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Abstract

Rule-based models, e.g., decision trees, are widely used in scenarios demanding
high model interpretability for their transparent inner structures and good model
expressivity. However, rule-based models are hard to optimize, especially on large
data sets, due to their discrete parameters and structures. Ensemble methods and
fuzzy/soft rules are commonly used to improve performance, but they sacrifice
the model interpretability. To obtain both good scalability and interpretability,
we propose a new classifier, named Rule-based Representation Learner (RRL),
that automatically learns interpretable non-fuzzy rules for data representation and
classification. To train the non-differentiable RRL effectively, we project it to a
continuous space and propose a novel training method, called Gradient Grafting,
that can directly optimize the discrete model using gradient descent. An improved
design of logical activation functions is also devised to increase the scalability of
RRL and enable it to discretize the continuous features end-to-end. Exhaustive
experiments on nine small and four large data sets show that RRL outperforms the
competitive interpretable approaches and can be easily adjusted to obtain a trade-off
between classification accuracy and model complexity for different scenarios. Our
code is available at : https://github.com/12wang3/rrl.

1 Introduction

Although Deep Neural Networks (DNNs) have achieved impressive results in various machine
learning tasks (Goodfellow et al., 2016), rule-based models, benefiting from their transparent inner
structures and good model expressivity, still play an important role in domains demanding high model
interpretability, such as medicine, finance, and politics (Doshi-Velez and Kim, 2017). In practice,
rule-based models can easily provide explanations for users to earn their trust and help protect their
rights (Molnar, 2019; Lipton, 2016). By analyzing the learned rules, practitioners can understand the
decision mechanism of models and use their knowledge to improve or debug the models (Chu et al.,
2018). Moreover, even if post-hoc methods can provide interpretations for DNNs, the interpretations
from rule-based models are more faithful and specific (Murdoch et al., 2019). However, conventional
rule-based models are hard to optimize, especially on large data sets, due to their discrete parameters
and structures, which limit their application scope. To take advantage of rule-based models in more
scenarios, we urgently need to answer such a question: how to improve the scalability of rule-based
models while keeping their interpretability?

Studies in recent years provide some solutions to improve conventional rule-based models in different
aspects. Ensemble methods and soft/fuzzy rules are proposed to improve the performance and
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scalability of rule-based models but at the cost of model interpretability (Ke et al., 2017; Breiman,
2001; Irsoy et al., 2012). Bayesian frameworks are also leveraged to more reasonably restrict and
adjust the structures of rule-based models (Letham et al., 2015; Wang et al., 2017; Yang et al., 2017).
However, due to the non-differentiable model structure, they have to use methods like MCMC or
Simulated Annealing, which could be time-consuming for large models. Another way to improve
rule-based models is to let a high-performance but complex model (e.g., DNN) teach a rule-based
model (Frosst and Hinton, 2017; Ribeiro et al., 2016). However, learning from a complex model
requires soft rules, or the fidelity of the student model is not guaranteed. The recent study Wang et al.
(2020) tries to extract hierarchical rule sets from a tailored neural network. When the network is
large, the extracted rules could behave quite differently from the neural network and become useless
in most cases. Nevertheless, combined with binarized networks (Courbariaux et al., 2015), it inspires
us that we can search for the discrete solutions of interpretable rule-based models in a continuous
space leveraging effective optimization methods like gradient descent.

In this paper, we propose a novel rule-based model named Rule-based Representation Learner
(RRL) (see Figure 1a). We summarize the key contributions as follows:

• To achieve good model transparency and expressivity, RRL is formulated as a hierarchical
model, with layers supporting automatic feature discretization, rule-based representation learning
in flexible conjunctive and disjunctive normal forms, and rule importance evaluation.

• To facilitate training effectiveness, RRL exploits a novel gradient-based discrete model train-
ing method, Gradient Grafting, that directly optimizes the discrete model and uses the gradient
information at both continuous and discrete parametric points to accommodate more scenarios.

• To ensure data scalability, RRL utilizes improved logical activation functions to handle high-
dimensional features. By further combining the improved logical activation functions with a
tailored feature binarization layer, it realizes the continuous feature discretization end-to-end.

• We conduct experiments on nine small data sets and four large data sets to validate the advantages,
i.e., good accuracy and interpretability, of our model over other representative classification
models. The benefits of the model’s key components are also verified by the experiments.

2 Related Work

Rule-based Models. Decision tree, rule list, and rule set are the widely used structures in rule-based
models. For their discrete parameters and non-differentiable structures, we have to train them by
employing various heuristic methods (Quinlan, 1993; Breiman, 2017; Cohen, 1995), which may not
find the globally best solution or a solution with close performance. Alternatively, train them with
search algorithms (Wang et al., 2017; Angelino et al., 2017), which could take too much time on
large data sets. In recent studies, Bayesian frameworks are leveraged to restrict and adjust model
structure more reasonably (Letham et al., 2015; Wang et al., 2017; Yang et al., 2017). Lakkaraju
et al. (2016) learns independent if-then rules with smooth local search. However, except for heuristic
methods, most existing rule-based models need frequent itemsets mining and/or long-time searching,
which limits their applications. Moreover, it is hard for these rule-based models to get comparable
performance with complex models like Random Forest.

Ensemble models like Random Forest (Breiman, 2001) and Gradient Boosted Decision Trees (Chen
and Guestrin, 2016; Ke et al., 2017) have better performance than the single rule-based model.
However, since the decision is made by hundreds of models, ensemble models are commonly not
considered as interpretable models (Hara and Hayashi, 2016). Soft or fuzzy rules are also used to
improve model performance (Irsoy et al., 2012; Ishibuchi and Yamamoto, 2005), but non-discrete
rules are much harder to understand than discrete ones. Deep Neural Decision Tree (Yang et al., 2018)
is a tree model realized by neural networks with the help of soft binning function and Kronecker
product. However, due to the use of Kronecker product, it is not scalable with respect to the number
of features. Other studies try to teach the rule-based model by a complex model, e.g., DNN, or extract
rule-based models from complex models (Frosst and Hinton, 2017; Ribeiro et al., 2016; Wang et al.,
2020). However, the fidelity of the student model or extracted model is not guaranteed.

