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The nonlinear dimer obtained through the nonlinear Schrödinger equation has been a

workhorse for the discovery the role nonlinearity plays in strongly interacting systems.
While the analysis of the stationary states demonstrates the onset of a symmetry bro-

ken state for some degree of nonlinearity, the full dynamics maps the system into an

effective φ4 model. In this later context the self-trapping transition is an initial condi-
tion dependent transfer of a classical particle over a barrier set by the nonlinear term.

This transition has been investigated analytically and mathematically it is expressed

though the hyperbolic limit of Jacobian elliptic functions. The aim of the present work
is to recapture this transition through the use of methods of Artificial Intelligence (AI).
Specifically, we used a physics motivated machine learning model that is shown to be

able to capture the original dynamic self-trapping transition and its dependence on ini-
tial conditions. Exploitation of this result in the case of the non-degenerate nonlinear

dimer gives additional information on the more general dynamics and helps delineate

linear from nonlinear localization. This work shows how AI methods may be embedded
in physics and provide useful tools for discovery.

Keywords: Nonlinear Schrödinger Equation; self-trapping transition; elliptic functions;

nonlinear dimer; physics motivated machine learning.

1. Introduction

The life of the famous Discrete Nonlinear Schrödinger (DNLS) equation started

with a different name, i.e. as the Discrete self-trapping (DST) equation introduced

by Eilbeck, Lomdhal and Scott in 1985 in a seminal paper that marked nonlinear

dynamics1. The DST equation was motivated by biology and the idea of the Davy-
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dov soliton that was thought to dominate the energy transfer processes in proteins2.

In this first paper Eilbeck et al. showed that in the stationary version of the DST

generates an abundance of bifurcations and states produced through nonlinearity

that grow in numbers and complexity as the number of units increases. The simplest

case of two units, i.e. the dimer, although it also shows the emergence of nonlinear

states it is fully integrable while systems with larger number of units are generally

non-integrable and chaotic. The complete dynamical analysis of the DNLS dimer

was performed soon after this by Kenkre, Campbell and Tsironis where the onset of

the self-trapping transition is seen as strongly initial-condition dependent passage

over a barrier3,4,5. The presence of nonlinearity turns the linear dimer trigonomet-

ric evolution to elliptic function evolution while the self-trapping transition itself

is nothing but the reduction of elliptic functions to hyperbolic ones. Physically,

nonlinearity slows down the transfer from one site of the dimer to the other in a

process that takes infinite amount of time at a critical nonlinearity while incomplete

transfer marks the self-trapping regime3. These results are important for strongly

interacting electron-phonon systems of molecular crystals but the DNLS equation

appears also in photonics. In this context Christodoulides and Jospeh analyzed the

two optical fiber nonlinear dimer and showed that self-trapping may assist in the

design of fiber systems with designed switching properties6. The work mentioned

already on the dimer focused on the degenerate case where both units are identical;

if they are not we may have an energy mismatch build in. In this non-degenerate

nonlinear dimer case the role of the self-trapping is mixed with the energy mismatch

and although the system remains integrable and solvable through elliptic functions

the behavior is more complex7.

The DNLS equation nonlinear dimer is a remarkable system that is simple

enough to be studied analytically yet it contains non-trivial complexity. For the

sake of pictorial simplicity let us assume we have two molecular units that each

have one available energy statea When both states have the same energy, the dimer

is degenerate and the wavefunction overlap V determines the transfer time from

one site to the second. In this case the transfer is complete in the sense that an

initial excitation placed fully on site one may transfer completely to the second

site. The transfer occurs because the two sites are at resonance-since they have the

same energy value- and, in this case, the transfer element V facilitates this resonant

transfer. When the energies are not the same, as in the case of the non-degenerate

dimer, the two sites cannot be fully resonant. In this system the matrix element V

only transfers part of the excitation to the second site; clearly the amount trans-

ferred depends on the competition between the energy mismatch ∆ and the transfer

V . This linear picture transfers to some extent in the nonlinear dimer case. When

we have the fully degenerate dimer, the nonlinearity affects equally both sites lead-

ing to reduction of excitation transfer speed yet still enabling full transfer at small

aWe use the ”condensed matter picture” here. Similar interpretation follows in the ”photonics”
picture that we presently avoid for simplicity.
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nonlinearity values. At a given critical nonlinearity symmetry breaking occurs and

complete transfer is replaced by incomplete transfer to the second site. In other

words ,nonlinearity introduces dynamically an effective energy mismatch and ren-

ders the nonlinear dimer non-degenerate. This trend increases with nonlinearity and

for very large nonlinearities the transfer becomes very smallb.

