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ABSTRACT

Several machine learning and deep learning frameworks have
been proposed to solve remaining useful life estimation and
failure prediction problems in recent years. Having access to
the remaining useful life estimation or likelihood of failure
in near future helps operators to assess the operating condi-
tions and, therefore, provides better opportunities for sound
repair and maintenance decisions. However, many operators
believe remaining useful life estimation and failure prediction
solutions are incomplete answers to the maintenance chal-
lenge. They argue that knowing the likelihood of failure in
the future is not enough to make maintenance decisions that
minimize costs and keep the operators safe. In this paper, we
present a maintenance framework based on offline supervised
deep reinforcement learning that instead of providing infor-
mation such as likelihood of failure, suggests actions such as
“continuation of the operation” or “the visitation of the re-
pair shop” to the operators in order to maximize the overall
profit. Using offline reinforcement learning makes it possible
to learn the optimum maintenance policy from historical data
without relying on expensive simulators. We demonstrate the
application of our solution in a case study using the NASA
C-MAPSS dataset.

1. INTRODUCTION

Artificial intelligence (AI) has revolutionized maintenance
operations by providing more accurate predictive tools such
as failure prediction and remaining useful life (RUL) esti-
mation in recent years (Zheng, Ristovski, Farahat, & Gupta,
2017). However, industries often rely on human judgment
to use predictive tools and determine maintenance decisions.
Silver et al. (2016) have shown that deep reinforcement learn-
ing (RL) can achieve a performance superior to human judg-
ment in games such as chess and Go. The main challenge
of training deep RL for predictive maintenance decision-
making is the lack of reliable simulators in most industries
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(Khorasgani, Wang, & Gupta, 2020). Failure is often rare and
complex. Therefore, it is challenging to develop a simulator
that can model these events.

Recently, several researchers have shown that deep RL can be
formulated as a supervised problem. Schmidhuber (2019) in-
troduced Upside Down RL (UDRL). Unlike traditional RL al-
gorithms wherein an agent learns from reward, UDRL learns
a mapping from desired rewards and observations to actions.
The main idea of UDRL is that supervised learning can learn
a generalized model that can generate actions which can
achieve requested rewards within requested time. In UDRL,
learning includes two parallel algorithms: 1) A1 performs ex-
ecution and exploration and 2) A2 performs supervised learn-
ing. A1 generates actions based on known maximum possible
cumulative rewards using the current version of the model
trained by A2. For the sake of exploration, random actions
are taken occasionally. The observations, actions and rewards
are saved in a buffer. A2 uses historical data that is extracted
from the buffer to train the model that maps the observation
and maximum possible cumulative reward to optimal action.

Zha, Lai, Zhou, and Hu (2021) show that supervised learn-
ing can be competitive to state of the art RL algorithms with
better stability and lower training time. Chen et al. (2021) in-
troduced Decision Transformer which expands UDRL to of-
fline RL. Decision Transformer uses transformer architecture
(Vaswani et al., 2017) to learn a mapping from historical ob-
servations, historical actions, and expected reward to proper
actions using offline data. Janner, Li, and Levine (2021) also
show that a supervised approach based on the transformer ar-
chitecture is competitive to other offline RL algorithms with-
out the requirement of learning the system dynamic model or
even the value function. Relying purely on offline data makes
offline RL a perfect choice for maintenance decision-making
wherein storing historical data to learn a policy is much more
cost-effective than developing a simulator that can model fail-
ure accurately. Using a supervised approach simplifies the
solution even more. In this work, we use a supervised offline
RL approach to learn optimal maintenance decision-making.

The rest of the paper is as follows. Section 2 presents our ap-
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proach. Section 3 presents the experimental results and Sec-
tion 4 concludes the paper.