Gradient-based Discrete Model Training. The gradient-based discrete model training methods
are mainly proposed to train binary or quantized neural networks for network compression and
acceleration. Courbariaux et al. (2015, 2016) propose to use the Straight-Through Estimator (STE)
for binary neural network training. However, STE requires gradient information at discrete points,
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Figure 1: (a) A Rule-based Representation Learner example. The dashed box shows an example of a
discrete logical layer and its corresponding rules. (b) A simplified computation graph of Gradient
Grafting. Arrows with solid lines represent forward pass while arrows with dashed lines represent
backpropagation. The green arrow denotes the grafted gradient, a copy of the gradient represented by
the red arrow. After grafting, there exists a backward path from the loss function to the parameter θ.

which limits its applications. ProxQuant (Bai et al., 2018) formulates quantized network training
as a regularized learning problem and optimizes it via the prox-gradient method. ProxQuant can
use gradients at non-discrete points but cannot directly optimize for the discrete model. The RB
method (Wang et al., 2020) trains a neural network with random binarization for its weights to ensure
the discrete and the continuous model behave similarly. However, when the model is large, the
differences between the discrete and the continuous model are inevitable. Gumbel-Softmax estimator
(Jang et al., 2016) generates a categorical distribution with a differentiable sample. However, it can
hardly deal with a large number of variables, e.g., the weights of binary networks, for it is a biased
estimator. Our method, i.e., Gradient Grafting, is different from all the aforementioned works in
using gradient information of both discrete and continuous models in each backpropagation.

3 Rule-based Representation Learner

Notation Description. Let D = {(X1, Y1), . . . , (XN , YN )} denote the training data set with N
instances, where Xi is the observed feature vector of the i-th instance with the j-th entry as Xi,j , and
Yi is the corresponding one-hot class label vector, i ∈ {1, . . . , N}. Each feature value can be either
discrete or continuous. All the classes take discrete values, and the number of class labels is denoted
by M . We use one-hot encoding to represent all discrete features as binary features. Let Ci ∈ Rm

and Bi ∈ {0, 1}b denote the continuous feature vector and the binary feature vector of the i-th
instance respectively. Therefore, Xi = Ci ⊕Bi, where ⊕ represents the operator that concatenates
two vectors. Throughout this paper, we use 1 (True) and 0 (False) to represent the two states of a
Boolean variable. Thus each dimension of a binary feature vector corresponds to a Boolean variable.

Overall Structure. A Rule-based Representation Learner (RRL), denoted by F , is a hierarchical
model consisting of three different types of layers. Each layer in RRL not only contains a specific
number of nodes but also has trainable edges connected with its previous layer. Let U (l) denote the
l-th layer of RRL, u(l)

j indicate the j-th node in the layer, and nl represent the corresponding number
of nodes, l ∈ {0, . . . , L}. The output of the l-th layer is a vector containing the values of all the nodes
in the layer. For ease of expression, we denote this vector by u(l). There are only one binarization
layer, i.e., U (0), and one linear layer, i.e., U (L), in RRL, but the number of middle layers, i.e., logical
layers, can be flexibly adjusted according to the specific situation. The logical layers mainly aim to
learn the non-linear part of the data, while the linear layer aims to learn the linear part. One example
of RRL is shown in Figure 1a.

When we input the i-th instance to RRL, the binarization layer will first binarize the continuous
feature vector Ci into a new binary vector C̄i. Then, C̄i and Bi are concatenated together as u(0)

and inputted to the first logical layer. The logical layers are designed to automatically learn data
representations using logical rules, and the stacked logical layers can learn rules in more complex
forms. After going through all the logical layers, the output of the last logical layer can be considered
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as the new feature vector to represent the instance, wherein each feature corresponds to one rule
formulated by the original features. As such, the whole RRL is composed of a feature learner and a
linear classifier (linear layer). Moreover, the skip connections in RRL can skip unnecessary logical
layers. In what follows, the details of these components will be elaborated.

3.1 Logical Layer

Considering the binarization layer needs the help of its following logical layer to binarize features in
an end-to-end way, we introduce logical layers first. As mentioned above, logical layers can learn
data representations using logical rules automatically. To achieve this, logical layers are designed to
have a discrete version and a continuous version. The discrete version is used for training, testing
and interpretation while the continuous version is only used for training. It is worth noting that the
discrete RRL indicates the parameter weights of logical layers take discrete values (i.e., 0 or 1) while
the parameter weights and biases of the linear layer still take continuous values.

Discrete Version. One logical layer consists of one conjunction layer and one disjunction layer.
In discrete version, let R(l) and S(l) denote the conjunction and disjunction layer of U (l) (l ∈
{1, 2, . . . , L − 1}) respectively. We denote the i-th node in R(l) by r

(l)
i , and the i-th node in S(l)

by s
(l)
i . Specifically speaking, node r

(l)
i corresponds to the conjunction of nodes in the previous

layer connected with r
(l)
i , while node s

(l)
i corresponds to the disjunction of nodes in previous layer

connected with s
(l)
i . Formally, the two types of nodes are defined as follows:

r
(l)
i =

∧
W

(l,0)
i,j =1

u
(l−1)
j , s

(l)
i =

∨
W

(l,1)
i,j =1

u
(l−1)
j , (1)

where W (l,0) denote the adjacency matrix of the conjunction layerR(l) and the previous layer U (l−1),
and W (l,0)

i,j ∈ {0, 1}. W (l,0)
i,j = 1 indicates there exists an edge connecting r

(l)
i to u

(l−1)
j , otherwise

W
(l,0)
i,j = 0. Similarly, W (l,1) is the adjacency matrix of the disjunction layer S(l) and U (l−1).

Similar to neural networks, we regard these adjacency matrices as the weight matrices of logical
layers. u(l) = r(l) ⊕ s(l), where r(l) and s(l) are the outputs ofR(l) and S(l) respectively.

The function of the logical layer is similar to the notion “level” in Wang et al. (2020). However,
one level in that work, which actually consists of two layers, can only represent rules in Disjunctive
Normal Form (DNF), while two logical layers in RRL can represent rules in DNF and Conjunctive
Normal Form (CNF) at the same time. Connecting nodes inR(l) with nodes in S(l−1), we get rules
in CNF, while connecting nodes in S(l) with nodes inR(l−1), we get rules in DNF. The flexibility of
logical layer is quite important. For instance, the length of CNF rule (a1 ∨a2)∧ · · · ∧ (a2n−1 ∨a2n)
is 2n, but the length of its corresponding DNF rule (a1 ∧a3 · · · ∧a2n−1)∨ · · · ∨ (a2 ∧a4 · · · ∧a2n)
is n · 2n, which means layers that only represent DNF can hardly learn this CNF rule.

