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Abstract

Model building in SO(10), which is the leading grand unification framework, often involves large Higgs
representations and their couplings. Explicit calculations of such couplings is a multi-step process that
involves laborious calculations that are time-consuming and error-prone, an issue which only grows as the
complexity of the coupling increases. Therefore, there exists an opportunity to leverage the abilities of
computer software in order to algorithmically perform these calculations on-demand. This paper outlines
the details of such a software, implemented in C++ using in-built libraries. The software is capable of
accepting invariant couplings involving an arbitrary number of SO(10) Higgs tensors, each having up
to 5 indices. The output is then produced in LATEX, so that it is universally readable and sufficiently
expressive. Through the use of this software, SO(10) coupling analysis can be performed in a way that
minimizes calculation time, eliminates errors, and allows for experimentation with couplings that have
not been computed before in the literature. Furthermore, this software can be expanded in the future
to account for similar Higgs-Spinor coupling analysis, or extended to include further SO(N) invariant
couplings.
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1 Introduction

The Standard Model of particle physics, including the strong and electroweak interactions comprising on the group
SU(3)C × SU(2)L × U(1)Y, is highly successful [1, 2, 3, 4, 5]. One of the important challenges for particle physicists is
to determine the underlying scheme where these forces are all unified. The aim of grand unified theories is three-fold:
(1) to accomplish these unifications; (2) to provide an understanding of the three generations of quarks and leptons;
(3) to provide an explanation of the hierarchy of their masses and of other properties. A more ambitious goal is to
extend these ideas to encompass gravity, which requires the framework of superstring theory.

Grand unified models based on the gauge group SO(10) [6, 7] have the most desirable features. They provide
a framework for the unification of electroweak and strong interactions. They also allow for all the quarks and
leptons of one generation to reside in a single 16−plet irreducible spinor representation. Additionally, this complex
representation contains a right-handed singlet state, needed for the generation of neutrino masses via the seesaw
mechanism. SO(10) models also solve - in a relatively natural way - the doublet-triplet splitting problem without fine
tuning. Next, they possess gauge interactions that conserve parity. SO(10) are aslo free from all gauge anomalies.
Supersymmetric SO(10) models have the additional feature that they manage to unify the gauge couplings, and solve
the hierarchy problem.

The Higgs sector of SO(10) models is largely unconstrained consisting of numerous possible representations. An
avenue to the computation of the SO(10) couplings is via the decomposition of these in terms of SU(5)×U(1) invariant
couplings and then the further decomposition of them in terms of the SU(3)C × SU(2)L × U(1)Y invariant couplings.
The formalism to accomplish this was carried out in [8, 9, 10, 11]. However, the explicit analyses of the couplings can be
laborious and time consuming. For instance the complexity of computation involving large Higgs representations can
be seen in the works of [12, 13, 14]. Thus various models employ elaborate Higgs representations to break the SO(10)
grand unified theory (GUT) symmetry down to the Standard Model (SM) gauge group SU(3)C × SU(2)L × U(1)Y.
These consist of both small and large Higgs representations of SO(10) such as 10, 16+16, 45, 54, 120, 126+126, 144+
144, 210 and 560 + 560. This enormous freedom of choosing symmetry breaking patterns allows one to construct
SO(10) models with natural splitting of Higgs doublets and Higgs triplets to accomplish electroweak symmetry
breaking [12, 13, 14, 15] and models with a one-scale breaking of SO(10) GUT symmetry [16, 17, 18, 19, 20]. However,
there are restrictions on the Higgs content of a GUT model, such as the strict proton decay limits [21, 22]. There are
two commonly used symmetry breaking paths: one through the SU(5)×U(1) maximal subgroup [8, 9, 10, 11, 23, 24]
and the other through the SU(4)× SU(2)L × SU(2)R maximal subgroup [25, 26].

The Higgs-Higgs interactions, appearing in supersymmetric and non-supersymmetric SO(10) models, are necessary
to break the GUT and electroweak symmetries. Additionally, a thorough study of higher dimensional operators arising
from three point, four point and higher Higgs-Higgs Interactions and matter-Higgs interactions is necessary to explore
physics beyond the SM. For example, from matter-Higgs interactions, a top-down approach [14] has been used to
find dimension five, seven and nine B − L = −2 operators within the supersymmetric SO(10) grand unification
framework. This is in stark contrast to the bottom-up approach that exists prominently in the literature. These
B − L violating operators are important in the investigation of seesaw neutrino masses, baryogenesis, proton decay
and n− n oscillations.

In this paper, we use the techniques (see appendix B.4) developed in [8, 9, 11] for the analysis of such SO(2N)
invariant interactions which allows a full exhibition of the SU(N) invariant content of tensor representations. In
particular, in this paper, we focus on the analytic determination of SO(10) tensor interactions in terms of irreducible
SU(5) fields. It would then be very straightforward to expand all the SU(5) invariants in terms of SM group invariants
using the particle assignments. We wish to point out that our approach here is field theoretic rather than group
theoretic [27, 28] or other technique [29, 30]. Our method is specially suited for the computation of SO(N) tensor
couplings.

Manually preforming such tensor calculations can be a time-consuming endeavor that can very easily lead to
errors. There are numerous intermediate calculations, each posing the risk of making an error, which may propagate
throughout, affecting the final result. Therefore, there exists a compelling argument to use computer software to
perform these calculations automatically, as proposed in this paper.

This C++ program allows users to perform Higgs-Higgs SO(10) coupling calculations rapidly and automatically,
reducing the time needed to complete them and eliminating calculation errors.

With this program, the user is able to enter a coupling via a simple text-based interface. Next, the user is provided
with the final normalized output, in a LATEXformat, which can easily be added to a user’s publication. Further, the
user is allowed to enter an arbitrary number of tensors in an SO(10) invariant and can name their indices and tensors
as needed. The maximum number of indices a single tensor can have is 5.
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Furthermore, to ensure the correctness of the algorithm when applied to couplings not previously attempted in the
literature, manual hand calculations were evaluated for certain terms and were successfully matched to the program
output.

This program can be easily extended to account for Higgs-Spinor couplings [32], as well as other SO(N) cou-
plings.

The code is available to download here.

There exists a variety of software packages for Lie algebra related computations used in grand unified models that
are based on various classical and exceptional groups. Here are some examples. LieART 2.0 [33] uses a Mathematica
library to perform various computations such as tensor product decomposition and subalgebra branching of irreducible
representations. SARAH 4 [34] also exploits a Mathematica library that carries out calculations used in the study
of supersymmetric and non-supersymmetric grand unified models, particularly, the full two-loop renormalization
group equations for a supersymmetric theory. CleGo [35] package uses OCaml programming language to determine
Clebsch–Gordan coefficients of irreducible tensor product representations of Lie algebras A − G. FeynRules 2.0
[36] is a Mathematica package that derives Feynman rules from the Lagrangian of the Standard Model, Minimal
Supersymmetric Standard model and their numerous extensions. These software packages rely extensively on standard
group theoretic methods and display different degrees of generality. As mentioned earlier, our C++ code uses the
more intuitive field theoretic formalism for the analytic decomposition of the SO(10) invariants of arbitrary order in
terms of SU(5) invariants exhibiting their precise tensorial structure and Clebsch–Gordan coefficients. Our computer
program is complementary to the existing software packages.

The paper is organized as follows. Section 2 contains a detailed breakdown of the computer algorithm to provide
readers with an overview of how the code is designed. Section 3 provides sample calculation output and Section 4
discusses the significance of our algorithm. To fully appreciate and understand the properties associated with the
SO(N) groups, we provide a thorough presentation of these groups in the appendices. Specifically, we discuss vector
and tensor representations of SO(N) group and aspects of SO(N) gauge theory in Appendix A. SO(2N) group algebra
in SU(N) basis, branching rules for SO(2N) into SU(N) × U(1) irreducible representations and its specialization to
SO(10) case are explained in Appendix B. We show explicitly the technique to decompose SO(2N) tensor invariants
in terms of SU(N) tensor invariants in Appendix B.4. This technique (The Basic Theorem) uses a unique set of
reducible SU(N) tensors in terms of which the SO(2N) invariants have a straight forward decomposition. The Basic
Theorem is specially useful for couplings involving large tensor representations and is central to the computation
of any SO(N) invariant couplings. SO(10) tensors expressed in terms of SU(5) irreducible tensors with canonically
normalized kinetic energy terms are exhibited in Appendix B.5. In Appendix B.6, we identify SU(3)C×SU(2)L×U(1)Y
singlets, SU(2)L doublets and SU(3)C triplets in SU(5) fields.

2 Materials and Methods

The program evaluates tensor couplings from input to their final normalized form. Internally, it is executed through
various functions of the Product Resolver class, which stores all the intermediate terms during the calculation. It is
based on the algorithm developed in Appendix B.4.

In brief, first the user inputs the original tensor coupling. This coupling is expanded to all its unsimplified
reducible tensor terms. Then, all the reducible tensor terms are simplified by reordering the indices, accounting for
anti-symmetry, and renaming indices if valid. Next, each reducible tensor term is substituted for its corresponding
irreducible tensor expression. This expression is then expanded out fully. All Levi-Civita tensors are evaluated,
following which the expression is simplified using the Kronecker Deltas and further properties of irreducible tensors.
Then, all simplified irreducible tensor terms are further simplified by renaming if valid. Finally, these terms are
substituted for their related normalized tensor term expressions, and the final expression is determined, to be output
in LATEXformat. See Figure 1.

2.1 Input Phase

The user inputs a tensor coupling in the format“X {/i/j/k}Y {/i/j/k}...” where“X”and“Y”are labels for tensors and
“/i/j/k” are labels for index names. The input is parsed using the standard C++ regex library. A regex expression is
hard-coded to tokenize the tensors and the indices each. The Product Resolver class uses the following method:

void parseInput (std :: string input);
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Figure 1: Flowchart showing the breakdown of the computer algorithm to compute SO(10) tensor invariants.

2.2 Generation Phase

All the initial generated reducible tensor terms can be determined by the following pattern. If one were to take a
binary number where each binary digit corresponds to each unique index of the input tensor, and then increment the
binary number from 0 to 2n − 1 (where n is the number of unique indices), each binary number would correspond
to a generated term. A term can be developed by the rule where for each binary digit, the corresponding index in
that position will have its first occurrence barred if the binary digit is 1, or unbarred if it is 0. The function is as
follows:

void generateAllUnsimplifiedReducibleTensorTerms();

2.3 Simplification of Reducible Tensor Term Expression Phase

Now we have all the raw, generated reducible tensor terms, we may simplify them. This phase is based on the
idea of tensor terms having similar “structure”. Two terms have the same “structure” if, assuming they have the
same number of tensors, every tensor in every corresponding position has the same label and number of barred and
unbarred indices. Only once two tensor terms have the same “structure” can the possibility of a rename operation
leading to equality between them be considered. Currently, the generated tensor terms have their indices unordered,
with no grouping of barred and unbarred indices. So firstly, each reducible tensor term has its indices reordered,
accounting for anti-symmetry, by the below algorithm. The function is as follows:

void simplifyReducibleTensorTerms();

2.3.1 Reordering of Reducible Tensor Term Indices

The algorithm is a modified implementation of bubble sorting, accounting for grouping of barred/unbarred indices,
as well as anti-symmetry, acting on each Tensor. By the end, the tensors will have their barred indices grouped to the
left, and unbarred indices grouped to the right, with each group ordered in ascending order of index names.
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2.3.2 Sorting Tensor Terms

The tensor terms need to now be sorted in a uniform manner so that it becomes obvious to identify terms with the
same “structure”, as defined above. We require sorting to be done first by tensor labels (alphabetically), then by
number of indices, and then by number of barred indices

After sorting, the tensor terms are transferred to a separate container of simplified reducible tensor terms, checking
to see if an addition or rename operation can be done with any existing simplified term first. The rename operation
is detailed below

2.3.3 Renaming of Reducible Tensor Term Indices (Ignoring Commutativity)

Algorithm

The algorithm takes two tensor terms, an Attempt Term that we are will be manipulating and renaming, as well as
a Source Term, which will not be modified and is what the Attempt Term will be manipulated to match, if possible.
It outputs a Renamed Term if the operation was successful, that, once its indices are reordered, will be identical to
the Source Term (excluding coefficients, which are to be added). Also, the algorithm makes use of the concept of
“zones”, which are either unbarred or barred groups of indices in a tensor. Tensor terms with the same “structure”
will also have the same “zones”, and hence when deciding whether a rename operation is possible, we only have to
focus on mapping each “zone” of the Attempt Term to the Source Term.

The algorithm assumes the Source Term and Attempt Term have their indices grouped as barred/unbarred and
each group is ordered ascendingly, and that their tensors are sorted. The handling of commutativity, for tensor terms
that retain identical structure upon permutations, is not considered in this algorithm.

2.3.4 Renaming of Reducible Tensor Term Indices (Accounting for

Commutativity) Algorithm

This algorithm deals with the concept of “ambiguity” of tensor terms. This is a characteristic of a tensor term where
it is possible to permute the ordering of the tensors within the term (due to the commutativity of tensors) and still
retain identical “structure” (as defined above). This requires special consideration as the above Renaming Algorithm
focuses on trying to equate corresponding “zones” in the Source and Attempt Terms based on position, so when such
permutations are possible, the algorithm may fail to find a legal rename mapping for one arbitrary permutation while
it may have been possible in another.

Hence, we need to exhaust every single possible permutation of “ambiguous” tensor terms. Specifically, we deal
with the concept of “ambiguous zones”, which are groups of tensors within a tensor term that cause the “ambiguity”
property (there can be multiple “ambiguous zones” within a single tensor term)

Ambiguity Detection:

During the rename operation, if a Source Term (and hence it’s matching structure Attempt Term) is found to be
ambiguous, then we must generate all possible permutations of the ambiguous zones of the Attempt Term, attempt
to rename them to the Source Term, and if even 1 successful rename exists, that must be chosen and applied. Only
failing this do we conclude no possible rename exists. To generate all these permutations of the Attempt Term, we
first must locate all such zones.

Finding all ambiguous zone locations and sizes:

Once we have the locations and sizes of all ambiguous zones of a tensor, we can generate all the permutations
of the locations of all the ambiguous zones. This will be stored in a vector (the overall container) of vectors (for
each zone) of vectors (for each permutation) of integers (the locations). For uniformity, we will consider each zone’s
locations start from 0, and offset it with the actual location later.

Finding all permutations of the locations for all ambiguous zones:

Now, given this information, we can generate the tensor terms. However, we must consider the fact that for
tensor terms with multiple ambiguous zones, we must generate all combinations of all the possible permutations of
the ambiguous zones. For example, if a tensor term has 2 ambiguous zones, we must not permute the first zone and
exhaust all the permutations of the second zone. Once we have exhausted them, only then can we proceed with the
next permutation of the first zone, but again pause as we exhaust all the permutations of the second zone. This logic
is expanded to the general case in the algorithm below.
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Finding all permutations of the tensor terms for all ambiguous zones:

Now we permute the actual tensor terms in the locations to achieve all possible permutations to test out.

