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Abstract

The tree-level string effective action is known to contain quartic Riemann terms with coefficient
ζ(3)α′3. In the case of the type II string this is the first α′ correction. We use the requirement that
the action reduced on a d-torus should have an O(d, d) symmetry to find the B-field couplings
up to fifth order in fields. The answer turns out to have a surprisingly intricate structure.
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1 Introduction and summary of results

The string theory effective action has a double expansion in the inverse string tension α′ and the
string coupling gs. Here we will consider tree-level string theory and so ignore all gs corrections.
The tree-level effective action has a very interesting property – its dimensional reduction to D−d
dimensions (D = 10 or 26 being the critical dimension) has a continuous O(d, d;R) symmetry
[1, 2], which extends to all orders in α′ [3]. Our goal here is to use this symmetry to learn
about the structure of α′ corrections. Specifically, we will focus on the first α′ correction which
is common to all string theories. The metric terms have been known for a long time and take
the form [4, 5, 6, 7, 8, 9]

S(3) =
α′3ζ(3)
3 · 213

∫

dDx
√
−Ge−2Φ(t8t8R

4 + 1
4ε8ε8R

4) , (1.1)

where t8t8R
4 is shorthand for

t8 a1···a8t
b1···b8
8 Ra1a2

b1b2R
a3a4

b3b4R
a5a6

b5b6R
a7a8

b7b8 (1.2)

and similarly for ε8ε8R
4. These tensor structures are defined as

ε8 a1···a8ε
b1···b8
8 = 1

2εa1···a8cdε
b1···b8cd (1.3)

and

tabcdefghM
ab
1 M cd

2 M ef
3 Mgh

4 = 8 tr(M1M2M3M4)− 2 tr(M1M2) tr(M3M4) + cyclic(234) (1.4)
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for anti-symmetric matrices M1,2,3,4. It is important to note that the second term in (1.1) is
a total derivative at the leading order in fields and throwing away the total derivative we may
write ε8ε8R

4 ∼ ω2R3 ignoring terms of higher than fifth order in fields.

Here we will use the requirement of O(d, d) symmetry of the reduced action to fix the
couplings involving the B-field up to the fifth order in fields. We will see that O(d, d) requires a
surprisingly intricate form for these couplings. The full set of couplings of the NS sector fields
have been previously found in [10, 11] by a brute force calculation – writing the most general
ansatz in ten dimensions and requiring T-duality symmetry of the circle reduction.1 This was
shown to lead to a unique result. Unfortunately, the resulting action is extremely complicated
and it is very hard to see any structure in it. This is the reason we revisit the calculation here
using tools adapted to the O(d, d) symmetry and finding a simpler, though still complicated,
form for the effective action. We find the following form for the effective action (up to the overall
coefficient)

L = L
R̂4 + L(ω2+H2)R3 + L(H∧H)R3 + LH2∇H2R + . . . , (1.5)

where the ellipsis denotes terms involving the dilaton and RR-fields, which we don’t determine,
and terms of sixth and higher order in fields. These couplings have the following form. First we
have

L
R̂4 =

1

16
t8t8R̂

4 (1.6)

where we have defined

R̂ab
cd = R(−)ab

cd − 1
2H

abeHecd = Rab
cd −∇[aHb]

cd +
1
2H

[a
ceH

b]e
d − 1

2H
abeHecd (1.7)

and R(±) is the Riemann tensor computed from the torsionful spin connection ω
(±)bc
a = ωa

bc ±
1
2Ha

bc. The second contribution is given by

L(ω2+H2)R3 = − 1

64
ε9ε9[ω

2 +H2]R̂3

=
1

64
ε8ε8(R

(−))4 +
1

64
εa1···a9ε

b1···b9 (5
9H

a1a2a3Hb1b2b3 −Hb1
a1a2Ha3

b2b3

)

(

R̂3
)a4···a9

b4···b9 + . . .

(1.8)
where the term in brackets in the first line stands for

1
5

(

ω
(+)a1a2
b1

ω(−)a3
b2b3 − [ω(+) − 1

3H]a1a2a3 [ω(−) + 1
3H]b1b2b3

)

+Hb1
a1a2Ha3

b2b3 − 1
9H

a1a2a3Hb1b2b3

(1.9)
and the ellipsis denotes total derivatives and terms of sixth order or higher in fields. In particular,
we reproduce the ε8ε8R

4 term with the correct coefficient. The equality of the two expressions
is shown in appendix A. Then we have additional H2R3-terms which take the form

L(H∧H)R3 =
6!2

638
HabcH

def R̂[ag
[dhR̂

bh
ekR̂

ck]
fg] +

5!

2
HabcHde

f R̂[ad
ghR̂

be|hk|R̂c]g
fk

+
5!

2
HabcHde

f R̂
gh

[adR̂|hk|beR̂
fk

c]g . (1.10)

Note that they do not contain any contractions between the H’s. The need for such terms was
seen from amplitude calculations in [15]. Finally, we have the terms of the form H2∇H2R,
which are by far the most complicated. They take the form

LH2∇H2R = 6HabcHdef∇kHcde∇aHbghR
gh

kf+3HabcHdef∇kHcde∇kHfghR
gh

ab+
3 · 4!
2

(L1+L2) ,

(1.11)

1A cosmological reduction of all spatial dimensions has also been considered [12, 13, 14], but this is not enough
to fix the form of the D-dimensional action.
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where L1 and L2 are distinguished by the structure of the contractions and are given in (4.21) and
(4.22). The total number of these terms is 42 and their structure is surprisingly intricate. Still,
compared to the 106 terms of this form in [11], we have clearly achieved some simplification.2

Ignoring terms of order H4 it is easy to see that our results match precisely those of [15],3

which determined all the H2 couplings using string amplitude calculations.4 Due to the very
complicated form of the H4 terms in [11], we have not attempted a comparison of these.

To derive this result our strategy is the following. We start with the known t8t8R
4 term

in D = 10 (or D = 26). Then we use ideas from Double Field Theory (DFT) [17, 18, 19] to
rewrite it in terms of an O(D,D) invariant analog of the Riemann tensor. This object is not
Lorentz invariant and we have to add terms quadratic in the spin connection to compensate
for this. These extra terms can also be expressed in terms of objects from DFT. In doing so
we obtain an expression which looks O(D,D) invariant, except for the fact that the double
Lorentz symmetry needed to have a consistent DFT formulation is explicitly broken. Only its
diagonal, the usual Lorentz group, is preserved. It is important to note that we are working
only with completely gauge-fixed objects from DFT, which can always be expressed only in
terms of the usual metric/vielbein and B-field. Therefore, the explicit breaking of the DFT
symmetries does not lead to any inconsistencies. It seems that we could just as well work with
the usual metric and vielbein, rather than involve the DFT notation. However, the reason for
using the DFT notation is 1) that the dimensional reduction of the action expressed in terms
of the DFT fields to D − d dimensions is simple to perform, but more importantly 2) that
one can read off directly which terms in the reduced action are compatible with O(d, d) and
which terms are not. More precisely, we work with a frame-like formulation where the global
O(d, d) symmetry is made manifest at the cost of introducing a local (internal) double Lorentz
symmetry O(d) × O(d) which is not manifest, but needed for consistency. We require that the
terms in the reduced action which would explicitly violate the O(d)×O(d) symmetry, by having
an index transforming under the first factor contracted with an index transforming under the
second factor, should cancel. This is a very strong requirement and, in fact, we argue that
at least in the present case it is equivalent to O(d, d) invariance. We find that the required
cancellations are only possible if one adds particular terms involving the NSNS field strength H
to the D-dimensional action. We determine these by working order by order in H. To simplify
the calculations we make the following assumptions

1. We look only at the terms in the reduced action quadratic in the gauge vectors and not
containing the internal scalars.

2. We ignore terms involving the dilaton.

3. We use the equations of motion in the reduced theory, i.e. we allow field redefinitions after
reduction.

Regarding the first point, it is not hard to see that the remaining terms, i.e. terms quartic in the
gauge vectors or terms containing scalars, will cancel along very similar lines, though these are
typically less constraining. The second assumption means that we cannot determine any of the
couplings involving the dilaton. With some extra work one can of course go back and determine

2Curiously, while the complicated (H ∧H)R3 and H2∇H2R terms found above are required at tree-level by
O(d, d), they are absent at one loop [16]. The one-loop R4-terms therefore seem to have a much simpler structure
than the tree-level ones, even though in the type IIB case the purely metric terms are exactly the same. In
particular this means that there must be several supersymmetric R4 invariants, as already argued in [15].