Continuous Version. Although the discrete logical layers have good interpretability, they are hard to
train for their discrete parameters and non-differentiable structures. Inspired by the training process
of binary neural networks that searches the discrete solution in a continuous space, we extend the
discrete logical layer to a continuous version. The continuous version is differentiable, and when
we discretize the parameters of a continuous logical layer, we can obtain its corresponding discrete
logical layer. Therefore, the continuous logical layer and its corresponding discrete logical layer can
also be considered as sharing the same parameters, but the discrete logical layer needs to discretize
the parameters first.

Let Û (l) denote the continuous logical layer, and R̂(l) and Ŝ(l) denote the continuous conjunction
and disjunction layer respectively, l ∈ {1, 2, . . . , L− 1}. Let Ŵ (l,0) and Ŵ (l,1) denote the weight
matrices of R̂(l) and Ŝ(l) respectively. Ŵ (l,0)

i,j , Ŵ
(l,1)
i,j ∈ [0, 1]. To make the whole Equation 1

differentiable, we leverage the logical activation functions proposed by Payani and Fekri (2019):

Conj(h,Wi) =

n∏
j=1

Fc(hj ,Wi,j), Disj(h,Wi) = 1−
n∏

j=1

(1− Fd(hj ,Wi,j)), (2)

where Fc(h,w) = 1− w(1− h) and Fd(h,w) = h · w. In Equation 2, if h and Wi are both binary
vectors, then Conj(h,Wi) =

∧
Wi,j=1 hj and Disj(h,Wi) =

∨
Wi,j=1 hj . Fc(h,w) and Fd(h,w)
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decide how much hj would affect the operation according to Wi,j . If Wi,j = 0, hj would have no
effect on the operation. After using continuous weights and logical activation functions, the nodes in
R̂(l) and Ŝ(l) are defined as follows:

r̂
(l)
i = Conj(û(l−1), Ŵ (l,0)

i ), ŝ
(l)
i = Disj(û(l−1), Ŵ (l,1)

i ) (3)

Now the whole logical layer is differentiable and can be trained by gradient descent. However, the
above logical activation functions suffer from the serious vanishing gradient problem. The main
reason can be found by analyzing the partial derivative of each node w.r.t. its directly connected
weights and w.r.t. its directly connected nodes as follows:

∂r̂
(l)
i

∂Ŵ
(l,0)
i,j

= (û
(l−1)
j −1)·

∏
k 6=j

Fc(û
(l−1)
k , Ŵ

(l,0)
i,k ),

∂r̂
(l)
i

∂û
(l−1)
j

= Ŵ
(l,0)
i,j ·

∏
k 6=j

Fc(û
(l−1)
k , Ŵ

(l,0)
i,k ) (4)

Since û(l−1)
k and Ŵ (l,0)

i,k are in the range [0, 1], the values of Fc(·) in Equation 4 are in the range [0, 1]

as well. If nl−1 is large and most of the values of Fc(·) are not 1, then the derivative is close to 0
due to the multiplications (See Appendix D for the analysis of ŝ(l)i ). Wang et al. (2020) tries to use
weight initialization to make Fc(·) close to 1 at the beginning. However, when dealing with hundreds
of features, the vanishing gradient problem is still inevitable.

Improved Logical Activation Functions. We found that using the multiplications to simulate the
logical operations in Equation 2 is the main reason for vanishing gradients and propose an improved
design of logical activation functions. One straightforward idea is to convert multiplications into
additions using logarithm, e.g., log(

∏n
j=1 Fc(hj ,Wi,j)) =

∑n
j=1 log(Fc(hj ,Wi,j)). However, after

taking the logarithm, the logical activation functions in Equation 2 cannot keep the characteristics of
logical operations any more, and the ranges of Conj(·) and Disj(·) are not [0, 1]. To deal with this
problem, we need a projection function to fix it. Apparently, the inverse function of log(x), i.e., ex,
is not suitable.

For the projection function g, three conditions must be satisfied: (i) g(0) = e0. (ii) limx→−∞ g(x) =

limx→−∞ ex = 0. (iii) limx→−∞ ex

g(x) = 0. Condition (i) and (ii) aim to keep the range and tendency
of logical activation functions. Condition (iii) aims to lower the speed of approaching zero when
x→ −∞. In this work, we choose g(x) = −1

−1+x as the projection function, and the improvement
of logical activation functions can be summarized as the function P(v) = −1

−1+log(v) . The improved
conjunction function Conj+ and disjunction function Disj+ are given by:

Conj+(h,Wi) = P(

n∏
j=1

(Fc(hj ,Wi,j)+ε)), Disj+(h,Wi) = 1−P(

n∏
j=1

(1−Fd(hj ,Wi,j)+ε)) (5)

where ε is a small constant, e.g., 10−10. The improved logical activation functions can avoid
the vanishing gradient problem in most scenarios and are much more scalable than the originals.
Moreover, considering that dP(v)

dv = P2(v)
v , when n in Equation 5 is extremely large, dP(v)

dv may be

very close to 0 due to P2(v). One trick to deal with it is replacing P2(v)
v with P(P2(v))

v for P can lower
the speed of approaching 0 while keeping the value range and tendency.

3.2 Binarization Layer

The binarization layer is mainly used to divide the continuous feature values into several bins. By
combining one binarization layer and one logical layer, we can automatically choose the appropriate
bins for feature discretization (binarization), i.e., binarizing features in an end-to-end way.

For the j-th continuous feature to be binarized, there are k lower bounds (Tj,1, . . . , Tj,k) and k upper
bounds (Hj,1, . . . ,Hj,k). All these bounds are randomly selected (e.g., from uniform distribution) in
the value range of the j-th continuous feature, and these bounds are not trainable. When inputting
one continuous feature vector c, the binarization layer will check if cj satisfies the bounds and get
the following binary vector:

Qj = [q(cj − Tj,1), . . . , q(cj − Tj,k), q(Hj,1 − cj), . . . , q(Hj,k − cj)], (6)

where q(x) = 1x>0. If we input the i-th instance, i.e., c = Ci, then C̄i = Q1 ⊕ Q2 · · · ⊕ Qm

and u(0) = C̄i ⊕ Bi. After inputting u(0) to the logical layer U (1), the edge connections between
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U (1) and U (0) indicate the choice of bounds (bins). For example, if r(1)i is connected to the nodes
corresponding to q(cj −Tj,1) and q(Hj,2−cj), then r

(1)
i contains the bin (Tj,1 < cj)∧ (cj < Hj,2).