2.3.5 Simplification of Reducible Terms Algorithm

Now, we put all the algorithms together to simplify the raw, generated reducible tensor terms. The Product Resolver
class contains within itself a vector of the raw, unsimplified terms, as well as the simplified terms.

1. Reorder the indices of all terms, alphabetically.

2. Sort the tensors of all terms, as defined above.

3. Iterate over all unsimplified terms:

(a) Iterate over all simplified terms:

i. If the current unsimplified (Attempt Term) and simplified (Source Term) terms have the same struc-
ture, attempt to rename them.

ii. If the rename is successful, reorder the indices of the Re-named Term.

iii. Check if the Renamed Term is identical to the Source Term. (Theoretically, this must always be
true, as else the rename operation would not have been successful). If so, add the coefficient of the
Renamed Term into the Source Term. Break iteration over the simplified terms.

(b) If all simplified terms were iterated over with no successful matches, add the current unsimplified term
to the vector of simplified terms. (It could not be simplified with any existing simplified term).

4. Erase all simplified tensor terms with a coefficient of 0

By the end of this stage, we have a vector of all simplified, reducible tensor terms.

2.4 Reduction of Reducible Tensor Terms to Irreducible Tensor Terms Phase

In this phase, we will first substitute the simplified, reducible tensors with their corresponding (pre-determined)
expressions written in terms of irreducible tensors, Kronecker Deltas, and Levi-Civita tensors. We will then expand
out these expressions, expand the Levi-Civita tensors, and then simplify the expression using the properties of
Kronecker Deltas, Symmetric-Asymmetric irreducible tensors, and the ability to rename the indices of irreducible
tensors and add them.

This phase will make use of the Math Expression class, which resembles a typical algebraic expression, composed
of algebraic terms from the Math Expression Term class. The Math Expression Term will serve as a more complex
form of the Tensor Term class used in previous phases, as it now will contain various mathematical objects. There
are also self-explanatory classes for Deltas, Levi-Civitas, Irreducible Tensors, and Coefficients. The function is as
follows:

void fullyReduceTensorTerms();

2.4.1 Substitutions of Reducible Tensors for Expressions with Irreducible

Tensors Algorithm

1. Given the Source Reducible Tensor, find the number of indices it contains.

2. Based on the number of indices, choose the correct substitution sub-category

3. In the chosen substitution sub-category, given the Source Reducible Tensor, find the number of barred indices
it contains

4. Based on the number of barred indices of this sub-category (of number of indices), return the corresponding
substituted Math Expression

The terms are then expanded by multiplication.
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2.4.2 Multiplication of Levi-Civita Tensors Algorithm

1. Iterate for every Math Expression Term in a Math Expression:

(a) If there is more than 1 Levi-Civita:

i. If there are 3 or more Levi-Civitas, group the Levis based on number of common indices

ii. Create a temporary Math Expression for the full Delta Expression

iii. Iterate while there exists atleast one pair of Levis:

A. Expand the pair into this temporary.

B. Delete the pair

iv. Multiply the original term with the full Delta Expression, and append this to the final result Math
Expression.

v. Set the original term to 0.

vi. Delete all terms with 0 coefficient

2.4.3 Simplification of Expression by Kronecker Deltas Algorithm

1. Iterate for every term:

(a) Sum over the indices of the Deltas.

(b) Check for possibility of the deltas cancelling out the term. If so, move on to the next term.

(c) Rename the indices of the irreducible tensors by using the Deltas.

(d) Solve identical Deltas and modify the coefficient accordingly.

2. Erase all terms with coefficient 0.

2.4.4 Simplification of Expression by Renaming Indices of Irreducible Tensors

(Accounting for Commutativity)

• While before the concept of “zones” related to barred versus unbarred indices, now “zones” relates to upper
versus lower indices.

• While before the concept of “structure” (and hence “ambiguity”) related to whether 2 reducible tensors have the
same label, number of indices, and number of barred indices, now “structure” relates to whether 2 irreducible
tensors have the same bar state, field, symmetric property, and number of upper and lower indices.

• While before the sorting of the reducible tensor terms was by (in ascending order) label, then by number of
indices, and then by number of barred indices, now the sorting of the irreducible tensor terms is (in ascending
order) by field, then by symmetric property, then by bar state, then by number of upper indices, and then by
number of lower indices.

• A Single Levi-Civita tensor may survive after simplification and also must be considered in the renaming
process. It is considered as its own unique “zone”.

2.4.5 Overall Reduction Phase

1. Iterate for every Math Expression Term:

(a) Substitute the reducible tensor terms for the appropriate Math Expressions containing irreducible tensors,
Levi-Civitas, and Deltas.

(b) Multiply and expand all the substituted expressions.

(c) Multiply the Levi-Civitas of each term and expand the expression.

(d) Simplify the overall expression by the properties of Kronecker Deltas.

(e) Simplify the overall expression by the property of Symmetric and Asymmetric Irreducible tensors that
share 2+ indices.

(f) Simplify the overall expression by the renaming the indices of the expression.

(g) Multiply the overall expression with the original coefficient from the reducible tensor term.

(h) Append this result to the overall Math Expression of the final result.

2. Simplify this final result by renaming the indices of the expression
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(a) (This step is repeated because before it was only considered within each expression that arose from
a reducible tensor term, whereas now it is considering all simplified expressions from all the reducible
tensor terms.)

3. Multiply the overall expression with the coefficient that arose from expanding the initial user input to the
reducible tensors (of the form 1

2(NumberOfIndices)
)

2.5 Normalization of Irreducible Tensors to Normalized Tensors Phase

In this final phase, we substitute the irreducible tensors with the corresponding normalized tensors, including their
coefficients. This is similar to the step in the previous phase where we substituted the reducible tensors for their
respective expressions. Each substitution is a unique function due to its coefficients, however the general procedure
is outlined below.

1. For a given irreducible tensor of a Math Expression Term:

2. Create a normalized tensor and transfer the indices exactly as they are from the irreducible tensor.

3. Multiply the whole Math Expression Term by the required coefficient.

4. Erase the Irreducible Tensor from the Math Expression Term.

This process is repeated for every irreducible tensor in every Math Expression Term in the result expression. No
further simplification occurs here because all simplification has been completed before this. Hence, we arrive at our
final result. The function is as follows:

void normalizeIrreducibleTensorTerms();

2.6 Output Phase

Every component in the result, be it a Delta, Normalized tensor, Coefficient, etc., has a representation in LATEXdesigned
for it, and hence printing a term simply calls all these functions in turn, and printing an expression calls the printing
of each term. The function is as follows:

void printMathExpressionAsLatex();

3 Results

The computer program outputs results in LATEX format that can be easily included in a publication, as it has been
done in Sections 3.1-3.3. The original SO(10) coupling inputs are mentioned along with their respective processed
results in their final format. Some of these couplings have not previously been demonstrated in the literature, proving
the generalized capabilities of the software.

The normalizations of SU(5) fields are displayed in Appendix B.5. Here the H−fields represent SU(5) irreducible
tensors with canonically normalized kinetic energy terms.

3.1 Quadratic Couplings

3.1.1 126 × 126
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3.2 Cubic Couplings

3.2.1 210 × 210× 210

Xµ1µ2µ3µ4Xµ3µ4µ5µ6Xµ5µ6µ1µ2 =
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3.2.3 210 × 120× 120

Xµ1µ2µ3µ4Xµ1µ2µ5Xµ3µ4µ5 =
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3.3 Quartic Couplings

3.3.1 210 × 120× 120× 45
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4 Discussion

This paper proposes a novel C++ software that can compute SO(10) Higgs couplings automatically in terms of SU(5)
invariants, based on the algorithm developed in Appendix B.4. These interactions arise in both supersymmetric and
non-supersymmetric SO(10) models. A top-down approach to calculate two-point, three-point and higher Higgs-Higgs
Interactions is necessary. Such couplings are needed in the breaking of GUT and electroweak symmetries and in the
study of higher dimensional operators such as B − L = −2 for the exploration of physics beyond the SM. This is
important as these operators contribute to the understanding of neutrino masses, baryogenesis, proton decay and
n− n oscillations. The stand-alone software exposes a text-based interface to conveniently facilitate the calculation
procedure from start to finish. The user enters their required coupling via text, and the program then processes the
various intermediate calculations, until it presents the final normalized result in LATEXformat. The number of indices
can go up to 5, but the number of tensors appearing in an SO(10) invariant is not limited. The reliability of the
algorithm has also been confirmed, as manual calculations were performed and compared with the computer result,
and these were successfully matched.

The code has also been made publicly available so that future development can be done to expand the capabilities
of the software. Firstly, one such expansion could be the ability of the software to account for any SO(N) invariant
couplings. Currently this is not supported, however the existing algorithms and data structures could be used as a
template for such changes. Secondly, it is also possible to expand this software to account for Higgs-Spinor coupling [32]
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analysis in the future. This would require the introduction of certain other algorithms and data structures, however
the existing codebase will provide a solid foundation for the key algorithms required for the overall process.

We believe that our C++ program will be very useful for particle physicists in general. Researchers will have
access to our computer code which will calculate SO(10) tensor interactions exactly and efficiently within their own
models using the top-down approach. The code is available to download here.
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Appendix A SO(N) group [11]

A.1 Vector representation

Consider a real N−dimensional coordinate space in which a vector φ = (φ1,φ1, . . . ,φN) transforms as

φµ −→ φ
′
µ = Oµνφν ; µ, ν = 1, 2, . . . ,N. (1)

In order for the transformation (1) to leave the length of φ invariant, that is, φ′⊤φ′ = φ⊤φ, Eq.(1) gives (Oφ)⊤ (Oφ) =
φ⊤φ ⇒ φ⊤ (

O
⊤
O
)
φ = φ⊤φ. Therefore, the matrix O must satisfy O

⊤
O = OO

⊤ = 1. The set of such length-
preserving transformation matrices O represent rotations in N−dimensions and forms a group called orthogonal group
O(N). Taking the determinant of both sides of the last equation gives det

(
O

⊤
O
)
= det (1) ⇒

(
detO⊤) (detO) =

1⇒ (detO)2 = 1. That is detO = ±1.

The special orthogonal group SO(N) is a group of N× N of real matrices O obeying,

O
⊤
O = OO

⊤ = 1; detO = +1. (2)

Now consider the group element O(a) of SO(N) which differ infinitesimally from the identity:

O(a) ≈ 1+ a for a≪ 1. (3)

On using Eq.(3) in Eq.(2), we get 1+ a
⊤ + a+O(a2) = 1. Thus a⊤ = −a, that is

aµν = −aνµ; (µ 6= ν). (4)

The real numbers aµν are the parameters of the group and specify rotation. Since the N×N matrix a is antisymmetric,
it has only

(
N

2

)
= 1

2
N (N− 1) independent parameters. Making use of Eq.(4) in the infinitesimal SO(N) transformation

(3), we get [O(a)]µν ≈ δµν + aµν = δµν + 1
2
(aµν − aνµ) = δµν + i

2
aαβ [−i (δµαδνβ − δναδµβ)] ≡ δµν + i

2
aαβ (Mαβ)µν .

Thus the 1
2
N (N− 1) generators of the SO(N) group in the vector representation are given by N×N linearly independent

matrices Mαβ
1:

(
Mαβ

)

µν
= −i (δµαδνβ − δναδµβ) ; 1 ≤ µ < ν ≤ N (5)

Note that the matrices Mαβ are antisymmetric: (Mαβ)µν = − (Mαβ)νµ ⇒ M
⊤
αβ = −Mβα. Hence, necessarily

traceless: (Mαβ)µµ = 0⇒ Tr(Mαβ) = 0. Eq.(5) also shows that the only non-vanishing elements of the matrix Mαβ

are −i and +i at the intersection of the αth row, βth column (α 6= β) and βth row, αth column, respectively. The
commutation relation satisfied by the generators Mαβ can be easily calculated using Eq.(5):

[
Mαβ,Mγρ

]
= −i

(
δβγMαρ + δαρMβγ − δαγMβρ − δβρMαγ

)
. (6)

1The factor of 1
2
is chosen for convenience and the reason for inserting i in Eq.(5) is because it is more convenient in quantum

mechanics to use the anti-Hermitian generators (M†
αβ

= −Mαβ) rather than antisymmetric (M⊤
αβ = −Mαβ). Then group O(a)

in Eq.(9) is unitary (O† = O
−1). Of course this does not change the fact that SO(N) is a real Lie algebra.
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If we rewrite Eq.(6) as

[
Mαβ,Mγρ

]
= ifσλ

αβ,γρ Mσλ, (7)

then we see that the structure constants fσλ
αβ,γρ are given by

fσλ
αβ,γρ = δσβ

(
δαγδρλ − δαρδγλ

)
+ δσα

(
δβρδγλ − δβγδρλ

)
. (8)

We now obtain finite transformation for the group element from the infinitesimal transformation: O(a) ≈ 1 +
i
2
aαβMαβ ≡ r(a) using O(a) = limn−→∞

[
r( a

n
)
]n

= limn−→∞
[
1+ i

2

( aαβ

n

)
Mαβ

]n
. Therefore,

O(a) = exp





i

2

N∑

1≤α<β

aαβMαβ




 . (9)

Note that traceless and antisymmetry conditions satisfied by the generators Mαβ follow immediately from Eqs.(2) and

(9) irrespective of its representation as given by Eq.(5): 1 = detO = eTr(lnO) = eTr(ln[e
i
2
aαβMαβ ]) = e

i
2
aαβ Tr(Mαβ) ⇒

Tr(Mαβ) = 0 and 1 = O
⊤
O = [e

i
2
aαβMαβ ]⊤e

i
2
aαβMαβ = e

i
2
aαβM

⊤

αβe
i
2
aαβMαβ = e

i
2
aαβ(M⊤

αβ+Mαβ) ⇒ M
⊤
αβ + Mαβ =

0.

A.2 Tensor representation

In general, we define an SO(N) rank−p tensor Tµ1µ2...µp , having N
p components, to transform as a product of p

ordinary vectors, φµi
:

Tµ1µ2...µp ≡ φµ1
⊗ φµ2

⊗ · · · ⊗ φµp
, (10)

Tµ1µ2...µp −→ T ′
µ1µ2...µp

= Oµ1ν1Oµ2ν2 · · ·OµpνpT ν1ν2...νp (11)

A.2.1 Isotropic tensors

• 2nd−rank identity tensor (kronecker symbol): δµν = δµν = δµν
2

The Kronecker symbol is defined through

δµν = δνµ =

{
1 if µ = ν,
0 if µ 6= ν.

It is invariant under SO(N) transformation: δµν −→ δ′µν = OµαOνβδαβ = OµαOνα = (OO
⊤)µν = δµν .