2. MAINTENANCE DECISION-MAKING AS A SUPER-
VISED RL PROBLEM

We define the problem of maintenance decision-making as
learning a maintenance policy that generates optimal mainte-
nance actions such as “continuation of the operation” or “the
visitation of the repair shop” based on the observations and
the previous maintenance actions. The observations can come
in different formats. For example, they may include time-
series sensor data such as temperature, and event data such
as the check engine light. A maintenance action is optimal
if it leads to the maximum profit. The profit is the difference
between the generated revenue and the operating costs. The
operating costs include both maintenance costs and failure
costs. Failure costs are often much higher than maintenance
costs because they occur without planning. More importantly,
in some cases, a failure can put the operator’s safety in dan-
ger. In this paper, we rely solely upon offline data to learn the
maintenance policy. This makes our approach scalable and
practical as it does not require the development and mainte-
nance of a simulator.

Consider the case wherein offline data includes the observa-
tions, ok, actions, ak and reward rk at each given time k. A
trajectory i includes the set of observations over time, the set
of actions taken over time, and the set of rewards gained over
time. For a given window with the length of T , we can ex-
tract the T steps’ observation history of the equipment at each
given time, k, as:

OT
k = {ok−T+1, ..., ok}, (1)

using the equipment trajectory. We can also extract T steps’
action history of the equipment at each given time, k − 1, as:

AT
k−1 = {ak−T , ..., ak−1}. (2)

Note that unlike the observation history where we included
ok, here, we consider ak−1 as the last action. This is because
our goal is to use the observation history and the action his-
tory to predict action ak.

Consider horizon H . We can also calculate future cumulative
rewards for each trajectory from time k up to the horizon, H ,
as rHk =

∑k+H
i=k ri using offline data. Calculating rH over

the past T time steps, we have:

RH
k = {rHk−T+1, ..., r

H
k }. (3)

Next, we use a supervised learning method to learn a model
which predicts action ak using OT

k , AT
k−1, RH

k .

âk = model(OT
k , A

T
k−1, R

H
k ) (4)

Figure 1. Proposed architecture for smart maintenance
decision-making.

The idea here is to solve maintenance decision-making us-
ing an offline supervised RL approach similar to Decision
Transformer (Chen et al., 2021) and Trajectory Transformer
(Janner et al., 2021). In the training stage, we learn a map-
ping from future expected cumulative rewards to the actions
at each state using offline data. In the application, we feed the
model with high future expected cumulative rewards and we
expect the model to generate actions to achieve such.

To design a reliable maintenance decision-making model, we
have to consider the following points:

• RUL estimation and failure prediction models: when
enough data is available, our proposed maintenance
decision-making framework can learn an optimal pol-
icy from the data without requiring a separate RUL es-
timation or failure prediction unit. However, it is very
common for industries to develop reliable RUL estima-
tion models that can estimate the remaining useful life
of equipment. When these models are already available,
their output can be used as an input to our decision-
making model to improve accuracy and simplify the
training process as it is shown in Figure 1. The formula-
tion is:

âk = model(OT
k , A

T
k−1, R

H
k , RULk), (5)

where RULk presents the remaining useful life at time
k. Note that during the training, we may have access to
the actual RUL. However, during the application process,
we have to use the RUL estimation.

• Reward function: the goal of predictive maintenance is
to minimize the operation costs and maximize the profit.
Typically, an equipment generates profit as it operates.
So to maximize the profit, the industries aim to maximize
equipment utilization. On the other hand, failures can be
very expensive to fix or even dangerous for the operators.
Therefore, operating equipment to the point of failure is
often not a viable option. The cost of maintenance and
repair is another factor that we have to consider in main-
tenance decision-making. In addition to the extraneous
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labor and parts costs, unnecessary maintenance reduces
industries’ profits by lowering utilization time. Finally,
the repair cost can depend upon the state of the equip-
ment. For example, for some equipment, early fixes may
be cheaper than late-stage repairs. Designing a reward
function that can capture these complexities associated
with costs and profits is crucial in designing an RL algo-
rithm for maintenance decision-making. Fortunately, in
many industries, the cost and profit of equipment opera-
tions are recorded in details and therefore can be used to
design the reward function.