If we replace r(1)i with s
(1)
i in the example, we can get (Tj,1 < cj)∨ (cj < Hj,2). It should be noted

that, in practice, if Tj,1 ≥ Hj,2, then r
(1)
i = 0, and if Tj,1 < Hj,2, then s

(1)
i = 1. When using the

continuous version, the weights of logical layers are trainable, which means we can choose bounds
in an end-to-end way. For the number of bounds is 2k times of features, which could be large, only
logical layers with improved logical activation functions are capable of choosing the bounds.

3.3 Gradient Grafting

Although RRL can be differentiable with the continuous logical layers, it is challenging to search for
a discrete solution in a continuous space (Qin et al., 2020). One commonly used method to tackle
this problem is the Straight-Through Estimator (STE) (Courbariaux et al., 2016). The STE method
needs gradients at discrete points to update the parameters. However, the gradients of RRL at discrete
points have no useful information in most cases (See Appendix E). Therefore STE is not suitable for
RRL. Other methods like ProxQuant (Bai et al., 2018) and Random Binarization (Wang et al., 2020)
cannot directly optimize for the discrete model and be scalable at the same time.

Inspired by plant grafting, we propose a new training method, called Gradient Grafting, that can
effectively train RRL. In stem grafting, one plant is selected for its roots, i.e., rootstock, and the other
plant is selected for its stems, i.e., scion. By grafting, we obtain a new plant with the advantages of
both two plants. In Gradient Grafting, the gradient of the loss function w.r.t. the output of discrete
model is the scion, and the gradient of the output of continuous model w.r.t. the parameters of
continuous model is the rootstock. Specifically, let θ denote the parameter vector and θt denote the
parameter vector at step t. q(x) = 1x>0.5 is the binarization function that binarizes each dimension
of x with 0.5 as the threshold. Let Ŷ and Ȳ denote the output of the continuous model F̂ and discrete
model F respectively, then Ŷ = F̂(θt, X), Ȳ = F(q(θt), X). The parameters update with Gradient
Grafting is formulated by:

θt+1 = θt − η ∂L(Ȳ )

∂Ȳ
· ∂Ŷ
∂θt

, (7)

where η is the learning rate and L(·) is the loss function. One simplified computation graph of
Gradient Grafting is shown in Figure 1b for intuitive understanding.

Gradient Grafting can directly optimize the loss of discrete models and use the gradient information
at both continuous and discrete points, which overcomes the problems occurring in RRL training
when using other gradient-based discrete model training methods. The convergence of Gradient
Grafting is verified in the experiments (See Figure 3).

3.4 Model Interpretation

After training with Gradient Grafting, the discrete RRL can be used for testing and interpretation.
RRL is easy to interpret, for we can simply consider it as a feature learner and a linear classifier. The
binarization layer and logical layers are the feature learner, and they use logical rules to build and
describe the new features. The linear classifier, i.e., the linear layer, makes decisions based on the
new features. We can first find the important new features by the weights of the linear layer, then
understand each new feature by analyzing its corresponding rule. One advantage of RRL is that it can
be easily adjusted by the practitioners to obtain a trade-off between the classification accuracy and
model complexity. Therefore, RRL can satisfy the requirements from different tasks and scenarios.
There are several ways to limit the model complexity of RRL. First, we can reduce the number of
logical layers in RRL, i.e., the depth of RRL, and the number of nodes in each logical layer, i.e., the
width of RRL. Second, the L1/L2 regularization can be used during training to search for an RRL
with shorter rules. The coefficient of the regularization term in the loss function can be considered
as a hyperparameter to restrict the model complexity. After training, the dead nodes detection and
redundant rules elimination proposed by Wang et al. (2020) can also be used for better interpretability.
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Table 1: 5-fold cross validated F1 score (%) of comparing models on all 13 datasets. ∗ represents that
RRL significantly outperforms all the compared interpretable models (t-test with p < 0.01). The first
seven models are interpretable models, while the last five are complex models.

Dataset RRL C4.5 CART SBRL CORELS CRS LR SVM PLNN(MLP) RF LightGBM XGBoost

adult 80.72 77.77 77.06 79.88 70.56 80.95 78.43 63.63 73.55 79.22 80.36 80.64
bank-marketing 76.32∗ 71.24 71.38 72.67 66.86 73.34 69.81 66.78 72.40 72.67 75.28 74.71

banknote 100.00∗ 98.45 97.85 94.44 98.49 94.93 98.82 100.00 100.00 99.40 99.48 99.55
chess 78.83 79.90 79.15 26.44 24.86 80.21 33.06 79.58 77.85 75.00 80.58 80.66

connect-4 71.23∗ 61.66 61.24 48.54 51.72 65.88 49.87 69.85 64.55 62.72 70.53 70.65
letRecog 96.15∗ 88.20 87.62 64.32 61.13 84.96 72.05 95.57 92.34 96.59 96.51 96.38
magic04 86.33∗ 82.44 81.20 82.52 77.37 80.87 75.72 79.43 83.07 86.48 86.67 86.69

tic-tac-toe 100.00 91.70 94.21 98.39 98.92 99.77 98.12 98.07 98.26 98.37 99.89 99.89
wine 98.23 95.48 94.39 95.84 97.43 97.78 95.16 96.05 76.07 98.31 98.44 97.78

activity 98.17 94.24 93.35 11.34 51.61 5.05 98.47 98.67 98.27 97.80 99.41 99.38
dota2 60.12∗ 52.08 51.91 34.83 46.21 56.31 59.34 57.76 59.46 57.39 58.81 58.53

facebook 90.27∗ 80.76 81.50 31.16 34.93 11.38 88.62 87.20 89.43 87.49 85.87 88.90
fashion 89.01∗ 80.49 79.61 47.38 38.06 66.92 84.53 84.46 89.36 88.35 89.91 89.82

AvgRank 2.77 8.23 8.92 9.31 9.92 7.08 7.92 6.77 5.77 5.38 2.77 2.69

4 Experiments

In this section, we conduct experiments to evaluate the proposed model and answer the following
questions: (i) How is the classification performance of RRL? (ii) How is the model complexity of
RRL? (iii) How is the convergence of Gradient Grafting compared to other gradient-based discrete
model training methods? (iv) How is the scalability of the improved logical activation functions?