• N
th−rank alternating tensor (levi-civita symbol): ǫµ1µ2...µN

= ǫµ1µ2...µN

The completely antisymmetric Levi-Civita symbol is defined through

ǫµ1µ2...µN
=






+1 for even permutation of indices,
−1 for odd permutation of indices,
0 if any two indices equal.

As a consequence of antisymmetry of the Levi-Civita symbol we have

ǫµ1µ2...µN
ǫν1ν2...νN = δν1[µ1

· · · δνN
µN]

, (12a)

ǫα1...αmµ1µ2...µN−m
ǫα1...αmν1ν2...νN−m = m! δν1[µ1

· · · δνN−m

µN−m]. (12b)

2Recall form Appendix A.1 that SO(N) transformations preserve the scalar product: φ⊤ψ. This invariant can be written
using upper (or equally with lower) indices as φµψµ = φµδµνψ

ν
≡ φµgµνψ

ν , where gµν is a metric tensor and is defined through
gµν = eµeν for a set of basis vectors eµ in an N− dimensional space. This implies that the metric tensor gµν = δµν = eµeν
corresponds to the orthogonal group. Further, the metric tensor can be used to raise or lower indices of vectors/tensors:
φµ = gµνφ

ν , φµ = gµνφν . Therefore, φµ = φµ. In other words the covariant and contravariant vectors/tensors coincide for
orthonormal basis. Hence, we do not distinguish between superscripts and subscripts.
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Using Eq.(12b), we define the determinant of a N× N matrix A as

detA =
1

N!
ǫµ1µ2...µN

ǫν1ν2...νNAµ1
ν1 · · ·A

µN
νN

.

Finally, multiplying both sides of this last equation by ǫµ1µ2...µN and using Eq.(12b), we get

ǫν1ν2...νNAµ1
ν1 · · ·A

µN
νN

= ǫµ1µ2...µN detA. (13)

Using Eq.(13), the alternating symbol can be also shown to be an invariant of the SO(N) group: ǫµ1µ2...µN
−→

ǫ′µ1µ2...µN
= Oµ1ν1Oµ2ν2 · · ·OµNνNǫν1ν2...νN

= detO ǫµ1µ2...µN
= ǫµ1µ2...µN

.

• Other SO(N)−invariants

One may now construct [31] various rth−rank invariant tensors I µ1µ2...µr from the linear combination of the
sum of the products of Kronecker symbols and the alternating tensor. For example, the most general invariant
tensors for the case when r is even, take the form

I
(1)
µ1µ2...µr

=
∑

σ∈Sr

Aσ δσ(µ1)σ(µ2)δσ(µ3)σ(µ4) · · · δσ(µr−1)σ(µr); for r=even
N=odd,

I
(2)
µ1µ2...µN

=
∑

σ∈SN

Aσ δσ(µ1)σ(µ2)δσ(µ3)σ(µ4) · · · δσ(µN−1)σ(µN) +Bǫµ1µ2...µN
; for r=even

N=even,

where the summation is over the set Sr of all r! permutations σ of r indices and σ(µ1)σ(µ2) . . . σ(µr) represent
a permutation of µ1, µ2, . . . , µr. For the special case r = 4, we get 4! permutations of µ1, µ2, µ3, µ4 out of
which only three unique quadratic product of Kronecker deltas can be formed. Hence, I

(1)
αβγρ = a1δαβδγρ +

a2δαγδβρ+a3δαρδβγ and I
(2)
αβγρ = a1δαβδγρ+a2δαγδβρ+a3 δαρδβγ +Bǫαβγρ. Here ai’s are linear combinations

of 4! Aσ’s. In a similar fashion, one can form general invariant tensors when r is odd.

A.2.2 Irreducibility

Contraction of a tensor with Kronecker symbol (trace operation) and Levi-Civita symbol play an important role in
constructing irreducible tensors. A tensor is reducible, if through a contraction operation, a new non-vanishing tensor
(generally of smaller rank) can be formed.

If a tensor T
(1)
µ1µ2µ3...µr is reducible because it has nonzero trace, say over indices µ1 and µ2, then we may contract

it with a Kronecker symbol over those two indices,

δµ1µ2T
(1)
µ1µ2µ3...µr

= Tµ1µ1µ3...µr ≡ T̂
(1)

µ3µ4...µr
,

leading to a tensor T̂
(1)

µ3µ4...µr
of rank r − 2. Here the first two indices have been contracted and summed over but

the trace operation can be applied to any pair. A tensor is traceless if the contraction with a Kronecker symbol of
any pair of indices vanishes. Also, a tensor with all δ−contracted indices (Tµ1µ1µ2µ2...µrµr ) is an SO(N)−invariant
scalar (singlet).

On the other hand, if a tensor T
(2a)
µ1µ2µ3ν4ν5...νr is reducible because it is not symmetric with respect to some of

its indices, say µ1, µ2 and µ3 or a tensor T
(2b)
µ1µ2...µr is reducible because it is not symmetric with respect to any of

its indices, then we may contract these tensors with a Levi-Civita symbol over those indices,

ǫµ1µ2µ3µ4...µN
T

(2a)
µ1µ2µ3ν4ν5...νr ≡ T̂

(2a)

µ4µ5...µNν4ν5...νr
, ǫµ1µ2...µN

T
(2b)
µ1µ2...µr

≡ T̂
(2b)

µr+1µr+2...µN
,

leading to a tensor T̂
(2a)
µ4µ5...µNν4ν5...νr

of rank N+r−6 with mixed symmetry (antisymmetric in µ4, µ5, . . . µN and sym-

metric in ν4, ν5, . . . νr) and a completely antisymmetric tensor T̂
(2b)
µr+1µr+2...µN

of rank N−r, respectively. Additionally,

a tensor with all ǫ−contracted indices (T̂ ≡ ǫµ1µ2µ3µ4...µN
Tµ1µ2...µN

) is an SO(N)−invariant scalar.

Therefore,

• an irreducible tensor Tµ1µ2µ3...µr is completely traceless, that is

δµ1µ2Tµ1µ2µ3...µr = 0, δµ2µ3Tµ1µ2µ3...µr = 0, δµ1µ3Tµ1µ2µ3...µr = 0, . . .
︸ ︷︷ ︸

1
2
r(r−1) trace conditions

, (14)
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and

• in view of contraction with Levi-Civita tensor, the tensors T
(2a)
µ1µ2µ3ν4ν5...νr and T

(2b)
µ1µ2...µr are irreducible, if

they are symmetric with respect to the indices on which the sum has been performed, so that

ǫµ1µ2µ3µ4...µN
T

(2a)
µ1µ2µ3ν4ν5...νr = 0, ǫµ1µ2...µN

T
(2b)
µ1µ2...µr

= 0. (15)

Since completely antisymmetric tensors automatically satisfy Eq.(14), they are the first class of irreducible ten-
sors. The second being completely symmetric and traceless tensors and finally traceless tensors with mixed symme-
try.

A.2.3 Completely antisymmetric tensors

A 2nd−rank antisymmetric tensor Φ
(A)
µν

(
= −Φ(A)

νµ

)
is defined through

Φ
(A)
µν =

(
φµ ⊗ φν

)∣∣∣
antisymmetric

=
1

2!

(
φµ ⊗ φν − φν ⊗ φµ

)
. (16)

Using Eq.(1) in Eq.(16) gives the transformation law for the second rank antisymmetric tensor:

Φ
(A)
µν −→ Φ

(A)′

µν =
1

2

(
OµλOνρ −OµρOνλ

)
Φ

(A)
λρ , (17a)

= OµρΦ
(A)
ρλ O

⊤
λν , (17b)

≈ Φ
(A)
µν + aµρΦ

(A)
ρν + aνλΦ

(A)
µλ , (17c)

where we have made usage of Eq.(3) in obtaining Eq.(17c). Note that this is also the adjoint representation of the
group. This is because number of group generators matches the dimensionality

(
N

2

)
= 1

2
N(N− 1) of the second rank

antisymmetric tensor representation.

To find the the generators in the adjoint representation, we use Eq.(3) in Eq.(17a) to obtain Φ
(A)′

µ1µ2 −→ Φ
(A)
µ1µ2 =

1/2[(δµ1ν1aµ2ν2 + δµ2ν2aµ1ν1)− (ν1 ↔ ν2)]Φ
(A)
ν1ν2 ≡ aαβ/2(M

(A)
αβ )µ1µ2,ν1ν2Φ

(A)
ν1ν2 , where,

(
M

(A)
αβ

)

µ1µ2,ν1ν2

=
1

2

{[
δµ1ν1

(
δαµ2δβν2 − δαν2δβµ2

)
+ δµ2ν2

(
δαµ1δβν1 − δαν1δβµ1

)]

−
[
ν1 ↔ ν2

]}
, (18)

are the generators in the adjoint representation.

In a similar fashion one can define completely antisymmetric tensors of higher rank. In general, an rth−rank
antisymmetric tensor of dimensionality

(
N

r

)
can be formed from the antisymmetric product of φ’s as

Φ
(A)
µ1µ2...µr

=
1

r!

∑

σ∈Sr

sgn(σ) φσ(µ1)
⊗ φσ(µ2)

⊗ · · ·φσ(µr)

and with the transformation law in various useful forms given by

Φ
(A)
µ1µ2...µr

−→ Φ
(A)′

µ1µ2...µr
=

1

r!

[
∑

σ∈Sr

sgn(σ) Oµ1σ(ν1)Oµ2σ(ν2) · · ·Oµrσ(νr)

]

Φ
(A)
ν1ν2...νr , (19a)

= Oµ1ν1Oµ2ν2 · · ·OµrνrΦ
(A)
ν1ν2...νr , (19b)

≈ Φ
(A)
µ1µ2...µr

+
r∑

i=1

aµiνiΦ
(A)
µ1µ2...νi...µr−1µr

. (19c)

Finally, the generators in the rth−rank antisymmetric representation is given by

(
M

(A)
αβ

)

µ1µ2...µr ,ν1ν2...νr

=
1

r!









r∑

i=1

r∏

j=1
i6=j

δµjνj (δαµiδβνi − δανiδβµi
)



− [νi ↔ νj ]





.
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For N even (N = 2m), a tensor of rank m, Φ
(A)
ν1ν2...νm can be expressed in terms of another tensor of rank m,

∗Φ
(A)
µ1µ2...µm , called the dual, through ∗Φ

(A)
µ1µ2...µm ∼ ǫµ1µ2...µm,ν1ν2...νmΦ

(A)
ν1ν2...νm . Both Φ

(A)
µ1µ2...µm and ∗Φ

(A)
µ1µ2...µm are

not irreducible tensors under SO(2m). Now, if we define Ω
(±)
µ1µ2...µm ≡ 1

2

[
Φ

(A)
µ1µ2...µm ± ∗Φ

(A)
µ1µ2...µm

]
, then Ω

(±)
µ1µ2...µm

are irreducible tensors. Complete formulation of this subtlety is as follows: The tensor Φ
(A)
µ1µ2...µm of dimension

(
2m
m

)

splits into two irreducible tensors Ω
(+)
µ1µ2...µm and Ω

(−)
µ1µ2...µm each of dimension 1

2

(
2m
m

)
according to the SO(2m)

invariant decomposition of a tensor of rank m,

Φ
(A)
ν1ν2...νm = Ω

(+)
ν1ν2...νm +Ω

(−)
ν1ν2...νm , (20a)

where, Ω
(±)
µ1µ2...µm

=
1

2

(
δµ1ν1δµ2ν2 . . . δµmνm ±

im
2

m!
ǫµ1µ2...µmν1ν2...νm

)
Φ

(A)
ν1ν2...νm

, (20b)

satisfying, Ω
(±)
µ1µ2...µm

= ± im
2

m!
ǫµ1µ2...µmν1ν2...νmΩ

(±)
ν1ν2...νm . (20c)

From Eq.(20c), we see that for m = even, the tensors Ω
(+)
µ1µ2...µm and Ω

(−)
µ1µ2...µm are real and satisfy

self and anti-self duality conditions, respectively. While for m = odd, the tensors are complex conju-
gates of each other. To show the validity of the results (20b)-(20c), one can start with ∗Φ

(A)
µ1µ2...µm ≡

α ǫµ1µ2...µm,ν1ν2...νmΦ
(A)
ν1ν2...νm , where α needs to be determined. Next compute the dual of the dual tensor:

∗∗Φ
(A)
µ1µ2...µm = α2ǫµ1µ2...µmν1ν2...νmǫν1ν2...νmλ1λ2...λmΦ

(A)
λ1λ2...λm

= α2(−1)m2

(m!)2Φ
(A)
µ1µ2...µm , where we have made

use of Eqs.(12a) and (12b). Now write, Φ
(A)
µ1µ2...µm = 1

2
(Φ

(A)
µ1µ2...µm + ∗Φ

(A)
µ1µ2...µm ) + 1

2
(Φ

(A)
µ1µ2...µm − ∗Φ

(A)
µ1µ2...µm) ≡

Ω
(+)
µ1µ2...µm + Ω

(−)
µ1µ2...µm , then ∗Ω

(±)
µ1µ2...µm = α ǫµ1µ2...µm,ν1ν2...νmΩ

(±)
ν1ν2...νm = ± 1

2
[α2(−1)m2

(m!)2Φ
(A)
µ1µ2...µm ±

∗Φ
(A)
µ1µ2...µm ]. Finally, requiring α2(−1)m2

(m!)2 = 1 gives α = im
2

m!
.

A.2.4 Completely symmetric and traceless tensors

We begin by illustrating second rank symmetric and traceless tensor, Φ
(S)
µν

(
≡ Φ

(S)
νµ

)

Φ
(S)
µν =

(
φµ ⊗ φν

)∣∣∣
(symmetric

traceless )
=

1

2!

(
φµ ⊗ φν + φν ⊗ φµ

)
− δµν

N
φλ ⊗ φλ. (21)

Here φλ⊗φλ(≡ Φ
(S)
λλ ) is the singlet of SO(N) group and the dimensionality ofΦ

(S)
µν is

(
N+1
2

)
−1 = 1

2
(N−1)(N+2).

As before one can easily write down the transformation law for the second rank symmetric and traceless tensor:

Φ
(S)
µ1µ2

−→ Φ
(S)′

µν =
1

2

(
OµλOνρ +OµρOνλ

)
Φ

(S)
λρ , (22a)

= OµρΦ
(S)
ρλ O

⊤
λν , (22b)

≈ Φ
(S)
µν + aµρΦ

(S)
ρν + aνλΦ

(S)
µλ . (22c)

Using Eq.(22a), one can find the generators in the 2nd−rank symmetric representation as

(
M

(S)
αβ

)

µ1µ2,ν1ν2

=
1

2

{[
δµ1ν1

(
δαµ2δβν2 − δαν2δβµ2

)
+ δµ2ν2

(
δαµ1δβν1 − δαν1δβµ1

)]

+

[
ν1 ↔ ν2

]}

. (23)

In general, an rth−rank symmetric and traceless tensor of dimensionality
(
N+r−1

r

)
−
(
N+r−3
r−2

)
can be formed from
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the symmetric product of φ’s as follows

Φ
(S)
µ1µ2...µr

=
1

r!