• Total expected reward: as it is shown in equation (4) and
(5), the expected reward is an input to our model. During
the training, we use the actual costs to compute the fu-
ture rewards for each trajectory. During the application,
we must feed high expected future rewards so that the
model generates good actions. Naturally, one may ask
“is there a limitation on how high the expected future re-
wards can be during the application?” The answer to this
question is yes. Our experimental studies in this paper
and previous experiments done by (Chen et al., 2021)
show that after a certain point, increasing the expected
future rewards has an opposite effect and degrades the
performance. Our supervised offline RL algorithm uses
historical data to learn the mapping from expected re-
wards to the actions at each state. Therefore, if during
the application we feed the model with an expected fu-
ture reward significantly outside of the training dataset
distribution, the model may generate unreliable actions.
Chen et al. (2021) show that the total expected rewards
and the actual total returns are highly correlated as long
as we feed the model with the total expected reward in
the range which was observed in the offline data. More
interestingly, they show that it is even possible to achieve
higher returns than the maximum episodic return in the
dataset for certain specific tasks. This shows that of-
fline supervised RL can extrapolate accurately to some
extent. In this paper, we also observe a high correlation
between the total expected reward and the observed total
reward for the maintenance problem. Moreover, our ex-
periments demonstrate that selecting the total expected
reward within the vicinity of the maximum episodic re-
turn available in the offline dataset is a good practical
approach to set this parameter in the maintenance appli-
cation.

• Architecture: Chen et al. (2021) and Janner et al. (2021)
used the transformer architecture (Vaswani et al., 2017)
to learn the model that predicts the maintenance action
(see equations (4) and (5)). However, their approach can
be implemented using any classifier model when we have
discrete action space. Similarly, any regression model
can be used to predict actions when we have continuous
action space. The main parameters we have to consider
in selecting the model architecture are: 1) the amount

of available data, 2) the complexity of the data, and 3)
the available computational resources. In the experimen-
tal section, we will demonstrate that a simple fully con-
nected neural network architecture can achieve accept-
able performance for our dataset.

3. CASE STUDY

In this section, we use the C-MAPSS dataset to show the ap-
plication of our proposed maintenance decision-making algo-
rithm. This dataset includes time-series sensor measurements
of jet engine under different operational conditions and fault
modes. The dataset is generated by the Prognostic Center
of Excellence at NASA Ames using the C-MAPSS simulator
(Saxena & Goebel, 2008).

We focus on equipment F002 in this experimental study. The
training dataset for this equipment includes 260 trajectories.
Each trajectory ends when the equipment fails. The test
dataset includes 259 trajectories. Unlike the training dataset,
the trajectories in the test dataset do not include failures. This
was mainly designed to hide the failure points from the partic-
ipants in the data challenge. To show the performance of our
algorithm, when the system fails, we consider the first 250
trajectories in the original training dataset as our new training
dataset and the last 10 trajectories as our first test dataset. We
consider the original test dataset as the second test dataset in
this paper.

3.1. Removing the effect of operation modes

Similar to previous work (Wang, Zheng, Farahat, Serita, &
Gupta, 2019), we first normalize sensor variables with respect
to the operation modes. The goal here is to remove the effect
of different operating modes from the sensor data so that we
can learn a maintenance decision-making model that works
for all operating modes. Equations (6) and (7) represent the
normalization process.

ŝi = modeli(operation modes) (6)

where modeli represents the regression normalization model
for sensor variable si and ŝi represents the estimation of si
made by its normalization model using three operating modes
as the inputs. Note that the equipment has 21 sensor variables
and we train a regression normalization model for each sen-
sor. We normalize each sensor variable si using its estimation
ŝi as follows:

sin =
si
ŝi

(7)

where sin represents normalized si.