4.1 Dataset Description and Experimental Settings

Dataset Description. We took nine small and four large public datasets to conduct our experiments,
all of which are often used to test classification performance and model interpretability (Dua and Graff,
2017; Xiao et al., 2017; Anguita et al., 2013; Rozemberczki et al., 2019). Appendix B summarizes
the statistics of these 13 datasets. Together they show the data diversity, ranging from 178 to 102944
instances, from 2 to 26 classes, and from 4 to 4714 original features. See Appendix A for licenses.

Performance Measurement. We adopt the F1 score (Macro) as the classification performance
metric since some of the data sets are imbalanced, i.e., the numbers of different classes are quite
different. We adopt 5-fold cross-validation to evaluate the classification performance more fairly. The
average rank of each model is also adopted for comparisons of classification performance over all the
data sets (Demšar, 2006). Considering that reused structures exist in rule-based models, e.g., one
branch in Decision Tree can correspond to several rules, we use the total number of edges instead of
the total length of all rules as the metric of model complexity for rule-based models. See Appendix C
for details about the experiment environment and parameter settings of all models.

4.2 Classification Performance

We compare the classification F1 score (Macro) of RRL with six interpretable models and five complex
models. C4.5 (Quinlan, 1993), CART (Breiman, 2017), Scalable Bayesian Rule Lists (SBRL) (Yang
et al., 2017), Certifiably Optimal Rule Lists (CORELS) (Angelino et al., 2017), and Concept Rule
Sets (CRS) (Wang et al., 2020) are rule-based models. Logistic Regression (LR) (Kleinbaum et al.,
2002) is a linear model. These six models are considered interpretable models. Piecewise Linear
Neural Network (PLNN) (Chu et al., 2018), Support Vector Machines (SVM) (Scholkopf and Smola,
2001), Random Forest (Breiman, 2001), LightGBM (Ke et al., 2017), and XGBoost (Chen and
Guestrin, 2016) are considered complex models. PLNN is a Multilayer Perceptron (MLP) that adopts
piecewise linear activation functions, e.g., ReLU (Nair and Hinton, 2010). RF, LightGBM, and
XGBoost are ensemble models. See Appendix C for the parameters tuning.

The results are shown in Table 1, and the first nine data sets are small data sets while the last four are
large data sets. We can observe that RRL performs well on almost all the data sets and gets the best
results on 6 data sets. The two-tailed Student’s t-test (p<0.01) is used for significance testing, and we
can observe that RRL significantly outperforms all the compared interpretable models on 8 out of 13
data sets. The average rank of RRL is also the top three among all the models. Only two complex
models that use hundreds of estimators, i.e., XGBoost and LightGBM, have comparable results with
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Figure 2: Scatter plot of F1 score against log(#edges) for RRL and baselines on three datasets (see
Appendix J for other datasets).

Figure 3: Training loss of three compared discrete model training methods and Gradient Grafting
with or without improved logical activation functions on three data sets.

RRL. Comparing RRL with LR and other rule-based models, we can see RRL can fit both linear
and non-linear data well. CRS performs well on small data sets but fails on large datasets due to
the limitation of its logical activation functions and training method. Good results on both small
and large data sets verify RRL has good scalability. Moreover, SBRL and CRS do not perform well
on continuous feature data sets like letRecog and magic04 for they need preprocessing to discretize
continuous features, which may bring bias to the data sets. On the contrary, RRL overcomes this
problem by discretizing features end-to-end.

4.3 Model Complexity

Interpretable models seek to keep low model complexity while ensuring high accuracy. To show
the relationships between accuracy and model complexity of RRL and baselines, we draw scatter
plots of F1 score against log(#edges) for rule-based models in Figure 2 (see Appendix J for other
data sets). The baselines are typical models in different categories of methods with good trade-offs
between accuracy and model complexity. For RRL, the legend markers and error bars indicate means
and standard deviations, respectively, of F1 score and log(#edges) across cross-validation folds. For
baseline models, each point represents an evaluation of one model, on one fold, with one parameter
setting. Therefore, in Figure 2, the closer its corresponding points are to the upper left corner, the
better one model is. To obtain RRL with different model complexities, we tune the depth and width of
RRL and the coefficient of L2 regularization term. The value in CART(·), e.g., CART(0.03), denotes
the complexity parameter used for Minimal Cost-Complexity Pruning (Breiman, 2017), and a higher
value corresponds to a simpler tree. We also show results of XGBoost with 10 and 100 estimators.

In Figure 2, on both small and large data sets, we can observe that if we connect the results of RRL,
it will become a boundary that separating the upper left corner from other models. In other words, if
RRL has a close model complexity with one baseline, then the F1 score of RRL will be higher. If
the F1 score of RRL is close to one baseline, then the model complexity of RRL will be lower. It
indicates that RRL can make better use of rules than rule-based models using heuristic and ensemble
methods in most cases. The results in Figure 2 also verify that we can adjust the model complexity of
RRL by setting the model structure and the coefficient of L2 regularization term. In this way, the
practitioners are able to select an RRL with suitable classification performance and model complexity
for different scenarios, which is crucial for practical applications of interpretable models.

8



(a)

Weight Rule
0.995 -122.5 < balance < 2606.1 ∧ marital = married ∧ campaign < 5 ∧ poutcome = success ∧ previous > 0

0.753 1757.2 < balance < 7016.7 ∧ marital = married ∧ contact = telephone ∧ 6 < day < 27 ∧ previous < 5

0.733 age > 36 ∧ balance < 7016.7 ∧ marital = married ∧ campaign < 5 ∧ pdays < 104 ∧ poutcome = success

0.731 36 < age < 60 ∧ balance > -122.5 ∧	 campaign < 7 ∧ day > 22 ∧ pdays > 304 ∧ previous > 0

0.728 age > 28 ∧ -669.1 < balance < 5813.7 ∧ campaign < 6 ∧ pdays > 304 ∧ 0 < previous < 6

(b)

Figure 4: (a) The distribution of weights in the linear layer of RRLs trained on the bank-marketing data
set with the same model structure but different λ, where λ is the coefficient of the L2 regularization
term. (b) Logical rules obtained from RRL trained on the bank-marketing data set.