∑

σ∈Sr

φσ(µ1)
φσ(µ2)

· · ·φσ(µr)

+ κ1

[
δµ1µ2 φµφµφµ3

φµ4
· · ·φµr

+ δµ1µ3 φµφµ2
φµφµ4

· · ·φµr

+ · · ·+ δµr−1µr φµ1
φµ2
· · ·φµr−2

φµφµ

]
←− (r2) single-trace terms

+ κ2

[
δµ1µ2δµ3µ4 φµφµφνφνφµ5

· · ·φµr
+ · · ·

+ δµr−3µr−2δµr−1µr φµ1
φµ2
· · ·φµr−4

φµφµφνφν

]
←− 1

2 (
r
2)×(

r−2
2 ) double-trace terms

...
... (24)

where, for conciseness, we have completely dropped the outer product symbol and the numerical coefficients κi’s
ensure that the tensor Φ

(S)
µ1µ2...µr is completely traceless. We now illustrate Eq.(24) by means of 3rd and 4th rank

symmetric and traceless tensors of SO(N) with dimensionality 1
6
N(N − 1)(N + 4) and 1

24
N(N − 1)(N + 1)(N + 6),

respectively. Explicit expressions are given by

Φ
(S)
µ1µ2µ3

=
1

3!

(
φµ1

φµ2
φµ3

)∣∣∣
symmetric

− 1

N+ 2

[
δµ1µ2φνφνφµ3

+ δµ1µ3φνφµ2
φν

+ δµ2µ3φµ1
φνφν

]
, (25a)

Φ
(S)
µ1µ2µ3µ4

=
1

4!

(
φµ1

φµ2
φµ3

φµ4

)∣∣∣
symmetric

− 1

N+ 4

[
δµ1µ2φνφνφµ3

φµ4
+ δµ1µ3φνφµ2

φνφµ4

+ δµ1µ4φνφµ2
φµ3

φν + δµ2µ3φµ1
φνφνφµ4

+ δµ2µ4φµ1
φνφµ3

φν

+ δµ3µ4φµ1
φµ2

φνφν

]
+

1

(N+ 2)(N+ 4)

[
δµ1µ2δµ3µ4φµφµφνφν

+ δµ1µ3δµ2µ4φµφνφµφν + δµ1µ4δµ2µ3φµφνφνφµ

]
. (25b)

The transformation law for an rth−rank symmetric tensor in various useful forms take the form

Φ
(S)
µ1µ2...µr

−→ Φ
(S)′

µ1µ2...µr
=

1

r!

[
∑

σ∈Sr

Oµ1σ(ν1)Oµ2σ(ν2) · · ·Oµrσ(νr)

]

Φ
(S)
ν1ν2...νr , (26a)

= Oµ1ν1Oµ2ν2 · · ·OµrνrΦ
(S)
ν1ν2...νr , (26b)

≈ Φ
(S)
µ1µ2...µr

+
r∑

i=1

aµiνiΦ
(S)
µ1µ2...νi...µr−1µr

, (26c)

while the generators in this representation are given by

(
M

(S)
αβ

)

µ1µ2...µr ,ν1ν2...νr

=
1

r!









r∑

i=1

r∏

j=1
i6=j

δµjνj (δαµiδβνi − δανiδβµi
)



+ [νi ↔ νj ]





.

A.3 Elements of SO(N) gauge theory

A.3.1 Global symmetries

The real group parameters aαβ are independent of space-time coordinate, xA .

• Scalar boson in the vector representation
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Introduce a set of N scalar bosonic fields by means of an N dimensional column vector, φ(x):

φ(x) =





φ1(x)
φ2(x)
...

φ
N
(x)




(27)

Of course, the transformation law is the same as before (see Eqs.(1)and (9)):

φ(x) −→ φ
′(x) = Oφ(x) (28)

and in terms of its components, Eq.(3) in Eq.(28), gives

φµ(x) −→ φ
′
µ(x) ≈ φµ(x) + aµνφν(x) (29)

Kinetic energy term for the N real scalar bosonic fields appearing in the Lagrangian is given by

Lφ

KE =
1

2

N∑

µ=1

∂Aφµ(x)∂
A
φµ(x)

=
1

2
∂Aφ(x)

⊤∂A
φ(x)

(30)

It is invariant under global rotations, since Lφ′
KE = 1

2
∂Aφ

′(x)⊤∂Aφ′(x) = 1
2
∂A [φ(x)

⊤
O

⊤]∂A [Oφ(x)] =
1
2
∂Aφ(x)

⊤∂Aφ(x) = Lφ

KE. Here A is the Dirac index (A = 0 − 3) and we are using the metric η =
diag(1,−1,−1,−1).
One can also add to the Lagrangian the self-interaction terms. The most general fourth-order invariant couplings
take the form

Lφ

self-int =
N∑

µ=1

[
λ1φµφµ + λ2

(
φµφµ

)2]

= λ1φ
⊤
φ+ λ2

(
φ

⊤
φ
)2

(31)

• Scalar boson in the 2nd−rank (adjoint) antisymmetric tensor representation

Recall that is also the adjoint representation of the group. Thus, it implies that we have 1
2
N(N − 1) vector

gauge bosons denoted by G
A

µν having the global transformation law (17c):

G
A

µν −→ G
A
′

µν = G
A

µν + aµρG
A

ρν + aνλG
A

µλ (32)

In analogy with Eq.(30), we define the Lagrangian for N scalar bosonic fields

LΦ(A)

KE =
1

4

N∑

µ6=ν=1

∂AΦ
(A)
µν ∂A

Φ
(A)
µν

=
1

4
Tr
(
∂AΦ

(A)⊤∂A
Φ

(A)
)

(33)

and it is easily seen to be invariant under the global transformation (17b).

The most general invariant quartic self-couplings in the Lagrangian take the form

LΦ(A)

self-int = λ1Φ
(A)
µν Φ

(A)
µν + λ2

(
Φ

(A)
µν Φ

(A)
µν

)2
+ λ2Φ

(A)
µν Φ

(A)
νρ Φ

(A)
ρσ Φ

(A)
σµ

= λ1 Tr
(
Φ

(A)2
)
+ λ2

[
Tr
(
Φ

(A)2
)]2

+ λ3 Tr
(
Φ

(A)4
) (34)

Self-interaction terms for the vector gauge bosons G
A and its interactions with scalar bosons will be dealt in

the next subsection.
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• Scalar boson in the 2nd−rank symmetric and traceless tensor representation

In this case, the globally invariant kinetic energy and self-interaction terms in the Lagrangian are given by
given by

LΦ(S)

KE =
1

4
Tr
(
∂AΦ

(S)⊤∂A
Φ

(S)
)

(35)

LΦ(S)

self-int = λ1Φ
(S)
µν Φ

(S)
µν + λ2

(
Φ

(S)
µν Φ

(S)
µν

)2
+ λ2Φ

(S)
µν Φ

(S)
νρ Φ

(S)
ρσ Φ

(S)
σµ (36)

• Scalar boson in the general rth−rank tensor representation

The invariant Lagrangian under global transformations is given by

LΦ(A,S)

KE =
1

2r!
∂AΦ

(A,S)
µ1µ2...µr

∂A
Φ

(A,S)
µ1µ2...µr

(37)

A.3.2 Local symmetries

The SO(N) group parameters aαβ are functions of space-time coordinate, xA .

• Scalar boson in the vector representation

This time the scalar fields introduced through Eq.(27) must transform as

φµ(x) −→ φ
′
µ(x) = Oµν(x)φν(x) (38a)

Oµν(x) =
(
e

i
2
aαβ(x)Mαβ

)

µν
. (38b)

The kinetic energy for φ’s given by Eq.(30), Lφ

KE = 1
2

∑
N

µ=1 ∂Aφµ(x)∂
Aφµ(x) is no longer invariant under the

local rotations (38a), because ∂Aφ
′(x) = O(x)∂Aφ(x) + [∂AO(x)]φ(x) 6= O(x)∂Aφ(x). As in QED, we modify

the Lagrangian by replacing the differential operator ∂A by the gauge covariant derivative DA , where

∂A −→ D
A

αβ ≡ δαβ∂
A − ig

2
G

A

µν(x) (Mµν)αβ ,

and require DAφ(x) to transform like φ(x):

DAφ(x) −→
[
DAφ(x)

]′
= D

′
Aφ

′(x) = O(x)
[
DAφ(x)

]
. (39)

Note that DA is to be understood as a N × N matrix carrying a Dirac index, A, and operating on the N

component scalar bosonic field, φ(x). Here g is a coupling constant between scalar bosons and vector gauge
bosons. Further, using the local gauge transformation (38a) in Eq.(39) gives

DA −→ D
′
A = O(x)DAO

⊤(x). (40)

There are 1
2
N(N− 1) group generators and we introduce one vector gauge boson, GA

µν(x) for each and define

D
A
φ(x) =

[
1∂A − ig

2
Ĝ

A

(x)

]
φ(x), (41a)

where Ĝ
A

(x) ≡MµνG
A

µν(x), (41b)

in terms of Lie-algebra valued gauge field, Ĝ
A

(x). In Eq.(41a), 1 represents N × N identity matrix. Next, we
determine the transformation law for the vector gauge boson. Substituting Eqs.(38a) and (41a) in Eq.(39) and
using the fact O(x)O(x)⊤ = 1 which implies [∂AO(x)]O(x)⊤ = −O(x)∂AO(x)⊤, we get

ĜA(x) −→ Ĝ
′
A(x) = O(x)

[
ĜA(x) + 1

4i

g
∂A

]
O(x)⊤. (42)
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One could equivalently start from Eq.(40) and derive Eq.(42). We now work out the infinitesimal form of
Eq.(42). Using Eqs.(3) and (5) in Eq.(42), we obtain after some algebra, the local transformation law for the
vector bosons

G
A

µν(x) −→ G
′

A

µν(x) = G
A

µν(x) + aµρ(x)G
A

ρν(x) + aνλ(x)G
A

µλ(x)

+
2

g
∂A

aµν(x), (43a)

with G
A

µν(x) = −GA

νµ(x). (43b)

In analogy with QED, we define the field strength tensor, FAB

µν(x) as

[
DA ,DB

]
= − ig

2
F̂AB(x), (44a)

where F̂
AB

(x) = MµνF
AB

µν(x). (44b)

Substituting Eqs.(41) into Eqs.(44) and together with Eq.(5), we get

F
AB

µν(x) = ∂A
G

B

µν(x)− ∂B
G

A

µν(x)− g
[
G

A

µσ(x)G
B

σν(x)− G
B

µσ(x)G
A

σν(x)
]
. (45)

To find the transformation law for F
AB we left and right multiply Eq.(44a) by O(x) and O

⊤(x), respectively,
to obtain

F̂
′
AB(x) = O(x)F̂AB(x)O

⊤x, (46)

where we have use of Eq.(40). Note that Eq.(46) is in the form of Eq.(42), hence the corresponding infinitesimal
result (43a) applies without the derivative term:

F
AB

µν(x) −→ F
′

AB

µν (x) = F
AB

µν(x) + aµρ(x)F
AB

ρν(x) + aνλ(x)F
AB

µλ(x). (47)

After the introduction of local transformation the Lagrangian (30) must be replaced by

L =
1

2
DAφ

⊤(x)DA
φ(x)

=
1

2
∂Aφµ∂

A
φµ − g

(
∂Aφµ

)
G

A

µνφν −
g2

2
φµGAµνG

A

νσφσ.

(48)

In order to define the system including the new gauge field, GA

µν(x), it is necessary to include a kinetic energy
term for GA

µν(x):

L = −1

4
FABµν(x)F

AB

µν(x) +
1

2
DAφ

⊤(x)DA
φ(x). (49)

• Scalar boson in the 2nd−rank antisymmetric tensor representation

Recall from Eq.(17b) that the second rank antisymmetric tensor, Φ
(A)
µν transforms as Φ′(A) = OΦ(A)

O
⊤. Then

just as in the case of the vector representation we want the DAΦ
(A) to transform like Φ(A):

DAΦ
(A) −→

[
DAΦ

(A)
]′

= O(x)
[
DAΦ

(A)
]
O

⊤(x) (50)

Then the covariant derivative, DAΦ
(A) in terms of Lie-valued gauge fields, which has the transformation property

(50), is given by

DAΦ
(A) = ∂AΦ

(A) − ig

2

[
ĜAΦ

(A) + Ĝ
⊤
A Φ

(A)
]

(51)

Inserting the generators, we find the expression for the covariant derivative to be
(
D

A
Φ

(A)
)

µν
= ∂A

Φ
(A)
µν − g

[
G

A

µσΦ
(A)
σν − G

A

νσΦ
(A)
σµ

]
(52)

The total Lagrangian is

L = −1

4
FABµνF

AB

µν +
1

4
Tr
(
DAΦ

(A)⊤
D

A
Φ

(A)
)

(53)
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• Scalar boson in the 2nd−rank symmetric tensor representation

Recall from Eq.(22b) that the 2nd−rank symmetric tensor, Φ(S), transforms as Φ′(S) = OΦ(S)
O

⊤. Hence, the
results for this case will be identical to that for the 2nd−rank antisymmetric tensor case. Therefore

(
D

A
Φ

(S)
)

µν
= ∂A

Φ
(S)
µν − g

(
G

A

µσΦ
(S)
σν − G

A

νσΦ
(S)
σµ

)
(54)

L = −1

4
FABµνF

AB

µν +
1

4
Tr
(
DAΦ

(S)⊤
D

A
Φ

(S)
)

(55)

and of course

DAΦ
(S) −→

[
DAΦ

(S)
]′

= O(x)
[
DAΦ

(S)
]
O(x)⊤ (56)

• Scalar boson in the general rth−rank tensor representation

Recall from Eqs.(19b) and (26b) the transformation law for an arbitrary antisymmetric and symmetric tensor

of rank r: Φ
(A,S)′

µ1µ2...µr = Oµ1ν1Oµ2ν2 ...OµrνrΦ
(A,S)
ν1ν2...νr . Hence, we require that the corresponding covariant

derivative, DAΦ
(A,S)′

µ1µ2...µr , transforms as

(
DAΦ

(A,S)′
)

µ1µ2...µr

= Oµ1ν1Oµ2ν2 ...Oµrνr

(
DAΦ

(A,S)′
)

ν1ν2...νr

(57)

The expression for the covariant derivative is then given by

(
D

A
Φ

(A,S)
)

µ1µ2...µr

= ∂A
Φ

(A,S)′

µ1µ2...µr
− g

∑

P

(−1)δP GA

µ1P(1)ν
Φ

(A,S)′

νµ2P (2)µ3P(3)...µrP (r)
(58)

