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Abstract

One has measured fΩb
B(Ω−

b → Ω−J/Ψ) at the level of 10−6, where the fragmentation faction

fΩb
is to evaluate the b-quark to Ω−

b production rate. Using the Ωb → Ω transition form factors

calculated in the light-front quark model, we predict B(Ω−
b → Ω−J/Ψ) = (5.3+3.3+3.8

−2.1−2.7) × 10−4. In

particular, we extract fΩb
= (0.54+0.34+0.39+0.21

−0.22−0.28−0.15)×10−2, demonstrating that the b to Ωb productions

are much more difficult than the b to Λb(Ξb) ones. Since fΩb
has not been determined experimen-

tally, fΩb
added to theoretical branching fractions can be compared to future measurements of the

Ωb decays.
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I. INTRODUCTION

The anti-triplet b-baryons (Λb,Ξ
0
b ,Ξ

−
b ) and Ω−

b all decay weakly [1], where Ωb belongs to

the sextet b-baryon states. Interestingly, only Ωb is allowed to have a direct transition to

B∗ in the weak interaction, where B∗ stands for a spin-3/2 decuplet baryon. This is due

to the fact that Ωb and B∗ both have totally symmetric quark orderings. By contrast, the

anti-triplet baryon Bb consisting of (q1q2 − q2q1)b mismatches B∗ with (q1q2 + q2q1)q3 in the

Bb to B∗ transition. Clearly, the Ωb decay into B∗ worths an investigation.

One has barely measured the Ωb decays. Moreover, the fragmentation fraction fBb(Ωb) that

evaluates the b-quark to Bb(Ωb) production rate has not been determined yet. Consequently,

the charmful Ωb decay channel Ω−
b → Ω−J/Ψ can only be partially measured. In addition

to Λb → ΛJ/ψ and Ξ−
b → Ξ−J/ψ, the partial branching fractions are given by [1]

fΩb
B(Ω−

b → Ω−J/Ψ) = (2.9+1.1
−0.8)× 10−6 ,

fΛb
B(Λb → ΛJ/ψ) = (5.8± 0.8)× 10−5 ,

fΞb
B(Ξ−

b → Ξ−J/ψ) = (1.02+0.26
−0.21)× 10−5 , (1)

where fΞb
= f

Ξ
−(0)
b

. Some theoretical attempts have been given to extract fBb(Ωb) [2–4].

Using the calculations of B(Λb → ΛJ/ψ) and B(Ξ−
b → Ξ−J/ψ) [2, 3], one extracts fΛb

and

fΞb
as some certain numbers. Without a careful study of Ω−

b → Ω−J/Ψ [2, 3], it is roughly

estimated that fΩb
< 0.108. Therefore, it can be an important task to explore the charmful

Ω−
b → Ω−J/Ψ decay.

See Fig. 1, Ω−
b → Ω−J/Ψ is depicted to proceed through the Ω−

b → Ω− transition, while

J/Ψ is produced from the internal W -boson emission. To calculate the branching fraction,

the information of the Ωb → Ω transition is required. On the other hand, the light-front

quark model has provided its calculation on the Ωc → Ω transition form factors, such that

one interprets the relative branching fractions of Ω0
c → Ω−ρ+ and Ω0

c → Ω−ℓ+ν̄ℓ to that

of Ω−π+ [5]. Therefore, we propose to calculate the Ω−
b → Ω− transition form factors in

the light-front formalism, as applied to the Ωc decays as well as the other heavy hadron

decays [6–24]. We will be able to predict B(Ω−
b → Ω−J/Ψ), and extract fΩb

. Besides, we

will compare the branching fractions of Ω−
b → Ω−J/Ψ, Λb → ΛJ/ψ and Ξ−

b → Ξ−J/ψ, and

their fragmentation fractions.
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FIG. 1. Feynman diagram for Ω−
b → Ω−J/Ψ.