Figure 2 shows a sensor variable before and after normaliza-
tion. We can see the degradation process in the sensor vari-
ables when the effect of operation mode is removed.
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Figure 2. An original sensor value, si, and its normalized
value, sin, show that normalization amplifies the effect of
degradation on sensor variables by removing the effect of op-
eration modes.

3.2. Generating a dataset for training decision-making
model

Unfortunately, the C-MAPSS dataset does not include any
maintenance action. In the original training dataset, during
the simulation, all of the equipment has been utilized to the
point of failure. In the test dataset, the simulation has stopped
before the failure without taking any maintenance action. To
train our models (see equations (4) and (5) ), we must have
access to historical actions. We modify the dataset by assum-
ing two kinds of actions: 1) continue operation; 2) repair the
equipment. The original dataset only includes continual oper-
ation (no actions). We consider random repairs in the dataset.
We assume that after each repair, the equipment will return to
its initial condition.

3.3. Costs and rewards

In this paper, we consider a simple cost structure. In our set-
ting, each failure costs 250 + U(−50, 50); each repair costs
25 + U(−5, 5); and equipment generates 1 + U(−0.2, 0.2)
profit per operating cycle, where U(a, b) represents uniform
distribution between a and b. Note that the ratio between the
cost of failure and repair defines how conservative the net-
work will be in taking proactive maintenance action. In an
extreme case where the repair cost is equal to or more than
the cost of failure, the optimal solution would be to operate
the equipment to the point of failure. In another extreme case
where repair costs nothing, the optimal solution would be to
repair the equipment after each cycle. In practice, these num-
bers should be derived from facts on the ground. It is also
possible that the costs change based on operation modes and
the state of the equipment. For example, for a truck, it may
be cheaper and faster to do repair and maintenance in a large
city compared to a remote small town where expert operators

and equipment parts may be scarce.

3.4. RUL estimation

As we mentioned earlier, we divided the equipment F002
dataset to train and test. We considered unit numbers one
to 250 as our new training dataset, and unit numbers 251 to
260 as our first test dataset. We considered the original equip-
ment test dataset as our second test dataset. We then used the
training dataset to learn a normalization model for each sen-
sor. We use the long short-term memory (LSTM) architecture
proposed by (Zheng et al., 2017) for the RUL estimation us-
ing normalized sensors.

Figure 3 shows the RUL estimation for our first test dataset.
Figure 4 shows the RUL prediction for the first 6 trajectories
in our second test dataset. We see that the RUL estimation
becomes more accurate as it gets closer to the equipment’s
end of life. Our first test dataset (trajectories 251 to 260 of
the original training dataset) has a more similar distribution
to our training dataset (trajectories one to 250 of the original
training dataset) and therefore our model predicts RUL more
accurately for this dataset compared to the second test dataset
(R2 = 0.53 vs R2 = 0.42).

3.5. Offline RL

In this subsection, we train a multilayer perceptron (MLP)
neural network to predict one of these two actions: 1) con-
tinue operation or 2) repair the equipment, based on the ex-
pected future rewards. Our network has one hidden layer with
100 neurons. We use the rectified linear activation function
(ReLU), we apply the Adam optimization and set the learning
rate equal to 0.001. We train two models: in the first model,
we only use sensor data and the expected rewards to predict
the action. In the second model, we add RUL as an additional
feature. For the model with RUL, we use actual RUL during
the training and the estimation of RUL during the test time.

3.6. Application

We consider each experiment in the test dataset and episode.
An episode ends when 1) its trajectory ends, 2) the equipment
fails, or 3) the equipment goes for repair. Each cycle of oper-
ation brings 1 unit of profit, and each repair costs 25 units. An
early repair lowers the profits by ending the episode. A fail-
ure costs 250 units. We assume that repair decisions should
be made at least 10 cycles before failure occurs. This is equal
to the time that the equipment requires to get to the repair
shop or to stop operation safely. Figure 5 shows that no ac-
tion would cost -135.7 on average (see the purple line) for our
first test dataset. This is because the first test dataset includes
failures and each episode without action would end with a
failure. Obviously, allowing the equipment to operate to the
point of failure is not an acceptable solution for any business.
Figure 6 shows that no action would earn 96 units of profit on
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Figure 3. RUL vs RUL estimation for our first test dataset (unit number 251 to 260). R2 = 0.53.

