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Abstract

We explore perturbative corrections to quantum information geometry. In particular,
we study a Bures information metric naturally associated with the correlation functions
of a conformal field theory. We compute the metric of holographic four-point functions
and include corrections generated by tree Witten diagrams in the bulk. In this setting,
we translate properties of correlators into the language of information geometry. Cross
terms in the information metric encode non-identity operators in the OPE. We find that
the information metric is asymptotically AdS. Finally, we discuss an information metric for
transition amplitudes.
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1 Introduction

How does quantum information encode effective field theory? This question is relevant in

holography, where the quantum extremal surface proposal for quantum corrections implies

novel features of black hole evaporation [1–3]. Despite recent progress, effective field the-

ory remains far less understood in terms of quantum information than in the language of

Lagrangians, correlation functions, and the S-matrix. Developing this subject may prove

useful. We may learn more about effective field theory via constraints coming from quantum

information. We may also identify new perturbative structures in a quantum information

description of gravity. Even a better technical understanding of quantum corrections at first

order may have far-reaching implications for our understanding of black holes.

While computations of entanglement entropy in AdS/CFT have been illuminating, the

mechanics of effective field theory can be studied in another setting as well. In certain cases,

quantum information quantities can be related directly to correlation functions or the S-

matrix, or to their ingredients. For recent results in this direction, see for example [4–10]).

This approach exposes the role of effective field theory, allowing direct study of its interplay

with quantum information.
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In this work we study the Bures information metric, which is a measure of the distin-

guishability of nearby states. We explore perturbative corrections and focus in particular

on the information metric associated with correlators in holographic conformal field theo-

ries (CFTs). To summarize the setup, we consider the Bures distance between pure states

DB(ψ(x1, x2), ψ(x3, x4))2 near x1 = x3, x2 = x4 using states,

|ψ(x1, x2)〉 =
O2(x2)O1(x1) |0〉√

〈O1(x∗1)O2(x∗2)O2(x2)O1(x1)〉
, (1.1)

where we use the notation (O(x))† = O(x∗). Up to a normalization factor, the Bures distance

is a four-point function,

DB(ψ(x1, x2), ψ(x3, x4))2 ∼ 〈O1(x∗1)O2(x∗2)O1(x3)O2(x4)〉 . (1.2)

In a holographic CFTs, the Bures information metric of this two-operator state is

gxµ1xν2 ≡
d2

dxµ1dx
ν
2

DB(ψ(x1, x2), ψ(x3, x4))2 ≈ g
(0)

xµ1x
ν
2

+
1

N2
g

(2)

xµ1x
ν
2

+ . . . (1.3)

and encodes features of four-point correlators in a simple way.1 Taking a similar approach, we

also discuss transition amplitudes induced by a unitary U = e−iλH and work perturbatively

in λ. Our aim here is to take initial steps in describing the information geometry of 2n-point

processes in quantum field theory, but it is straightforward to explore this story more fully

using standard methods.

As four-point functions appear explicitly, the connection to 1/N perturbation theory is

direct. The 1/N corrections are computed by four-point Witten diagrams in the bulk, which

have been studied extensively at tree level and more recently at one loop [11–18]. By using

these known results as input, computing the information metric itself is relatively simple

(1.3). This approach applies equally well in all dimensions. By comparison, it is more

challenging to probe 1/N corrections by taking the partial trace of density matrix [19, 20].

The reduced density matrix approach probes entanglement wedge structure and has been

explored to order O(N0) in CFT2. However, we expect that computing 1/N corrections on

a replica manifold will be more challenging than in the original theory, and far less tractable

in general dimensions. In short, the pure state and reduced density matrix approaches

probe different and complementary features of the information metric, and may be useful

1To highlight the physics involved, we will refer to this metric as the metric of the correlator. Note that
there is a one-to-one mapping between the information distance of two n-operator states and a certain set
of 2n-point correlators in the appropriate kinematic configuration. The normalization factor is understood,
though note that it is a correlator as well. A ratio of correlators may seem strange, but universal properties
will appear nevertheless.
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for different purposes.