3Except that our L(H∧H)R3 is 8 times that of [15].
4Note that we may replace Ha1a2a3Hb1b2b3

→ 3Hb1

a1a2Ha3
b2b3

in (1.8) up to H4 terms, as follows from a
similar calculation to (A.11) with ω(+) replaced by H .
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them by keeping track of them everywhere. Finally, regarding the last point, ideally one would
like to allow only field redefinitions in the D-dimensional theory, but we did not investigate this
as the calculations become more complicated. We also did not attempt to prove that the result
is unique (up to field redefinitions), since this already follows from [11].

Let us emphasize again that, while some of our expressions are written using a mix of DFT
and standard notation, this is just a trick to simplify the bookkeeping and we are always working
with the standard gravity fields and symmetries. In any expression where the generalized fluxes
F appear they are understood to be expressed in terms of the usual spin connection and H as
in (2.5), i.e. the DFT symmetries are completely gauge-fixed. However, from our results it is
straightforward to extract a non gauge-fixed DFT description of the reduced theory, where only
the internal coordinates are doubled. All one needs to do is keep all the O(d, d) compatible terms
in the dimensional reduction and forget about the DFT gauge fixing of the internal coordinates.
One should also include the scalars which we set to zero. We did not try to write the resulting
action since it would contain quite a large number of terms and our main interest here is the
original D-dimensional action.

It might seem that we could have worked instead within DFT from the beginning, but we
believe this is actually not possible. Indeed, in [20] it was shown that while the R4-terms can be
cast in O(D,D) invariant DFT form at the quartic order in fields, it is not possible to complete
them (within DFT and with some mild assumptions) by terms of fifth order in fields. This
might seem surprising given the fact that the lower order α′ and α′2 corrections to the bosonic
and heterotic string can be cast in DFT form [21, 22] (see also [23, 24] for earlier attempts).
However, the reason is that these lower corrections (together with an infinite tower of higher
corrections) can be generated from an uncorrected extended gauged DFT action, by imposing an
identification of the gauge field and spin connection [25, 26] (see also [27]), a la Bergshoeff and
de Roo [28, 29]. There is no similar trick for generating the ζ(3)α′3 corrections we are interested
in here. Indeed, our calculations show explicitly how terms that are not compatible with an
O(D,D) invariant DFT description in D dimensions can lead, upon dimensional reduction to
D−d dimensions, to terms which are compatible with and O(d, d) invariant DFT description of
the reduced theory, thanks to additional cancellations possible only after dimensional reduction.
Note that the difference between the O(D,D) and O(d, d) invariant case is not just that d < D,
the more important difference is that in the latter case there are d isometries, which are ‘rotated’
by O(d, d), while in the former case no isometries are assumed, which is much more restrictive.

The remainder of the paper is organized as follows. In section 2 we introduce the DFT
parametrization of the fields that we will use. Then in section 3 we discuss the dimensional
reduction in terms of these fields. The main part of the paper is section 4 where we require the
non-invariant terms in the reduced action to cancel, fixing the form of the D-dimensional action.
We end with some conclusions. Details of the calculations are provided in the appendix.

2 DFT parametrization of fields

Here we introduce the necessary concepts from DFT. As the name suggests DFT involves dou-
bling the spacetime coordinates x → (x̃, x). One then imposes an O(D,D) invariant “section
condition” which effectively removes half of them. Here we will mostly ignore the doubling and
work with the solution to the section condition where the additional coordinates x̃ are set to
zero. In fact, in the rest of the paper we will work only with completely gauge-fixed DFT, which
is equivalent to the usual gravity description. The reason for still using DFT notation is that it
provides a natural way to organize the fields in order to recognize directly which terms in the
reduced action are compatible with O(d, d) symmetry and which are not.
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We will use the so-called flux formulation of [30], building on the frame-like formulation of
DFT [31]. The basic field is the generalized vielbein

EA
M =

1√
2

(

e(+)a
m − e(+)anBnm e(+)am

−e
(−)
am − e

(−)
a

nBnm e
(−)
a

m

)

. (2.1)

It is constructed from two sets of vielbeins e(±) for the metric Gmn, which transform inde-
pendently as Λ(±)e(±) under two copies of the Lorentz group, and the B-field.5 The standard
supergravity fields are recovered by fixing the gauge e(+) = e(−) = e, leaving only the diagonal
copy of the Lorentz group. In this formulation a global O(D,D) symmetry acting on the doubled
coordinate index M = (m,m) is manifest. Instead, consistency requires the local double Lorentz
symmetry O(D − 1, 1) × O(D − 1, 1) acting on the index A = (a, a), which is not manifest, to
be preserved.

There are two constant metrics, the O(D,D) metric ηAB and the generalized metric HAB,
which take the form

ηAB =

(

ηab 0
0 −ηab

)

, HAB =

(

ηab 0
0 ηab

)

, (2.2)

where η = (−1, 1, . . . , 1) is the D-dimensional Minkowski metric. The O(D,D) metric is used
to raise and lower indices. The projection operators

PAB
± =

1

2

(

ηAB ±HAB
)

, (2.3)

are easily seen to project on upper and lower indices respectively. The analog of the spin
connection is the “generalized flux”6

FABC = 3∂[AEB
MEC]M . (2.4)

Since we can use the projection operators to project onto upper or lower indices we actually
have four objects. After fixing the double Lorentz symmetry by imposing the gauge e(+) = e(−)

(and solving the section condition) they reduce to

F a
bc =

1√
2
ω(−)a

bc , Fa
bc = − 1√

2
ω(+)bc
a ,

Fabc =
1√
2
(3ω

(−)
[abc] +Habc) , F abc = − 1√

2
(3ω(+)[abc] −Habc) . (2.5)

By construction FABC is invariant under constant O(D,D) transformations since these simply
rotate the coordinate indices M,N, . . .. However, it transforms similarly to a connection under
the O(D− 1, 1)×O(D− 1, 1) double Lorentz transformations acting on the indices A,B, . . .. In
particular, after splitting the indices into upper and lower ones using the projectors, the upper
indices are rotated by the first Lorentz group while the lower indices are rotated by the second.
This means that F ’s with different index placements, e.g. Fa

bc and F abc, are independent fields
(in DFT) since they transform differently.7 We are therefore not allowed to raise and lower the

5The dilaton Φ, which will not play any role here, is encoded in the generalized dilaton d defined as

e
−2d = e

−2Φ
√
−G .

6Here we have defined ∂A = EA
M∂M where ∂M = (0, ∂m) after solving the section condition in the standard

way.
7After fixing the gauge e(+) = e(−) they are no longer independent, as is clear from (2.5).
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indices on these fields. Importantly for our later discussion it also means that a contraction of
two indices with ηab, e.g.

ηadFa
bcFdef , (2.6)

is compatible with the double Lorentz symmetry, since the contracted indices transform under
the same group. On the other hand a contraction of an upper and a lower index, e.g.

Fa
bcF ade , (2.7)

would explicitly break the symmetry, since the two contracted indices transform under different
Lorentz groups. It is terms of this form (with the contracted index an internal index) that we
will require to cancel in the reduced theory.

We can also introduce a DFT analog of the Riemann tensor. Following [32] we define8

Rab
cd = 2∂[aF b]

cd − ηefF
abeF f

cd + 2ηefF [a
ceF

b]
fd . (2.8)

When we fix the gauge e(+) = e(−) this reduces to

Rab
cd =

1

2
(R(−)ab

cd + ω(+)eabω(−)
ecd) , (2.9)

which shows that unlike the usual Riemann tensor this object is not Lorentz covariant. Con-
versely, we can instead take the combination

Rab
cd + Fe

abF e
cd , (2.10)

which is Lorentz covariant, in fact it reduces to 1
2R

(−)ab
cd on setting e(+) = e(−), but is not

compatible with double Lorentz symmetry due to the contraction of an upper and a lower index
in the second term. It therefore only makes sense to work with this object after gauge-fixing the
DFT symmetries.

3 Dimensional reduction

We will denote D-dimensional quantities by calligraphic letters in order to distinguish them
from the corresponding quantities in the dimensionally reduced theory. We take the following
dimensional reduction ansatz for the generalized vielbein

EAM = EAN (1 + U)NM , (3.1)

where E is diagonal with non-zero components

EA
B and EA′

B′

(3.2)

while the non-zero components of U are

UM ′n = AM ′n , Um
N ′

= −AN ′

m , Umn = −1
2A

K ′

m AK ′n . (3.3)

Note that this form guarantees that 1+U ∈ O(D−d,D−d)×O(d, d). Internal indices are denoted
with primes and the various indices and groups under which they transform are summarized in
table 1. We are interested only in the internal symmetries (O(d, d) and O(d) × O(d)) and we
will take the external part to be gauge-fixed, removing O(D−d,D−d) and breaking O(D−d−
1, 1) ×O(D − d− 1, 1) → O(D − d − 1, 1), the usual Lorentz group for the external directions.
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Index Internal/External Transforms under

M = (M,M ′) - Global O(D,D)
A = (A,A′) - Local O(D − 1, 1) ×O(D − 1, 1)
M = (m,m) External Global O(D − d,D − d)
A = (a, a) External Local O(D − d− 1, 1) ×O(D − d− 1, 1)

M ′ = (m
′

,m′) Internal Global O(d, d)

A′ = (a
′

, a′) Internal Local O(d)×O(d)

Table 1: Summary of index notation.