4.4 Ablation Study

Training Method for Discrete Model. To show the effectiveness of Gradient Grafting for training
RRL, we compare it with other representative gradient-based discrete model training methods, i.e.,
STE (Courbariaux et al., 2015, 2016), ProxQuant (Bai et al., 2018) and RB (Wang et al., 2020), by
training RRL with the same structure. Hyperparameters are set to be the same for each method except
exclusive hyperparameters, e.g., random binarization rate for RB, are fine-tuned. The training loss of
the compared discrete model training methods and Gradient Grafting are shown in Figure 3, and we
can see that the convergence of Gradient Grafting is faster and stabler than other methods on all data
sets. As we mentioned in Section 3.3, RRL has little useful gradient information at discrete points,
thus RRL trained by STE cannot converge. Due to the difference between discrete and continuous
RRL, RRL trained by ProxQuant and RB cannot converge well as well.

Improved Logical Activation Functions. We also compare RRL trained by Gradient Grafting
with or without improved logical activation functions. The results are also shown in Figure 3, and
GradGrafting(NI) represents RRL using original logical activation functions instead of improved
logical activation functions. We can observe that the original activation functions work well on small
data sets but fail on the large data set activity while the improved activation functions work well
on all data sets, which means the improved logical activation functions make RRL more scalable.
It should be noted that GradGrafting(NI) works well on the large data set facebook. The reason is
facebook is a very sparse data set, and the number of 1 in each binary feature vector is less than 30
(See Appendix D for detailed analyses).

4.5 Case Study

We show how the learned RRL looks like by case studies. Take the bank-marketing data set as an
example. We first show the distribution of weights in the linear layer of the trained RRLs in Figure 4a.
Each weight in the linear layer corresponds to one rule. For a better viewing experience, we show the
normalized absolute values of weights. The model structures of these RRLs are the same, but different
coefficients of the L2 regularization term, denoted by λ, lead to different model complexities. We can
observe that, when λ is small, which means the RRL is more complex, there are many rules with
small weights. These small weight rules are mainly used to slightly adjust the outputs. Hence, they
make the RRL more accurate but less interpretable. However, in practice, we can ignore these small
weight rules and only focus on rules with large weights first. After analyzing rules with large weights
and having a better understanding of the learned RRL and the data set, we can then understand those
less important rules gradually. When λ is large, the number of rules is small, and we can directly
understand the whole RRL rather than understanding RRL step by step.

In Figure 4b, we show the learned rules, with high weights, of one RRL trained on the bank-marketing
data set (see Appendix I for the fashion data set). These rules are used to predict if the client will
subscribe a term deposit by telesales. Different types of features are marked in different colors, e.g.,
purple for previous behaviours of the bank. We can clearly see that middle-aged married persons with
low balance are more likely to subscribe a deposit, and the previous behaviour of the bank would also
affect the client. Then the bank can change its strategies according to these rules.
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5 Conclusion and Future Work

We propose a new scalable classifier, named Rule-based Representation Learner (RRL), that can
automatically learn interpretable rules for data representation and classification. For the particularity
of RRL, we propose a new gradient-based discrete model training method, i.e., Gradient Grafting,
that directly optimizes the discrete model. We also propose an improved design of logical activation
functions to increase the scalability of RRL and make RRL capable of discretizing the continuous
features end-to-end. Our experimental results show that RRL enjoys both high classification perfor-
mance and low model complexity on data sets with different scales. For the current design of RRL is
limited to structured data, we will extend RRL to suit more unstructured data as future work.
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A Code Release and Data Source

Our code is publicly available at a GitHub repository: https://github.com/12wang3/rrl.

The datasets used in this paper come from the UCI machine learning repository and GitHub. The links
to the datasets are: adult2, bank-marketing3, banknote4, chess5, connect-46, letRecog7, magic048,
tic-tac-toe9, wine10, activity11, dota212, facebook13, fashion14. The fashion dataset uses the MIT
license, and other datasets have no license mentioned. The citation requests of these datasets are all
satisfied in our paper.

B Data Sets Properties

In Table 2, the first nine data sets are small data sets while the last four are large data sets. Discrete or
continuous feature type indicates features in that data set are all discrete or all continuous. The mixed
feature type indicates the corresponding data set has both discrete and continuous features. The
density is the averaged ratio of the number of 1 in each binary feature vector after one-hot encoding.

Table 2: Data sets properties.

Dataset #instances #classes #features feature type density

adult 32561 2 14 mixed -
bank-marketing 45211 2 16 mixed -

banknote 1372 2 4 continuous -
chess 28056 18 6 discrete 0.150

connect-4 67557 3 42 discrete 0.333
letRecog 20000 26 16 continuous -
magic04 19020 2 10 continuous -

tic-tac-toe 958 2 9 discrete 0.333
wine 178 3 13 continuous -

activity 10299 6 561 continuous -
dota2 102944 2 116 discrete 0.087

facebook 22470 4 4714 discrete 0.003
fashion 70000 4 784 continuous -

C Experimental Setting

Experiment Environment. We implement our model with PyTorch (Paszke et al., 2019), an open-
source machine learning framework. Experiments are conducted on a Linux server with an Intel
Xeon E5 v4 CPU at 2.10GHz and one GeForce RTX 2080 Ti GPU.