Here, we give an outline of this paper. In Section 2, we review basics of information

geometry and then discuss perturbative corrections to the information metric. We show

that when the fidelity factorizes, the information metric also factorizes. In Section 3, we

review the two-point function metric derived in [19, 20], and then study the metric of four-

point functions in CFTd. We show that correlators with a weak-coupling expansion have an

information metric that also has a weak-coupling expansion. In Section 4, we compute the

information metric in explicit four-point examples. Correlators in mean field theory (MFT)

with pairwise-identical operators factorize and have a factorized information metric. MFT

correlators with identical scalars do not factorize, or equivalently have operators besides the

identity exchanged in every channel. The resulting information metric does not factorize.

We then compute an O(1/N2) correction dual to a tree Witten diagram in bulk φ2
1φ

2
2 theory.

While the MFT contribution factorizes, the tree-level information metric does not, and the

tree diagram has operator exchanges besides the identity in all channels. In all four-point

examples, we find that the information metric is asymptotically AdS. In Section 5, we address

similar questions for transition amplitudes of qubits, a simple model for the S-matrix. In this

context, we find an information metric for transition amplitudes with identical in and out

states. The metric takes the form 〈H2〉 − 〈H〉2. In Section 6, we discuss future directions.

2 Information metric basics

2.1 Review

We review the Bures distance D2
B and the associated metric, which we will refer to as

the information metric. We follow the approach in [19, 20], to which we refer the reader

for further details and discussion of other distance measures. The Bures distance between

density matrices ρ1, ρ2 is

DB(ρ1, ρ2)2 = 2
(

1−
√
F (ρ1, ρ2)

)
, (2.1)

where F is the fidelity,

F (ρ1, ρ2) =

(
tr

(√√
ρ1ρ2
√
ρ1

))2

. (2.2)

Though not manifest above, fidelity is symmetric. We will study pure states, for which D2
B

takes a simple form. When ρi = |ψi〉 〈ψi| with |ψi〉 normalized, F (ρ1, ρ2) = | 〈ψ1|ψ2〉 |2 and

DB(ρ1, ρ2)2 = 2(1− | 〈ψ1|ψ2〉 |). (2.3)
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In other words, the Bures distance between pure states is simply the magnitude of the inner

product.

Consider a family of density matrices ρ(λi) that depend smoothly on parameters λi. The

Bures distance of nearby ρ’s can be described by a metric as

DB(ρ(λi), ρ(λi + dλi))
2 ≈

∑
i

dλi
d

dλ′i

∣∣∣∣
λ′i=λi

DB(ρ(λi), ρ(λ′i))
2 +

∑
i,j

gij(λi)dλidλj, (2.4)

where

gij ≡
d2

dλ′idλ
′
j

∣∣∣∣λ′i=λi
λ′j=λj

√
F (ρ(λi), ρ(λ′i)) (2.5)

is the Bures metric. Assuming DB(ρ(λi), ρ(λ′i))
2 is analytic in a neighborhood of λ′i = λi,

then it has a minimum at λ′i = λi and so

DB(ρ(λi), ρ(λi + dλi))
2 ≈

∑
i,j

gij(λi)dλidλj, (2.6)

The information metric therefore captures the distinguishability of nearby density matri-

ces. Following the quantum Cramer-Rao bound, the inverse metric g−1
ij bounds the error in

estimating values of λi through measurement.

2.2 Perturbative corrections

We now study the information metric in the context of perturbation theory. For a family of

density matrices ρ parametrized by λ1, λ2,

DB(ρ(λ1, λ2), ρ(λ1, λ2 + dλ2))2 ≈ g22(λ1, λ2)(dλ2)2. (2.7)

Suppose ρ(λ1, λ2) has an expansion in λ1 about for example λ1 = λ. It follows that g22(λ1, λ2)

can also be expanded in λ1,

g22(λ1, λ2) =
∑
n=0

g
(n)
22 (λ, λ2)(λ1 − λ)n. (2.8)

This statement is intuitive when the g
(n)
22 (λ1, λ) are computed from objects within the same