We have grouped the two gauge fields, coming from the metric and B-field respectively, into an
O(d, d) vector

AmN ′ =

(

A
(1)n′

m

A
(2)
mn′

)

. (3.4)

Gauge fixing e(+) = e(−) one recovers the usual Kaluza-Klein reduction ansatz.9

The dimensional reduction of the generalized flux FABC becomes

FABC = FABC +
3

2
FD′

[ABAC]D′ , FA′BC = −FA′BC , FA′B′C = ∂CEA′
M ′

EB′M ′ , (3.5)

while FA′B′C′ vanishes. Here we have introduced the field strength of the doubled gauge field

FK ′

mn = 2∂[mAK ′

n] (3.6)

and used the generalized vielbein to convert the indices, i.e. AA′B = EA′
N ′

EB
mAmN ′ and

FA′BC = EA′
K ′

EB
mEC

nFmnK ′ . Note that this means in particular that here Aa′b =
1√
2
eb

mAmb′ ,

rather than the standard definition without the
√
2. In DFT this reduction breaks the O(D,D)

symmetry and double Lorentz symmetry down to their internal parts, i.e. O(d, d) and double
Lorentz transformations (rotations) acting on the primed indices O(d)×O(d).

For the remainder of this paper we will set the scalars that arise on dimensional reduction to
zero, since this will be enough for our purposes. This amounts to EA′

M ′

being constant. Since
we are also ignoring the dilaton we are starting from an action in D dimensions which can be
expressed in terms of Habc and R(−)ab

cd and their covariant derivatives.10 Our strategy is to
first write this in terms of gauge-fixed DFT fields. In particular we have from (2.5)

Habc =
√
2(F abc − 3ηd[aFd

bc]) , Habc =
√
2(Fabc − 3ηd[aF

d
bc]) . (3.7)

This is of course not the only way to express H in terms of the F ’s but it is the way that violates
the would-be double Lorentz symmetry the least, since it involves only one η (remember that
upper and lower indices on F are rotated by different groups in DFT). Similarly we may express
R(−)ab

cd through the combination (2.10) as

R(−)ab
cd = 2Rab

cd + 2Fe
abF e

cd . (3.8)

8Defining Rab
cd similarly we have Rab

cd = −Rcd
ab.

9Namely

e =

(

em
a A

(1)n′

m en′

a
′

0 em′

a
′

)

, B =

(

Bmn − A
(1)k′

[m A
(2)

n]k′ + A
(1)k′

m A
(1)l′

n Bk′l′ A
(2)

mn′ +A
(1)k′

m Bk′n′

−A
(2)

m′n
+Bm′k′A

(1)k′

n Bm′n′

)

.

10Note that we use a, b, . . . both for D-dimensional indices and for external (D − d)-dimensional indices. Since
these never occur together in the same expression it is hopefully clear from the context which one we mean.
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However, it will be more convenient for our purposes to include some quadratic terms in H and
work instead with

R̂ab
cd = R(−)ab

cd + aHabeHecd + bHa
e[cHd]

be , (3.9)

where a and b are constants to be fixed. Let us now compute the dimensional reduction of this
object. We first promote it to an expression in terms of (gauge-fixed) generalized fluxes using
(3.7) and (3.8). Next, we use the reduction of the generalized flux (3.5), recalling the definition
of Rab

cd in (2.8) and letting EA′
M ′

be constant. Denoting again the D-dimensional R̂ as R̂ one
finds the reduction

R̂ab
cd = R̂ab

cd +∆ab
cd ,

R̂a′b
cd = R̂a′b

cd +∆a′b
cd ,

R̂ab
c′d = R̂ab

c′d +∆ab
c′d ,

R̂a′b′
cd = R̂a′b′

cd +∆a′b′
cd ,

R̂ab
c′d′ = R̂ab

c′d′ +∆ab
c′d′ ,

R̂a′b
c′d = R̂a′b

c′d +∆a′b
c′d ,

(3.10)

while the components with more than two primed indices vanish. As discussed at the end of
the previous section, the object we started with does not respect the D-dimensional double
Lorentz symmetry. After the reduction we are interested only in the internal double Lorentz
symmetry rotating the primed indices. We have therefore split the RHS into terms which are
compatible with this symmetry (primed indices contracted only with ηa

′b′) and terms which
would explicitly violate it (primed indices contracted with δa

′

b′ ). The ones that are compatible
with such a symmetry are

R̂ab
cd =R(−)ab

cd + aH ′abeH ′
ecd + bH ′

e
a
[cH

′eb
d] + 2(a− 1)ηe′f ′F e′abF f ′

cd

+ 2aηe
′f ′

Fe′
abFf ′cd + 2bηe′f ′F e′a

[cF
f ′b

d] + 2(b− 2)ηe
′f ′

Fe′c
[aFf ′d

b] ,

R̂a′b
cd = −

√
2
(

∇(−)bF a′
cd + aF a′beH ′

ecd − bF a′

e[cH
′eb

d]

)

,

R̂ab
c′d =

√
2
(

∇(+)
d Fc′

ab − aH ′abeFc′de + bF
e[a
c′ H ′b]

ed

)

,

R̂a′b′
cd =2(2− b)F [a′

ce F b′]e
d ,

R̂ab
c′d′ =2(2− b)F ae

[c′ Fd′]e
b ,

R̂a′b
c′d =(2− b)F be

c′ F
a′

ed − 2aF a′beFc′ed ,

(3.11)

where ∇(±) uses the spin connection ω
(±)bc
a and H is everywhere replaced by

H ′
abc = Habc − 3

√
2FD′

[abAc]D′ . (3.12)

The precise form of these terms will not be important for us, only that they are compatible
with an internal double Lorentz symmetry and so could arise from a DFT description. What
will be important here is the form of the terms which would explicitly violate O(d) × O(d), by
containing contractions of an upper and a lower internal index (or a raising/lowering of a free
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internal index by ηa
′b′/ηa′b′). They are

∆ab
cd =2aF e′abFe′cd + 2(1 + a)F ab

e′ F
e′

cd + 4bF e′[a
[cF|e′|

b]
d] ,

∆a′b
cd = − a

√
2ηa

′f ′

F be
f ′ H ′

ecd + b
√
2ηa

′f ′

Ff ′e[cH
′eb

d] ,

∆ab
c′d = − a

√
2ηc′f ′F f ′

deH
′abe + b

√
2ηc′f ′F f ′e[aH ′b]

ed ,

∆a′b′
cd = − 4bηf

′[a′Ff ′e[cF
b′]

d]
e + 2bηf

′[a′Ff ′ceη
b′]g′Fg′d

e ,

∆ab
c′d′ = − 4bF

e[a
[c′ ηd′]f ′F |f ′|b]

e + 2bηf ′[c′F
f ′aeηd′]g′F

g′b
e ,

∆a′b
c′d = − 2aηa

′f ′

Ff ′
beFc′ed − bηc′f ′F f ′beF a′

ed − 2aF a′beηc′f ′F f ′

ed − bF be
c′ η

a′f ′

Ff ′ed

− 2aηa
′f ′

Ff ′
beηc′g′F

g′
ed − bηc′f ′F f ′beηa

′g′Fg′ed .

(3.13)

Actually, we will only need the first three expressions, because we will confine ourselves only to
terms quadratic in the KK gauge field strength. Now we are ready to turn to the question of
O(d, d) invariance of the reduced action.

4 Requiring O(d, d) invariance of the reduced action

We wish to fix the form of the D-dimensional action by requiring that the reduced theory is
O(d, d) invariant. Actually, rather than directly requiring O(d, d) invariance, we will just require
that the terms which would explicitly violate it, by not being compatible with an internal double
Lorentz O(d)×O(d) symmetry and therefore cannot come from a DFT formulation, cancel out.
These are precisely the terms which contain contractions of an upper and a lower internal
(primed) index, since these indices would have to transform differently under the two O(d)
factors.