For example, in the case of 3rd−rank tensor, the above result takes the form

(
D

A
Φ

(A,S)
)

µ1µ2µ3

= ∂A
Φ

(A,S)′

µ1µ2µr
− g

(
G

A

µ1νΦ
(A,S)′

νµ2µ3
− G

A

µ2νΦ
(A,S)′

νµ1µ3
+ G

A

µ3νΦ
(A,S)′

νµ1µ2

)
(59)

Appendix B SO(2N) group in a U(N) basis

B.1 Complete embedding of U(N) into SO(2N) [11]

Let σ and λ given by
σ = a+ ib and λ = c+ id, (60)

be N−dimensional complex column vectors of the U(N) group where a, b, c and d are real vectors. Then the U(N)
group transformations,

σ
′ = Uσ, λ

′ = Uλ,

U = eib·MU(N) ; U
†
U = UU

† = 1; MU(N) = M
†
U(N),

(61)

leaves the following scalar products invariant:

σ
†
σ = a

⊤
a+ b

⊤
b, (62a)

λ
†
λ = c

⊤
c+ d

⊤
d, (62b)

λ
†
σ = c

⊤
a+ d

⊤
b+ i

(
c
⊤
b− d

⊤
a
)
. (62c)

Now, define two 2N−dimensional real column vectors as follows:

Σ =

(
a

b

)
, Λ =

(
c

d

)
. (63)
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The U(N) invariants Eqs.(62a)-(62c) can now be expressed in terms of Σ and Λ:

Σ
⊤
Σ = a

⊤
a+ b

⊤
b, (64a)

Λ
⊤
Λ = c

⊤
c+ d

⊤
d, (64b)

Λ
⊤
Σ = c

⊤
a+ d

⊤
b, (64c)

Λ
⊤
JΣ = c

⊤
b− d

⊤
a, J =

(
0 1

−1 0

)
(64d)

Next, consider the SO(2N) group acting on the real 2N dimensional vectors Σ and Λ. Then, the SO(2N) group
transformations

Σ
′ = OΣ, Λ

′ = OΛ,

O = eia·MSO(2N) ; O
⊤
O = OO

⊤ = 1; MSO(2N) = −M⊤
SO(2N),

(65)

leaves the following scalar products invariant:

Σ
⊤
Σ; Λ

⊤
Λ; Λ

⊤
Σ (66)

Since the SO(2N) invariants in (66) are also U(N) invariants (see Eqs.(64a)-(64c)), U(N) is a “natural” subgroup of
SO(2N).

Note that since O ∈ SO(2N), the antisymmetric generators MSO(2N) in the basis of Eq.(63), can be written
as

MSO(2N) = i

(
A B

−B⊤
C

)
(67)

where A and C are real antisymmetric (A = −A⊤, C = −C⊤) N × N matrices while B is an arbitrary real N × N

matrix.

Additionally, if we impose that O ∈ U(N), then MSO(2N) is also a generator of U(N): MSO(2N) ⊃MU(N). Then the
corresponding transformation must also leave the fourth quantity in Eq.(64d) invariant: Λ′⊤

JΣ′ = Λ
⊤
JΣ ⇒

e
ia.M⊤

U(N)Jeia.MU(N) = J, which under infinitesimal transformations takes the form

M
⊤
U(N)J+ JMU(N) = 0 (68)

Inserting Eq.(67) into Eq.(68) gives

MU(N) =

(
A B

−B A

)
(69)

where A is a real N× N antisymmetric matrix and B is a real N× N symmetric matrix.

The number of independent elements in A and B are 1
2
N(N − 1) and 1

2
N(N + 1), respectively, giving a total of

N
2 independent elements in MU(N). The traceless matrices A (since A is antisymmetric) and the traceless part of

matrices iB: i[B − 1
N
Tr(B)1] will form the adjoint N

2 − 1 dimensional representation of the SU(N) group and the
trace of B: i

N
Tr(B)1 will be an SU(N) singlet. This term generates the U(1) group of complex phase transformations.

Thus, we have the decomposition SO(2N) −→ U(N) −→ SU(N)⊗ U(1).

However, the adjoint and singlet representations of SU(N) is not the full story. There are other generators of
SO(2N) that are not in MU(N). These remaining

(
2N
2

)
−N

2 = N(N− 1) generators of SO(2N) form two antisymmetric
tensor representations of U(N): −K± iL each of dimension 1

2
N(N− 1):

(
K L

L −K

)
(70)

This can be seen from the following argument. From above we have learned that 2N dimensional real vector,

(
a

b

)
,

decomposes into N ⊕ N dimensional vectors of SU(N) corresponding to a ± ib, that is, [2N] −→ {N} ⊕
{
N
}
. Fur-

ther, the (antisymmetric) generators of SO(2N) can be associated with 2nd rank antisymmetric tensors. Thus, under
SO(2N) −→ SU(N) ⊗ U(1) decomposition: [2N⊗ 2N]antisymmetric −→

{
(N⊕ N)⊗ (N⊕ N)

}
antisymmetric

⇒
[(

2N
2

)]
−→
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{N⊗ N}antisymmetric ⊕
{
N⊗ N

}
antisymmetric

⊕
{
N⊗ N

}
. Thus, [N(2N− 1)] −→

{
1
2
N(N− 1)

}
⊕
{

1
2
N(N− 1)

}
⊕

{
N

2 − 1
}
⊕ {1}. Altogether,

MSO(2N) =

(
A+ K B+ L

−B+ L A−K

)
(71)

Summarizing:

• N
2 − 1 dimensional adjoint of SU(N) is formed from A+ i

(
B− 1

N
Tr(B)1

)

• Singlet of SU(N) is formed from 1
N
Tr(B)1

• Antisymmetric representations of SU(N) is formed from −K+ iL and −K− iL each of dimensionality 1
2
N(N−1)

• A, K, L are real N× N antisymmetric matrices and B is a real N× N symmetric matrix.

B.2 Generators of SU(N) in terms of SO(2N) [11, 24]

For compactness and clarity we drop the subscript from MSO(2N) and write them simply as M. Looking at the block
structure of M in Eq.(71), we can make the following assignments (i, j = 1, . . . ,N)

A
i
j = −1

2

(
Mij +Mi+N j+N

)
;

K
ij =

1

2

(
Mij −Mi+N j+N

)
;

B
i
j =

1

2

(
Mi j+N +Mj i+N

)
,

L
ij =

1

2

(
Mi j+N −Mj i+N

)
.

(72)

The generators of U(N) group are P
i
j , defined by

P
i
j = A

i
j + iBi

j , (73)

and the SU(N) (traceless) generators, Qi
j , are given by

Q
i
j = P

i
j −

1

N
P

k
kδ

i
j . (74)

They satisfy U(N) algebra,

[
P

i
j ,P

k
l

]
= δilP

k
j − δkjP

i
l,

[
Q

i
j ,Q

k
l

]
= δilQ

k
j − δkjQ

i
l ,

(75)

The U(1) generator, Pk
k, is given by

P
k
k = iMi i+N (76)

Lastly, the broken generators of SO(2N) group, Sij and Sij are

S
ij = −Kij − iLij ,

Sij = −Kij + iLij .
(77)

B.3 Branching rules for SO(2N) into SU(N)⊗ U(1) irreducible representations [11]

The irreducible tensor representations of SO(2N) can be decomposed under SO(2N) −→ SU(N) ⊗ U(1) by forming
tensor products and using Young tableau.

• Vector of SO(2N)

This case was already considered in the subsection B.1:

[
2N
]
−→

{
N
}
⊕
{
N
}

(78)

21



• 2nd−rank tensors of SO(2N)

The antisymmetric tensor representation was also considered in the subsection B.1:

[
N(2N− 1)

]
−→

{
1

2
N(N− 1)

}
⊕
{
1

2
N(N− 1)

}
⊕
{
N

2 − 1
}

⊕{1} (79)

In the case of 2nd−rank symmetric traceless tensor of dimensionality
(
2N+1

2

)
−
(
2N
0

)
, we get [2N⊗ 2N]symmetric −→{

(N⊕ N)⊗ (N⊕ N)
}
symmetric

, which on simplifying gives

[
(N+ 1)(2N− 1)

]
−→

{
1

2
N(N+ 1)

}
⊕
{
1

2
N(N+ 1)

}
⊕
{
N

2 − 1
}

⊕{1} (80)

• 3rd−rank tensors of SO(2N)

Here we form an anti-symmetrized and a symmetrized product of three vectors and subtract off the trace
in the case of a symmetric tensor representation. The result for the decomposition of antisymmetric tensor
representation with dimensionality

(
2N
3

)
is given by

[
2

3
N(2N− 1)(N− 1)

]
−→

{
1

6
N(N− 1)(N− 2)

}
⊕
{
1

6
N(N− 1)(N− 2)

}

⊕
{
1

2
N(N+ 1)(N− 2)

}
⊕
{
1

2
N(N+ 1)(N− 2)

}

⊕{N} ⊕
{
N
}

(81)

The result for the symmetric traceless tensor representation of dimensionality
(
2N+2

3

)
−
(
2N
1

)
is

[
2

3
N(N+ 2)(2N− 1)

]
−→

{
1

5
N(N+ 1)(N+ 2)

}
⊕
{
1

6
N(N+ 1)(N+ 2)

}

⊕
{
1

2
N(N− 1)(N+ 2)

}
⊕
{
1

2
N(N− 1)(N+ 2)

}

(82)

• 4th−rank tensors of SO(2N)

Using the technique as before, we have the following decomposition of the
(
2N
4

)
component 4th−rank antisym-

metric tensor representation

[
1

6
N(N− 1)(2N− 1)(2N− 3)

]
−→

{
1

24
N(N− 1)(N− 2)(N− 3)

}

⊕
{

1

24
N(N− 1)(N− 2)(N− 3)

}

⊕
{
1

6
N(N+ 1)(N− 1)(N− 3)

}

⊕
{
1

6
N(N+ 1)(N− 1)(N− 3)

}

⊕
{
1

2
N(N− 1)

}
⊕
{
1

2
N(N− 1)

}

⊕
{
1

4
N

2(N+ 1)(N− 3)

}
⊕
{
N

2 − 1
}

⊕{1} (83)
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For the case of symmetric traceless tensor representation of dimensionality
(
2N+3

4

)
−
(
2N+1

2

)
, the decomposition

is
[
1

6
N(2N+ 1)(N+ 3)(2N− 1)

]
−→

{
1

24
N(N+ 1)(N+ 2)(N+ 3)

}

⊕
{

1

24
N(N+ 1)(N+ 2)(N+ 3)

}

⊕
{
1

6
N(N+ 1)(N− 1)(N+ 3)

}

⊕
{
1

6
N(N+ 1)(N− 1)(N+ 3)

}

⊕
{
1

4
N

2(N− 1)(N+ 3)

}
(84)

• 5th−rank tensors of SO(2N)

The 5th−rank antisymmetric tensor representation has dimensionality is
(
2N
5

)
and can be decomposed as follows

[
1

15
N(2N− 1)(N− 1)(2N− 3)(N− 2)

]
−→

{
1

120
N(N− 1)(N− 2)(N− 3)(N− 4)

}

⊕
{

1

120
N(N− 1)(N− 2)(N− 3)(N− 4)

}

⊕
{

1

24
N(N+ 1)(N− 1)(N− 2)(N− 4)

}

⊕
{

1

24
N(N+ 1)(N− 1)(N− 2)(N− 4)

}

⊕
{

1

12
N

2(N+ 1)(N− 1)(N− 4)

}

⊕
{

1

12
N2(N+ 1)(N− 1)(N− 4)

}

⊕
{
1

6
N(N− 1)(N− 2)

}

⊕
{
1

6
N(N− 1)(N− 2)

}

⊕
{
1

2
N(N+ 1)(N− 2)

}

⊕
{
1

2
N(N+ 1)(N− 2)

}

⊕{N} ⊕
{
N
}

(85)

For the case of symmetric traceless tensor representation of dimensionality
(
2N+4

5

)
−
(
2N+2

3

)
, the decomposition

is
[
1

15
N(N+ 1)(2N+ 1)(N+ 4)(2N− 1)

]
−→

{
1

120
N(N+ 1)(N+ 2)(N+ 3)(N+ 4)

}

⊕
{

1

120
N(N+ 1)(N+ 2)(N+ 3)(N+ 4)

}

⊕
{

1

24
N(N+ 1)(N− 1)(N+ 2)(N+ 4)

}

⊕
{

1

24
N(N+ 1)(N− 1)(N+ 2)(N+ 4)

}

⊕
{
1

4
N

2(N− 1)(N+ 3)

}

⊕
{
1

4
N2(N− 1)(N+ 3)

}
(86)
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• Specializing to SO(10) gauge group

Under SO(10) −→ SU(5)⊗ U(1)

φ
(10)
µ : [10] −→ {5} ⊕

{
5
}

(87)

Φ
(45)(A)
µν : [45] −→ {24} ⊕ {10} ⊕

{
10
}
⊕ {1} (88a)

Φ
(S)
µν : [54] −→ {24} ⊕ {15} ⊕

{
15
}

(88b)

Φ
(120)(A)
µνρ : [120] −→ {5} ⊕

{
5
}
⊕ {10} ⊕

{
10
}
⊕ {45} ⊕

{
45
}

(89a)

Φ
(210′)(S)
µνρ :

[
210

′] −→ {35} ⊕
{
35
}
⊕ {70} ⊕

{
70
}

(89b)

Φ
(210)(A)
µνρσ : [210] −→ {1} ⊕ {5} ⊕

{
5
}
⊕ {10} ⊕

{
10
}
⊕ {24} ⊕ {40}

⊕
{
40
}
⊕ {75} (90a)

Φ
(660)(S)
µνρσ : [660] −→ {70} ⊕

{
70
}
⊕ {160} ⊕

{
160
}
⊕ {200} (90b)

Ξ
(252)(A)
µνρσλ : [252] −→ {1} ⊕ {1} ⊕ {5} ⊕

{
5
}
⊕ {10} ⊕

{
10
}
⊕ {15}

⊕
{
15
}
⊕ {45} ⊕

{
45
}
⊕ {50} ⊕

{
50
}

(91a)

Φ
(1782)(S)
µνρσλ : [1782] −→ {126} ⊕

{
126
}
⊕ {315} ⊕

{
315
}
⊕ {450}

⊕
{
450
}

(91b)

Recall from Eqs.(20b)-(20c) that the real 252-dimensional 5th−rank tensor of SO(10), Ξ
(252)(A)
µνρσλ decomposes

into two complex 5th−rank tensors, Φ
(126)(A)
µνλρσ

(
≡ Ω

(−)
µνρσλ

)
and Φ

(126)(A)
µνλρσ

(
≡ Ω

(+)
µνρσλ

)
each of dimensionality

126: Ξ
(252)(A)
µνλρσ =Φ

(126)(A)
µνλρσ +Φ

(126)(A)
µνλρσ , where

(
Φ

(126)(A)
µνλρσ

Φ
(126)(A)
µνλρσ

)
=

1

2

(
δµαδνβδργδλδδσθ ±

i

5!
ǫµνρλσαβγδθ

)
Ξ

(252)(A)
αβγδθ (92)

Φ
(126)(A)
µνλρσ :

[
126
]
−→ {1} ⊕ {5} ⊕

{
10
}
⊕ {15} ⊕

{
45
}
⊕ {50} (93a)

Φ
(126)(A)
µνλρσ : [126] −→ {1} ⊕

{
5
}
⊕ {10} ⊕

{
15
}
⊕ {45} ⊕

{
50
}

(93b)

B.4 Technique for the evaluation of SO(2N) invariant tensor couplings. The Basic Theo-
rem [8, 9, 10, 11]

Here we discuss a technique for the analysis of SO(2N) invariant couplings which allows a full exhibition of the SU(N)
invariant content of the tensor representations. The technique utilizes a basis consisting of a specific set of reducible
SU(N) tensors in terms of which the SO(2N) invariant couplings have a simple expansion.