Hilbert space, which is natural in quantum mechanics. In weakly coupled quantum field

theory, expanding an interacting quantity in a coupling λ1 gives g
(n)
22 (λ, λ2) computed from

elements of the Hilbert space of the free theory. λ2 parametrizes the state in the exact

theory. Concretely, when λ1 is a coupling constant, λ2 can be the position or momentum

that specifies the state.
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Finally, we show that factorization of the fidelity into the fidelities of subsystems implies

factorization of the information metric. Suppose that

DB(ρ(λ1, λ2), ρ(λ3, λ4))2 = 2
(

1−
√
F1(λ1, λ3)F2(λ2, λ4)

)
, (2.9)

where F1, F2 are themselves fidelities,

DB(ρ1(λ1), ρ1(λ3))2 = 2
(

1−
√
F1(λ1, λ3)

)
,

DB(ρ2(λ2), ρ2(λ4))2 = 2
(

1−
√
F2(λ2, λ4)

)
, (2.10)

for families of density matrices ρ1(λ1), ρ2(λ2) that admit information metrics g11dλ
2
1 and

g22dλ
2
2 respectively. Expanding DB(ρ(λ1, λ2), ρ(λ3, λ4))2 using λ3 = λ1 + dλ1 and λ4 =

λ2 + dλ2 therefore gives what we refer to as a factorized metric,

DB(ρ(λ1, λ2), ρ(λ1 + dλ1, λ2 + dλ2))2 ≈ gλ1λ1dλ
2
1 + gλ2λ2dλ

2
2. (2.11)

The cross term

d2

dλ3dλ4

∣∣∣∣
λ3=λ1
λ4=λ2

DB(ρ(λ1, λ2), ρ(λ3, λ4))2

= −2

(
d

dλ3

∣∣∣∣
λ3=λ1

√
F (ρ1(λ1), ρ1(λ3))

)(
d

dλ4

∣∣∣∣
λ4=λ2

√
F (ρ2(λ2), ρ2(λ4))

)
= 0,

(2.12)

because each factor is the first order term in DB(ρ1(λ1), ρ1(λ1 +dλ1))2 and DB(ρ2(λ2)ρ2(λ2 +

dλ2))2 respectively. As these Bures distances admit information metrics by assumption, the

first order terms are zero. An immediate corollary is that the presence of cross terms in

the metric implies the failure of factorization of fidelity into sub-fidelities.2 As we will see

shortly, this notion of factorization will be related to factorization in correlators.

3 CFT correlators

Our main focus will be four-point correlators in holographic CFTd. Some of the explicit

expressions we give will be for CFT2 for simplicity. Nevertheless, we expect many of our

conclusions apply more generally.

2While it may be true that the absence of cross terms implies factorization into sub-fidelities, we do not
claim this. In principle, the fidelity could factorize into two functions that are not themselves fidelities.
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3.1 Review: two-point function

Following [19,20], we review the information metric for the Euclidean two-point function of

scalar primaries. We work with real operators, which obey (O(x, τ))† = O(x,−τ) [21]. We

begin with density matrix

ρ(x) =
O(x) |0〉 〈0| O(x∗)

〈O(x)O(x∗)〉
, (3.1)

where O(x)|0〉√
〈O(x∗)O(x)〉

has unit norm. We use notation xµ = (xi, τ) with (xµ)∗ ≡ (xi,−τ)

and suppress the indices in the arguments of O for compactness. Raised indices run over

spatial coordinates while subscripts label external points. Expectation values are taken in

the vacuum. The information distance is

DB(ρ(x1), ρ(x2))2 = 2

(
1− | 〈O(x∗1)O(x2)〉 |√

〈O(x∗1)O(x1)〉 〈O(x∗2)O(x2)〉

)
. (3.2)

The CFT two-point function is fixed by conformal symmetry to be 〈O(x)O(y)〉 = (x−y)−2∆,

where ∆ is the scaling dimension of O.

