
the gradient of the boundary ∇𝑓 (P):

𝑧𝑖 =

{
−1 𝑓 (P + 𝜈𝑖 ) = 𝑓 (𝑥0)
+1 𝑓 (P + 𝜈𝑖 ) ≠ 𝑓 (𝑥0)

, 𝑖 = 1, 2, ..., 𝑛 (51)
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where 𝜈𝑖 are randomly generated vectors with the same norm
to perturb P and 𝑓 (P + 𝜈𝑖 ) is the label produced by querying the
classifier.

For the final step of qFool, the gradient direction at point 𝑥𝑎𝑑𝑣 can
be approximated by the gradient direction at point P, i.e., ∇𝑓 (P) ≈
𝜉 . The adversarial example 𝑥𝑎𝑑𝑣 can thus be found by perturbing the
decision boundary in the direction of 𝜉 until the decision boundary
is reached. Using binary search, this costs only a few queries to the
classifier.

For a targeted attack, the objective becomes perturbing the input
image to be classified as a particular target class, i.e., 𝑓𝜃 (𝑥0 + 𝑣) = 𝑡
for a target class 𝑡 . Thus, the starting point of this attack is selected
to be an arbitrary image 𝑥𝑡 that belongs to the target class 𝑡 . Due
to the potentially large distance between 𝑥0 and 𝑥𝑡 , the assumption
of a flat decision boundary between the initial and targeted adver-
sarial regions no longer holds. Instead, a linear interpolation in the
direction of (𝑥𝑡 − 𝑥0) is utilized to find a starting point P0:

P0 := min
𝛼
(𝑥0 + 𝛼 ·

𝑥𝑡 − 𝑥0
∥𝑥𝑡 − 𝑥0∥2

) s.t. 𝑓𝜃 (P0) = 𝑡 (52)

The gradient direction estimation of 𝜉0 at P0 follows the same
method as outlined for untargeted attacks.

The qFool attack is experimentally demonstrated on the Ima-
geNet dataset by attacking VGG-19, ResNet50 and Inception v3.
The results show that qFool is able to achieve a smaller distortion
in terms of MSE, as compared to the Boundary Attack when both
attacks use the same number of queries. However, the overall attack
success rate for qFool is not reported. The authors also test qFool
on the Google Cloud Vision API.

4 TRANSFER ATTACKS
In this section, we explore recent advances in adversarial machine
learning with respect to transfer attacks. The adversarial model for
these attacks allows the attacker to query the target defense and or
access some of the target defense’s training dataset. The attacker
then uses this information to create a synthetic model which the
attacker then attacks using a white box attack. The adversarial
inputs generated from the white box attack on the synthetic model
are then transferred to the targeted defense.

We cover 3 recently proposed transfer attacks. These attacks in-
clude the Adaptive Black-Box Transfer attack [42], DaST attack [58]
and the Transferable Targeted attack [37].

4.1 The Adaptive Black-box Attack
A new transfer based black-box attack is developed in [42] that
is an extension of the original Papernot attack proposed in [46].
Under this threat model the adversary has access to the training
dataset (𝑋,𝑌 ), and query access to the classifier under attack,𝐶 . In
the original Papernot formulation of the attack, the attacker labels
the training data to create a new training dataset (𝑋,𝐶 (𝑋 )). The
adversary is then able to train synthetic model 𝑆 on (𝑋,𝐶 (𝑋 )) while
iteratively augmenting the dataset using a synthetic data generation
technique. This results in a trained synthetic model 𝑆 (𝑤𝑠 ). In the
final step of the attack, a white-box attack generation method 𝜙 (·)
is used in conjunction with the trained synthetic model 𝑆 in order
to create adversarial examples 𝑋𝑎𝑑𝑣 :

𝑋𝑎𝑑𝑣 = 𝜙 (𝑋𝑐𝑙𝑒𝑎𝑛, 𝑆,𝑤𝑠 ) (53)

where𝑋𝑐𝑙𝑒𝑎𝑛 are clean testing examples and 𝜙 is a white-box attack
method i.e. FGSM [23].

The enhanced version of the Papernot attack is called themixed [42]
or adaptive black-box attack [41]. Where as in the original Paper-
not attack 0.3% of the training data is used, the adaptive version
increases the strength of the adversary by using anywhere from 1%
to 100% of the original training data. Beyond this, the attack gen-
eration method 𝜙 is varied to account for newer white-box attack
generation methods that have better transferability. In general the
most effective version of the attack replaces 𝜙FGSM with 𝜙MIM, the
Momentum Iterative Method (MIM) [18]. The MIM attack computes
an accumulated gradient [18]:

𝑔𝑡+1 = 𝜇 · 𝑔𝑡 +
𝐽 (𝑥𝑎𝑑𝑣𝑡 , 𝑦)

| |∇𝑥 𝐽 (𝑥𝑎𝑑𝑣𝑡 , 𝑦) | |1
(54)

where 𝐽 (·) is the loss function, 𝜇 is the decay factor and 𝑥𝑎𝑑𝑣𝑡 is the
adversarial sample at attack iteration 𝑡 . For a 𝐿∞ bounded attack,
the adversarial example at iteration 𝑡 is:

𝑥𝑎𝑑𝑣𝑡+1 = 𝑥𝑎𝑑𝑣𝑡 + 𝜖
𝑇
· sign(𝑔𝑡+1) (55)

where 𝑇 represents the total number of iterations in the attack and
𝜖 represents the maximum allowed perturbation.

In [42], the attack is tested using the CIFAR-10 and Fashion-
MNIST datasets. The adaptive black-box attack is shown to be
effective against vanilla (undefended) networks, as well as a variety
of adversarial machine learning defenses.

4.2 DaST: Data-free Substitute Training for
Adversarial Attacks

As described in the SurFree attack in 3.6, substitute models can be
difficult or unrealistic to obtain, particularly if a substantial amount
of real data labeled by the target model is needed. DaST is a data-
free substitute training method that utilizes generative adversarial
networks (GANs) to train substitute models without the use of real
data [58]. To address the potentially uneven distribution of GAN-
produced samples, a multi-branch architecture and label-control
loss for the GAN model is employed.