If strong nonlinearity turns the degenerate dimer into an effectively non-

degenerate one then when we start with a non-degenerate dimer we expect the two

tendencies to augment. In fact for localized initial conditions the non-degeneracy

introduces resonance mismatch while nonlinearity generally augments this tendency

and the transfer is even less complete. There is however an exceptional case where

nonlinearity acts in such as away as to eliminate effectively the energy mismatch

introduced by nondegeneracy. This is the case of Targeted Energy Transfer (TET)

introduced by Kopidakis, Aubry and Tsironis, where it was shown analytically that

appropriate choice of nonlinearity restores the ultra-fast transfer of the purely linear

degenerate dimer8. This somehow surprising behavior in TET comes however with

a price, viz. the nonlinearity in the two dimer sites has the same absolute value but

opposite sign. One site is thus attractive and the other repulsive; the last feature

could stem physically from a capacitive effect induced from local charge accumu-

lation. The discovery of TET completes in some conceptual sense that path that

starts from the linear degenerate dimer: The resonant transfer that is inhibited by

either linear non-degeneracy or nonlinear self-trapping is fully restored in the TET

dimer that encompassed both in an appropriate way.

The aim of the present work is to investigate if some of the discoveries in the

nonlinear dimer outlined previously may be addressed through AI tools. More specif-

ically, we would like to know if Machine Learning (ML) motivated from physics may

play some role in discovering symmetry breaking properties of the nonlinear dimer.

We believe that this is an interesting question since the dimer is well studied analyt-

ically and thus it can form some sort of test bed for these methods. If successful then

can be applied to other more complex cases. The more specific target of this work

is the self-trapping transition, the landmark of the nonlinear dimer and whether it

can be predicted by ML.

The structure of the paper is the following: In the next section, we introduce

the math of the DNLS equation, describe explicitly the self-trapping transition and

give quantitative information. In section 3, we use ML and describe the predictions

related to self-trapping. Here we detail our ML method and give the results for the

degenerate nonlinear dimer both for localized and more general initial conditions. In

section 4, we focus on the non-degenerate nonlinear dimer, describe its dynamical

phase diagram and show how ML can capture the transition here as well. Finally,

in section 5, we conclude and provide a more general AI-based picture on the dimer

studies.

bThis picture is strongly initial condition dependent and it can be altered if initial phases are
introduced 5
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2. The nonlinear dimer

In this section we review basic nonlinear dimer properties. We start from a general

expression of the DNLS equation written in the form

i
dψn

dt
= εnψn + V (ψn+1 + ψn−1)− χn|ψn|2ψn (1)

where, ψn ≡ ψn(t) is a complex variable at time t while εn, χn and V are

parameters of the problem. We will follow the condensed matter interpretation of

the equation9. In this representation we can think of a one-dimensional infinite

lattice where each site is labeled by the index n, we have local site energy εn and

local nonlinearity χn while V is the common nearest-neighbor integral overlap. A

quantum mechanical particle tunnels from site to site while experiencing a nonlinear

interaction due to strong coupling with other degrees of freedom-in the LHS of the

equation we have suppressed ~. The complex quantity ψn is simply the probability

amplitude for the particle to be found at the n-th unit.

For the dimer we have only two units; we note the occupation probability differ-

ence between the two sites with p(t) = |ψ1(t)|2− |ψ2(t)|2 as in Ref. 3. We designate

further the energy difference between the energy levels as ∆ = ε2 − ε1; with the

exception the case of TET both nonlinear parameters are equal to each other, i.e.

χ1 = χ2 = χ. It is useful to scale parameters as δ = ∆/2V and ζ = χ/4V . In

the pure degenerate case (δ = 0) and for perfectly localized initial condition, i.e.