II. FORMALISM

According to Fig. 1, the amplitude of Ω−
b → Ω−J/Ψ combines the matrix elements of the

Ω−
b → Ω− transition and J/Ψ production, written as [2, 3]

M(Ω−
b → Ω−J/Ψ) =

GF√
2
VcbV

∗
csa2 〈J/ψ|c̄γµ(1− γ5)c|0〉〈Ω−|s̄γµ(1− γ5)b|Ω−

b 〉 , (2)

where GF is the Fermi constant, and V
(∗)
cb(s) the Cabibbo-Kobayashi-Maskawa (CKM) matrix

element. The factorization derives that a2 = ceff2 + ceff1 /Nc, where c
eff
1,2 are the effective

Wilson coefficients, and Nc the color number [25, 26]. For the J/Ψ production, the matrix

elements read [27]

〈J/ψ|c̄γµ(1− γ5)c|0〉 = mJ/ψfJ/ψε
∗
µ , (3)

where mJ/ψ, fJ/ψ and ε∗µ are the mass, decay constant and polarization four-vector, re-

spectively. The matrix elements of the Ω−
b (bss) → Ω−(sss) transition are parameterized

as [21, 28]

〈T µ〉 ≡ 〈Ω(sss)|s̄γµ(1− γ5)b|Ωb(bss)〉

= ūα

[

P α

M

(

γµF V
1 +

P µ

M
F V
2 +

P ′µ

M ′
F V
3

)

+ gαµF V
4

]

γ5u

−ūα
[

P α

M

(

γµFA
1 +

P µ

M
FA
2 +

P ′µ

M ′
FA
3

)

+ gαµFA
4

]

u , (4)

where M (′) and P (′) represent the mass and momentum of Ωb(Ω), respectively, and F V,A
i

(i = 1, 2, .., 4) are the form factors. By substituting the matrix elements of Eqs. (3, 4) for

those of Eq. (2), we derive the amplitude in the helicity basis [28],

M = cW
∑

λΩ,λJ

(HV
λΩλJ

−HA
λΩλJ

) , (5)
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where cW ≡ (GF/
√
2)VcbV

∗
cs a2mJ/ψfJ/ψ, and λΩ = (±3/2,±1/2) and λJ = (0,±1) denote

the helicity states of Ω and J/Ψ, respectively. Due to the helicity conservation, λΩb
= λΩ−λJ

should be respected, where λΩb
= ±1/2. Subsequently, we obtain [28]

H
V (A)
1
2
0

=

√

√

√

√

2

3

Q2
∓

q2



F
V (A)
1

(

Q2
±M∓

2MM ′

)

∓
(

F
V (A)
2 + F

V (A)
3

M

M ′

)





|~P ′|2
M ′



∓ F
V (A)
4 M̄ ′

−



 ,

H
V (A)
1
2
1

= −
√

Q2
∓

3

[

F
V (A)
1

(

Q2
±

MM ′

)

− F
V (A)
4

]

,

H
V (A)
3
2
1

= ∓
√

Q2
∓ F

V (A)
4 , (6)

and H
V (A)
−λΩ−λJ

= ∓HV (A)
λΩλf

, with M± =M ±M ′, Q2
± =M2

±− q2, M̄ (′)
± = (M+M−± q2)/(2M (′))

and |~P ′| =
√

Q2
+Q

2
−/(2M).

In the light-front quark model, we can calculate the form factors. To start with, we

consider the baryon as a bound state that consists of three quarks q1, q2 and q3, where q2,3

are combined as a diquark, denoted by q[2,3]. Explicitly, the baryon bound state can be

written as [9]

|B(P, S, Sz)〉 =
∫

{d3p1}{d3p2}

×2(2π)3δ3(P̃ − p̃1 − p̃2)
∑

λ1,λ2

ΨSSz(p̃1, p̃2, λ1, λ2)|q1(p1, λ1)q[2,3](p2, λ2)〉 , (7)

where pi and λi stand for the momentum and helicity state, respectively, and ΨSSz(p̃1, p̃2, λ1, λ2)

is the momentum-space wave function. In the light-front frame, one defines P = (P−, P+, P⊥)

with P± = P 0 ± P 3 and P⊥ = (P 1, P 2), and pi = (p−i , p
+
i , pi⊥) with p±i = p0i ± p3i

and pi⊥ = (p1i , p
2
i ), together with P̃ = (P+, P⊥) and p̃i = (p+i , pi⊥), which result in