This is clearly a necessary condition for O(d, d) invariance. In fact it is also sufficient, as we
will now argue. Consider the internal double Lorentz O(d)×O(d) transformation of the reduced
action (promoted to a DFT action by forgetting the gauge fixing of the internal DFT fields).
From the formulas in the previous section it is clear that internal (primed) indices sit only on
FA′

cd , the field strength of the (doubled) KK vectors. Contractions without a derivative on F ,
F ·F (where the dot denotes contraction of the internal index), are automatically invariant since
we made sure only the invariant contractions survive. Therefore we only need to check terms
with a derivative on F and since, in our case, we never get more than one derivative these are
of the form ∇F · F and ∇F · ∇F . However, we must also remember to reinstate the scalars
by dropping the condition EA′

M ′

= constant that we imposed in the last section. This leads
to additional terms involving FAB′C′ given in (3.5) and the relevant fields are Fab′c′ and Fa

b′c′

which transform as connections under the internal double Lorentz transformations. Taking all
these contributions into account the internal double Lorentz variation of the reduced action
becomes (setting the scalars to zero after the variation for simplicity)

δLred =∇aλa′b′F
de
a′ F

fg
b′ Uadefg +∇aλ

a′b′

F a′

deF
b′

fgU
adefg

+∇aλa′b′F
de
a′ ∇bF fg

b′ V abdefg +∇aλ
a′b′

F a′

de∇bF
b′

fgV
abdefg

+∇aλa′b′∇bF de
a′ ∇cF fg

b′ W abcdefg +∇aλ
a′b′∇bF

a′

de∇cF
b′

fgW
abcdefg

,

(4.1)

for some functions of the fields U , U , V , V , W and W (here we have suppressed the ηa
′b′

contracting the primed indices, which may not be raised or lowered, unlike the unprimed ones
which are ordinary external Lorentz indices). The point is now to note that the reduced action
must be invariant under (standard) Lorentz transformations, since it arises from reduction of a
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Lorentz invariant theory. This means that, gauge-fixing DFT to go to supergravity and setting
λ = −λ = λ, the above variation must vanish. Since each term is independent however (recall
that F a′ involves the vectors coming from the metric while Fa′ involves the vectors coming from
the B-field) this requires U = U = V = V = W = W = 0 and it follows that the Lagrangian is
actually invariant under the full internal double Lorentz symmetry.

The cancellation of all terms with index contractions not compatible with O(d, d) turns out
to be a very strong requirement, which will completely fix the form of the D-dimensional action.
In fact, it turns out to be enough to ignore the internal scalars and to consider only the terms
in the reduced action which are quadratic in the gauge field strength F a′

ab . As mentioned in the
introduction we will further ignore the dilaton and work only up to fifth order in fields.

We start from the following ansatz for the D-dimensional Lagrangian11

L =
1

16
t8t8R̂

4 +
1

8
ε9ε9(F

2 +H2)R̂3 . (4.2)

These terms are shorthand for the following expressions

t8t8R̂
4 = ta1···a8t

b1···b8R̂a1a2
b1b2R̂

a3a4
b3b4R̂

a5a6
b5b6R̂

a7a8
b8b8 , (4.3)

ε9ε9(F
2 +H2)R̂3 = εca1···a9ε

cb1···b9
( c

4

[

Fb1
a1a2F a3

b2b3 −
1

9
F a1a2a3Fb1b2b3

]

(4.4)

+
d

36
Ha1a2a3Hb1b2b3 +

e

4
Hb1

a1a2Ha3
b2b3

)

R̂a4a5
b4b5R̂

a6a7
b6b7R̂

a8a9
b8b9 ,

where t8 is defined in (1.4) and R̂ in (3.9). Note that R̂ contains two free parameters a, b and
above we have introduced three additional free parameters c, d, e. These will become fixed later.
The F ’s appearing in the above expression can be written in terms of the spin connection ω and
H using (2.5), but we write them this way here since then we can carry out the dimensional
reduction directly. The precise combination of F ’s with different index structure is dictated by
the requirement that the action should be Lorentz invariant up to a total derivative. This means
that one can add a total derivative to complete these terms to ε8ε8R

4 (see the introduction).

Dimensionally reducing this Lagrangian using the results of the previous section gives rise
to terms that would explicitly violate an internal double Lorentz symmetry of the following
schematic form (ignoring the scalars and terms with more powers of F )

1

16
t8t8R̂

4 → t8t8F
2R̂3 + t8FH∇FR̂2 , (4.5)

1

8
ε9ε9(F

2 +H2)R̂3 → ε8ε8F
2R̂3 + ε8ε8(ωF +HF )∇FR̂2 + ε8ε8(ω

2 +H2)∇F 2R̂ , (4.6)

where we have kept only terms up to fifth order in fields, so R̂ can be replaced by R(−). The
last term in the second line looks very non-Lorentz covariant. To write it more covariantly we
have to integrate by parts. It is convenient to organize the calculation in powers of H. We start
by considering the double Lorentz violating terms in the reduced theory which do not contain
H.

11The numerical factors are introduced for convenience. We ignore the factor e−2Φ since we set the dilaton to
zero here.
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4.1 Terms of order H0

Setting H = 0 and looking at the order F 2 terms we have, up to total derivatives and higher
order terms,

t8t8F
2R3 =

1

2

(

aF a′cdFa′ab + (1 + a)F cd
a′ F

a′

ab − 2bF a′c
aFa′b

d
)

(t8t8R
3)abcd ,

ε8ε8F
2R3 =

1

16

[

(c+ d+ 3e)F cd
a′ F

a′

ab + (d+ 3e)F a′cdFa′ab

]

(ε8ε8R
3)abcd ,

ε8ε8ωF∇FR2 =
3c

8
F cd
a′ F

a′

ab(ε8ε8R
3)abcd ,

ε8ε8ω
2∇F 2R =

3c

16
F cd
a′ F

a′

ab(ε8ε8R
3)abcd .

(4.7)

These terms explicitly violate the would-be internal Lorentz symmetry since they contain a
contraction of a lower and upper primed index. To get an O(d, d) invariant reduced action we
must require that they cancel. Clearly the terms with the t8t8 structure and ε8ε8 structure must
cancel separately. The only way this can happen is if the combinations of F 2-terms are such
that (F 2)abcd = −(F 2)cdab, since then they give zero due to the contraction with the R3 terms
which are symmetric under exchanging the pairs of indices due to the symmetry of the Riemann
tensor. This in turn requires the free coefficients to satisfy12

a = −1

2
, b = 0 and d+ 3e = −5c . (4.8)

Having partially fixed the free parameters we can now go back to the general H 6= 0 case
and we find (to this order R̂ = R(−))

t8t8F
2R̂3 =

1

4
t8t8(Fa′F

a′ − F a′Fa′)R̂
3 , (4.9)

where the index structure on the first factor is F ab
a′ F

a′

cd − F a′abFa′cd and

t8FH∇FR̂2 =12tb1···b8F ae
a′ ∇dF a′

b1b2
Heb3b4R̂acb5b6R̂

c
db7b8

− 12ta1···a8F
a′

be∇dF a1a2
a′ Hea3a4R̂a5a6bcR̂a7a8

cd

− 3tb1···b8F ae
a′ ∇aF

a′

b1b2
Heb3b4R̂

cd
b5b6R̂dcb7b8

+ 3ta1···a8F
a′

be∇bF a1a2
a′ Hea3a4R̂a5a6

cdR̂
a7a8dc , (4.10)

while the ε8ε8-terms are, again dropping total derivatives and higher order terms,

ε8ε8F
2R̂3 = − c

16
ε8ε8(4Fa′F

a′ + 5F a′Fa′)R̂
3 , (4.11)

ε8ε8(ω
2 +H2)∇F 2R̂ =

3c

16
ε8ε8(Fa′F

a′)R̂3 +
3e

2
ε8ε8(Fa′F

a′)∇H∇HR̂

− 8!

6
(d+ e)∇[a1H

a1a2a3∇a4Ha2a3a4F
a5a6
a′ F a′

a5a6
R̂a7a8

a7a8] , (4.12)

ε8ε8(ωF +HF )∇FR̂2 =
3c

8
ε8ε8(Fa′F

a′)R̂3 − 3e

2
ε8ε8(Fa′F

a′)∇HR̂2

+ 7!(d+ e)
(

Ha1a2a3Fa′[a1a2∇a4F a′

a3a4
+H[a1a2a3F

a1a2
a′ ∇a4F

a′a3a4
)

R̂a5a6
a5a6R̂

a7a8
a7a8] . (4.13)

12In fact, this also ensures that the order F 4 terms vanish since the symmetries of the Riemann tensor are the
same.
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4.2 Terms of order H1

Again we consider the terms in the reduced theory which would not be compatible with an
internal double Lorentz symmetry, but this time the ones linear in H. From the ε8-terms we
have

−15c+ 12e

8
ε8ε8(Fa′F

a′)∇HR2 + 2 · 7!(d+ e)Ha1a2a3Fa′[a1a2∇a4F a′

a3a4
Ra5a6

a5a6R
a7a8

a7a8] .