To describe the necessary context for DaST, letX denote samples
from the target model 𝑇 , 𝑦 and 𝑦′ denote the true labels and target
labels of the samples X, respectively, and let 𝑇 (𝑦 |X, 𝜃 ) denote the
target model parameterized by 𝜃 . Then, the objective of a targeted
attack becomes:

min
𝜖
| |𝜖 | | subject to argmax

𝑦𝑖

𝑇 (𝑦𝑖 |X = X + 𝜖, 𝜃 ) = 𝑦′

and | |𝜖 | | ≤ 𝑟
(56)

where 𝜖 and 𝑟 are the sample and upper bounds of the perturba-
tion, respectively, and X = X + 𝜖 refer to the adversarial examples
that lead the target model 𝑇 to misclassify a sample with a selected
wrong label.

To further provide adequate context for DaST, a white-box attack
under these settings would have full access to the gradient con-
struction of the target model 𝑇 and thus leverage this information
to generate adversarial examples. In a black-box substitute attack
under these settings, a substitute model 𝑇 would stand-in for the
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target model, and the adversarial examples generated to attack 𝑇
would then be transferred to attack 𝑇 . Thus, coming to the settings
of a data-free black-box substitute attack, DaST utilizes a GAN to
synthesize a training set for 𝑇 that is as similar as possible to the
training set of the target model 𝑇 .

To this end, the substitute training set crafted by the GAN aims
to be evenly distributed across all categories of labels, which are
produced from 𝑇 . To accomplish this, for 𝑁 categories, the gen-
erative network in [58] is designed to contain 𝑁 upsampling de-
convolutional components, which then share a post-processing
convolutional network. The generative model𝐺 randomly samples
a noise vector z from the input space as well as the variable label 𝑛.
z then enters the 𝑛-th upsampling deconvolutional network and the
shared convolutional network to produce the adversarial sample
X̂ = 𝐺 (z, 𝑛). The label-control loss for 𝐺 is given as:

L𝑐 = CE(𝑇 (𝐺 (z, 𝑛)), 𝑛) (57)

where CE is the cross-entropy.
To approximate the gradient information of 𝑇 to train a label-

controllable generative model, the following objective function is
used:

min
D

𝑑 (𝑇 (X̂), 𝐷 (X̂)) (58)

For the same inputs, the outputs of 𝐷 will approach the outputs
of 𝑇 for the same inputs as training proceeds. Thus, 𝐷 replaces 𝑇
in Equation 57:

L𝑐 = CE(𝐷 (𝐺 (z, 𝑛)), 𝑛) (59)
The loss of G is then updated as:

L𝐺 = 𝑒−𝑑 (𝑇,𝐷) + 𝛼L𝑐 (60)

where 𝛼 is the weight of the label-control loss.
As the training stage progresses, as does the imitation quality

of 𝐷 , leading to a diverse set of synthetically generated samples
labeled by 𝑇 . These data-free substitute training-produced samples
are then used to attack 𝑇 .

DaST reduces the need for adversarial substitute attacks by uti-
lizing GANs to generate synthetic samples, and thus can train
substitute models without the requirement of any real data. Au-
thors present results on using DaST to train a substitute model for
adversarial attacks on the CIFAR-10 and MNIST trained models.
The substitute models trained by DaST perform better than baseline
models on FGSM and C&W attacks (targeted).

4.3 Towards Transferable Targeted Attack
Crafting targeted transferable examples has the dual challenges of
noise curing, i.e., the decreasing gradient magnitude in iterative
attacks that results in momentum accumulation, and the difficulty
of moving adversarial examples toward a target class while creating
distance from the true class. To this end, Li et al [37] propose a
novel targeted, transferable attack that applies the Poincaré distance
to combat noise curing by creating a self-adaptive gradient, and
employsmetric learning to improve the distance from an adversarial
example’s true label.

To overcome the drawback of the Poincaré distance fused logits
failing to satisfy ∥𝑙 (𝑥)∥2 < 1, this attack normalizes logits by the 𝑙1
distance. To overcome the problem of potential infinite distances
between a point and its target label, a constant of 𝜉 = 0.0001 is

subtracted from the one-hot target label 𝑦. The Poincaré distance
metric loss is given as:

L𝑃𝑜 (𝑥,𝑦) = 𝑑 (𝑢, 𝑣) = arccosh(1 + 𝛿 (𝑢, 𝑣)) (61)

where 𝑑 refers to the Poincaré distance, 𝑙𝑘 (𝑥) indicates the output
logits of the 𝑘-th model, 𝑢 = 𝑙𝑘 (𝑥)/∥𝑙𝑘 (𝑥)∥1, 𝑣 = max{𝑦 − 𝜉, 0}, and
𝑙 (𝑥) refer to the fused logits. By contrast, this attack formulates ad-
versarial examples through the fusion of logits from a combination
of models, as shown below:

𝑙 (𝑥) =
𝐾∑︁
𝑘=1

𝑤𝑘𝑙𝑘 (𝑥) (62)

where 𝐾 is the number of ensemble models, 𝑙𝑘 (𝑥) indicates the
output logits of the 𝑘-th model, and𝑤𝑘 is the ensemble weight of
the the 𝑘-th model, with𝑤𝑘 > 0,

∑𝐾
𝑘=1𝑤𝑘 = 1. Note that the fused

logits are the average of the ensemble models.
Triplet loss is a popular targeted attack loss function that in-

creases the distance between the adversarial example and the true
label, while decreasing the distance between the adversarial ex-
ample and the target label [25]. A common triplet loss function
appears as:

L𝑡𝑟𝑖𝑝 (𝑥𝑎, 𝑥𝑝 , 𝑥𝑛) = [𝐷 (𝑥𝑎, 𝑥𝑝 ) − 𝐷 (𝑥𝑎, 𝑥𝑛) + 𝛾]+ (63)

where 𝑥𝑎, 𝑥𝑝 , 𝑥𝑛 are the anchor, positive, and negative examples,
respectively, where 𝑥𝑎 and 𝑥𝑝 are of the same class, while 𝑥𝑛 is
of a different class than 𝑥𝑎 . The distance 𝑑 is based on the embed-
ding vector for the anchor, positive, and negative networks in the
triplet configuration. Additionally, 𝛾 ≥ 0 is a hyperparameter that
regulates the margin between the distance metrics 𝐷 (𝑥𝑎, 𝑥𝑝 ) and
𝐷 (𝑥𝑎, 𝑥𝑛).