We begin with the identification that the natural basis [] for the expansion of the SO(2N) invariants is in terms
of a specific set of SU(N) reducible tensors, φck

and φck
which we define as

A
k ≡ φck

≡ φ2k + iφ2k−1,

Ak ≡ φck
≡ φ2k − iφ2k−1

(94)

Inversely,

φµ =






φ2k =
1

2

(
φck

+ φck

)
,

φ2k−1 = − i

2

(
φck
−φck

)
,

(95)
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where i, j, k, . . . = 1, . . . ,N are SU(N) indices and µ, ν, ρ, . . . = 1, . . . , 2N are SO(2N) indices. This can be extended
immediately to define the quantity Φcicj c̄k... with an arbitrary number of unbarred and barred indices where each c
index can be expanded out so that

A
i
A

j
Ak · · · = Φcicjck... = Φ2icjck... + iΦ2i−1cjck... etc.. (96)

Thus, for example, the quantity Φci1 ci2ci3 ...cir
is a sum of 2r terms gotten by expanding all the c indices. Φcicjck...cr

is completely antisymmetric in the interchange of its c−indices whether unbarred or barred:

Φcicjck...cr = −Φckcjci...cr etc..

Further,
Φ

∗
cicjck...cr = Φcicjck...cr etc..

Use of quantities like Φ∗
cicjck...cr

are also useful in evaluating kinetic energy like terms such as: − 1
2
∂Aφµ∂

Aφ†
µ,

1
4
ΦAB

µνΦµνAB , etc., where A and B are Dirac indices.

As a first example, consider the SO(10) bilinear invariant 10 ·10: IµJµ. We evaluate this invariant in terms of the
specific set of SU(5) reducible tensors. To that end, write I µ = (I 2i, I 2i−1) , J µ = (J 2i,J 2i−1), where i = 1, 2, . . . , 5
and µ = 1, 2, . . . , 5. Then I µJ µ = I 2iJ 2i + I 2i−1J 2i−1. Writing, I ci ≡ I 2i + iX2i−1 and J ci ≡ J 2i + iY2i−1, we get
I ciJ ci = I 2iJ 2i+I 2i−1J 2i−1+ i (I 2i−1J 2i − I 2iJ 2i−1) and I ciJ ci = I 2iJ 2i+I 2i−1J 2i−1+ i (I 2iJ 2i−1 − I 2i−1J 2i).
Adding the last two equations give I ciJ ci + I ciJ ci = 2 (I 2iJ 2i + I 2i−1J 2i−1) and hence,

10 · 10
∣∣∣
SO(10)

: I µJ µ =
1

21

(
I ciJ ci + I ciJ ci

)
.

One can now exploit the last result to compute other SO(10) bilinear invariants such as 120 · 120: I µνρJµνρ.
Therefore, I µνρJµνρ = 1

2
(I ciνρJ ciνρ + I ciνρJ ciνρ). Repeating the process, we get I ciνρJ ciνρ = 1

2
(I cicjρJ cicjρ +

I cicjρJ cicjρ) =
1
2
[ 1
2
(I cicjckJ cicjck + I cicjckJ cicjck )+

1
2
(I cicjckJ cicjck + I cicjckJ cicjck)] and similarly, I ciνρJ ciνρ =

1
2
[ 1
2
(I cicjckJ cicjck + I cicjckJ cicjck) +

1
2
(I cicjckJ cicjck + I cicjckJ cicjck)]. Thus, I µνρJ µνρ = 1

2
( 1
4
)(I cicjckJ cicjck +

I cicjckJ cicjck + I cicjckJ cicjck + I cicjckJ cicjck + I cicjckJ cicjck + I cicjckJ cicjck + I cicjckJ cicjck + I cicjckJ cicjck).
Finally, using the antisymmetry of the c−indices, we get

120 · 120
∣∣∣
SO(10)

: IµνρJ µνρ =
1

23

(
I cicjckJ cicjck + I cicjckJ cicjck + 3I cicjckJ cicjck + 3I cicjckJ cicjck

+I cicjckJ cicjck

)
.

Higher order SO(10) invariants in terms of specific set of SU(N) reducible tensors can also be easily computed. As
a third example, consider the SO(10) trilinear invariant 10 ·10 ·45: I µJ νLµν . Expanding, I µJ νLµν = 1

2
(I ciJ νLciν +

I ciJ νLciν) =
1
2
[ 1
2
(I ciJ cjLcicj + I ciJ cjLcicj ) +

1
2
(I ciJ cjLcicj + I ciJ cjLcicj )]. Rearranging,

10 · 10 · 45
∣∣∣
SO(10)

: I µJ νLµν =
1

22

[
I ciJ cjLcicj + I ciJ cjLcicj +

(
I ciJ cj − I cjJ ci

)
Lcicj

]
.

For our last example, we compute the quartic SO(10) invariant, 45 · 45 · 45 · 45: H αβIαγJβδLγδ . The result
is

45 · 45 · 45 · 45
∣∣∣
SO(10)

: H αβIαγJ βδLγδ =
1

24

[(
H c̄ic̄j I cick +H cic̄j I c̄ick

)(
J cj c̄lLc̄kcl + J cjclLc̄k c̄l

)

+
(
H c̄i c̄j I cic̄k +H cic̄j I c̄ic̄k

)(
J cj c̄lLckcl + J cjclLck c̄l

)

+
(
H cicj I c̄ic̄k +H c̄icj I cick

)(
J c̄j c̄lLckcl + J c̄jclLck c̄l

)

+
(
H cicj I c̄ick +H c̄icj I cic̄k

)(
J c̄j c̄lLc̄kcl + J c̄jclLc̄k c̄l

)]
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We now give some general results here,

Φµ1µ2µ3...µrΦµ1µ2µ3...µr =
1

2r

[
Φci1ci2 ci3 ...cir−1

cir
Φci1 ci2 ci3 ...cir−1

cir

+Φci1ci2 ci3 ...cir−1
cir

Φci1ci2 ci3 ...cir−1
cir

+ · · ·
+Φci1ci2 ci3 ...cir−1

cir
Φci1ci2 ci3 ...cir−1

cir

+Φci1ci2 ci3 ...cir−1
cir

Φci1ci2 ci3 ...cir−1
cir

+ · · ·
+Φci1ci2 ci3 ...cir−1

cir
Φci1ci2 ci3 ...cir−1

cir
+ · · ·

+Φci1ci2 ci3 ...cir−1
cir

Φci1ci2 ci3 ...cir−1
cir

]
, (97a)

Φµ1µ2µ3...µrΦ
†
µ1µ2µ3...µr

=
1

2r

[
Φci1ci2 ci3 ...cir−1

cir
Φ

†
ci1 ci2 ci3 ...cir−1

cir

+Φci1ci2 ci3 ...cir−1
cir

Φ
†
ci1ci2 ci3 ...cir−1

cir
+ · · ·

+Φci1ci2 ci3 ...cir−1
cir

Φ
†
ci1ci2 ci3 ...cir−1

cir

+Φci1ci2 ci3 ...cir−1
cir

Φ
†
ci1ci2 ci3 ...cir−1

cir
+ . . .

+Φci1ci2 ci3 ...cir−1
cir

Φ
†
ci1ci2 ci3 ...cir−1

cir
+ · · ·

+Φci1ci2 ci3 ...cir−1
cir

Φ
†
ci1ci2 ci3 ...cir−1

cir

]
(97b)

Finally, we make the observation that the object Φcicjck...cr transforms like a reducible representation of SU(N).
Thus if we are able to compute the SO(2N) invariant couplings in terms of these reducible tensors of SU(N) then
there remains only the further step of decomposing the reducible tensors into their irreducible parts. See subsection
B.5.

B.5 Explicit decomposition of irreducible SO(10) tensors in terms of SU(5) irreducible
tensors with canonically normalized kinetic energy terms [8, 9]

• SU(5) tensors in the 10−plet of SO(10)

The 10−plet of SO(10), φ(10)
µ , can be decomposed in SU(5) components as follows

φ
(10)
c̄i

= h
(10)
i ; φ

(10)
ci

= h(10)i. (98)

The tensors are already in their irreducible form and one can identify φ(10)
ci

with the 5−plet of Higgs and φ
(10)
c̄i

with the 5−plet of Higgs. Now the kinetic energy for the 10−dimensional Higgs field is

L(10)
KE = −∂Aφ

(10)
µ ∂A

φ
(10)†
µ

= −1

2

(
∂Aφ

(10)
ci

∂A
φ

(10)†
ci

+ ∂Aφ
(10)
ci

∂A
φ

(10)†
ci

)

= −1

2

(
∂Ah

(10)
i ∂Ah

(10)†
i + ∂Ah

(10)i∂Ah(10)i†
)

≡ −∂AH
(10)
i ∂AH

(10)†
i − ∂AH

(10)i∂AH(10)i†.

Therefore, we normalize the fields according to

h
(10)
i =

√
2H

(10)
i ; h(10)i =

√
2H(10)i. (99)

• SU(5) tensors in the 45−plet of SO(10)

The 45−plet of SO(10) Higgs, Φ
(45)
µν , can be decomposed in SU(5) multiplets as follows

Φ
(45)
cicj

= h
(45)
ij ;

Φ
(45)
cncn

= h(45);

Φ
(45)
cicj

= h(45)ij ;

Φ
(45)
cicj

= h
(45)i
j +

1

5
δijh

(45),
(100)
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where h(45), h(45)ij , h
(45)
ij and h

(45)i
j are the 1−plet, 10−plet, 10−plet and 24−plet representations of SU(5),

respectively. To normalize these SU(5) Higgs fields, we carry out a field redefinition:

h(45) =
√
10H(45);

h
(45)i
j =

√
2H

(45)i
j ;

h
(45)
ij =

√
2H

(45)
ij ;

h(45)ij =
√
2H(45)ij .

(101)

In terms of the normalized fields, the kinetic energy of the 45−plet of Higgs,

L(45)
KE = −∂AΦ

(45)
µν ∂A

Φ
(45)†
µν

= −1

4

(
∂AΦ

(45)
cicj

∂A
Φ

(45)†
cicj

+ ∂AΦ
(45)
cic̄j

∂A
Φ

(45)†
cic̄j

+ 2∂AΦ
(45)
cic̄j

∂A
Φ

(45)†
ci c̄j

)

= −1

4

[

∂Ah
(45)ij∂Ah(45)ij† + ∂Ah

(45)
ij ∂Ah

(45)†
ij + 2

(
∂Ah

(45)i
j ∂Ah

(45)i†
j

+
1

5
∂Ah

(45)∂Ah(45)†
)]

≡ −∂AH(45)∂AH
(45)† − 1

2!
∂AH

(45)
ij ∂AH

(45)†
ij − 1

2!
∂AH(45)ij∂AH

(45)ij†

− ∂AH
(45)i
j ∂AH

(45)i†
j .

• SU(5) tensors in the 120−plet of SO(10)

The 120−plet of SO(10), Φ
(120)
µνρ , can be decomposed in SU(5) components as follows

Φ
(120)
cicj c̄k

= h
(120)ij
k +

1

4

[
δikh

(120)j − δjkh
(120)i

]
;

Φ
(120)
cic̄j c̄k

= h
(120)i
jk +

1

4

[
δijh

(120)
k − δikh

(120)
j

]
;

Φ
(120)
c̄ncnci

= h(120)i;

Φ
(120)
cicjck

= ǫijklmh
(120)
lm ,

Φ
(120)
c̄ic̄j c̄k

= ǫijklmh(120)lm ,

Φ
(120)
c̄ncnc̄i

= h
(120)
i ,

(102)

where h
(120)
i , h(120)i, h

(120)
ij , h(120)ij , h

(120)ij
k , h

(120)i
jk are the 5−plet , 5−plet , 10−plet, 10−plet, 45−plet and

45−plet representations of SU(5). To normalize them we make the following redefinition of fields

h(120)i =
4√
3
H(120)i;

h
(120)
i =

4√
3
H

(120)
i ;

h(120)ij =
1√
3
H(120)ij ;

h
(120)ij
k =

2√
3
H

(120)ij
k ;

h
(120)
ij =

1√
3
H

(120)
ij ,

h
(120)i
jk =

2√
3
H

(120)i
jk .

(103)

In terms of the redefined fields the kinetic energy term for the 120 multiplet takes on the form

L(120)
KE = −∂AΦ

(120)
µνλ ∂A

Φ
(120)†
µνλ

= −1

8

(
∂AΦ

(120)
cicjck

∂A
Φ

(120)†
cicjck

+ ∂AΦ
(120)
cicjck

∂A
Φ

(120)†
cicjck

+ 3∂AΦ
(120)
cicjck

∂A
Φ

(120)†
cicjck

+3∂AΦ
(120)
cicjck

∂A
Φ

(120)†
cicjck

)

= −1

8

[
12∂Ahij∂

Ah†
ij + 12∂Ah

ij∂Ahij† + 3
(
∂Ah

(120)ij
k ∂Ah

(120)ij†
k

+
1

2
∂Ah

(120)i∂Ah(120)i†
)
+ 3

(
∂Ah

(120)k
ij ∂Ah

(120)k†
ij +

1

2
∂Ah

(120)
i ∂Ah

(120)†
i

)]

≡ − 1

2!
∂AH

(120)ij∂AH(120)ij† − 1

2!
∂AH

(120)
ij ∂AH

(120)†
ij − 1

2!
∂AH

(120)ij
k ∂AH

(120)ij†
k

− 1

2!
∂AH

(120)i
jk ∂AH

(120)i†
jk − ∂AH

(120)i∂AH(120)i† − ∂AH
(120)
i ∂AH

(120)†
i .