(4.14)

Note that in the first term we may integrate by parts to have the derivative acting on F rather
than H. The t8-terms give

− 3

4
t8t8(Fa′F

a′)∇HR2 + 12ta1···a8F ab
a′ ∇dF

a′

a1a2
Hba3a4Raca5a6R

cd
a7a8

+ 3ta1···a8F ab
a′ ∇aF

a′

a1a2
Hba3a4Rcda5a6R

cd
a7a8 − (F a′ ↔ Fa′) . (4.15)

The first step is to rewrite the first term so that the derivative is acting on F instead of H, since
all other terms can be written in that form. To start with we have

t8t8(Fa′F
a′)∇HR2 ∼ 8ta1···a8F ab

a′ F
a′

a1a2
∇bHca3a4R

cd
a5a6Rdaa7a8

+ 8ta1···a8F ab
a′ F

a′

a1a2
∇cHd

a3a4Rdaa5a6Rbca7a8 − 4ta1···a8F ab
a′ F

a′

a1a2
∇cHda3a4R

cd
a5a6Raba7a8

+ 8ta1···a8∇c(F
ab
a′ F

a′

a1a2
)Hba3a4R

cd
a5a6Rdaa7a8 + 2ta1···a8∇a(F

ab
a′ F

a′

a1a2
)Hba3a4R

cd
a5a6Rcda7a8

+ 8ta1···a8F ab
a′ F

a′

a1a2
Hba3a4∇cR

cd
a5a6Rdaa7a8 , (4.16)

where ‘∼’ means up to total derivatives and higher order terms. The last term can be removed
by a field redefinition since it is proportional to the equations of motion at this order. The
next step is to rewrite the first three so that the derivative is acting on F rather than H. It
is convenient to start with the terms with the fewest number of ‘traces’ (contractions of pairs
of anti-symmetrized indices) and work upwards in the number of traces. The calculations are
long and some details are provided in appendix B.1. When the dust settles one finds that the
contribution of the t8-terms in (4.15) can be written as

− 3

8
ε8ε8(Fa′F

a′)∇HR2 + 12Fa′abHdefY
a′abdef − 12F a′

abHdefYa′
abdef , (4.17)

where Y a′abdef and Ya′
abdef have the structure ∇FR2 and are defined in (B.3). Importantly, the

Y -terms involve no contractions between the F and H sitting in front. This means that they
can be canceled by adding terms quadratic in H, with no index contracted between the two
H’s, to the D-dimensional Lagrangian without introducing additional unwanted terms in the
reduced theory. One finds that the following terms do the job

6
(8

3
HabcH

def R̂ag
dhR̂

bh
ekR̂

ck
fg + 8Hab

cHd
ef R̂ad

ghR̂
bh

ekR̂
kg

cf − 4HabcH
def R̂ab

dgR̂
ch

ekR̂
gk

fh

− 4HabcH
def R̂ag

deR̂
bh

fkR̂
ck

gh − 2Hab
cHde

f R̂
ab

ghR̂
hk

deR̂
fg

ck +HabcH
def R̂ab

deR̂
cg

hkR̂
hk

fg

+HabcH
def R̂ab

ghR̂
ck

deR̂
gh

fk +HabcH
def R̂gh

deR̂
ab

fkR̂
ck

gh

)

.

But we will work with a simpler form for these terms, which agrees with the above up to terms
of order H4, given in (1.10). Finally, the remaining term cancels against the ε8-term in (4.14)
provided that

c =
1

5
, d =

1

2
, e = −1

2
, (4.18)

fixing all remaining free coefficients in our ansatz (4.4).
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4.3 Terms of order H2

At this order we have from the t8-terms (4.9) and (4.10)13

− 12ta1···a8F
a′

ab∇dF a1a2
a′ Hba3a4(∇H)aca5a6Ra7a8

cd − 12ta1···a8F
a′

ab∇dF a1a2
a′ Hba3a4Raca5a6(∇H)cd

a7a8

− 6ta1···a8F
a′

ab∇aF a1a2
a′ Hba3a4(∇H)cda5a6Ra7a8

cd + (F a′ ↔ Fa′) (4.19)

and from the ε8-terms (4.11)–(4.13)

− 9

4
ε8ε8(Fa′F

a′)∇H∇HR ∼ −9

4
8!F ab

a′ ∇cF a′

[abH
d
cd∇eHf

efR
gh

gh] . (4.20)

In addition we have the terms coming from the reduction of the H2R3-terms in (1.10). It is not
hard to see that these terms cannot cancel. It is therefore clear that one has to add terms of the
form H2∇H2R to the D-dimensional Lagrangian. However, if these terms have a contraction
between the two H’s without derivatives they will give terms of the form F 2∇H2R, but all the
terms we need to cancel have the form F∇FH∇HR. Therefore, we should only add such terms
if they can be integrated by parts to put one derivative on F . This shortens the list of possible
terms. Taking a basis of such terms (see the appendix) one finds after a long calculation that to
cancel all internal double Lorentz violating terms in the reduced action one should add to the
D-dimensional Lagrangian the terms in (1.11), where the terms involving a contraction of HH
or ∇H∇H are

L1 =− 3

2
HabkHk

gh∇[cHaef∇dHbghR
ef ]

cd −
11

4
HabgHef

h∇[cHab
|k|∇dHkghR

ef ]
cd

− 3HabkHkeg∇[cHabh∇dHf
|gh|Ref ]

cd + 5Hg
akHke

b∇[cHabh∇dHf
|gh|Ref ]

cd

− 5

2
Hab

cH
gh

d∇[cHef
|k|∇dHkabR

ef ]
gh +

5

12
HabkHk

gh∇[cHdef∇dHabcR
ef ]

gh

− 5He
akHk

gh∇[cH |b|
cd∇dHabfR

ef ]
gh + 2HabkHk

gh∇[cHdef∇dHabhR
ef ]

cg

−HabgHef
h∇[cHdh

|k|∇dHabkR
ef ]

cg + 11HabgHef
h∇[cHda

|k|∇dHbhkR
ef ]

cg

− 2Hd
agHb

ef∇[cHbhk∇dHa
|hk|Ref ]

cg − 2HabkHk
gh∇[cHbef∇dHadhR

ef ]
cg

− 6Hab
dH

gh
e∇[cHfak∇dHbh

|k|Ref ]
cg − 6Hd

akHk
gb∇[cHaeh∇dHbf

|h|Ref ]
cg

−HabkHkge∇[cHacd∇dHbhfR
ef ]gh − 8Hab

eHcdg∇[cHfak∇dHhb
|k|Ref ]gh ,

(4.21)

13Here (∇H)abcd = ∇[aHb]
cd.
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while those containing no such contractions are

L2 =
5

2
Ha

bcHdef∇[aHbde∇kHcfkR
gh]

gh + 6HabcHde
f∇[fHcde∇kHabkR

gh]
gh

+ 2HabcHde
f∇[fHbdh∇gHcekR

hk]
ga − 3HabcHde

f∇[fHdeh∇gHbckR
hk]

ga

− 11HabcHde
f∇[fHbde∇gHchkR

hk]
ga −

2

3
Hab

cH
def∇[cHdef∇gHbhkR

hk]
ga

− 6Hab
cH

def∇[cHbde∇gHfhkR
hk]

ga −
5

2
Hab

cH
de

f∇[cHbde∇fHghkR
hk]g

a

+
11

24
Ha

bcH
def∇[bHdef∇cHghkR

hk]g
a + 16Hab

cH
de

f∇[cHdhk∇fHbegR
hk]g

a

+ 4Ha
bcH

def∇[bHdeh∇cHfgkR
hk]g

a + 4HabcHde
f∇[dHbch∇eHfgkR

hk]g
a

−HabcHde
f∇[fHdek∇gHcghR

hk]
ab − 3HabcHde

f∇[fHcdk∇gHeghR
hk]

ab

− 8Ha
bcHdef∇[aHefk∇gHbghR

hk]
cd − 6Ha

bcHde
f∇[aHbde∇fHcgkR

kh]g
h

− 11

2
Hab

cHdef∇[aHkcf∇bHgdeR
kh]g

h − 12Hab
cHdef∇[aHkde∇bHgcfR

kh]g
h

+ 3Ha
bcHde

f∇[aHkbc∇fHgdeR
kh]g

h − 8Hab
cHde

f∇[aHgde∇bHchkR
fk]gh

+ 32Hab
cHde

f∇[aHgcd∇bHehkR
fk]gh − 3

2
Hab

cHde
f∇[aHcde∇bHghkR

fk]gh

+
5

2
Hab

cHde
f∇[aHkcd∇bHeghR

fk]gh +
1

12
HabcH

def∇[aHkde∇bHfghR
ck]gh .