DB(ρ(x1), ρ(x2))2 = 2

(
1− (4τ1τ2)∆

((xi1 − xi2)2 + (τ1 + τ2)2)∆

)
. (3.3)

An information metric is obtained from the expansion

xµ2 = xµ1 + dxµ1 . (3.4)

The resulting metric describes the distinguishability of states created by inserting operators

at nearby locations. The information metric in CFT2 is [19, 20]

ds2 =
∆

2τ 2
1

(
dx2

1 + dτ 2
1

)
, (3.5)

which is proportional to the metric of Poincare AdS3. See [19] for additional examples of this

equivalence. The general dimension case is similar to the two-dimensional case. For relating

CFT2 expressions to those in CFTd, it is useful to note that d
dxi1

d

dxj1
((xi1−xi2)2 + (τ1 + τ2)2) =

2 d

dxj1
(x1 − x2)i = 2δij. This implies gxixj ∼ δij for the two-point function metric. As we

expand about xi2 = xi1, we also have gxiτ = gτxi = 0. The information metric in d-dimensions

is therefore

ds2 =
∆

2τ 2
1

(∑
i

(dxi1)2 + dτ 2
1

)
, (3.6)
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which is proportional to the Euclidean Poincare AdSd metric. As the two-point function

is determined by conformal symmetry, this metric is the same for all CFTd. The reduced

density matrix obtained by tracing out a spatial subregion does probe theory-dependent

information [19,20], but we take a different approach here.

3.2 The four-point function

In order to obtain a theory-specific information metric, we now turn to two-operator states,

ρ(x1, x2) =
O2(x2)O1(x1) |0〉 〈0| O1(x∗1)O2(x∗2)

〈O1(x∗1)O2(x∗2)O2(x2)O1(x1)〉
. (3.7)

The Bures distance is

DB(ρ(x1, x2), ρ(x3, x4))2 = 2

(
1− | 〈O1(x∗3)O2(x∗4)O2(x2)O1(x1)〉 |√

〈O1(x∗1)O2(x∗2)O2(x2)O1(x1)〉 〈O1(x∗3)O2(x∗4)O2(x4)O1(x3)〉

)
.

(3.8)

With τ1 < τ2 < 0 < −τ4 < −τ3, the correlators above are time-ordered in Euclidean.3 This

expression is a valid Bures distance for all τi < 0.

Various limits of D2
B are determined by familiar properties of the four-point function. D2

B

is finite in the OPE limits x2
12 → 0, x2

34 → 0 and determined by the O1O2 OPE. In the limit

τi → 0, the normalization factor diverges and gives D2
B → 0. As is standard, τ acts as a

UV regulator for a state formed by inserting local operators, which would otherwise contain

arbitrarily high energy excitations. Cluster decomposition implies that when we translate

x3, x4 by a large distance,

DB(ρ(x1, x2), ρ(x3, x4))2 ≈ 2

(
1− | 〈O1(x∗1)O2(x∗2)〉 〈O1(x3)O2(x4)〉 |√

〈O1(x∗1)O2(x∗2)O2(x2)O1(x1)〉 〈O2(x∗4)O1(x∗3)O1(x3)O2(x4)〉

)
.

(3.9)

We consider the information metric obtained from the expansion

xµ3 = xµ1 + dxµ1 , xµ4 = xµ2 + dxµ2 . (3.10)

One can check that the first-order terms are automatically zero,

d

dxµ3

∣∣∣∣x3=x1
x4=x2

DB(ρ(x1, x2), ρ(x3, x4))2 = 0,
d

dxµ4

∣∣∣∣x3=x1
x4=x2

DB(ρ(x1, x2), ρ(x3, x4))2 = 0. (3.11)

3See [21] for discussion.
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In the next section, we find that the small-τ limit gives Euclidean Poincare AdS,

τk → 0 : gµνdx
µdxν ≈ ∆k

2

∑
i(dx

i
k)

2 + dτ 2
k

τ 2
k

. (3.12)

Specifically, we will show that the identity contribution to the OPE in the 13→ 24 channel

gives an asymptotically-AdS information metric. We expect this is the leading contribution

to the information metric for general correlators, including at higher points.

As the four-point function is theory-dependent, we can study perturbative corrections.

Suppose the states have a perturbative expansion in λ1 about λ. The correlators and D2
B can

also be expanded in λ1. To every order in λ1−λ, the Bures distance is 0 for x3 = x1, x2 = x4

because the states are identical at these locations by construction for all λ1. x3 = x1, x2 = x4

is therefore a minimum of D2
B for any λ1, and so the information metric that arises from

expanding about this point is still the leading correction to D2
B at all orders in λ1− λ. (2.8)

now follows, which is that the metric has an expansion to all orders in λ1 − λ:

gµν =
d2

dxµ3dx
ν
4

∣∣∣∣x3=x1
x4=x2

DB(ρ(x1, x2, λ1), ρ(x3, x4, λ1))2 =
∑
n=0

g(n)
µν (λ)(λ1 − λ)n. (3.13)

The same argument applies to states created by n operator insertions.