ψn(0) = δn,1 the self-trapping transition occurs at the critical value ζcr = 1. For

ζ < ζcr there is complete transfer of the excitation between the two units although

the motion becomes slower. Specifically, the period of oscillation for p(t) grows

as T = T0K(χ/4V ), where K is the complete elliptic integral of first kind and

T0 = π/2V is the period of the linear dimer3. For ζ > ζcr the transfer becomes

incomplete. The reduction of transfer speed due to nonlinearity has been consid-

ered as a signature of polaronic effects while the incomplete transfer an effective

introduction of an energy mismatch by nonlinearity.

In the linear non-degenerate dimer there is incomplete transfer from the be-

ginning; here the nonlinearity accentuates this tendency. It is noteworthy that at

small non-degeneracies the increase of nonlinearity leads to a similar behavior that

is characterized by a sudden decrease in the transfer to the other side, i.e. a behavior

that may be similarly associated with a self-trapping transition7. Non-degeneracy

and nonlinearity work in a coordinated way but the nonlinearity has to reach a

threshold value before we observe a qualitative change in the dynamics of transfer.

As mentioned earlier only in the TET case this cooperation of δ and ζ can be broken

and the original resonant transfer restored.

2.1. Methodology

The methodology in this work follows a path similar to the one proposed by Barm-

paris and Tsironis to discover nonlinear resonances through ML10. There is currently
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substantial interest in ML approaches that utilize directly equations of physics or

mathematics11. In the present work we integrate numerically Eq. (1) using a 4th

order Runge-Kutta method with an integration step of 0.005 and introduce a new

data-free physics-informed loss function, designed to capture the desired properties

of self-trapping transition defined as:

Loss(Tmin(P1), ζ) =
∣∣∣0.5− P1(Tmin(p1), ζ)

∣∣∣ (2)

where, P1(Tmin(p1), ζ) = |ψ1(Tmin(p1), ζ)|2 is the probability of the system being

at state, 1, at time, Tmin(P1), for the given ζ value. This definition ensures that

minimizing the loss function will conclude to a minimum occupation probability

equal to 0.5 for state 1. It is equivalent to P1(Tmin(p1), ζ)− P2(Tmin(p1), ζ), where

P2(t) is the occupation probability of the second site at the designated time t. A

difficulty one faces will training a ML model with the above loss function is that

the minimum occupation probability at state 1, P1, becomes zero for all the values

of 0 < ζ < 1. Thus the loss function ends up being flat and equal to 0.5. Having a

flat loss function, independent of ζ, prohibits the model from updating its weights

and thus the training process stops. This behavior is demonstrated in the area with

the white background in Fig. 1, where the trajectories initialized inside the range

of 0 < ζ < 1 are stuck around the initial value of ζ. In order to avoid having

trajectories that result to parameters that do not satisfy the required properties,

we initialize all of the trajectories to a large enough value of ζ. Using a large initial

value of ζ addresses the problem of having untrained trajectories, but it does not

ensure the finding of the proper parameters, i.e. minimizing the loss function. The

reason is that by using a large initial value for ζ, we need to use a large value

for the learning rate during training in order to accelerate the learning process.

Using a large learning rate may result in substantial changes in the loss function

and consequently significant changes to the value of ζ, which may land to values

inside the flat area of the loss function. Thus, we introduce one more criterion to

keep a large value for the learning rate and continue minimizing the loss function

properly. This criterion checks if the minimum occupation probability, P1, at the

last step during the training process is less than 0.5. If this happens, it returns the

value of ζ back to its previous value while reducing the learning rate by a factor of

10. This additional criterion ensures that we always approach the critical value of

ζ from values where P1(ζ) > 0.5 and that by using an adaptive learning rate, we

will converge to the critical value. The algorithm was implemented in TensorFlow

2.412/Keras13 using an Adam optimizer14 with a custom learning rate. The details

of the algorithm can be found in Ref.10.

3. Physics and Machine Learning in the nonlinear dimer

In the nonlinear dimer we have a complex dynamical problem that mixes three

separate behaviors: The first is the dynamical breaking of symmetry induced in the
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degenerate dimer case; this is the landmark of the self-trapping transition. Nonlin-

earity becomes a dynamic mismatch agent and lifts the resonance between the two

sites. The second involves nondegeneracy already at the linear regime that is ac-

companied by incomplete transfer. In this case nonlinearity enhances the mismatch

especially at large values. Finally we can also restore resonance even in the non-

degenerate case through the proper choice of nonlinearity; this is the case in TET.