Figure 4. RUL vs RUL estimation for second test dataset using LSTM neural networks. R2 = 0.42

Figure 5. Average cumulative rewards as a function of ex-
pected reward for the first test dataset. The maximum aver-
age cumulative rewards for the model with RUL achieves at
the total expected reward = 79, and the maximum average cu-
mulative rewards for the model without RUL achieves at the
total expected reward = 100.5.

average in the second test dataset (see the purple line). This is
because in the second dataset, the episode often ends before
reaching its failure point.

The optimal solution is to take the equipment for repair 10 cy-
cles before reaching failure. In this case, we maximize profit
as we utilize the equipment to its full potential while avoiding

the high cost of failure. The blue line in Figure 5 shows this
scenario. We achieved 88.3 average cumulative reward using
this approach for the first test dataset. Of course, this is not a
practical solution because it requires the knowledge of exact
RUL. An alternative option would be to use the RUL esti-
mation instead of the actual RUL. The orange line in Figure
5 shows this scenario for the first test dataset. We achieved
82.7 average cumulative reward using this approach.

Note that this approach is not fully data-driven as it requires
the decision-making logic of taking the equipment for repair
10 cycles before failure. This logic is trivial for this simple
example. However, when we have more complicated cases, it
may not be that simple to come up with an optimal solution.
For example, the repair cost may change based on the system
conditions. This may make our simple logic suboptimal as
the repair 10 cycles before failure can be more expensive than
earlier repairs. It is also possible that we have more than one
part to repair. For these cases, offline RL presents a better
alternative as it learns the optimal policy from data.

We can see in Figure 6 that the difference between the perfect
action and the action based on RUL estimation is wider in
the second dataset compared to the first test dataset. This
is because the RUL estimation in the second dataset is less
accurate and thus makes decisions based on RUL estimation
less reliable.
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Figure 6. Average cumulative rewards as a function of ex-
pected reward for the second test dataset.The maximum av-
erage cumulative rewards for the model with RUL achieves
at the total expected reward = 75, and the maximum average
cumulative rewards for the model without RUL achieves at
the total expected reward = 96.

Figure 5 and Figure 6 show the offline RL performance for
two scenarios: 1) in the first one, we used real RUL during
the training, and RUL estimation during the test as an input
to our offline RL model, 2) in the second case, we trained the
offline RL purely relying on sensor data. The results show
that the model achieves similar performance with or with-
out RUL estimation. We believe that this is because in this
dataset, the normalized sensors capture the degradation pro-
cess and having access to RUL estimation does not provide
significant additional information for the model.

Note that the offline RL outperforms decisions based on RUL
estimation in the second test dataset (see Figure 6). Fig-
ure 6 shows that the performance of the model with the
RUL estimation peaked at total requested rewards equal to
75 and the performance of the model without RUL estima-
tion peaked at total requested rewards equal to 96. However,
both models perform better than the decision based on RUL
estimation for a fairly wide range of total requested rewards.
This presents a huge potential for offline RL in maintenance
decision-making, especially for real-life problems when esti-
mating RUL is not a trivial task.

4. CONCLUSION

In this paper, we presented a framework to use offline rein-
forcement learning for maintenance decision-making. The re-
sults show that offline RL can provide decision-making com-

petitive to using RUL estimation. Moreover, offline RL can
generate acceptable solutions even without requiring learning
the RUL estimation model. Our approach provides a frame-
work that can be applied to more complicated maintenance
decision-making challenges.
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