Parameter Settings. The number of logical layers in RRL ranges from 1 to 3. The number of nodes
in logical layers ranges from 16 to 4096 depending on the number of binary features of the data
set and the model complexity we need. We use the cross-entropy loss during the training. The L2
regularization is adopted to restrict the model complexity, and the coefficient of the regularization

2https://archive.ics.uci.edu/ml/datasets/Adult
3http://archive.ics.uci.edu/ml/datasets/Bank+Marketing
4https://archive.ics.uci.edu/ml/datasets/banknote+authentication
5https://archive.ics.uci.edu/ml/datasets/Chess+%28King-Rook+vs.+King%29
6http://archive.ics.uci.edu/ml/datasets/connect-4
7https://archive.ics.uci.edu/ml/datasets/Letter+Recognition
8https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope
9https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

10https://archive.ics.uci.edu/ml/datasets/wine
11https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+

smartphones
12https://archive.ics.uci.edu/ml/datasets/Dota2+Games+Results
13https://archive.ics.uci.edu/ml/datasets/Facebook+Large+Page-Page+Network
14https://github.com/zalandoresearch/fashion-mnist
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term in the loss function is in {10−2, 10−3, . . . , 10−8, 0}. The numbers of the lower and upper
bounds in the binarization layer are both in {5, 10, 50}. We utilize the Adam (Kingma and Ba,
2014) method for the training process with a mini-batch size of 32. The initial learning rate is in
{5× 10−3, 2× 10−3, 1× 10−3, 5× 10−4, 2× 10−4, 1× 10−4}. On small data sets, RRL is trained
for 400 epochs, and we decay the learning rate by a factor of 0.75 every 100 epochs. On large data
sets, RRL is trained for 100 epochs, and we decay the learning rate by a factor of 0.75 every 20
epochs. We use the derivative estimation trick mentioned in Section 3.1 for RRL trained on large
data sets. When parameter tuning is required, 95% of the training set is used for training and 5% for
validation.

We use validation sets to tune hyperparameters of all the baselines mentioned in Section 4.2. We use
sklearn to implement LR, and use the L1 or L2 norm in the penalization. The liblinear is used as the
solver. The tolerance for stopping criteria is in {10−3, 10−4, 10−5}. The inverse of regularization
strength is in {1, 4, 16, 32}. For decision tree, its max depth is in {None, 5, 10, 20}. The min number
of samples required to split an internal node is in {2, 8, 16}, and the min number of samples required
to be at a leaf node is in {1, 8, 16}. For SBRL, its λ is set to 5 initially, and the min and max rule
sizes are set at 1 and 3, respectively. η is set to 1, and the numbers of iterations and chains are set to
5000 and 20, respectively. The minsupport_pos and minsupport_neg are set to keep the total number
of rules close to 300. For CORELS, the regularization parameter is in {0, 10−2, 10−3, 10−4, 10−5},
and the maximum number of rule lists to search is in {104, 105, 106, 107}. The maximum cardinality
allowed is set to 2 or 3, and the min support rate is in {0.005, 0.01, 0.025, 0.05}. For CRS and PLNN,
the candidate sets of learning rate, learning rate decay rate, batch size, model structure (depth and
width), and coefficient of the regularization term in the loss function are the same as RRL’s. The
random binarization rate of CRS is in {0, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}. For SVM, the linear, RBF
and Ploy kernels are used. The tolerance for stopping criteria is in {10−3, 10−4, 10−5}. The inverse
of regularization strength is in {1, 4, 16, 32}. The kernel coefficient is set to the reciprocal of the
number of features. For Random Forest, its min number of samples required to split an internal node
and the min number of samples required to be at a leaf node are the same as the decision tree’s. We
use LightGBM and XGBoost to implement Gradient Boosted Decision Tree (GBDT). The learning
rate of GBDT is in {0.1, 0.01, 0.001}, and the max depth of one tree is in {None, 5, 10, 20}. The
number of estimators in ensemble models is in {10, 100, 500}. For baselines that can not directly
deal with the continuous value inputs, we use the recursive minimal entropy partitioning algorithm or
the KBinsDiscretizer implemented by sklearn to discretize the inputs first. Grid search is also used
for the parameter tuning.

D Vanishing Gradient Problem

The partial derivative of each node in Ŝ(l) w.r.t. its directly connected weights and w.r.t. its directly
connected nodes are given by:

∂ŝ
(l)
i

∂Ŵ
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Similar to the analysis of Equation 4, due to û
(l−1)
k and Ŵ (l,1)

i,k are in the range [0, 1], the values of
(1− Fd(·)) in Equation 8 and 9 are in the range [0, 1] as well. If nl−1 is large and most of the values
of (1− Fd(·)) are not 1, then the derivative is close to 0 because of the multiplications. Therefore,
both the conjunction function and the disjunction function suffer from vanishing gradient problem.

If the large data set is very sparse and the number of 1 in each binary feature vector (for RRL the
binary feature vector is u(0)) is less than about one hundred, there will be no vanishing gradient
problem for nodes in Ŝ(1). The reason is when the number of 1 in each feature vector is less than
about one hundred, in Equation 8 and 9, most of the values of (1− Fd(·)) are 1, and only less than
one hundred values of (1 − Fd(·)) are not 1, then the result of the multiplication is not very close
to 0. The facebook data set is an example of this case. However, if the number of 1 in each binary
feature vector is more than about one hundred, the vanishing gradient problem comes again.
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E Gradients at Discrete Points

The gradients of RRL with original logical activation functions at discrete points can be obtained by
Equation 4, 8 and 9. Take Equation 8 as an example, discrete points mean all the weights of logical
layers are 0 or 1, which also means the values of all the nodes in Û (l) are 0 or 1, l ∈ {0, 1, . . . , L−1}.
Hence, in Equation 8, û(l−1)

j , (1−Fd(·)) ∈ {0, 1}, and the whole equation is actually multiplications

of several 0 and several 1. Only when û
(l−1)
j and (1− Fd(·)) are all 1, the derivative in Equation 8 is

1, otherwise, the derivative is 0. Therefore, the gradients at discrete points have no useful information
in most cases. The analyses of Equation 4 and 9 are similar.

To analyze the gradients of RRL with improved logical activation functions at discrete points, we first
calculate the partial derivative of each node w.r.t. its directly connected weights and w.r.t. its directly
connected nodes:

∂r̂
(l)
i

∂Ŵ
(l,0)
i,j

=
(r̂

(l)
i )2

Fc(û
(l−1)
j , Ŵ

(l,0)
i,j ) + ε

· (û(l−1)
j − 1) (10)

∂r̂
(l)
i

∂û
(l−1)
j

=
(r̂

(l)
i )2

Fc(û
(l−1)
j , Ŵ

(l,0)
i,j ) + ε

· Ŵ (l,0)
i,j (11)

∂ŝ
(l)
i

∂Ŵ
(l,1)
i,j

=
(1− ŝ

(l)
i )2

1− Fd(û
(l−1)
j , Ŵ

(l,1)
i,j ) + ε

· û(l−1)
j (12)

∂ŝ
(l)
i

∂û
(l−1)
j

=
(1− ŝ

(l)
i )2

1− Fd(û
(l−1)
j , Ŵ

(l,1)
i,j ) + ε

· Ŵ (l,1)
i,j (13)

Take Equation 10 for example, when all the weights of logical layers are 0 or 1, the r̂
(l)
i , Fc(·) + ε

and (û
(l−1)
j − 1) are all very close to 0 or 1 as well. For the initialized weights are randomly selected,

r̂
(l)
i is close to 0 in most cases. Hence, the derivative in Equation 10 is close to 0 in most cases, and

the analyses of Equation 11, 12 and 13 are similar. Therefore, the gradients at discrete points have
little useful information.