The question we pose now is whether we can detect this complex behavior through

specific use of AI. If the answer is affirmative this will lead to the development of a

mechanism for the discovery of resonant properties of nonlinear dynamical systems.

Using the methodology outlined earlier we obtain the following results.

3.1. Localized initial conditions

Let us first give the results regarding the self-trapping transition starting from a

localized initial condition. This is shown in Fig. 1, where the circles denote the initial

value of the nonlinearity parameter ζ of several randomly initialized trajectories

(black dashed lines), while the yellow star points to the final value of ζ. This value

is either the value that satisfies the desired properties of the system, i.e. self-trapping

transition, or a position that the learning process was stuck as explained in sub-

section 2.1. The red dotted line presents the minimum occupation probability at

state 1, min(P1) as a function of the nonlinearity parameter ζ. The area with the

gray background (ζ > 1) shows the range of values for the nonlinearity that conclude

to self-trapping transition. The inner plots present the occupation probability of

each state of the system as a function of time. The plot inside the white background

shows the situation just before the condition for self-trapping transition (ζ → 1−)

and the one inside the gray background the situation just after the self-trapping

(ζ → 1+). We observe that the ML procedure we use discovers the self-trapping

transition at ζcr = 1, i.e. χcr = 4V .

3.2. General initial conditions

When the initial placement of the excitation is not fully on one of the sites the

amount of nonlinearity necessary for self-trapping changes. For real off-diagonal el-

ements of the density matrix ρmn = ψmψ
∗
n the critical nonlinearity for self-trapping

is

ζcr =
1± (1− p20)1/2

p20
(3)

with p0 = ρ11(0) − ρ22(0) and where initial real amplitudes may be “in-phase”

having the same sign or in “anti-phase” with opposite sign5. The former choice

leads to the plus sign in Eq. (3) while the latter to minus. We note that the critical

nonlinearity for self-trapping increases as the amount of initial localization decreases

for in-phase motion while the opposite for the out of phase motion. In Fig. 2, we
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Fig. 1. The nonlinear dimer self-trapping transition with ML. The transition is obtained by
following the minimal value of the occupation probability at the first site as a function of the

scaled nonlinearity ζ. The red dotted line denotes the calculated through ML actual occupation

probability P1(t). This curve shows precisely the features of the self-traping transition. The x-axis
of the figure acts shows also the flow of trajectories for various initial conditions. The blue bullets

denote the initial value of the nonlinearity parameter ζ of ten randomly initialized trajectories

(black dashed lines), while the yellow star points to the final value of ζ. This final value is either
the value that satisfies the desired properties of the system, i.e., self-trapping transition, or a

position that the learning process was unsuccessfully stuck (See section 2.1). The area with the
gray background (ζ > 1) shows the range of values for the nonlinearity that conclude to self-
trapping transition. In the inserts we show the time evolution across the transition for ζ → 1−
(free motion) and ζ → 1+ (self-trapped motion) respectively.

show the results for general initial conditions with real and positive off-diagonal

matrix elements of the density matrix. The continuous line is the analytical result

of Eq. (3) while the blue bullets present the results of the ML search. Both in-phase

and anti-phase branches are shown. We see a remarkable agreement between the

two demonstrating that ML can discover faithfully arbitrary initial condition results

in the dynamic phase transition.
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Fig. 2. Self-trapping transition with ML for general initial conditions. The solid line is the curve

of Eq. (3) while the blue bullets were produced with ML. The two branches correspond to in-phase

(solid red line) and anti-phase (dashed red line) initial conditions.

4. The Non-degenerate dimer

In the non-degenerate nonlinear dimer (NNLD) nonlinearity mixes with the non-

resonance condition induced by non-degeneracy. We have two different aspects; one

is the effective linear “disorder” introduced by the energy mismatch. The larger

the energy difference the smaller the transfer of energy from one site to the next.