P+P− = M2 + P 2
⊥ and p+i p

−
i = m2

i + p2i⊥ with (m1, m2) = (mq1, mq2 + mq3). Moreover,

P and pi are related as P+ = p+1 + p+2 and P⊥ = p1⊥ + p2⊥, where

p+1 = (1− x)P+ , p+2 = xP+ ,

p1⊥ = (1− x)P⊥ − k⊥ , p2⊥ = xP⊥ + k⊥ , (8)

with k⊥ from ~k = (k⊥, kz) the relative momentum. By means of ei ≡
√

m2
i + ~k2 the energy

of the (di)quark and M0 ≡ e1 + e2, the above parameters can be rewritten as

(x, 1− x) = (e2 − kz, e1 + kz)/(e1 + e2) , kz =
xM0

2
− m2

2 + k2⊥
2xM0

. (9)

In addition, we obtain M2
0 = (m2

1 + k2⊥)/(1 − x) + (m2
2 + k2⊥)/x. We also get (P̄µγ

µ −
M0)u(P̄ , Sz) = 0 with P̄ ≡ p1 + p2, where p1,2 describe the internal motions of the internal
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quarks. Under the Melosh transformation [7], we derive ΨSSz as [19–22]

ΨSSz(p̃1, p̃2, λ1, λ2) =

√

C

2(p1 · P̄ +m1M0)
ū(p1, λ1)Γu(P̄ , Sz)φ(x, k⊥) , (10)

where Γ = ΓS(Γ
(α)
A ) represents the vertex function for the scalar (axial-vector) quantity of

the diquark, given by [19–22]

ΓS = 1 ,

ΓA = − 1√
3
γ5ǫ/

∗(p2, λ2) , Γ
α
A = ǫ∗α(p2, λ2) . (11)

Moreover, the parameter C for (ΓS(A),Γ
α
A) is given by

C =
(

3(m1M0 + p1 · P̄ )
3m1M0 + p1 · P̄ + 2(p1 · p2)(p2 · P̄ )/m2

2

,
3m2

2M
2
0

2m2
2M

2
0 + (p2 · P̄ )2

)

. (12)

In Eq. (10), φ(x, k⊥) is the wave function that illustrates the momentum distribution of the

constituent quark-diquark states. Here, we present φ(x, k⊥) in the Gaussian form [5, 6, 19–

23]:

φ(x, k⊥) = 4

(

π

β2

)3/4√
e1e2

x(1− x)M0

exp





−~k2
2β2



 , (13)

with β ≡ βb[ss](βs[ss]) to shape the momentum distribution of the b-[ss] (s-[ss]) system in

the Ωb (Ω) bound state.

Using the bound states of |Ωb(P, S, Sz)〉 and |Ω(P,′ S ′, S ′
z)〉 in Eq. (7) and the above

identities, we derive the matrix elements of the Ωb → Ω transition in the light-front frame,

given by [21]

〈T̄ µ〉 ≡ 〈Ω(P ′, S ′ = 3/2, S ′
z)|s̄γµ(1− γ5)b|Ωb(P, S = 1/2, Sz)〉

=
∫

{d3p2}Ĉ−1/2φ′(x′, k′⊥)φ(x, k⊥)

×
∑

λ2

ūα(P̄
′, S ′

z)
[

Γ̄ ′α
A (p/′1 +m′

1)γ
µ(1− γ5)(p/1 +m1)ΓA

]

u(P̄ , Sz) , (14)

where m
(′)
1 = mb(s), Γ̄ = γ0Γ†γ0 and Ĉ = 4p+1 p

′+
1 (p1 · P̄ +m1M0)(p

′
1 · P̄ ′ +m′

1M
′
0).