4 Four-point examples

We now demonstrate the statements in the previous section. We first study the MFT corre-

lator, which captures the contribution of the identity operator to any CFT correlator. We

find the MFT information metric is asymptotically AdS. We then consider a 1/N2 correc-

tion in holographic CFTs computed by a tree Witten diagram in the bulk. We find that the

tree-level contribution preserves the asymptotically AdS behavior of the information metric,

consistent with the fact that the block decomposition of tree diagrams does not contain the

identity exchange. We will often present CFT2 expressions for notational simplicity.

4.1 Mean Field Theory

The MFT correlator is computed by taking Wick contractions as in free field theory. The

MFT four-point function is

〈O1(x1)O2(x2)O3(x3)O4(x4)〉MFT =
δO1,O2δO3,O4

x2∆1
12 x2∆3

34

+
δO1,O3δO2,O4

x2∆1
13 x2∆4

24

+
δO1,O4δO3,O2

x2∆1
14 x2∆2

32

. (4.1)
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Choosing O3 = O1,O4 = O2 with O1 6= O2,

〈O1(x1)O2(x2)O1(x3)O2(x4)〉MFT = x−2∆1
13 x−2∆2

24 . (4.2)

The Bures distance is

DB(ρ(x1, x2), ρ(x3, x4))2 = 2

(
1− (2τ1)∆1(2τ2)∆2(2τ3)∆1(2τ4)∆2

((x1 − x3)2 + (τ1 + τ3)2)∆1((x2 − x4)2 + (τ2 + τ4)2)∆2

)
.

(4.3)

Using the expansion

xµ3 = xµ1 + dxµ1 , xµ4 = xµ2 + dxµ2 , (4.4)

the information metric for CFTd is

ds2 =
∆1

2τ 2
1

(∑
i

(dxi1)2 + dτ 2
1

)
+

∆2

2τ 2
2

(∑
i

(dxi2)2 + dτ 2
2

)
. (4.5)

The lack of cross terms in the metric above is consistent with (2.11), as this MFT correlator

factorized into products of lower-point correlators. In CFT language, this factorization is the

statement that only the identity operator is exchanged in the 13 → 24 channel. Operators

with the dimensions of double trace operators [O1O2] are exchanged in other channels.

Next, we consider a MFT correlator with four identical operators,

〈O(x1)O(x2)O(x3)O(x4)〉MFT =
1

x2∆
12 x

2∆
34

+
1

x2∆
13 x

2∆
24

+
1

x2∆
14 x

2∆
32

. (4.6)

Unlike the pairwise-identical case, this correlator does not factorize. The expression for the

full metric is large but straightforward to obtain, so we only give some explicit expressions

at specific values of ∆. We have also checked that the first order terms vanish, confirming

the information metric is the leading contribution to D2
B. Even with ∆ = 1 the full metric

is a large expression, but it simplifies for x1 = x2,

ds2 =
(τ1 − τ2) 2

2τ 2
1 τ

2
2 (τ1 + τ2) 2 (τ 4

1 + 14τ 2
2 τ

2
1 + τ 4

2 ) 2(
(dτ 2

1 τ
2
2 + dτ 2

2 τ
2
1 )
(
τ 4

1 + 62τ 2
2 τ

2
1 + τ 4

2

)
(τ1 + τ2) 4 + (τ 2

2 dx
2
1 + τ 2

1 dx
2
2) (τ1 + τ2) 4

(
τ 2

1 − τ 2
2

)
2

+ 64
(
dx1dx2τ

4
1 τ

4
2 (τ1 − τ2) 2 − dτ1dτ2τ

3
1 τ

3
2

(
τ 4

1 + 3τ2τ
3
1 + 8τ 2

2 τ
2
1 + 3τ 3

2 τ1 + τ 4
2

)))
(4.7)
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The full metric (with x1 6= x2) has the limiting behavior

τ1 → 0 : ds2 ≈ 1

2τ 2
1

(dx2
1 + dτ 2

1 ), (4.8)

and similarly for τ2 → 0 due to symmetry in τ1, τ2. For general ∆, we find

τi → 0 : ds2 ≈ ∆

2τ 2
i

(dx2
i + dτ 2

i ), (4.9)

which we verified explicitly in d = 2 up to ∆ = 7 for integer values of ∆. As xi does not

appear in the CFT2 expression above, we expect the same asymptotic behavior in CFTd.