The second feature is the nonlinearity; this introduces an effective mismatch as well

that is however dynamic and controlled by the initial conditions. Both non-resonant

mechanisms act in the same direction, although the linear non-degeneracy is always

present while nonlinearity operates better after a threshold value.

The NNLD can be mapped into an effective problem of a particle in a potential

well similar to the nonlinear dimer7. Assuming localized initial conditions, in the

latter the self-trapping transition occurs when the potential develops a flat region

indicating the presence of a barrier separating the sites3. If a similar criterion is
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Fig. 3. Self-trapping transition with ML for the non-degenerate nonlinear dimer with localized
initial condition. The continuous lines are result of analytical calculations while the bullets a result

obtained through ML. The solid continuous line represents the self-trapping transition that is a

transition to a region of nonlinearly localized states. The “tie” region between the continuous and
dashed line corresponds to self-trapping or nonlinear localization.

applied in NNLD we find an interesting dynamic phase diagram where the transition

point of the nonlinear dimer becomes a “critical line”7. Furthermore, in addition to a

linear-disorder dominated region as well as a nonlinear dominated one we also find a

mixed region where the two tendencies mix. The phase diagram is obtained through

analytical means while the ML-based analysis that we now detail is completely

independent of the mathematical approach.

In the NNLD for small non-degeneracies there is a sudden transition from quasi-

resonant motion to selftrapped one7; this produces the solid line in Fig. 3. This

line that replaces the self-trapping point of the degenerate case is fully captured

by ML! The second, dashed line, marks the end of the region where nonlinear

localization dominates. In the work of Archilla, MacKay and Marin the distinction

of linear versus nonlinear localization was discussed in the context of a more general

model15. Broadly speaking, linear localization corresponds to pure Anderson modes
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while nonlinear localization to Discrete Breather (DB) modes. The NNLD provides

possibly the simplest system where we may study analytically the competition and

coexistence of Anderson modes and discrete breathers. Using this nomenclature we

may designate the region in the “tie” diagram between the two analytical lines as

DB or nonlinear localization region. The Anderson, or linear localization regime is

the region parallel to the δ-axis for small ζ (except the line at δ = 0). For large

nonlinearity and non-degeneracy the linear and nonlinear feature of the localization

mixes completely and may not be separated.

We note in the phase diagram that we may start with an Anderson mode,

deform it and reach a DB mode. This can be done in multiple ways, depending

on how we change the parameters δ and ζ. One class of paths crosses the self-

trapping line discovered by ML while an alternative class may simply reach the

same state without crossing it. The transition from Anderson to DB modes in the

present model is similar to a first order phase transition with a critical point. It is

interesting that ML can actually capture the coexistence line that separates the two

dynamical regimes in the NNLD. In Fig. (4) we show the actual time dependence

of the probability to be in the initially populated site. We have two sets of paths

on the diagram, ABCD and EFGH as well as the central critical point I. All time

dependent curves show the time evolution of the initially populated site. At A we

have almost complete oscillation between the two sites while crossing the critical

line we arrive at point B with incomplete, self-trapped motion. The path to C does

not change dramatically the localized nature of the motion while the reduction of

localization in D is done in a gradual way. It is clear that crossing the transition

line (A to B) results in a discontinuous symmetry breaking although we may reach

B also through the continuous line A to D to C to B. A similar behavior is seen

in the second trajectory EFGHE where the passage from E to F is discontinuous

while the rest of the trajectory is continuous.

From this analysis we observe additionally that the crossing of the transition

line parallel to the ζ-axis, as for instance from E to F, is done through the increase

in period of oscillation that eventually leads to self-trapping. This is very similar to

the degenerate dimer analysis related slowing down induced by nonlinearity3. The

transition to an Andreson mode, on the other hand, is a gradual transition to a

more and more localized state effected from the increase of the energy mismatch.

The critical NNLD line terminates in the critical point I, where the time dependence

is algebraic7.

5. Conclusions

Is there any reason to mix physics with AI? In theoretical physics we have a clear

methodology that works quite well. We formulate models, solve them analytically

if we can, otherwise we use numerics. What can AI add to this well established

discovering processes? Machine learning can manipulate data and make projections.