A drawback of standard triplet loss is the need to sample new
data, which is often infeasible in a targeted attack. Instead, this work
formulates the triplet input as the logits of clean images, 𝑙 (𝑥𝑐𝑙𝑒𝑎𝑛),
the one-hot target label, 𝑦𝑡𝑎𝑟 , and the true label, 𝑦𝑡𝑟𝑢𝑒 :

L𝑡𝑟𝑖𝑝 (𝑦𝑡𝑎𝑟 , 𝑙 (𝑥𝑖 ), 𝑦𝑡𝑟𝑢𝑒 ) = [𝐷 (𝑙 (𝑥𝑖 ), 𝑦𝑡𝑎𝑟 )
− 𝐷 (𝑙 (𝑥𝑖 ), 𝑦𝑡𝑟𝑢𝑒 ) + 𝛾]+ (64)

Due to 𝑙 (𝑥𝑎𝑑𝑣) not being normalized, angular distance is used as a
distance metric (note that 𝑥𝑖 corresponds to 𝑥𝑎𝑑𝑣 below):

𝐷 (𝑙 (𝑥𝑎𝑑𝑣), 𝑦𝑡𝑎𝑟 ) = 1 − |𝑙 (𝑥𝑎𝑑𝑣) · 𝑦𝑡𝑎𝑟 |
∥𝑙 (𝑥𝑎𝑑𝑣)∥2∥𝑦𝑡𝑎𝑟 ∥2

(65)

However, the usage of angular loss does not account for the
influence of the norm on the loss value. Thus, an additional triplet
loss term appears in the final loss function, as shown below:

L𝑎𝑙𝑙 = L𝑃𝑜 (𝑙 (𝑥), 𝑦𝑡𝑎𝑟 ) + 𝜆 · L𝑡𝑟𝑖𝑝 (𝑦𝑡𝑎𝑟 , 𝑙 (𝑥𝑖 ), 𝑦𝑡𝑟𝑢𝑒 ) (66)

where 𝑥 is the original, clean input image and 𝑥𝑖 is the result of the
𝑖-th iteration of the perturbation of 𝑥 , with the final result being
𝑥𝑎𝑑𝑣 .

Results on ImageNet illustrate that this attack [37] achieves
improved success rates over traditional attacks for white and black-
box models in the targeted setting.
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5 NON-TRADITIONAL NORM ATTACKS
In this section, we discuss recent developments in black-box attacks
that use non-traditional norm threat models. In all attacks covered
in previous sections the focus has been on adversaries which try to
create adversarial examples with respect to the 𝑙2 or 𝑙∞ norms. We
denote the 𝑙2 and 𝑙∞ as "traditional" norms simply because that is
what a majority of the literature (17 of the 20 attacks) thus far have
focused on. While this is not a strictly technical definition, it gives
us a convenient and simple way to categorize the different attacks.

We cover three non-traditional norm attacks in this section.
The first attack we summarize is the sparse and imperceivable
attack [15] which focuses on black-box attacks with respect to the
𝑙0 norm. The second non-traditional norm attack we survey is Patch
Attack [54]. The PatchAttack is based on completely replacing small
part of the original image with an adversarial generated square
(patch). The last attack we cover in this section is ColorFool [52].
This attack is based on manipulating the colors within the image
as opposed to directly adding adversarial noise.

5.1 Sparse and Imperceivable Attack
The Sparse and Imperceivable attacks proposed in[15] are 𝑙0, black-
box attacks that produce adversarial inputs while minimizing the
number of perturbed pixels. The attacks come in multiple forms, but
the general goal and scheme remains the same. Each attack relies on
having the score based output of the network to operate, and each
version of the attack attempts to solve the following optimization
problem:

min 𝛾 (𝑥 ′ − 𝑥)
s.t. arg max 𝑓 (𝑥 ′) ≠ arg max 𝑓 (𝑥) (67)

where 𝑥 is the clean image, 𝑥 ′ is an adversarial image, 𝑓 is a function
returning the classifier’s score vector, and 𝛾 is a distance function
defined as follows:

𝛾 (𝑥 ′ − 𝑥) =
𝑑∑︁
𝑖=1

max
𝑗
1[𝑥 ′𝑖 𝑗 − 𝑥𝑖 𝑗 ] ≠ 0 (68)

Where 𝑥𝑖 𝑗 refers to the 𝑖𝑡ℎ pixel of the 𝑗𝑡ℎ color channel. It is im-
portant to note that color images are typically represented as three
2-D matrices, with one matrix corresponding to each color channel.
However, in the mathematical formulation for these attacks, they
treat each color channel as a 1-D matrix for notational convenience.

In Equation 68, essentially 𝛾 counts the number of pixels in the
adversarial image that deviate from the original image. There are
three versions of the attack: 𝑙0, 𝑙0+𝑙∞, 𝑙0+𝜎 . Where 𝑙0+𝑙∞ and 𝑙0+𝜎
add their own additional constraints on the optimization problem
as outlined below:

attack type Additional Constraint
𝑙0 + 𝑙∞ ∥𝑥 ′ − 𝑥 ∥ ≤ 𝜖
𝑙0 + 𝜎 Perturbations must be imperceivable

Where 𝜖 is the maximum allowed perturbation magnitude. Each of
the attack variants follow the same scheme, with themain difference
being the amount each pixel is perturbed.

The attack begins by first iterating through each pixel in the
image and generating a set of pixel perturbations {𝑥 ′

𝑖 𝑗
} according

to the following equations:

Attack Type Pixel Perturbation
𝑙0 𝑥 ′

𝑖 𝑗
∈ {0, 1}

𝑙0 + 𝑙∞ 𝑥 ′
𝑖 𝑗

= 𝑥𝑖 𝑗 ± 𝜖
𝑙0 + 𝜎 𝑥 ′

𝑖 𝑗
= (1 ± 𝜅𝜎𝑖 𝑗 )𝑥𝑖 𝑗

Here 𝜎 is the standard deviation of the image in color channel 𝑗 in
proximity to pixel 𝑥𝑖 𝑗 . It is calculated as follows:

𝜎𝑖 𝑗

√︃
min{𝜎𝑦

𝑖 𝑗
, 𝜎𝑥
𝑖 𝑗
} (69)

Where 𝜎𝑥
𝑖 𝑗
is the standard deviation of 𝑥𝑖 𝑗 and the two pixels adja-

cent to it horizontally in color channel 𝑗 , and 𝜎𝑦
𝑖 𝑗
is the same but

for the two pixels adjacent to 𝑥𝑖 𝑗 vertically. The 𝜎 term is essential
to what makes the 𝑙0 + 𝜎 attack imperceivable to humans. It allows
the attack to avoid perturbations near edges in the image as they
are more easily perceivable. It also focuses the attack on increasing
the intensity of pixels rather than modifying their color. Each pixel
perturbation is then clipped into the [0, 1] range. After this each
generated 𝑥 ′