The information metric in the identical operator case did not factorize. In the correlator,

operators above the identity are exchanged in the 13 → 24 channel. All cross terms in the

metric associated with an OPE channel are therefore proportional to the OPE coefficients

of some operator exchanged in that channel.

4.2 Holographic correction: tree level

Now we specialize to a holographic CFT. At each order in the 1/N expansion, correlators

of light single trace operators are computed by Witten diagrams in AdS.4 The O(N0) con-

tribution is dual to free propagation in the bulk and is computed by MFT correlators. The

next correction to four-point functions occurs at O(1/N2), and is computed by tree Witten

diagrams. We consider pairwise identical operators O1 = O3,O2 = O4. We assume the bulk

theory has a (φ1φ2)2 vertex, where φi are dual to Oi. The tree-level contribution is therefore

the contact diagram

Aφ21φ22(xi) =

∫
AdS

dd+1y
√
−g

4∏
i

K∆i
(xi, y) ≡ D∆1∆2∆1∆2 , (4.10)

where K∆i
(x, y) is the bulk to boundary propagator for the bulk field with boundary dual

Oi. For particular scaling dimensions, D-functions are known in closed form. For instance,

2x2
13x

2
24

Γ
(
2− d

2

)D1111(xi) =
1

z − z̄

(
2Li2(z)− 2Li2(z̄) + log(zz̄) log

1− z
1− z̄

)
. (4.11)

The contact diagram for other integer scaling dimensions can be found using D-function

identities. We choose O1,O2 to be distinct scalars with equal dimension, ∆1 = ∆2 = 1. We

will once again work in d = 2, in which ∆ = 1 is above the unitarity bound. The information

4This is true only under certain assumptions and has only been studied in generality up to one loop, but
these details will not be relevant in this work.
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metric is found by expanding D2
B in the small parameter 1/N2. We have checked explicitly

that the first order terms, 1
N2dx

µ
i , are zero. The leading contribution to D2

B therefore comes

from the information metric. The metric is

ds2 =
dx2

1 + dτ 2
1

2τ 2
1

+
dx2

2 + dτ 2
2

2τ 2
2

+
∑
i,j

1

N2
g

(2)
ij dx

idxj, (4.12)

where the leading term is the metric of pairwise identical MFT correlator studied earlier.

The leading term factorizes but the 1/N2 correction does not. As in the MFT case, the

explicit form of the 1/N2 contribution to the metric is lengthy. With x1 = x2, the metric

takes a simpler form,

ds2 =
πd/2Γ

(
2− d

2

)
(τ1 − τ2) 4 (τ1 + τ2) 4(

− 8 (τ1 + τ2) 2 (τ1 − τ2) 2
(
τ 2

1 (dx2
2 + dτ 2

2 )− τ2τ1(dτ1dτ2 + dx1dx2) + τ 2
2

(
dτ 2

1 + dx2
1

))
+ (τ1 − τ2) 4 log

(
(τ1 − τ2) 4

16τ 2
1 τ

2
2

)
X−(τ1, τ2)− 2 (τ1 + τ2) 4 log

(
(τ1 + τ2) 2

4τ1τ2

)
X+(τ1, τ2)

)
where

X−(τ1, τ2) = 4(τ 2
1 (dx2

2 + dτ 2
2 ) + τ 2

2 (dx2
1 + dτ 2

1 )) + (dx1dx2 + dτ1dτ2)
(
τ 2

1 − 6τ2τ1 + τ 2
2

)
,

X+(τ1, τ2) = −4(τ 2
1 (dx2

2 + dτ 2
2 ) + τ 2

2 (dx2
1 + dτ 2

1 )) + (dx1dx2 + dτ1dτ2) (τ1 + τ2) 2. (4.13)

We have checked numerically that the full metric (x1 6= x2) obeys

lim
τi→0

τi g
(2)
µν (τ1, τ2, x1, x2) = 0. (4.14)

In other words, g
(2)
µν (τ1, τ2, x1, x2) does not change the 1/τ 2

i divergence we found coming from

the MFT contribution. The metric therefore remains asymptotically AdS up to order 1/N2.