If training is done properly we may find hidden properties in data. In this work we
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Fig. 4. Phase diagram for the self-trapping transition with ML of the non-degenerate nonlinear

dimer with localized initial condition. Time dependent evolution for different parts of the parameter
space. The transition across the critical line is discontinuous (A to B) or (E to F) induced by

increase in oscillation period. The line terminates in the critical point I where the time dependence

is algebraic. We may use paths in the parameter space around the critical point I to go from the
free to the self-trapped regime without encountering discontinuity in the character of the evolution.

used a well studied model where most results are known analytically. This aspect

provides a great advantage since we may test for any property we wish and be able to

compare the ML predictions with solid, analytical results. Furthermore, the specific

model of the DNLS equation nonlinear dimer provides a framework for numerous

other investigations where the results are only known approximately.

The basic feature of the nonlinear dimer is the self-trapping transition, i.e. a

dynamical symmetry breaking that occurs when the nonlinearity passes a certain

critical value. This transition is in some sense anticipated in the study of the sta-

tionary states of the model where a new state appears along with the analytic con-

tinuation of the normal modes of the linear dimer1. Since the equations, however,

are nonlinear, knowledge of the nonlinear stationary states cannot give the arbitrary

time evolution of the complete problem. Using an optimization back propagation
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procedure we saw that we can recover the original self-trapping transition for the

extremely localized initial condition3. This is a significant finding because it shows

that ML methods are able to distinguish accurately dynamical regimes with dif-

ferent properties. In addition to the localized initial condition, more general initial

conditions give different dynamic dimer evolution; this was also captured by our

ML-motivated method. We note that although ML methods have been applied in

equilibrium phase transitions 16 the one we studied is dynamic and thus cannot be

accessed through statistical means and forms of image recognition.

The non-degenerate nonlinear dimer (NNLD) is a simple yet significant system

because it includes simultaneously in the simplest, almost rudimentary form, An-

derson localization and discrete breathers at the same time. The former is due to

“disorder”, i.e. the energy mismatch between the two sites while the later is due to

self-trapping and the formation of a nonlinear localized mode or DB. The compe-

tition and/or coexistence of the two is an interesting topic of research in general

lattice models15. The NNLD provides the simplest model that can give clues in this

question. The phase diagram obtained using the precise mathematical criterion of

the appearance of a flat region in the effective dimer potential determines essentially

three domains7. In more modern parlance we could call then Anderson-dominated,

DB-dominated and mixed phases. In the first the linear aspect of localization, i.e.

the non-degeneracy, dominates. The second is nonlinearity-dominated while in the

mixed case the two features are not separated. It is interesting that similar conclu-

sions were obtained for long nonlinear lattices using more sophisticated mathemat-

ical methods15. In Table 1 we summarize these aspects for the dimer system.

The use of ML motivated methods was able to determine the NNLD dynamical

regimes without resorting to the precise mathematical condition introduced in the

original work. It is remarkable that this alternative-data driven- approach recovers

successfully the analytical results! This has important consequences since it shows

that the range of possibilities for the ML-based discoveries in cases where analytics

is not possible is unlimited. In particular, the knowledge that nonlinear localization

proceeds through frequency increase and it is abrupt while the linear one is gradual

is a feature that may be directly applied with ML in a possible detection of localized

modes.

Table 1. Dynamical behavior of linear and nonlinear dimers discussed in this work

TYPE LINEAR DIMER NONLINEAR DIMER TET

Degenerate Resonant transfer Resonant transfer and self-trapping

Non-degenerate Non-resonant transfer Linear and nonlinear localization Effectivelly linear resonant transfer

In the NNLD there is a mixture of “static” as well as “dynamic” energy mis-

match. or disorder. The former stems from the energy difference in the two sites that

introduces a natural off-resonance mechanism. The latter comes from the nonlinear-
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ity that due to its localization tendency introduces an initial condition dependent

non-resonance mechanism. We noticed that both localization mechanisms work in

the same direction and in a sense augment localization be it linear or nonlinear.

There is however a case where the two work in opposition; this is provided by TET.

In the TET configuration the nonlinear terms oppose the Anderson localization

feature and as a result we recover the perfect resonance. This feature is captured

fully by an ML method10.
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