• SU(5) tensors in the 210−plet of SO(10)
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The 210−plet of SO(10), Φ
(210)
µνρσ , has the following decomposition in SU(5) multiplets

Φ
(210)
cicjckcl

= h
(210)ij
kl +

1

3

[
δilh

(210)j
k − δikh

(210)j
l + δjkh

(210)i
l − δjl h

(210)i
k

]

+
1

20

(
δilδ

j
k − δikδ

j
l

)
h(210),

Φ
(210)
cicjckcl

= h
(210)ijk
l +

1

3

(
δkl h

(210)ij − δjl h
(210)ik + δilh

(210)jk
)
,

Φ
(210)
cicjckcl

= h
(210)l
ijk +

1

3

(
δlkh

(210)
ij − δljh

(210)
ik + δlih

(210)
jk

)
,

Φ
(210)
cicjcmcm

= h
(210)i
j +

1

5
δijh

(210),

Φ
(210)
cicjckcl

=
1

24
ǫijklmh(210)m,

Φ
(210)
cicjckcl

=
1

24
ǫijklmh(210)

m ,

Φ
(210)
cicjcmcm

= h(210)ij ,

Φ
(210)
cicjcmcm

= h
(210)
ij ,

Φ
(210)
cmcmcncn

= h(210),

(104)

where h(210), h(210)i, h
(210)
i , h(210)ij , h

(210)
ij , h

(210)i
j , h

(210)ijk
l ; h

(210)i
jkl and h

(210)ij
kl are the 1−plet, 5−plet, 5−plet,

10−plet, 10−plet, 24−plet, 40−plet, 40−plet and 75−plet representations of SU(5), respectively. To normalize
these fields, we carry out a field redefinition

h(210) = 4

√
5

3
H(210);

h(210)i = 8
√
6H(210)i;

h
(210)
i = 8

√
6H

(210)
i ;

h(210)ij =
√
2H(210)ij ;

h
(210)
ij =

√
2H

(210)
ij ;

h
(210)i
j =

√
2H

(210)i
j ;

h
(210)ijk
l =

√
2

3
H

(210)ijk
l ,

h
(210)i
jkl =

√
2

3
H

(210)i
jkl ,

h
(210)ij
kl =

√
2

3
H

(210)ij
kl .

(105)

Now the kinetic energy for the 210−dimensional Higgs field in terms of the redefined fields takes the form

L(210)
KE = −∂AΦ

(210)
µνρλ∂

A
Φ

(210)†
µνρλ

= − 1

16

(
∂AΦ

(210)
cicjckcl

∂A
Φ

(210)†
cicjckcl

+ ∂AΦ
(210)
cicjckcl

∂A
Φ

(210)†
cicjckcl

+ 4∂AΦ
(210)
cicjckcl

∂A
Φ

(210)†
cicjckcl

+4∂AΦ
(210)
cicjckcl

∂A
Φ

(210)†
cicjckcl

+ 6∂AΦ
(210)
cicjckcl

∂A
Φ

(210)†
cicjckcl

)

≡ −∂AH
(210)∂AH(210)† − ∂AH

(210)i∂AH(210)i† − ∂AH
(210)
i ∂AH

(210)†
i

− 1

2!
∂AH

(210)
ij ∂AH

(210)†
ij − 1

2!
∂AH

(210)ij∂AH(210)ij† − ∂AH
(210)i
j ∂AH

(210)i†
j

− 1

3!
∂AH

(210)l
ijk ∂AH

(210)l†
ijk − 1

3!
∂AH

(210)ijk
l ∂AH

(210)ijk†
l − 1

2!

1

2!
∂AH

(210)ij
kl ∂AH

(210)ij†
kl .

• SU(5) tensors in the 126+ 126−plet of SO(10)
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The 252−dimensional tensor of SO(10), Ξ
(252)
µνλρσ, has the following decomposition in SU(5) multiplets

Ξ
(252)
cicjck c̄lc̄m

= h
(126)ijk
lm +

1

2

(
δilh

(126)jk
m − δjl h

(126)ik
m + δkl h

(126)ij
m − δimh

(126)jk
l + δjmh

(126)ik
l

− δkmh
(126)ij
l

)
+

1

12

(
δilδ

j
mh(126)k − δjl δ

i
mh(126)k − δilδ

k
mh(126)j + δkl δ

i
mh(126)j

+ δjl δ
k
mh(126)i − δkl δ

j
mh(126)i

)
;

Ξ
(252)
cicj c̄k c̄lc̄m

= h
(126)ij
klm +

1

2

(
δikh

(126)j
lm − δilh

(126)j
km + δimh

(126)j
kl − δjkh

(126)i
lm + δjl h

(126)i
km

− δjmh
(126)i
kl

)
+

1

12

(
δikδ

j
l h

(126)
m − δikδ

j
mh

(126)
l − δilδ

j
kh

(126)
m + δilδ

j
mh

(126)
l

+ δimδjkh
(126)
l − δimδjl h

(126)
k

)
.

Ξ
(252)
cic̄j c̄k c̄lc̄m

= ǫjklmnh
(126)ni

(S) +
1

2

(
δijǫklmpq − δikǫjlmpq + δil ǫjkmpq − δimǫjklpq

)
h(126)pq ,

Ξ
(252)
cicjckclc̄m

= ǫijklnh
(126)
(S)nm

+
1

2

(
δimǫjklpq − δjmǫiklpq + δkmǫijlpq − δlmǫijkpq

)
h(126)
pq ;

Ξ
(252)
ci c̄j c̄k c̄ncn

= h
(126)i
jk +

1

4

(
δikh

(126)
j − δijh

(126)
k

)
;

Ξ
(252)
c̄icjckcnc̄n = h

(126)jk
i +

1

4

(
δki h

(126)j − δjih
(126)k

)
,

Ξ
(252)
cicjckclcm

= ǫijklmh(126);

Ξ
(252)
c̄ic̄j c̄k c̄lc̄m

= ǫijklmh(126),

Ξ
(252)
cicjck c̄ncn

= ǫijklmh
(126)
lm ;

Ξ
(252)
c̄i c̄j c̄kcnc̄n

= ǫijklmh(126)lm,

Ξ
(252)
cic̄ncnc̄pcp = h(126)i;

Ξ
(252)
c̄ic̄ncnc̄pcp = h

(126)
i .

(106)

The fields that appear above are not yet properly normalized. To normalize the fields we carry out a field
redefinition, so that,

h(126) =
2√
15

H(126);

h(126)i = 4

√
2

5
H(126)i;

h
(126)
lm =

√
2

15
H

(126)
lm ;

h
(126)ni

(S)
=

√
2

15
H

(126)ni

(S)
;

h
(126)i
jk = 2

√
2

15
H

(126)i
jk ;

h
(126)ijk
lm =

2√
15

H
(126)ijk
lm ;

h(126) =
2√
15

H(126),

h
(126)
i = 4

√
2

5
H

(126)
i ,

h(126)lm =

√
2

15
H(126)lm,

h
(126)

(S)ni
=

√
2

15
H

(126)

(S)ni
,

h
(126)jk
i = 2

√
2

15
H

(126)jk
i ,

h
(126)lm
ijk =

2√
15

H
(126)lm
ijk .

(107)

The kinetic energy for the 252−plet field L(252)
KE = −∂AΞ

(252)
µνλρσ∂

AΞ
(252)†
µνλρσ in terms of the normalized fields is
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then given by

L(252)
KE = −∂AΞ

(252)
µνλρσ∂

A
Ξ

(252)†
µνλρσ

= − 1

32

(
∂AΞ

(252)
cicjckclcm

∂A
Ξ

(252)†
cicjckclcm

+ ∂AΞ
(252)
cicjckclcm

∂A
Ξ

(252)†
cicjckclcm

+ 5∂AΞ
(252)
cicjckclcm

∂A
Ξ

(252)†
cicjckclcm

+ 5∂AΞ
(252)
cicjckclcm

∂A
Ξ

(252)†
cicjckclcm

+ 10∂AΞ
(252)
cicjckclcm

∂A
Ξ

(252)†
cicjckclcm

+ 10∂AΞ
(252)
cicjckclcm

∂A
Ξ

(252)†
cicjckclcm

)

≡ −∂AH
(126)∂AH(126)† − ∂AH

(126)∂AH(126)† − ∂AH
(126)
i ∂AH

(126)†
i

− ∂AH
(126)i∂AH(126)i† − 1

2!
∂AH

(126)ij∂AH(126)ij† − 1

2!
∂AH

(126)
ij ∂AH

(126)†
ij

− 1

2!
∂AH

(126)

(S)ij
∂AH

((126)†
(S)ij

− 1

2!
∂AH

(126)ij

(S)
∂AH

(126)ij†
(S)

− 1

2!
∂AH

(126)jk
i ∂AH

(126)jk†
i

− 1

2!
∂AH

(126)i
jk ∂AH

(126)i†
jk − 1

3!2!
∂AH

(126)lm
ijk ∂AH

(126)lm†
ijk

− 1

3!2!
∂AH

(126)ijk
lm ∂AH

(126)ijk†
lm ,

where H(126)(H(126)), H
(126)
i , H(126)i, H(126)ij , H

(126)
ij , H

(126)
(S)ij , H

(126)ij
(S) , H

(126)jk
i , H

(126)i
jk , H

(126)lm
ijk , H

(126)ijk
lm

are the 1, 5, 5, 10, 10, 15, 15, 45, 45, 50, 50 representations of SU(5), respectively.

B.6 Extraction and normalization of SU(3)C triplets, SU(2)L doublets and SU(3)C ×

SU(2)L × U(1)Y singlets in SU(5) fields [14]

SM doublets, triplets and singlets contained in the SU(5) fields are needed in the spontaneous breaking of
SO(10)−GUT and electroweak symmetry. Let’s first identify them:

SU(2) weak doublets :






(510)D
a, (510)Da

(5120)D
a, (5120)Da,

(45120)D
a, (45120)Da

(5126)Da,
(45126)D

a

(5126)D
a, (45126)Da

(5210)D
a, (5210)Da,

SU(3) color triplets :






(510)T
α, (510)Tα

(5120)T
α, (5120)Tα,

(45120)T
α, (45120)Tα

(5126)Tα,
(45126)T

α, (50126)Tα

(5126)T
α, (45126)Tα,

(50126)Tα

(5210)T
α, (5210)Tα

and

SU(3)C × SU(2)L × U(1)Y singlets :






S1
45
, S24

45

S1
126

S1
126

S1
210

, S24
210

, S75
210

,

where for example, the notation (50126)Tα means the triplet field with canonically normalized kinetic energy term
and residing in the SU(5)’s 50−plet of SO(10)’s 126−plet. Here α, β, γ = 1, 2, 3 are SU(3) color indices, while
a, b = 4, 5 are SU(2) weak indices.

• SM doublets and triplets in 5−plet and 5−plet of SU(5)

5 and 5 fields of SU(5) have the following SU(3)C × SU(2)L × U(1)Y decomposition [27]

H(#)i (5) = (1, 2, 3) (5#)Da + (3, 1,−2) (5#)T α,

H
(#)
i (5) = (1, 2,−3) (5#)Da + (3, 1, 2) (5#)Tα,
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where # appearing in the subscript refers to 10, 120, 126, 126, 210 fields of SO(10) and we have defined

H(#)a ≡ (5#)Da;

H(#)α ≡ (5#)T α;

H(#)
a ≡ (5#)Da;

H(#)
α ≡ (5#)Tα;

(108)

Here, D’s and T ’s represent unnormalized SM doublet and triplet fields. The kinetic energy of the 5− and 5−
plets are given by

−∂AH
(#)i ∂AH(#)i† = −

[
∂A

(5#)
D

a ∂A(5#)
D

a† + ∂A
(5#)

T
α ∂A(5#)

T
α†
]
,

−∂AH
(#)
i ∂AH

(#)†
i = −

[
∂A

(5#)
Da ∂A(5#)

D
†
a + ∂A

(5#)
Tα ∂A(5#)

T
†
α

]
,

so that the SM fields are normalized according to

(5#)Da = (5#)
D

a;

(5#)T α = (5#)
T

α;

(5#)Da = (5#)
Da;

(5#)Tα = (5#)
Tα;

(109)

• SM doublets and triplets in 45−plet and 45−plet of SU(5)

45−dimensional field of SU(5) have the following SU(3)C × SU(2)L × U(1)Y decomposition [27]

H
(#)ij
k (45) = (1, 2, 3) (45#)Da + (3, 1,−2) (45#)T α + (3, 3,−2)Waα

b + (3, 1, 8)Wα

+ (3, 2,−7)Waα + (6, 1,−2)Wαβ
γ + (8, 2, 3)Wαa

β ,

where # refers to 120 and 126 fields of SO(10). The traceless condition on the SU(5) tensor H
(#)ij
k leads to the

definitions
H

(#)βa

β = −H(#)ba
b ≡ (45#)Da; H

(#)βα

β = −H(#)bα
b ≡ (45#)T α. (110)

We now express all the reducible tensors of the 45-plet in terms of the irreducible ones as follows:

H
(#)aα
b =Waα

b −
1

2
δab

(45#)T α; H
(#)αa

β =Wαa
β +

1

3
δαβ

(45#)Da;

H(#)ab
α = ǫabWα; H

(#)αβ
a = ǫαβγWaγ ;

H(#)ab
c = δbc

(45#)Da − δac
(45#)Db; H(#)αβ

γ =Wαβ
γ +

1

2

[
δαγ

(45#)T β − δβγ
(45#)T α

]
.

(111)

The kinetic energy of the 45-plet is given by

−∂AH
(#)ij
k ∂AH

(#)ij†
k = −

[
∂A

(45#)
D

a∂A(45#)
D

a† + ∂A
(45#)

T
α∂A(45#)

T
α†

+ ∂AW
aα
b ∂A

W
aα†
b + ∂AWα∂

A
W

†
α + ∂AWaα∂

A
W

†
aα

+ ∂AW
αβ
γ ∂A

W
αβ†
γ + ∂AW

αa
β ∂A

W
αa†
β

]
,

so that the SU(3)C × SU(2)L × U(1)Y fields are normalized according to

(45#)Da =
1

2

√
3

2
(45#)

D
a; (45#)T α =

1√
2

(45#)
T

α;

Wα =
1√
2
Wα; Waα =

1√
6
Waα;

Wαa
β =

1√
2
W

αa
β ; Waα

b =
1√
2
W

aα
b ;

Wαβ
γ =

1√
2
W

αβ
γ .

(112)
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One can now easily extend Eqs.(111) and (112) to SU(5)’s 45. field contained in 120− and 126−plets:

H(#)b
aα =Wb

aα −
1

2
δbb

(45#)Tα; H(#)β
αa =Wβ

αa +
1

3
δβα

(45#)Da;

H
(#)α
ab = ǫabWα; H

(#)a
αβ = ǫαβγWaγ ;

H
(#)c
ab = δcb

(45#)Da − δca
(45#)Db; H

(#)γ
αβ =Wγ

αβ +
1

2

[
δγα

(45#)Tβ − δγβ
(45#)Tα

]
.