(4.22)

Here we have written the answer as far as possible in terms of terms with an anti-symmetrization
of four indices which allows them to be integrated by parts to put the reduced terms in the form
F∇FH∇HR. We find only two terms left over which cannot be cast in this form, namely the
first two terms in (1.11). This result is highly non-unique due to the many ways one can integrate
by parts and use Bianchi identities to rewrite it. Our strategy was to simplify the expressions
for L1 as much as possible first, before simplifying L2, but the above expressions are probably
not the best way to write these terms. Note that, ignoring factors of 2, the coefficients of the
terms above involve only the prime factors 3, 5 or 11. This seems to suggest some substructure
to these terms, but it is hard to say more without having a more systematic way to organize the
terms.

We could now go on and consider terms of order H3 in the reduced action. However, since
we have already fixed all the possible terms in the D-dimensional action that are relevant for us
these terms would have to cancel automatically. It would be nice to verify this as a consistency
check, but we have not done so since the calculations are quite long, we have only checked that
all terms in the reduced action which need to cancel can again be put in the form F∇FH∇H2.

5 Conclusions

We have seen how to complete the R4-terms in the tree-level string effective action by requiring
that the effective action reduced to D−d dimensions should have O(d, d) symmetry. In fact, we
showed that it is enough to require that all terms with an index contraction not compatible with
O(d, d), or rather an internal double Lorentz symmetry O(d)×O(d), cancel out. We carried this
out to fifth order in fields ignoring dilaton terms. It is in principle straightforward to extend this
to compute all the couplings, though it requires some work. However, given the complicated
structure of the H2∇H2R terms, it would be important to first understand how to organize
these terms. That the result is unique follows from [11] and our result can be used as a guide
to organizing the full (NS sector) completion of R4 found there in a better way.
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It is clear from our calculations that O(d, d) symmetry appears due to very non-trivial
cancellations in the reduced theory. Another important question is if it is possible to make the
O(d, d) symmetry more manifest already in D dimension, probably at the expense of making
Lorentz invariance less manifest.
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A Proof of (1.8)

For completeness we give here a direct proof of the equality of the two expressions in (1.8). We
make the proof slightly more general by considering an arbitrary power of R(−).

A.1 Vanishing of terms linear in the spin connection

Let us first consider terms with one spin connection and show that they vanish up to total
derivatives and higher order terms. They are

− n!ωa1a2a3H[a1a2a3R
(−)a4a5

a4a5 · · ·R(−)an−1an
an−1an] + (H → −H) , (A.1)

which consists of a sum of terms with an even number of H’s of the form

ωa1a2a3H[a1a2a3∇a4Ha5
a4a5 · · · ∇a6+2kHa7+2k

a6+2ka7+2k
Ra8+2ka9+2k

a8+2ka9+2k
· · ·Ran−1an

an−1an] .
(A.2)

This term can be rewritten as follows

n+ 1

3
ηa5bωa1a2a3H[a1a2a3∇a4Hba4a5 (∇H · · · ∇H)a6···a7+2k

a6···a7+2k
(R · · ·R)a8+2k ···an

a8+2k ···an]

+ ηa5bωa1a2a3Hb[a1a2∇a4Ha3a4a5 (∇H · · · ∇H)a6···a7+2k
a6···a7+2k

(R · · ·R)a8+2k ···an
a8+2k ···an]

+
4k

3
ηa5bωa1a2a3H[a1a2a3∇a4Ha4a5a6∇a6Ha7 |b|a7 (∇H · · · ∇H)a8···a7+2k

a8···a7+2k
(R · · ·R)a8+2k ···an

a8+2k ···an]

+
n− 5− 4k

3
ηa5bωa1a2a3H[a1a2a3∇

a4Han−1a4a5 (∇H · · · ∇H)a6···a7+2k
a6···a7+2k

(R · · ·R)a8+2k ···an
a8+2k ···|b|an] .

(A.3)
The first term is zero by the anti-symmetry in a5 and b and the last vanishes by the Bianchi
identity for the last Riemann tensor. Integrating the second term by parts and dropping the
total derivative and terms of higher order in fields it becomes minus the term we started with.
This term is therefore given by 1/2 times the third term, i.e.

2k

9
ωa1a2a3H[a1a2a3∇a4Ha4a5a6∇a7H

a5a6a7 (∇H · · · ∇H)a8···a7+2k
a8···a7+2k

(R · · ·R)a8+2k ···an
a8+2k ···an] .

(A.4)
This vanishes if k = 0. If k > 0 we can apply the same trick as above to lower the a9 index and
following the same steps we find that the result vanishes unless k > 1. Clearly, continuing in
this way we find that the result must vanish to all orders in H. This completes the proof that
the terms linear in the spin connection vanish modulo total derivatives and higher order terms,
which are not relevant for our discussions here.

A.2 Remaining terms

Looking now at the terms quadratic in the spin connection, the first step is to note that

εa1···anε
b1···bnω(+)a1a2a3ω

(−)
b1b2b3

R(−)a4a5
b4b5 · · ·R(−)an−1an

bn−1bn

= − n!ω(+)a1a2a3ω
(−)
[a1a2a3

R(−)a4a5
a4a5 · · ·R(−)an−1an

an−1an]

= − (n+ 1)!ηba1ω
(+)a2a3
[b ω(−)

a1a2a3
R(−)a4a5

a4a5 · · ·R(−)an−1an
an−1an]

− n!ηba1ω
(+)a2a3
[a1

ω
(−)
|b|a2a3R

(−)a4a5
a4a5 · · ·R(−)an−1an

an−1an]

− 2n!ηba1ω
(+)a2a3
[a1

ω
(−)
a2a3|b|R

(−)a4a5
a4a5 · · ·R(−)an−1an

an−1an]

+ (n− 3)n!ηba1ω[a1
(+)a2a3ω(−)

a2a3a4
R(−)a4a5 |b|a5 · · ·R(−)an−1an

an−1an] .

(A.5)
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The first term vanishes by the anti-symmetry in a1 and b. Using the Bianchi identity R(−)[abc]d ∼
−1

3∂
dHabc, where we neglected terms with more fields, and integrating by parts the last term

becomes
n− 3

6
n!ω

(−)
[a1a2a3

Ha1a2a3R(−)a4a5
a4a5 · · ·R(−)an−1an

an−1an] , (A.6)

where we dropped total derivative terms and terms of higher order in fields. Using this we have

εa1···anε
b1···bn

(

ω
(+)a1a2
b1

ω(−)a3
b2b3 − ω(+)a1a2a3ω

(−)
b1b2b3

)

R(−)a4a5
b4b5 · · ·R(−)an−1an

bn−1bn

∼ 2n!ω
(+)a1a2
[a1

ω(−)
a2a3

a3
(

R(−) · · ·R(−)
)a4···an

a4···an] −
n− 3

6
n!ω

(−)
[a1a2a3

Ha1a2a3
(

R(−) · · ·R(−)
)a4···an

a4···an]
(A.7)

and we may further rewrite the first term as

− 2n!ω
(+)a1a2
[a1

Ha2a3
a3
(

R(−) · · ·R(−)
)a4···an

a4···an]

+ 4(n− 1)!ω(+)[a2|b|
a1

ω
(+)
a2b

a1
(

R(−) · · ·R(−)
)a4···an]

a4···an

− 2(n− 3)(n − 1)!ω(+)[a1a2
a1

ω
(+)
a2b

a4R(−)|b|a5
a4a5

(

R(−) · · ·R(−)
)a6···an

a6···an]

∼ − 2n!ω
(+)
[a1

a1a2Ha2a3
a3
(

R(−) · · ·R(−)
)a4···an

a4···an]

+ 4(n− 1)!ω
(+)a2b
[a1

ω
(+)
a2|b|

a1
(

R(−) · · ·R(−)
)a4···an

a4···an]

− 2(n− 3)(n − 1)!ω
(+)a1a2
[a1

∂a4

[

ω
(+)
a2|b|

a4ω(+)ba5
a5

] (

R(−) · · ·R(−)
)a6···an

a6···an]

∼ − 2n!ω
(+)
[a1

a1a2Ha2a3
a3
(

R(−) · · ·R(−)
)a4···an

a4···an]

− (n+ 1)(n − 1)!ω
(+)a1b
[a1

ω
(+)
a2|b|

a2
(

R(−) · · ·R(−)
)a4···an

a4···an] .