𝑖, 𝑗
is sorted in decreasing order according to the value

of the following equation:

𝜋𝑟 (𝑥 ′𝑖 𝑗 ) = 𝑓𝑟 (𝑥
′
𝑖 𝑗 ) − 𝑓𝑐 (𝑥

′
𝑖 𝑗 ) (70)

Where 𝑐 is the ground truth label of 𝑥 , 𝑟 is any class label other
than 𝑐 , 𝜋𝑟 (𝑥 ′) is the score of perturbation 𝑥 ′ with respect to class 𝑟 ,
and 𝑓𝑟 is the model’s predicted value for class 𝑟 in the score vector.
The perturbations 𝑥 ′

𝑖, 𝑗
are then sorted by their 𝜋𝑟 score for each 𝑟 .

After the sorting, an iterative process begins. At each iteration
a number of maximum pixels perturbed, 𝑘 , is chosen, starting at
one pixel and progressing to 𝑘𝑚𝑎𝑥 by the end. During each of these
iterations an inner loop iterative process begins. The inner loop
iterates through each of the possible class labels, 𝑟 , other than 𝑐 ,
applying 𝑘 of the top 𝑁 single pixel perturbations with respect
to class 𝑟 to the clean image. If at any point in the algorithm a
perturbation leads to a changed class label, the algorithm stops
and returns the penultimate perturbation. The attack is tested on
the MNIST and CIFAR-10 datasets where it achieves a high attack
success rate while perturbing a small amount of total pixels on
average. The attack is compared to both white-box and black-box
attacks where it achieves a similar attack success rate to attacks
like C&W attack and Sparse Fool while having the median least
pixels perturbed per attack.

5.2 Patch Attack
The Patch Attack is a black box attack proposed in [54] that utilizes
textured patches and reinforcement learning to generate adversarial
images. Each patch is cut out from from images in a pre-generated
library of textures. Each texture is designed such that neural net-
works strongly associate themwith a particular class label in a given
dataset. The attack is perceivable to the human eye and applies
a large magnitude perturbation to the clean image. However, the
perturbation is localized and can be shrunk through optimization
techniques. In this attack the reinforcement learning agent solves
the following optimization problem:

min 𝐿(𝑦,𝑦′) = −𝑟 · ln(𝑃) (71)
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Where 𝐿 is the attack loss, 𝑦 is the target model’s predicted score
for the ground truth class, 𝑦′ ≠ 𝑦 is the model’s predicted score
for a class other than 𝑦, 𝑟 is the reinforcement learning agent’s
reward, and 𝑃 is the agent’s output probability of taking action 𝑎
that lead to the most recent reward. 𝑟 = ln(𝑦′) in a targeted attack,
and 𝑟 = ln(𝑦′ − 𝑦) in an untargeted attack. The reinforcement
learning agent’s policy network is represented by an LSTM and a
fully connected layer. An action is defined as follows:

𝑎 = {𝑢1, 𝑣1, 𝑖, 𝑢2, 𝑣2} (72)

Where 𝑖 is a texture index in the texture library, 𝑢1 and 𝑣1 are
corner positions used to crop the texture, and 𝑢2 and 𝑣2 are corner
positions denoting where the cropped texture should be placed
on the clean image. The attack algorithm is iterative, at each time
step the environment state is determined and an agent is trained.
Once trained the agent outputs a probability distribution over the
possible actions. One action is sampled from the distribution and
the associated patch is applied.

Before the attack the texture images must be obtained externally
or generated by an algorithm. In the latter case the generation
algorithm is initialized with a CNN trained on the target dataset.
In our description of the attack, we denote this CNN as the texture
CNN to distinguish it from the CNN being attacked. A set of data
is also chosen to be used for the texture generation. The data is
pre-processed using Grad-CAM [51] which masks out areas of the
image that are irrelevant to the primary texture information. For
each convolutional layer, 𝑗 , in the 𝑖𝑡ℎ block of the texture CNN, a
feature map 𝐹 𝑗

𝑖
is generated. Furthermore, the corresponding Gram

matrix, 𝐺 𝑗
𝑖
is also calculated for each feature activation of each

image. Each 𝐹 𝑗
𝑖
and𝐺 𝑗

𝑖
will help encode the most important texture

information in input image according to the texture CNN. The
computation of the feature maps and Gram matrices are described
in detail in [22].

For each image, the Gram matrices generated are then flattened
and concatenated into the vector 𝐺 which encodes the texture
information. From here, the 𝐺s are organized by the original class
label of the input that generated them. This is done so that the
final textures can be labeled and to maximize the effectiveness of
each patch. For each class label, the𝐺s are clustered into 𝑁 clusters.
In [54] 𝑁 is chosen to be 30 in order to have sufficient diversity in
the texture pool. In practice, the best value of 𝑁 will vary based
upon dataset and application. For each cluster,𝐺𝑐 , is then used to
generate a feature embedding of the final texture images. This is
done by minimizing the following optimization problem over 𝐺𝑡 :

𝐿 = 𝜆(𝐺 −𝐺𝑡 )2 (73)

Where 𝜆 is a weight constant and𝐺𝑡 is the feature embedding of the
texture image used to generate the final texture image. We omitt
some details of the attack explanation for brevity, further details
are given in [21].

The attack is tested on the ImageNet dataset where it achieves a
high attack success rates while covering small portions of the clean
image with patches. The attack also shows an ability to maintain its
high attack success rate even when defense techniques are applied
to the classifier.

5.3 ColorFool: Semantic Adversarial
Colorization

ColorFool [52] presents a content-based black-box adversarial at-
tack with unrestricted perturbations that selectively manipulates
colors within chosen ranges to thwart classifiers, while remaining
undetected by humans. ColorFool operates on the independent 𝑎
and 𝑏 channels of the perceptually uniform Lab color space [50].
Color modifications are implemented without changing the light-
ness, 𝐿, of the given image. Further, ColorFool solely selects pertur-
bations within a defined natural-color range for particular accept-
able categories [55].