5 Transition amplitudes

We now discuss transition amplitudes and find somewhat different structure from the corre-

lation function case. Nevertheless, we find that transition amplitudes admit an information

metric in a certain sense. We study a quantum-mechanical setup that describes relevant

features of transition amplitudes in quantum field theory. Consider a transition between

states |ψf〉 , |ψi〉 induced by unitary U . The transition amplitude is 〈ψf |U |ψi〉. In order to

extract an information metric, we must expand about D2
B = 0, but for U 6= 1, this does not
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necessarily occur when |ψi〉 = |ψf〉.
With density matrices ρi = |ψi〉 〈ψi| and ρf = |ψf〉 〈ψf |, the following Bures distance

contains the transition amplitude.

DB(U †ρiU, ρf )
2 = 2

(
1−

√
U †ρiUρf

)
. (5.1)

Suppose U = e−iλH for some dimensionless hermitian operator H.

DB(U †ρiU, ρf )
2 = 2 (1− | 〈ψf |U |ψi〉 |) . (5.2)

Expanding in λ,

DB(U †ρiU, ρf )
2 ≈ 2

(
1−
(
| 〈ψf |ψi〉 |2 − 2λIm (〈ψf |H|ψi〉 〈ψi|ψf〉)

+ λ2

(
| 〈ψi|H|ψf〉 |2 −

1

2
| 〈ψi|H2|ψf〉 |(〈ψi|ψf〉+ 〈ψf |ψi〉)

))1/2)
,

(5.3)

where Im(a + ib) ≡ b. If we choose |ψi〉 = |ψf〉, the order λ term above becomes zero.

Expanding in λ then gives

DB(U †ρiU, ρf )
2 ≈ λ2

(
〈H2〉 − 〈H〉2

)
. (5.4)

At |ψf〉 = |ψi〉, the transition amplitude therefore admits the information metric at order

O(λ2)

ds2 = dλ2
(
〈H2〉 − 〈H〉2

)
. (5.5)

For |ψi〉 6= |ψf〉, the states that have D2
B = 0 are |ψf〉 = U |ψi〉. If we allow the states to

vary independently, the full metric is the sum of (5.5) and the λ = 0 metric.

To understand this discussion more explicitly, consider the following two qubit system.

|ψi〉 =

(
cos θ

sin θ

)
⊗

(
cosφ

sinφ

)
, |ψf〉 =

(
cos θ′

sin θ′

)
⊗

(
cosφ′

sinφ′

)
. (5.6)

For λ = 0,

F (U †ρiU, ρf ) = |cos (θ′ − θ) cos (φ′ − φ)|2 . (5.7)

Expanding with θ′ = θ + dθ, φ′ = φ+ dφ, the information metric is

ds2 = dθ2 + dφ2. (5.8)
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Turning on the interaction H = σ1
z ⊗ σ2

z gives

DB(U †ρiU, ρf )
2 ≈ 2

(
1−

√
(cos (θ′ − θ) cos (φ′ − φ))2 + λ2 (cos (θ′ + θ) cos (φ′ + φ))2

)
.

(5.9)

Because the states and H chosen were real, there is no O(λ) term above. Nevertheless,

we still must check whether expanding about the point θ′ = θ + dθ, φ′ = φ + dφ gives a

consistent information metric.

DB(U †ρiU, ρf )
2 ≈λ2

(
1− cos2 2θ cos2 2φ

)
+ dφ

(
λ2 cos2 2θ sin 4φ

)
+ dθ

(
λ2 sin 4θ cos2 2φ

)
− dθdφ

(
λ2 sin 4θ sin 4φ

)
+ dθ2

(
1 +

λ2

4
(−1 + 3 cos 4θ) cos2 2φ

)
+ dφ2

(
1 +

λ2

4
(−1 + 3 cos 4φ) cos2 2θ

)
.