(A.8)

Adding now the total derivative term

(n+ 1)(n − 1)!∇(+)
[a1

(

ω(+)
a2

a1a2R(−)a3a4
a3a4 · · ·R(−)an−2an−1

an−2an−1]

)

=
n+ 1

2
(n − 1)!

(

R(−) · · ·R(−)
)a1···an

[a1···an]

+ (n+ 1)(n − 1)!ω
(+)a1b
[a1

ω
(+)
a2|b|

a2
(

R(−) · · ·R(−)
)a4···an

a4···an]

+
n+ 1

2
n!H[a1a2

a1ω(+)
a3

a2a3
(

R(−) · · ·R(−)
)a4···an

a4···an]

(A.9)

cancels the ω2-term and we are left with

n+ 1

2
(n− 1)!

(

R(−) · · ·R(−)
)a1···an

[a1···an] +
n− 3

2
n!ω

(+)a2a3
[a1

Ha2a3
a1
(

R(−) · · ·R(−)
)a4···an

a4···an]

− n− 3

6
n!ω

(−)
[a1a2a3

Ha1a2a3
(

R(−) · · ·R(−)
)a4···an

a4···an] .

(A.10)
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Finally, we use the fact that

ω
(+)
[a1

a2a3Ha2a3
a1
(

R(−) · · ·R(−)
)a4···an

a4···an]

=
1

3
ηa1bω

(+)a2a3
b H[a1a2a3

(

R(−) · · ·R(−)
)a4···an

a4···an]

+
n− 3

3
ηa1bω

(+)
[a1

a2a3Ha4a2a3R
(−)a4a5 |b|a5

(

R(−) · · ·R(−)
)a6···an

a6···an]

∼ 1

3
ω(+)a1a2a3H[a1a2a3

(

R(−) · · ·R(−)
)a4···an

a4···an]

− n− 3

9
ω
(+)
[a1

a2a3Ha4a2a3∂a5H
a4a5a1

(

R(−) · · ·R(−)
)a6···an

a6···an]

∼ 1

3
ω(+)a1a2a3H[a1a2a3

(

R(−) · · ·R(−)
)a6···an

a6···an]

+
n− 3

18
H[a1a2a3H

a1a2a3
(

R(−) · · ·R(−)
)a6···an

a6···an]

(A.11)

and we get
n+ 1

2
(n − 1)!

(

R(−) · · ·R(−)
)a1···an

[a1···an]

+
n− 3

6
n!ω(+)a1a2a3H[a1a2a3

(

R(−) · · ·R(−)
)a4···an

a4···an]

− n− 3

6
n!ω

(−)
[a1a2a3

Ha1a2a3
(

R(−) · · ·R(−)
)a4···an

a4···an]

+

(

n− 3

6

)2

n!H[a1a2a3H
a1a2a3

(

R(−) · · ·R(−)
)a4···an

a4···an]

∼ n+ 1

2
(n− 1)!

(

R(−) · · ·R(−)
)a1···an

[a1···an]

+
n2 − 9

36
n!Ha1a2a3H[a1a2a3

(

R(−) · · ·R(−)
)a4···an

a4···an]

(A.12)

where we used our previous result which says that the terms linear in the spin connection vanish.
Putting this together we have shown that

2
n+1εa1···anε

b1···bn
(

ω
(+)a1a2
b1

ω(−)a3
b2b3 − [ω(+) − 1

3H]a1a2a3 [ω(−) + 1
3H]b1b2b3

)(

R(−) · · ·R(−)
)a4···an

b4···bn

∼ (n− 1)!
(

R(−) · · ·R(−)
)a1···an

[a1···an] +
n− 1

18
n!Ha1a2a3H[a1a2a3

(

R(−) · · ·R(−)
)a4···an

a4···an]
(A.13)

and setting n = 9 we recover (1.8).

B Details of cancellation of non-invariant terms

Here we provide some further details of the calculations at order H and H2.

B.1 Order H1

The F 2∇HR2-terms in (4.16) not involving any ‘traces’ (contracted anti-symmetric pairs of
indices) are rewritten as terms of the right structure, i.e. F∇FHR2, plus terms involving at
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least one trace as follows

ta1···a8F ab
a′ F

a′

a1a2
∇cHd

a3a4Rdaa5a6Rbca7a8 ∼ 8∇h(F
ab
a′ F

a′ef )He
cdRdafgRbc

gh

+ 2∇f (F ab
a′ F

a′

ef )H
ecdRdaghRbc

gh − 4F ab
a′ F

a′

ef∇eHcghRbc
fdRadgh

− 4F ab
a′ F

a′ef∇cHdghRbcfdRaegh + 4F ab
a′ F

a′ef∇gHhcdRbcefRdagh

+ 8F ab
a′ F

a′

efH
ecdRda

fg∇hRbcgh

(B.1)

and

ta1···a8F ab
a′ F

a′

a1a2
∇bHca3a4R

cd
a5a6Rdaa7a8 ∼ 5!

2
Fa′abF

a′

ef∇[bH |che|Rfg
cdR

da]
gh

+ 4F ab
a′ F

a′ef∇eH
cghRfacdR

d
bgh − 4F ab

a′ F
a′ef∇bH

cghRdafcR
d
egh

+ 4F ab
a′ F

a′ef∇cHeghRfacdRb
dgh + 2F ab

a′ F
a′ef∇bHeghRafcdR

cdgh

− 4F ab
a′ F

a′ef∇gHhceRab
cdRfd

gh + 4F ab
a′ F

a′ef∇cHhefRag
cdRbd

gh

− 2F ab
a′ F

a′ef∇bHcefR
cdghRdagh − 2F ab

a′ F
a′ef∇bHcghR

cd
efRda

gh

− 2F ab
a′ F

a′ef∇bHcghR
cdghRdaef + 4F ab

a′ F
a′ef∇bHcheRafg

hRgc

+ 2 · 3!Fa′abF
a′

ef∇bHcheR[fd
cdR

a]
h + 2 · 3!Fa′abF

a′

ef∇dHcheR[ab
cdR

f ]
h

− 3!Fa′abF
a′

ef∇fHcheR[ab
cdR

d]
h − 2Fa′abF

a′

ef∇fHcheRab
ghR

g
c .

(B.2)

The last five terms are proportional to the equations of motion, modulo terms we are ignoring,
and can be dropped. Continuing in this way one eventually finds that the t8-terms can be
written as in (4.17) with Y given by

Y a′abdef =8∇cF
a′dhRa

hg
eRbgfc − 16∇cF

a′dhRa
hg

eRbfcg − 8∇cF
a′dhRae

hgR
bfcg

− 16∇cF
a′dhRae

hgR
bgfc + 8∇aF a′dhRbcgeRhcg

f − 4∇cF
a′

ghR
agcdRbhef

− 4∇cF
a′dhRec

hgR
abfg + 4∇cF a′dhRa

hgcR
bgef − 4∇cF a′deRa

ghcR
bghf

− 4∇aF a′cdRbeghRf
cgh + 4∇aF a′

ghR
dgbcRefh

c + 2∇cF
a′efRacghRbd

gh

− 2∇cF
a′dgRchefRab

gh − 2∇aF a′efRbcghRd
cgh +∇cF

a′

ghR
abdeRghcf

− 2∇aF a′

ghR
ghcdRc

bef +∇cF
a′efRabghRcd

gh − 2∇aF a′dcRb
cghR

efgh

+∇cF
a′

ghR
abcdRefgh

(B.3)

and similarly for Y abdef
a′ with the primed index lowered.
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B.2 Order H2