To determine F V,A
i , the identities Jµ(5) ≡ ūΓµβ(γ5)uβ and J̄µ(5) ≡ ūΓ̄µβ(γ5)uβ can be useful,

where Γµβ = (γµP β, P ′µP β, P µP β, gµβ) and Γ̄µβ = (γµP̄ β, P̄ ′µP̄ β, P̄ µP̄ β, gµβ). We can hence

perform the following calculations [5, 21],

J5 · 〈T 〉 = Tr
{

uβūα

[

P α

M

(

γµF V
1 +

P µ

M
F V
2 +

P ′µ

M ′
F V
3

)

+ gαµF V
4

]

γ5ūΓ
β
µγ5

}

,

J̄5 · 〈T̄ 〉 =
∫

{d3p2}Ĉ−1/2φ′(x′, k′⊥)φ(x, k⊥)

×
∑

λ2

Tr
{

uβūα
[

Γ̄ ′α
A (p/′1 +m′

1)γ
µ(p/1 +m1)ΓA

]

uΓ̄βµγ5

}

. (15)
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By connecting J5 · 〈T 〉 to J̄5 · 〈T̄ 〉, that is, J5 · 〈T 〉 = J̄5 · 〈T̄ 〉, F V
i in J5 · 〈T 〉 can be extracted

with J̄5 · 〈T̄ 〉 in the light-front quark model, as the other extractions of the Bb(c) → B(∗)

transition form factors [5, 6, 19–23]. Similarly, J · 〈T 〉 = J̄ · 〈T̄ 〉 enables us to get FA
i . We

will present our results in the next section.

III. NUMERICAL ANALYSIS

For the numerical analysis, the CKM matrix elements and the mass (decay constant) of

the J/Ψ meson state are given by [1]

(Vcb, Vcs) = (Aλ2, 1− λ2/2) ,

(mJ/Ψ, fJ/Ψ) = (3.097, 0.418) GeV , (16)

with λ = 0.2265 and A = 0.790 in the Wolfenstein parameterization. The effective Wilson

coefficients (ceff1 , ceff2 ) = (1.168,−0.365) come from Refs. [25, 26]. In the generalized version

of the factorization approach, Nc is taken as a floating number, in order that the non-

factorizable effects from QCD corrections can be estimated. By adopting Nc = 2.15± 0.17

in [2, 3], we obtain a2 = 0.18+0.05
−0.04, which has been used to interpret B(Λb → ΛJ/ψ) and

B(Ξ−
b → Ξ−J/ψ).

In terms of J5 · 〈T 〉 = J̄5 · 〈T̄ 〉 and J · 〈T 〉 = J̄ · 〈T̄ 〉 and the theoretical inputs in Eqs. (13,

14, 15), given by [23]

(mb, βb[ss]) = (5.00± 0.20, 0.78± 0.04) GeV ,

(ms, βs[ss]) = (0.38, 0.48) GeV , (17)

we derive F
V (A)
i as the functions of q2, depicted in Fig. 2. It is common that one parameter-

izes the form factors in the dipole expressions [16, 17, 24], which reproduce the momentum

dependences derived in the quark model. Subsequently, the form factors can have simple

forms to be used in the weak decays. In our case, we present [5, 6]

F (q2) =
F (0)

1− a (q2/m2
F ) + b (q4/m4

F )
, (18)

with mF , a, b and F (0) at q2 = 0 given in Table I, in order to describe the momentum

behaviors of F V,A
i in Fig. 2.
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FIG. 2. F
V (A)
i versus q2 (i = 1, 2, 3, 4).

Thus, we calculate the branching fraction and fragmentation fraction as

B(Ω−
b → Ω−J/Ψ) = (5.3+3.3+3.8

−2.1−2.7)× 10−4 ,

fΩb
= (0.54+0.34+0.39+0.21

−0.22−0.28−0.15)× 10−2 , (19)

where fΩb
is extracted with B(Ω−

b → Ω−J/Ψ) and the data in Eq. (1). Moreover, the first

and second uncertainties come from a2 and F V,A
i , respectively, and the third one for fΩb

is

from the measurement.