(5.10)

The O(dθ, dφ) terms are first order, proportional to λ, and non-zero. This was expected

from the fact that D2
B 6= 0 at θ = θ′, φ = φ′ once the interaction H is included. We therefore

have no meaningful information metric in dφ, dθ at higher order in λ. The expansion of the

information metric in λ terminates,

ds2 = dθ2 + dφ2 + dλ2
(
1− cos2 2θ cos2 2φ

)
, (5.11)

which agrees with (5.5) with dθ = dφ = 0.

Applying this approach to the S-matrix may require some modification. Consider a

unitary matrix S written as S = 1 + iT . To obtain a form similar to (5.5), we write

S = e−iHS , (5.12)

where H†S = HS. Suppose HS can be expanded in a small parameter, HS =
∑

n λ
nH

(n)
S .

This leads to

ds2 = dλ2
(
〈(H(1)

S )2〉 − 〈H(1)
S 〉

2
)
, (5.13)

of which (5.5) is a special case. (5.13) corresponds to a transition amplitude with identi-

cal initial and final states.5 According to the quantum Cramer-Rao theorem, the error in

estimating λ from measuring the states is bounded from below by
(
〈(H(1)

S )2〉 − 〈H(1)
S 〉

2
)−1

.

(5.13) is a completely general formula for transition amplitudes. It applies to transition

amplitudes in position space as well as momentum space. Transition amplitudes have been

studied in AdS/CFT [12, 22–28]. The modular Hamiltonian KA = log ρA generates unitary

5Note that the information metric is nonzero only when these states are not eigenstates of H
(1)
S .
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evolution within subsystem A, where states are defined on slices of constant modular time.

(5.13) therefore applies to transition amplitudes within the domain of dependence of A. It

may be interesting to note that the quantity 〈K2
A〉−〈KA〉2 has been studied recently [29–31].

6 Future directions

We found that factorization, the OPE, and the 1/N expansion are encoded by information

metric of correlators. It would be natural to flesh out this information geometry description:

one can explore higher points, odd points, Lorentzian signature, operators with spin, twist

operators, and so on. The interplay between 1/N corrections and quantum information ideas

can be explored in this context. Special cases of our results yield the information metric of

the two-point function in excited states, and of multitrace operators. Applications of more

sophisticated ideas in quantum information geometry may produce new constraints on CFT

data. We conclude by discussing a few directions in more detail.

The information metric in principle encodes some or all of the same information as

the original correlator. In this way, the information metric geometrizes the correlator in

a seemingly novel fashion. It would be interesting if this description served as a useful

organizing tool for CFT data. However, note that the information metric is derived from

the normalized four-point function, which is a ratio of correlators and not a correlator itself.

It would be interesting to understand this object better, though its appearance may suggest

that quantities that are natural in information geometry are obscured in standard correlator

language. In this spirit, it may be useful to understand what CFT features are encoded by

the curvature scalar and tensors of the information metric. As multiple OPE channels are

encoded by the information metric, can we impose crossing as a condition on the information

geometry? If so, can this be used to derive new constraints on OPE data? It would be

interesting to identify the information geometry of a single conformal block. On a more basic

level, how do conformal transformations of the correlator act on the information metric?

We have shown that cross terms in the metric signal a failure of factorization. They also

represent non-trivial interplay between several different parts of the information geometry

boundary, each of which is asymptotically AdS. It may be interesting to develop a better

understanding of the full geometry. One could also ask whether higher-genus manifolds are

allowed, and if so, what this would imply for the correlator. More modestly, can information

manifolds of correlators have conjugate points, which appear in studies of complexity [32,33]?

The relationship between OPE data and complexity in holographic CFTs is not yet well-

understood, though is natural to explore in light of recent work [34, 35]. Ideas used in our

work may be useful for studies of CFT complexity. Computing 1/N corrections to complexity

may clarify its possible bulk dual [36].
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In short, we have shown that information geometry provides a new representation of a

large class of CFT correlators. While the usefulness of this representation remains to be

seen, many new avenues are now open for exploration.
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