F Computation Time

The computation time of RRL is similar to neural networks like Multilayer Perceptrons (MLP) for
their computations are quite similar. The training time of RRL (in Table 1) on all the datasets (400
epochs on the small datasets and 100 epochs on the large datasets) with one GeForce RTX 2080 Ti is
shown in Table 3. We can see that the training time of RRL is acceptable on all the datasets, which
also verifies the good scalability of RRL.

Table 3: Training time of RRL on nine small and four large datasets.

Dataset adult bank-marketing banknote chess connect-4 letRecog

Time 1h22m55s 1h3m41s 7m45s 29m40s 2h20m41s 2h16m24s

Dataset magic04 tic-tac-toe wine activity dota facebook fashion

Time 3h22m37s 1m12s 16s 1h2m24s 1h58m42s 2h27m23s 7h32m52s

G Average Rule Length

The average length of rules in RRL (in Table 1) trained on different datasets is shown in Table 4. We
can observe that, except for the facebook and fashion datasets, the average length of rules is less than
13 (most are less than 7), which means understanding one rule is easy and understanding the rules
one by one in the order of weights is feasible. The average length of rules of RRL trained on the
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facebook and fashion datasets is large for facebook and fashion are actually two unstructured datasets,
e.g., the fashion dataset is an image classification dataset.

Table 4: Average rule length of RRL trained on nine small and four large datasets.

Dataset adult bank-marketing banknote chess connect-4 letRecog

AvgLength 5.71 3.78 3.56 7.03 12.44 5.91

Dataset magic04 tic-tac-toe wine activity dota facebook fashion

AvgLength 5.05 2.88 2.11 6.67 4.37 38.28 34.53

H Classification Performance

Table 5: 5-fold cross validated accuracy (%) of comparing models on all 13 datasets. ∗ represents
that RRL significantly outperforms all the compared interpretable models (t-test with p < 0.01). The
first seven models are interpretable models, while the last five are complex models.

Dataset RRL C4.5 CART SBRL CORELS CRS LR SVM PLNN(MLP) RF LightGBM XGBoost

adult 85.73 85.28 85.19 84.83 79.98 85.71 85.25 79.78 85.71 85.57 85.96 86.13
bank-marketing 90.63 89.93 89.83 90.38 88.30 90.11 90.13 88.31 90.54 90.68 90.76 90.91

banknote 100.00∗ 98.61 98.03 93.95 97.08 93.46 98.83 100.00 100.00 99.56 99.64 99.56
chess 82.02 79.20 78.67 29.37 32.39 82.38 36.07 82.17 77.05 75.14 84.93 85.40

connect-4 86.96∗ 76.32 76.38 62.80 64.93 79.05 75.74 83.65 85.39 83.10 85.53 86.47
letRecog 95.59∗ 88.18 87.51 62.88 58.48 83.13 72.31 94.92 92.48 96.54 96.86 96.45
magic04 87.52∗ 84.77 83.72 83.58 79.09 83.81 79.02 82.68 86.49 88.20 88.46 88.62

tic-tac-toe 100.00 94.26 93.32 98.85 98.75 99.06 98.33 98.33 98.12 98.75 99.90 99.27
wine 97.76 93.83 90.46 92.70 94.52 97.22 95.54 91.03 90.52 97.78 96.08 96.06

activity 97.96 94.08 93.31 18.25 61.04 17.33 98.33 98.29 98.28 97.92 99.37 99.26
dota2 59.87 52.92 52.73 51.91 53.02 55.95 59.46 59.57 55.27 58.20 58.80 59.35

facebook 90.53∗ 82.59 82.90 49.72 41.27 28.91 89.44 88.46 90.00 88.32 86.85 88.00
fashion 89.22∗ 80.68 79.43 54.57 49.14 67.71 84.78 89.34 89.29 88.53 91.35 90.71

AvgRank 2.92 8.15 9.23 9.92 10.23 7.62 7.23 6.15 5.62 5.08 2.77 2.77

I Case Study

Although RRL is not designed for image classification tasks, due to its high scalability, it can still
provide intuition by visualizations. Take the fashion dataset for example, for each class, we combine
the first ten rules, ordered by linear layer weights, for feature (pixel) visualization. In Figure 5, a
black/white pixel indicates the combined rule asks for a color close to black/white here in the original
input image, and the grey pixel means no requirement in the rule. According to these figures, we can
see how RRL classifies the images, e.g., distinguishing T-shirt from Pullover by sleeves.

Figure 5: Decision mode for the fashion data set summarized from rules of RRL.

J Model Complexity

Figure 6 shows the scatter plots of F1 score against log(#edges) for rule-based models trained on
the other ten data sets. For RRL, the legend markers and error bars indicate means and standard
deviations, respectively, of F1 score and log(#edges) across cross-validation folds. For baseline
models, each point represents an evaluation of one model, on one fold, with one parameter setting.
The value in CART(·), e.g., CART(0.03), denotes the complexity parameter used for Minimal Cost-
Complexity Pruning (Breiman, 2017), and a higher value corresponds to a simpler tree. We also
show the results of XGBoost with 10 and 100 estimators. On these ten data sets, we can still observe
that if we connect the results of RRL, it will become a boundary that separating the upper left corner
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Figure 6: Scatter plot of F1 score against log(#edges) for RRL and baselines on ten datasets.

from other models. In other words, if RRL has a close model complexity with one baseline, then the
F1 score of RRL will be higher, or if the F1 score of RRL is close to one baseline, then its model
complexity will be lower. It indicates that RRL can make better use of rules than rule-based models
using heuristic and ensemble methods in most cases.
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