ColorFool divides images into sensitive and non-sensitive regions
to be considered for color modification. Sensitive regions, defined
S = {S𝑘 }𝑆𝑘=1 are separated from non-sensitive regions, defined

S = {S𝑘 }
𝑆

𝑘=1, where S = S ∪ S.
The color of the sensitive regions, S, is modified to generate the

adversarial set ¤S as follows:
¤S = {¤S𝑘 : ¤S𝑘 = 𝛾 (S𝑘 ) + 𝛼 [0, 𝑁𝑎𝑘 , 𝑁

𝑏
𝑘
]𝑇 }𝑆

𝑘=1 (74)

where color channel 𝑎 ranges from green (-128) to red (+127), color
channel 𝑏 ranges from blue (-128) to yellow (+127), and the bright-
ness 𝐿 ranges from black (0) to white (100) within the 𝐿𝑎𝑏 color
space [50]. Further, 𝛾 (·) converts the intensities of an 𝑅𝐺𝐵 image to
the 𝐿𝑎𝑏 colorspace, and 𝑁𝑎

𝑘
∈ N𝑎

𝑘
and 𝑁𝑏

𝑘
∈ N𝑏

𝑘
are randomly cho-

sen adversarial perturbations from the set of natural color ranges
N𝑎
𝑘
and N𝑏

𝑘
[55] within the 𝑎 and 𝑏 channels.

The color of the non-sensitive regions, S, is modified as follows
to produce to the set ¤S:

¤
S = {¤S𝑘 : ¤S𝑘 = 𝛾 (S𝑘 ) + 𝛼 [0, 𝑁

𝑎
, 𝑁

𝑏 ]𝑇 }𝑆
𝑘=1 (75)

where 𝑁𝑎, 𝑁𝑏 ∈ {−127, ...128} are randomly chosen within the
ranges of 𝑎 and 𝑏, respectively. Note that the full ranges of 𝑎 and 𝑏
are considered, as non-sensitive regions are able to undergo greater
intensity changes.

The modified sensitive and non-sensitive regions are combined
to generate the adversarial image ¤X, as shown below:

¤X = 𝑄 (𝛾−1 (
𝑆∑︁
𝑘=1

¤S𝑘 +
𝑆∑︁
𝑘=1

¤S𝑘 )) (76)

where 𝑄 (·) is the quantization function that keeps the generated
adversarial image within the dynamic range of pixel values, i.e.,
¤X ∈ Z𝑤,ℎ,𝑐 , and 𝛾−1 (·) is the inverse function that converts image
intensities from the 𝐿𝑎𝑏 color space to 𝑅𝐺𝐵.

ColorFool provides robustness to defenses that utilize filters,
adversarial training or modified training loss functions. Addition-
ally, ColorFool is less detectable than restricted attacks, including
JPEG compression. The empirical results were presented on the
Private-Places365, CIFAR-10, and ImageNet datasets, indicating
higher success rates in the previously mentioned categories.

6 ATTACK SUCCESS RATE ANALYSIS
In this paper we compile the experimental results from many differ-
ent sources and present them together in tabular form.While it may
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be tempting to directly compare attack success rates, here we give
a theoretical analysis to show the fallacy of direct comparisons.

The definition of a successful adversarial example varies between
papers based on which constraints are enforced during the execu-
tion of the attack. We can formalize this as follows: For classifier 𝐶 ,
the associated set of clean correctly identified examples is denoted
as X(𝐶) such that:

X(𝐶) = {(𝑥𝑖 , 𝑦𝑖 ) ∈ X𝑡 : 𝐶 (𝑥𝑖 ) = 𝑦𝑖 }. (77)

where X𝑡 is the entire set of testing images. When classifier 𝐶 is
attacked, we can formally define the constraints on the attacker for
a query-based black-box attack using the following threat vector:
𝑊𝑡ℎ𝑟𝑒𝑎𝑡 = [𝑤𝑐 ,𝑤𝑞,𝑤𝜖 ] where𝑤𝑖 ∈ {0, 1}.𝑤𝑐 = 1 corresponds to a
successful attack definition where the classifier must produce the
wrong class label i.e., 𝐶 (𝑥𝑎𝑑𝑣) ≠ 𝑦𝑖 . Likewise,𝑤𝑞 = 1 corresponds
to a successful attack where the adversarial example is generated
within a fixed number of queries 𝑞𝑎𝑑𝑣 , and the number of queries
are less than the query budget 𝑞: (𝑞 − 𝑞𝑎𝑑𝑣) ≥ 0. Lastly 𝑤𝜖 = 1
ensures that the adversarial example falls within a certain | |𝑙 | |𝑝
distance 𝜖 of the original example 𝑥𝑖 : | |𝑥𝑎𝑑𝑣 − 𝑥𝑖 | |𝑝 ≤ 𝜖 . If any of
the values in𝑊𝑡ℎ𝑟𝑒𝑎𝑡 are 0, it simply means that the corresponding
condition is not used in defining a successful adversarial example.

We denote 𝜙 (𝑥𝑖 , 𝑦𝑖 ) as the adversarial attack method used with
respect to clean sample (𝑥𝑖 , 𝑦𝑖 ) returned within 𝑞𝑎𝑑𝑣 queries. Writ-
ten explicitly (𝑥𝑎𝑑𝑣, 𝑞𝑎𝑑𝑣) = 𝜙 (𝑥𝑖 , 𝑦𝑖 ) and we assume 𝜙 (·) to be
deterministic in nature. While this assumption may not hold true
for all attacks, this simplifies the notation for the theoretical attack
success rate. The attack success rate 𝛼 over the clean set X(𝐶) with
respect to classifier 𝐶 is:

𝛼 =

��������


(𝑥𝑖 , 𝑦𝑖 ) ∈ X(𝐶) :
(𝑥𝑎𝑑𝑣, 𝑞𝑎𝑑𝑣) = 𝜙 (𝑥𝑖 , 𝑦𝑖 ) ⇒
(𝐶 (𝑥𝑎𝑑𝑣) ≠ 𝑦𝑖 ∨𝑤𝑐 = 0)∧

𝑤𝑞 (𝑞 − 𝑞𝑎𝑑𝑣) ≥ 0 ∧𝑤𝜖 | |𝑥𝑎𝑑𝑣 − 𝑥𝑖 | |𝑝 ≤ 𝜖


��������

|X(𝐶) | , (78)

From Equation 78, it can be seen that under the most restricted
threat model (𝑊𝑡ℎ𝑟𝑒𝑎𝑡 = [1, 1, 1]), the attack must produce an adver-
sarial example that is misclassified i.e., 𝐶 (𝑥𝑎𝑑𝑣) ≠ 𝑦𝑖 , created using
limited query information i.e., 𝑞𝑎𝑑𝑣 ≤ 𝑞 and within an acceptable
| |𝑙 | |𝑝 norm. Such a threat model requires specification of the attack
parameters 𝑞, 𝑝 and 𝜖 . That is 𝑞 the maximum allowed number of
queries per sample, 𝑝 the norm measurement and 𝜖 the maximum
allowed perturbation.