IV. DISCUSSIONS AND CONCLUSIONS

Because of the insufficient information on the Ωb → B∗ transition, the Ωb decays have not

been richly explored. In the light-front quark model, we calculate the Ωb → Ω transition form

factors. We can hence predict B(Ωb → ΩJ/Ψ) = (5.3+3.3+3.8
−2.1−2.7) × 10−4, which is compatible

with those of the anti-triplet b-baryon decays B(Λb → ΛJ/Ψ) = (3.3 ± 2.0) × 10−4 and

TABLE I. The Ωb → Ω transition form factors with (F (0), a, b) in Eq. (18), where mF = 6.05 GeV

is from mΩb
. The uncertainties come from mb and βb[ss] in Eq. (17).

F (0) a b

F V
1 0.371+0.045

−0.042 −2.22 2.37

F V
2 −0.104+0.022

−0.025 −3.19 4.69

F V
3 0.040+0.042

−0.035 4.11 11.38

F V
4 0.692+0.054

−0.051 −2.05 1.91

F (0) a b

FA
1 0.329+0.121

−0.110 −1.93 2.73

FA
2 −0.081+0.022

−0.020 −3.31 4.36

FA
3 −0.064+0.130

−0.140 −3.16 0.77

FA
4 −0.416+0.092

−0.082 −1.89 0.99
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B(Ξ−
b → Ξ−J/Ψ) = (5.1±3.2)×10−4 [2, 3]. On the other hand, B(Ωb → ΩJ/Ψ) = 8.1×10−4

is given by the authors of Ref. [28]. In addition, the total decay width Γ(Ωb → ΩJ/Ψ) =

3.15a22 × 1010 s−1 [29] leads to B(Ωb → ΩJ/Ψ) = 16.7× 10−4, where we have used a2 = 0.18

for the demonstration.

In the helicity basis, the branching fraction is given by

B ∝ (|HV |2 + |HA|2) , (20)

where |HV (A)|2 ≡ |HV (A)
3
2
1

|2+|HV (A)
1
2
1

|2+|HV (A)
1
2
0

|2. It is found that (|HV |2, |HA|2) give (19,81)%
of B; besides, (|HA

3
2
1
|2, |HA

1
2
1
|2, |HA

1
2
0
|2)/|HA|2 = (54.0, 22.4, 23.6)%, such that FA

4 gives the

main contribution to B(Ωb → ΩJ/Ψ).

In Eq. (19), fΩb
= 0.54 × 10−2 agrees with the previous upper limit of 0.108 [2]. By

comparing our extraction to fΛb
= 0.175±0.106 and fΞb

= 0.019±0.013 [2], it demonstrates

that the b to Ωb productions are much more difficult than the b to Bb ones. Since the

fragmentation fraction has not been determined experimentally, the branching fractions of

the Ωb decays should be partially measured with the factor fΩb
. Therefore, our extraction for

fΩb
can be useful. With fΩb

of Eq. (19) added to the branching fractions, one can compare

his theoretical results to future measurements of the Ωb decays.

In summary, we have investigated the charmful Ωb decay channel Ω−
b → Ω−J/Ψ. In

the light-front quark model, we have studied the Ωb → Ω transition form factors (F V
i , F

A
i )

(i = 1, 2, ..., 4). We have hence predicted B(Ω−
b → Ω−J/Ψ) = (5.3+3.3+3.8

−2.1−2.7)× 10−4, which is

compatible with those of the Λb → ΛJ/Ψ and Ξ−
b → Ξ−J/Ψ decays. In addition, FA

4

has been found to give the main contribution. Particularly, we have extracted fΩb
=

(0.54+0.34+0.39+0.21
−0.22−0.28−0.15) × 10−2 from the partial observation fΩb

B(Ω−
b → Ω−J/Ψ) = (2.9+1.1

−0.8) ×
10−6. Since fΩb

has not been determined experimentally, by adding fΩb
to the branching

fractions, one is allowed to compare his calculations to future observations of the Ωb decays.
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