(45#)Da =
1

2

√
3

2
(45#)

Da;
(45#)Tα =

1√
2

(45#)
Tα;

Wα =
1√
2
W

α; Waα =
1√
6
W

aα;

Wβ
αa =

1√
2
W

β
αa; Wb

aα =
1√
2
W

b
aα;

Wγ
αβ =

1√
2
W

γ
αβ .

(113)

In Eq.(113), # refers to 120− and 126−plets.

• SM triplets in 50−plet and 50−plet of SU(5)

50−dimensional field of SU(5) have the following SU(3)C × SU(2)L × U(1)Y decomposition [27]

H
(126)ijk
lm (50) = (1, 1,−12)X + (3, 1,−2) (50126)T α + (3̄, 2,−7)Xαβ

a + (6̄, 3,−2)Xαβa
γb

+ (6, 1, 8)Xα
βγ + (8, 2, 3)Xαa

β ,

where we have defined

H
(126)abγ
ab = H

(126)αβγ

αβ = −H(126)aαγ
aα ≡ (50126)T α;

H(126)γαβ
γa ≡ Xαβ

a ;

∆
γαa

γβ ≡ Xαa
β .

(114)

The first relationship above follows from the traceless condition on the SU(5) irreducible tensor H
(126)ijk
lm :

H(126)aαi
aα = −1

2

[
H

(126)αβi

αβ +H
(126)abi
ab

]
.

We now express the reducible tensors of the 50−plet in terms of the SM irreducible ones as follows:

H(126)αβa
γσ = δαγX βa

σ − δασX βa
γ + δβσXαa

γ − δβγXαa
σ ; H

(126)αβγ

ab = ǫαβγǫabX

H(126)αβγ
σa = δγσXαβ

a − δβσXαγ
a + δασX βγ

a ; H
(126)αab

βγ = ǫabXα
βγ ;

H
(126)αβa

γb = Xαβa
γb +

1

4
δab

[
δαγ

(50126)T β − δβγ
(50126)T α

]
; H

(126)abα
cβ = δacXαb

β − δbcXαa
β

H
(126)abα
cd =

1

2

[
δac δ

b
d − δadδ

b
c

]
(50126)T α; H

(126)αβa

bc = δacXαβ
b − δabXαβ

c .

(115)

H(126)αβγ
ρσ =

1

2

[
δαρ δ

β
σ

(50126)T γ − δβρ δ
α
σ

(50126)T γ − δαρ δ
γ
σ

(50126)T β + δγρδ
α
σ

(50126)T β

+δβρ δ
γ
σ

(50126)T α − δγρδ
β
σ

(50126)T α
]
. (116)

The kinetic energy of the 50-plet is given by

−∂AH
(126)ijk
lm ∂AH

(126)ijk†
lm = −

[
∂AX∂

A
X

† + ∂A
(50126)T

α∂A (50126)T
α† +

1

2!
∂AX

αβ
a ∂A

X
αβ†
a

+
1

2!
∂AX

αa
β ∂A

X
αa†
β +

1

3!

1

2!
∂AX

αβa
γb ∂A

X
αβa†
γb

+
1

2!
∂AX

α
βγ∂

A
X

α†
βγ

]
,
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so that the SM fields are normalized according to

X =
1

2
√
3
X; (50126)T α =

1

3
(50126)T

α

Xαβ
a =

1

2
√
6
X

αβ
a ; Xαa

β =
1

4
√
3
X

αa
β ;

Xαβa
γb =

1

6
√
2
X

αβa
γb ; Xα

βγ =
1

2
√
3
X

α
βγ .

(117)

One can now extend the above results to 50 of SU(5) contained in 126 plet.

• SM singlet in 24−plet of SU(5)

24−dimensional field of SU(5) have the following SU(3)C × SU(2)L × U(1)Y decomposition [27]

H
(#)i
j (24) = (1, 1, 0)S24

#
+ (1, 3, 0)Ya

b + (8, 1, 0)Yα
β + [(3, 2,−5)Yα

a + c.c.],

where # refers to 45 and 210 fields of SO(10). The tracelessness condition on the tensor H
(#)i
j gives the

following definition
H(#)α

α = −H(#)a
a ≡ S24

210
. (118)

The reducible tensors of the 24-plet can be expressed in terms of the irreducible ones as follows:

H
(#)a
b = Ya

b −
1

2
δabS24# ; H

(#)α
β = Yα

β +
1

3
δαβS24# . (119)

The kinetic energy of the 24-plet is given by

−∂AH
(#)i
j ∂AH

(#)i†
j = −

[
∂AS24

#
∂A

S
†
24

#
+ ∂AY

α
β ∂

A
Y

α†
β + ∂AY

a
b ∂

A
Y

a†
b

+ ∂AY
α
a ∂

A
Y

α†
a + ∂AY

a
α∂

A
Y

a†
α

]
,

so that the SM fields are normalized according to

S24
#

=

√
6

5
S24

#
; Yα

β = Y
α
β ; Ya

b = Y
a
b ;

Yα
a = Y

α
a ; Ya

α = Y
a
α.

(120)

• SM singlet in 75−plet of SU(5)

75−dimensional field of SU(5) have the following SU(3)C × SU(2)L × U(1)Y decomposition [27]

H
(210)ij
kl (75) = (1, 1, 0)S75

210
+ (8, 1, 0)Zα

β + (8, 3, 0)Zαa
βb

+ [(3, 2,−5)Zα
a + (6̄, 2,−5)Zαβ

γa + (3̄, 1,−10)Zα

+ c.c.], (121)

where we have defined

H
(210)ab
ab = H

(210)αβ

αβ = −H(210)αa
αa ≡ S75

210
;

H
(210)αb

ab ≡ X
α
a ;

Zα
β ≡ H

(210)αa

βa +
1

3
δαβS75210 .

(122)

Again the first relationship above follows from the double tracelessness condition on the tensor H
(210)ij
kl :

H(210)αa
αa = −1

2

(
H

(210)αβ

αβ +H
(210)ab
ab

)
.
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The reducible tensors of the 75−plet can be expressed in terms of the irreducible SM states as follows:

H
(210)ab
cd =

1

2

(
δac δ

b
d − δadδ

b
c

)
S75

210
;

H(210)αβ
γσ =

1

2

(
δασZβ

γ − δαγZβ
σ

)
+

1

6

(
δαγ δ

β
σ − δασ δ

β
γ

)
S75

210

H
(210)αa

βb = Zαa
βb +

1

2
δabZα

β −
1

6
δab δ

α
βS75210 ;

H(210)αβ
γa = Zαβ

γa −
1

2

(
δαγZβ

a − δβγZα
a

)
;

H
(210)αβ

ab = ǫabǫ
αβγZγ ;

H
(210)aα
bc = δabZα

c − δacZα
b .

(123)

The kinetic energy of the 75−plet is given by

−∂AH
(210)ij
kl ∂AH

(210)ij†
kl = −

[
∂AS75

210
∂A

S
†
75

210
+ ∂AZα∂

A
Z
†
α + ∂AZ

α∂A
Z
α†

+ ∂AZ
α
β∂

A
Z
α†
β + ∂AZ

α
a∂

A
Z
α†
a + ∂AZ

a
α∂

A
Z
a†
α +

+
1

2!

1

2!
∂AZ

αβ
γa ∂

A
Z
αβ†
γa +

1

2!

1

2!
∂AZ

γa
αβ∂

A
Z
γa†
αβ

+
1

2!

1

2!
∂AZ

αa
βb ∂

A
Z
αa†
βb

]
,

so that the SM fields are normalized according to

S75
210

=
1√
2
S75

210
;

Zα =
1

2
Zα;

Zα =
1

2
Z
α;

Zα
β =

1√
3
Z
α
β ;

Zα
a =

1√
6
Z
α
a ;

Za
α =

1√
6
Z
a
α;

Zαβ
γa =

1

2
√
2
Z
αβ
γa ,

Zγa
αβ =

1

2
√
2
Z
γa
αβ ,

Zαa
βb =

1

4
Z
αa
βb .

(124)
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[32] N. Cardoso, D. Emmanuel-Costa, N. Gonçalves and C. Simoes, “SOSpin, a C++ library for Yukawa de-
composition in SO(2N) models,” Comput. Phys. Commun. 203, 178-200 (2016) doi:10.1016/j.cpc.2016.01.010
[arXiv:1509.00433 [hep-ph]].

[33] R. Feger, T. W. Kephart and R. J. Saskowski, “LieART 2.0 – A Mathematica application for Lie Alge-
bras and Representation Theory,” Comput. Phys. Commun. 257, 107490 (2020) doi:10.1016/j.cpc.2020.107490
[arXiv:1912.10969 [hep-th]].

35

http://arxiv.org/abs/hep-ph/0508153
http://arxiv.org/abs/2005.00867
http://arxiv.org/abs/2104.10114
http://arxiv.org/abs/1508.00585
http://arxiv.org/abs/1112.5387
http://arxiv.org/abs/hep-ph/0506312
http://arxiv.org/abs/hep-ph/0607244
http://arxiv.org/abs/hep-ph/0511172
http://arxiv.org/abs/0707.1332
http://arxiv.org/abs/0909.2380
http://arxiv.org/abs/hep-ph/0601023
http://arxiv.org/abs/hep-th/0008097
http://arxiv.org/abs/hep-ph/0204097
http://arxiv.org/abs/hep-ph/0405074
http://arxiv.org/abs/hep-ph/9912365
http://arxiv.org/abs/hep-ph/0405300
http://arxiv.org/abs/1509.00433
http://arxiv.org/abs/1912.10969


[34] F. Staub, “SARAH 4 : A tool for (not only SUSY) model builders,” Comput. Phys. Commun. 185, 1773-1790
(2014) doi:10.1016/j.cpc.2014.02.018 [arXiv:1309.7223 [hep-ph]].

[35] C. Horst and J. Reuter, “CleGo: A package for automated computation of Clebsch-Gordan coefficients in
Tensor Product Representations for Lie Algebras A - G,” Comput. Phys. Commun. 182, 1543-1565 (2011)
doi:10.1016/j.cpc.2011.03.025 [arXiv:1011.4008 [math-ph]].

[36] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, “FeynRules 2.0 - A complete toolbox
for tree-level phenomenology,” Comput. Phys. Commun. 185, 2250-2300 (2014) doi:10.1016/j.cpc.2014.04.012
[arXiv:1310.1921 [hep-ph]].

36

http://arxiv.org/abs/1309.7223
http://arxiv.org/abs/1011.4008
http://arxiv.org/abs/1310.1921

	1 Introduction
	2 Materials and Methods
	2.1 color push gray 0color popInput Phaseblue!20color push gray 0color poptowidthheightdepth
	2.2 color push gray 0color popGeneration Phaseorange!50color push gray 0color poptowidthheightdepth
	2.3 color push gray 0color popSimplification of Reducible Tensor Term Expression Phaseorange!50color push gray 0color poptowidthheightdepth
	2.3.1 color push gray 0color popReordering of Reducible Tensor Term Indicesorange!20color push gray 0color poptowidthheightdepth
	2.3.2 color push gray 0color popSorting Tensor Termsorange!20color push gray 0color poptowidthheightdepth
	2.3.3 color push gray 0color popRenaming of Reducible Tensor Term Indices (Ignoring Commutativity)orange!20color push gray 0color poptowidthheightdepth color push gray 0color popAlgorithmorange!20color push gray 0color poptowidthheightdepth
	2.3.4 color push gray 0color popRenaming of Reducible Tensor Term Indices (Accounting fororange!20color push gray 0color poptowidthheightdepth color push gray 0color popCommutativity) Algorithmorange!20color push gray 0color poptowidthheightdepth
	2.3.5 color push gray 0color popSimplification of Reducible Terms Algorithmorange!20color push gray 0color poptowidthheightdepth

	2.4 color push gray 0color popReduction of Reducible Tensor Terms to Irreducible Tensor Terms Phaseorange!50color push gray 0color poptowidthheightdepth
	2.4.1 color push gray 0color popSubstitutions of Reducible Tensors for Expressions with Irreducibleorange!20color push gray 0color poptowidthheightdepth color push gray 0color popTensors Algorithmorange!20color push gray 0color poptowidthheightdepth
	2.4.2 color push gray 0color popMultiplication of Levi-Civita Tensors Algorithmorange!20color push gray 0color poptowidthheightdepth
	2.4.3 color push gray 0color popSimplification of Expression by Kronecker Deltas Algorithmorange!20color push gray 0color poptowidthheightdepth
	2.4.4 color push gray 0color popSimplification of Expression by Renaming Indices of Irreducible Tensorsorange!20color push gray 0color poptowidthheightdepth color push gray 0color pop(Accounting for Commutativity)orange!20color push gray 0color poptowidthheightdepth
	2.4.5 color push gray 0color popOverall Reduction Phaseorange!20color push gray 0color poptowidthheightdepth

	2.5 color push gray 0color popNormalization of Irreducible Tensors to Normalized Tensors Phaseorange!50color push gray 0color poptowidthheightdepth
	2.6 color push gray 0color popOutput Phaseblue!35color push gray 0color poptowidthheightdepth

	3 color push gray 0color popResultsblue!20color push gray 0color poptowidthheightdepth
	3.1 Quadratic Couplings
	3.1.1 126126

	3.2 Cubic Couplings
	3.2.1 210 210 210
	3.2.2 120 126 210
	3.2.3 210 120 120

	3.3 Quartic Couplings
	3.3.1 210 120 120 45
	3.3.2 210210 210 210


	4 Discussion
	A SO(N) group Syed:2005gd
	A.1 Vector representation
	A.2 Tensor representation
	A.2.1 Isotropic tensors
	A.2.2 Irreducibility
	A.2.3 Completely antisymmetric tensors
	A.2.4 Completely symmetric and traceless tensors

	A.3 Elements of SO(N) gauge theory
	A.3.1 Global symmetries
	A.3.2 Local symmetries


	B SO(2N) group in a U(N) basis
	B.1 Complete embedding of U(N) into SO(2N) Syed:2005gd
	B.2 Generators of SU(N) in terms of SO(2N) Syed:2005gd,GrootNibbelink:2000hu
	B.3 Branching rules for SO(2N) into SU(N) U(1) irreducible representations Syed:2005gd
	B.4 Technique for the evaluation of SO(2N) invariant tensor couplings. The Basic Theorem Nath:2001uw,Nath:2001yj,Syed:2004if,Syed:2005gd
	B.5 Explicit decomposition of irreducible SO(10) tensors in terms of SU(5) irreducible tensors with canonically normalized kinetic energy terms Nath:2001uw,Nath:2001yj
	B.6 Extraction and normalization of SU(3)C triplets, SU(2)L doublets and SU(3)CSU(2)LU(1)Y singlets in SU(5) fields Nath:2015kaa