Our framework for a vector defined threat model𝑊𝑡ℎ𝑟𝑒𝑎𝑡 and
corresponding attack success rate 𝛼 is useful for two reasons. First,
it allows us to categorize every query based black-box attack ac-
cording to the three value system. Second and most importantly,
this framework allows us to see where comparisons between at-
tack success rates reported in different papers are legitimate. We
illustrate this next point with an example from the literature.

Consider the Square attack [2] and the Zeroth-Order alternating
direction method of multipliers attack (ZO-ADMM) [57]. The un-
targeted attack success rate of both attacks is reported with respect
to an Inception v3 network trained on ImageNet. The Square attack
reports an attack success rate 𝛼 of 92.2% while the ZO-ADMM re-
ports an attack success rate of 100%. Using ONLY these two values

Table 2: Adversarial threat models used to determine the at-
tack success rate in each paper. 𝑤𝑐 = 1 corresponds to an
attack success rate where misclassificaiton (or targeted mis-
classification) defines a successful adversarial attack.𝑤𝑞 = 1
corresponds to a successful adversarial attack done within a
fixed query budget.𝑤𝜖 = 1 corresponds to a successful attack
when the adversarial example is within a certain perturba-
tion bound 𝜖 of the clean example.

Score based Attacks
qMeta [19] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 0
P-RGF [13] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 1
ZO-ADMM [57] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 0
TREMBA [27] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 1
Square [2] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 1
ZO-NGD [57] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 1
PPBA [36] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 1

Decision based Attacks
qFool [38] 𝑤𝑐 = 0,𝑤𝑞 = 1,𝑤𝜖 = 0
HSJA [10] 𝑤𝑐 = 1,𝑤𝑞 = 1,𝑤𝜖 = 0
GeoDA [47] 𝑤𝑐 = 0,𝑤𝑞 = 1,𝑤𝜖 = 0
QEBA [35] 𝑤𝑐 = 1,𝑤𝑞 = 1,𝑤𝜖 = 1
RayS [9] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 1
SurFree [43] 𝑤𝑐 = 1,𝑤𝑞 = 1,𝑤𝜖 = 1
NonLinear-BA [33] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 0

Transfer based Attacks
Adaptive [42] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 1
DaST [58] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 1
PO-TI [37] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 1

Non-traditional Attacks
CornerSearch [15] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 0
ColorFool [52] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 0
Patch [54] 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 0

without our threat model framework makes it seem like the ZO-
ADMM attack is much stronger than the Square attack, as it never
fails. However, let us now consider the threat models. The threat
model for ZO-ADMM is:𝑊𝑡ℎ𝑟𝑒𝑎𝑡 = [𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 0]. The
Square attack on the other hand has the following threat model:
𝑊𝑡ℎ𝑟𝑒𝑎𝑡 = [𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 1]. Essentially the Square attack is
reporting a high attack success rate under a MORE restrictive threat
model where the adversarial example must be wrongly classified
and under a certain 𝑙2 distance from the original clean example.
The ZO-ADMM attack success rate is reported only on examples
that are wrongly classified, a much weaker threat model.

7 EXPERIMENTAL RESULTS
In this section, we discuss the experimental results for all of the
black-box attacks. Broadly speaking there are three common datasets
that are used in measuring the attack success rate of black-box at-
tacks.

(1) MNIST - The MNIST dataset [31] consists of 60,000 train-
ing images and 10,000 test images. The dataset has 10
classes, each class is a different handwritten digit, 0-9. Each
digit is a 28× 28 grayscale image. In general, the maximum
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allowed perturbation 𝜖 for MNIST is high as compared to
other dataset. For example, 𝜖 = 0.2, 0.3 as seen in table 5.
This may generally be due to the fact that MNIST images
can have large perturbations, while still being visually rec-
ognizable to humans.

(2) CIFAR-10 - The CIFAR-10 dataset [30] consists of 50,000
training images and 10,000 test images. The 10 classes in
CIFAR-10 are airplane, car, bird, cat, deer, dog, frog, horse,
ship and truck. Each image is 32 × 32 × 3 (color images).

(3) ImageNet - The ImageNet dataset [17] contains over 14
million color images that are labeled from ≈ 20, 000 cate-
gories. The images in ImageNet are color images, however
the exact size of each image varies.

In the following subsection we break down the analyses according
to the four different attack categories.

7.1 Score based Attack Analysis
In table 3, we show the compiled results drawn across all the papers
we surveyed for the score based attacks on ImageNet classifiers.
We report MNIST and CIFAR-10 results in Table 5 and Table 6. As
the majority of the attacks are done with respect to the ImageNet
dataset, we relegate our discussion and analysis to those results in
this subsection.

Let us consider the 𝑙∞ = 0.05 norm adversary, untargeted at-
tack with adversarial model 𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 1. Under this
adversarial threat model, three attacks have a 99% or greater attack
success rate (Square, p-RGF and TREMBA). While all three attacks
are done on ResNet classifiers, there is a slight difference (TREMBA
and P-RGF are tested on ResNet34 and the Square attack is tested
on ResNet50). Aside from this difference, if we compare results, the
Square attack and TREMBA are both able to achieve a remarkable
double digit query count while still maintaining a 99% or greater
attack success rate. Square attack requires 73 queries on average
while TREMBA requires 27.

While no attack in table 3 uses the most restrictive threat model
(i.e. 𝑤𝑐 = 1,𝑤𝑞 = 1,𝑤𝜖 = 1) we can see that the most common
threat model is𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 1 making comparison between
attack that use this threat model and the same classifier possible.
Alternatively, one attack (ZO-ADMM) uses a highly unrestricted
adversarial model𝑤𝑐 = 1,𝑤𝑞 = 0,𝑤𝜖 = 0 making it impossible to
directly determine the fidelity of the ZO-ADMM attack in relation
to other state-of-the-art attacks.