We use the following basis for the H2∇H2R terms involving a contraction of H with H or ∇H
with ∇H (contractions with the index on the derivative do not count)14

f1 = 4!HdabHcgh∇[cHkef∇dHkabR
ef ]

gh

f2 = 4!HkefHcgh∇[cHdab∇dHkabR
ef ]

gh

f3 = 4!HkabHkgh∇[cHdef∇dHabcR
ef ]

gh

f4 = 4!HkabHkgh∇[cHacd∇dHbefR
ef ]

gh

f5 = 4!HkcdHkgh∇[cHabe∇dHabfR
ef ]

gh

f6 = 4!HkeaHkgh∇[cHbcd∇dHabfR
ef ]

gh

f7 = 4!HdefHkgh∇[cHkab∇dHabcR
ef ]

gh

f8 = 4!HacdHkgh∇[cHkab∇dHbefR
ef ]

gh

f9 = 4!HacdHkgh∇[cHbke∇dHabfR
ef ]

gh

f10 = 4!HdefHghk∇[cHabh∇dHabkR
ef ]

cg

f11 = 4!HabhHghk∇[cHdef∇dHabkR
ef ]

cg

f12 = 4!HefhHgab∇[cHdhk∇dHabkR
ef ]

cg

f13 = 4!HefhHkgh∇[cHdab∇dHabkR
ef ]

cg

f14 = 4!HefhHgbk∇[cHdab∇dHhkaR
ef ]

cg

f15 = 4!HefhHkgd∇[cHhab∇dHkabR
ef ]

cg

f16 = 4!HdabHgbk∇[cHhef∇dHhkaR
ef ]

cg

f17 = 4!HkabHkgd∇[cHhef∇dHhabR
ef ]

cg

f18 = 4!HhabHgbk∇[cHhef∇dHdkaR
ef ]

cg

f19 = 4!HkabHkgh∇[cHhef∇dHabdR
ef ]

cg

f20 = 4!HkabHgab∇[cHhef∇dHkdhR
ef ]

cg

f21 = 4!HdabHgef∇[cHahk∇dHbhkR
ef ]

cg

f22 = 4!HhabHgef∇[cHdhk∇dHkabR
ef ]

cg

f23 = 4!HdhkHghf∇[cHabe∇dHkabR
ef ]

cg

f24 = 4!HdabHghf∇[cHkeh∇dHkabR
ef ]

cg

f25 = 4!HdabHghf∇[cHebk∇dHhkaR
ef ]

cg

f26 = 4!HakdHkgh∇[cHabe∇dHbfhR
ef ]

cg

f27 = 4!HkdhHkgh∇[cHabe∇dHabfR
ef ]

cg

f28 = 4!HdefHgbk∇[cHabc∇dHhkaR
ef ]

gh

f29 = 4!HdefHkgc∇[cHkab∇dHabhR
ef ]

gh

f30 = 4!HabcHgbk∇[cHdef∇dHhkaR
ef ]

gh

f31 = 4!HkabHkgc∇[cHdef∇dHabhR
ef ]

gh

f32 = 4!HkcdHbkg∇[cHaef∇dHabhR
ef ]

gh

f33 = 4!HkcdHgef∇[cHkab∇dHabhR
ef ]

gh

f34 = 4!HkcdHbgf∇[cHake∇dHabhR
ef ]

gh

f35 = 4!HkcdHkgf∇[cHabe∇dHabhR
ef ]

gh

f36 = 4!HkcdHagf∇[cHabe∇dHbkhR
ef ]

gh

f37 = 4!HkcdHage∇[cHkab∇dHbhfR
ef ]

gh

f38 = 4!HeabHgfa∇[cHkcd∇dHhkbR
ef ]

gh

f39 = 4!HkabHage∇[cHkcd∇dHbhfR
ef ]

gh

f40 = 4!HeabHgcd∇[cHfbk∇dHhkaR
ef ]

gh

f41 = 4!HabcHged∇[cHabk∇dHkhfR
ef ]

gh

f42 = 4!HabcHbge∇[cHadk∇dHkhfR
ef ]

gh

f43 = 4!HkabHkgh∇[cHaef∇dHbefR
gh]

cd

f44 = 4!HkabHfgh∇[cHabe∇dHefkR
gh]

cd

f45 = 4!HkabHgeb∇[cHkaf∇dHhefR
gh]

cd

f46 = 4!HkabHgab∇[cHkef∇dHhefR
gh]

cd

f47 = 4!HkaeHgab∇[cHkbf∇dHhefRgh]
cd

(B.4)

14The index placement here is chosen purely for readability.
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and those without such contractions

g1 = 4!HabcHdef∇[aHbef∇kHcdkR
gh]

gh

g2 = 4!HabcHdef∇[aHdef∇kHbckR
gh]

gh

g3 = 4!HabcHdef∇[dHaef∇kHbckR
gh]

gh

g4 = 4!HabcHdef∇[eHbdh∇gHcfkR
hk]

ag

g5 = 4!HabcHdef∇[eHbcd∇gHfhkR
hk]

ag

g6 = 4!HabcHdef∇[dHefh∇gHbckR
hk]

ag

g7 = 4!HabcHdef∇[bHefh∇gHcdkR
hk]

ag

g8 = 4!HabcHdef∇[dHbef∇gHchkR
hk]

ag

g9 = 4!HabcHdef∇[bHdef∇gHchkR
hk]

ag

g10 = 4!HabcHdef∇[bHcef∇gHdhkR
hk]

ag

g11 = 4!HabcHdef∇[eHbcd∇fHghkR
hk]

ag

g12 = 4!HabcHdef∇[bHcef∇dHghkR
hk]

ag

g13 = 4!HabcHdef∇[bHdef∇cHghkR
hk]

ag

g14 = 4!HabcHdef∇[bHchk∇dHefgR
hk]

ag

g15 = 4!HabcHdef∇[bHdhk∇cHefgR
hk]

ag

g16 = 4!HabcHdef∇[bHdhk∇eHcfgR
hk]

ag

g17 = 4!HabcHdef∇[eHbhk∇fHcdgR
hk]

ag

g18 = 4!HabcHdef∇[eHdhk∇fHbcgR
hk]

ag

g19 = 4!HabcHdef∇[bHefh∇cHdgkR
hk]

ag

g20 = 4!HabcHdef∇[bHefh∇dHcgkR
hk]

ag

g21 = 4!HabcHdef∇[bHcdh∇eHfgkR
hk]

ag

g22 = 4!HabcHdef∇[eHbdh∇fHcgkR
hk]

ag

g23 = 4!HabcHdef∇[dHbch∇eHfgkR
hk]

ag

g24 = 4!HabcHdef∇[gHefk∇dHcghR
hk]

ab

g25 = 4!HabcHdef∇[cHefk∇gHdghR
hk]

ab

g26 = 4!HabcHdef∇[eHcdk∇gHfghR
hk]

ab

g27 = 4!HabcHdef∇[bHefk∇gHcghR
hk]

ad

g28 = 4!HabcHdef∇[bHcek∇gHfghR
hk]

ad

g29 = 4!HabcHdef∇[dHabc∇eHfgkR
kh]

gh

g30 = 4!HabcHdef∇[aHbef∇cHdgkR
kh]

gh

g31 = 4!HabcHdef∇[aHbef∇dHcgkR
kh]

gh

g32 = 4!HabcHdef∇[aHkcd∇bHgefR
kh]

gh

g33 = 4!HabcHdef∇[aHkef∇bHgcdR
kh]

gh

g34 = 4!HabcHdef∇[aHkbc∇dHgefR
kh]

gh

g35 = 4!HabcHdef∇[aHkbe∇dHgcfR
kh]

gh

g36 = 4!HabcHdef∇[aHgef∇bHdhkR
ck]

gh

g37 = 4!HabcHdef∇[aHgef∇bHchkR
dk]

gh

g38 = 4!HabcHdef∇[aHgce∇bHfhkR
dk]

gh

g39 = 4!HabcHdef∇[aHdef∇bHghkR
ck]

gh

g40 = 4!HabcHdef∇[aHcef∇bHghkR
dk]

gh

g41 = 4!HabcHdef∇[aHkef∇bHdghR
ck]

gh

g42 = 4!HabcHdef∇[aHkce∇bHfghR
dk]

gh

g43 = 4!HabcHdef∇[aHkef∇bHcghR
dk]

gh

(B.5)

Adding a linear combination of these

∑

i

cifi +
∑

i

digi , (B.6)

to the D-dimensional Lagrangian one finds after a long calculation that all the terms violating
the internal double Lorentz symmetry cancel if we take the following non-zero coefficients

c1 =
15

4
, c3 =

5

8
, c6 = −15

2
, c11 = −3 , c12 = −3

2
, c14 =

33

2
,

c15 = −3 , c18 = −3 , c25 = −9 , c26 = −9 , c39 =
3

2
, c40 = −12 ,

c43 = −9

4
, c44 =

51

8
, c45 = −9

2
, c47 = −15

2

(B.7)
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and

d1 =
15

4
, d3 = 9 , d4 = 3 , d6 =

9

2
, d8 =

33

2
, d9 = −1 ,

d10 = −9 , d12 = −15

4
, d13 = −11

16
, d16 = −24 , d19 = −6 , d23 = −6 ,

d24 =
3

2
, d26 =

9

2
, d27 = −12 , d31 = −9 , d32 = −33

4
, d33 = −18 ,

d34 =
9

2
, d37 = −12 , d38 = 48 , d40 = −9

4
, d41 =

1

8
, d42 =

15

4
(B.8)

and add the two terms in (1.11) without the anti-symmetization in the indices. Here we have
tried to pick a minimal solution by first setting as many of the ci’s as possible to zero, though
there may exist a better choice of solution. The solution then takes the form of (1.11).
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