7.2 Decision based Attack Analysis
In Table 4 we give the results for all decision based attacks that were
conducted on ImageNet classifiers. Likewise, results for decsion
based attacks on MNIST and CIFAR-10 can be found in Table 5 and
Table 6. Due to the large number of attacks and datasets, in this
subsection we specifically focus on the decision based attacks for
ImageNet CNNs.

Let us first consider the 𝑙2 norm decision based attacks that
are targeted. For this setting, when looking at the most restricted
threat model (𝑤𝑐 = 1,𝑤𝑞 = 1,𝑤𝜖 = 1) we can see that SurFree
gives the best query efficient attack (on ResNet18) with a 90% attack
success rate using only 500 queries. However, in terms of minimal
distortion (𝜖 = 0.001), QEBA-S and NonLinear-BA can both achieve

an 80% attack success rate or higher with a query budget of 10, 000.
Alternatively, if we consider the 𝑙∞ norm and an untargeted attack,
it is clear the RayS attack is the best attack. RayS achieves a 98.9%
attack success rate on Inception v3 using an average of 748.2 queries
per sample. This same holds true for datasets likeMNIST and CIFAR-
10. In both cases RayS can achieve a 99% or higher attack success
rate.

It is important to note that certain threat models make attack
results opaque and difficult to compare. For example, the threat
model (𝑤𝑐 = 0,𝑤𝑞 = 1,𝑤𝜖 = 0) is used to report attack results
for GeoDA and qFool. In this case, the median distortion is consid-
ered the independent variable (i.e. the one that changes between
different attacks). However, when only the median distortion is
reported this does not give any information about what percent
of adversarial examples are actually misclassified (which would
constitute a successful attack). Reporting the median also does not
give the full picture in terms of the average distortion required to
create a successful adversarial example in the attack.

7.3 Transfer based Attacks and Non-traditional
Attacks

In Table 7 the results for the transfer based attacks and non-traditional
attacks are shown. For the transfer attacks, each attack is done un-
der slightly different assumptions making direction comparison
difficult. For example, the Adaptive attack requires all the training
data to be available to the attacker, where as in DaST the attack
is specifically built around not having direct access to the original
training data. Overall, we can claim that the transfer based attacks,
just in terms of attack success rates, are not as high as the best
score based and decision based black-box attacks. For example, the
Adaptive attack has a 74% attack success rate on CIFAR-10 for the
𝑙∞ based attacker. The decision based RayS attack has a 99.8% attack
success rate for CIFAR-10 (again 𝑙∞ norm based attack).

For the non-traditional attacks, we can see several interesting
trends. First, the patch attack has an extremely high attack success
rate on ImageNet (greater than 99%) regardless of whether the attack
is targeted or untargeted. Likewise, the 𝑙0 based CornerSearch attack
can also achieve a high untargeted attack success rate (greater than
97%) across both MNIST and CIFAR-10 datasets.

The only attack that performs relatively poorly (less than 50%
attack success rate) is ColorFool. This may partially be due to the
fact that the ColorFool attack can be run in both white-box and
black-box form. The ColorFool black-box reported attack results
are based on a transfer style attack as opposed to a query based
method. As we mentioned above, the new score and decision based
attacks (which use query information) that we survey have a higher
attack success rates than the new transfer based attacks for the 𝑙2
and 𝑙∞ norms. Essentially, we conjecture there may still be room
to improve the black-box ColorFool attack using a query based
methodology.

8 CONCLUSION
Adversarial machine learning is advancing at a fast pace, with
new attack papers being proposed every year. In light of these re-
cent developments, we have surveyed the current state-of-the-art
black-box attack and have provided three major contributions. First,
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Attack Name ASR Avg Queries Norm Target Classifier Adv Threat Model Source
PPBA 84.8 668 𝑙2, 𝜖=5 U ResNet50 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [36]
PPBA 65.3 1051 𝑙2, 𝜖=5 U Inception v3 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [36]
PPBA 96.6 481 𝑙∞, 𝜖=0.05 U ResNet50 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [36]
PPBA 67.9 1026 𝑙∞, 𝜖=0.05 U Inception v3 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [36]
ZO-NGD 97 582 𝑙∞, 𝜖=0.05 U Inception v3 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [56]
Square 99.7 197 𝑙∞, 𝜖=0.05 U Inception v3 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [2]
Square 100 73 𝑙∞, 𝜖=0.05 U ResNet50 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [2]
Square 92.2 1100 𝑙2, 𝜖=5 U Inception v3 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [2]
Square 99.3 616 𝑙2, 𝜖=5 U ResNet50 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [2]
TREMBA 100 27 𝑙∞, 𝜖=0.05 U Resnet34 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [27]
TREMBA 99.44 443 𝑙∞, 𝜖=0.05 T Resnet34 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [27]
ZO-ADMM 98 - 𝑙2 U Inception v3 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 0 [57]
ZO-ADMM 97 - 𝑙2 T Inception v3 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 0 [57]
P-RGF 100 328 𝑙∞, 𝜖=0.05 U Resnet34 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [27]
P-RGF 98.05 5498 𝑙∞, 𝜖=0.05 T Resnet34 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [27]
P-RGF 98.1 745 𝑙2, 𝜖 ≈16.43 U Inception v3 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [13]
P-RGF 99.6 452 𝑙2, 𝜖 ≈16.43 U ResNet50 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [13]
P-RGF 97.3 812 𝑙∞, 𝜖=0.05 U Inception v3 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [14]
P-RGF 99.6 388 𝑙∞, 𝜖=0.05 U ResNet50 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [14]

Table 3: Score based black-box attacks on ImageNet classifiers. The corresponding success rate (ASR) and adversarial threat
model are shown for each attack along with the source paper from which the results are drawn from.

our survey covers 20 new attack papers with detailed summaries,
mathematics and attack explanations. Our second contribution is
a categorization of these attacks into four different types, score
based, decision based, transfer based and non-traditional attacks.
This organization assists new readers in comprehending the field
and helps current researchers understand where each new attacks
fits in the rapidly growing black-box adversarial machine learn-
ing literature. Lastly, we offer a new mathematical framework for
defining the adversarial threat model. Our new framework provides
a convenient and efficient way to quickly determine when attack
success rates from different attacks can be compared. Without this
framework, we have shown that directly comparing attack success
rates from different papers with different threat models can lead to
highly misleading conclusions. Overall, our work and comparative
evaluations provide insight, organization and systemization to the
developing field of adversarial machine learning.
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Attack Name ASR Avg Queries Norm Target Classifier Adv Threat Model Source
NonLinear-BA 80 10000 𝑙2, 𝜖 =0.001 T ResNet18 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 1 [34]
SurFree 90 500 𝑙2, 𝜖 =30 T ResNet18 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 1 [43]
RayS 99.8 574 𝑙∞, 𝜖=0.05 U ResNet50 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [9]
RayS 98.9 748.2 𝑙∞, 𝜖=0.05 U Inception v3 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [9]
QEBA-S 82 10000 𝑙2, 𝜖 =0.001 T ResNet18 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 1 [34]
QEBA-S 74 10000 𝑙2, 𝜖 =0.001 T ResNet18 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 1 [35]
QEBA 71 500 𝑙2, 𝜖 =30 T ResNet18 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 1 [43]
GeoDA - 1000 𝑙2=8.16 (median) U ResNet50 𝑤𝑐 = 0, 𝑤𝑞 = 1, 𝑤𝜖 = 0 [47]
GeoDA 79 500 𝑙2, 𝜖 =30 T ResNet18 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 1 [43]
HSJA 19.9 749.6 𝑙∞, 𝜖=0.05 U ResNet50 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [9]
HSJA 23.7 652.3 𝑙∞, 𝜖=0.05 U Inception v3 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 [9]
HSJA 80 17000 𝑙2, 𝜖 =0.001 T ResNet18 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 1 [34]
HSJA 84 20000 𝑙2, 𝜖 =0.001 T ResNet18 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 1 [35]
HSJA 56 500 𝑙2, 𝜖 =30 T ResNet18 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 1 [43]
qFool - 1000 𝑙2=16.05 (median) U ResNet50 𝑤𝑐 = 0, 𝑤𝑞 = 1, 𝑤𝜖 = 0 [47]

Table 4: Decision based black-box attacks on ImageNet CNNs. The corresponding success rate (ASR) and adversarial threat
model are shown for each attack along with the original source paper.

Score Based Attacks
Attack Name ASR Avg Queries Adv Threat Model Norm Target Source
ZO-NGD 98.7 523 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 𝑙∞, 𝜖=0.2 U [56]
TREMBA 98 1064 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 𝑙∞, 𝜖=0.2 U [27]
ZO-ADMM 98.3 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 0 𝑙2=1.975 (avg) T [57]
P-RGF 68.53 16135 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 𝑙∞, 𝜖=0.2 U [27]
qMeta 100 749 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 0 𝑙2 U [19]
qMeta 100 1299 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 0 𝑙2 T [19]

Decision Based Attacks
Attack Name ASR Avg Queries Adv Threat Model Norm Target Source
NonLinear-BA 90 5000 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 1 𝑙2, 𝜖=0.005 T [34]
RayS 100 107 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 𝑙∞, 𝜖=0.3 U [9]
QEBA-S 87 5000 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 1 𝑙2, 𝜖=0.005 T [34]
HSJA 91.2 161.6 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 𝑙∞, 𝜖=0.3 U [9]

Table 5: Decision and score based black-box attacks on MNIST CNNs. The corresponding success rate (ASR) and adversarial
threat model are shown for each attack along with the original source paper.

Score Based Attacks
Attack Name ASR Avg Queries Adv Threat Model Norm Target Source
ZO-NGD 99.2 131 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 𝑙∞, 𝜖=0.1 U [56]
ZO-ADMM 98.7 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 0 𝑙2=0.417 (avg) T [57]
qMeta 92 1765 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 0 𝑙2 U [19]
qMeta 93 3667 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 0 𝑙2 T [19]

Decision Based Attacks
NonLinear-BA 95.00 5000.00 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 1 𝑙2, 𝜖=0.0001 T [34]
RayS 99.8 792.8 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 𝑙∞, 𝜖=0.031 U [9]
QEBA-S 95 5000.00 𝑤𝑐 = 1, 𝑤𝑞 = 1, 𝑤𝜖 = 1 𝑙2, 𝜖=0.0001 T [34]
HSJA 99.7 1021.6 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 𝑙∞, 𝜖=0.031 U [9]

Table 6: Decision and score based black-box attacks on CIFAR-10 CNNs. The corresponding success rate (ASR) and adversarial
threat model are shown for each attack along with the original source paper.
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Transfer Based Attacks
Attack Name Dataset ASR Avg Queries Adv Threat Model Target Vanilla Model Source
Adaptive CIFAR-10 74.1 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 U ResNet56 [41]
Adaptive CIFAR-10 22.3 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 T ResNet56 [41]
DaST MNIST 29.18 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 U CNN [58]
DaST MNIST 57.22 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 U CNN [58]
DaST MNIST 64.61 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 U CNN [58]
DaST MNIST 96.36 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 U CNN [58]
DaST CIFAR-10 19.78 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 T VGG-16 [58]
DaST CIFAR-10 20.22 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 T VGG-16 [58]
DaST CIFAR-10 28.42 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 U VGG-16 [58]
DaST CIFAR-10 59.71 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 U VGG-16 [58]
Po+TI (Trip) ImageNet 39.5 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 T Inception v3 [37]
Po+TI (Trip) ImageNet 39.3 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 1 T ResNet50 [37]

Non-traditional Attacks
Attack Name Dataset ASR Avg Queries Adv Threat Model Target Vanilla Model Source
CornerSearch MNIST 97.38 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 0 U NiN [15]
CornerSearch CIFAR-10 99.56 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 0 U NiN [15]
ColorFool CIFAR-10 41.5 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 0 U ResNet50 [52]
ColorFool ImageNet 22.3 - 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 0 U ResNet50 [52]
Patch Attack N4 4% ImageNet 99.7 1137 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 0 U ResNet50 [54]
Patch Attack N8 2% ImageNet 99.7 983 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 0 U ResNet50 [54]
Patch Attack N10 4% ImageNet 99.7 8643 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 0 T ResNet50 [54]
Patch Attack N10 10% ImageNet 100 3747 𝑤𝑐 = 1, 𝑤𝑞 = 0, 𝑤𝜖 = 0 T ResNet50 [54]

Table 7: Transfer based and non-traditional attacks on various datasets (MNIST, CIFAR-10 and ImageNet). NiN stands for
Network-in-Network.
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