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Abstract

The tree-level string effective action is known to contain quartic Riemann terms with coefficient
¢(3)a’. In the case of the type II string this is the first o’ correction. We use the requirement that
the action reduced on a d-torus should have an O(d,d) symmetry to find the B-field couplings
up to fifth order in fields. The answer turns out to have a surprisingly intricate structure.
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The string theory effective action has a double expansion in the inverse string tension o/ and the
string coupling gs. Here we will consider tree-level string theory and so ignore all g5 corrections.
The tree-level effective action has a very interesting property — its dimensional reduction to D—d
dimensions (D = 10 or 26 being the critical dimension) has a continuous O(d, d; R) symmetry

[1, 2], which extends to all orders in o/ [3].

Our goal here is to use this symmetry to learn

about the structure of o/ corrections. Specifically, we will focus on the first o’ correction which
is common to all string theories. The metric terms have been known for a long time and take
the form [4, 5, 6, 7, 8, 9]
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where tgtgR* is shorthand for

and similarly for egeg R*. These tensor structures are defined as
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for anti-symmetric matrices Mj 23 4. It is important to note that the second term in (1.1) is
a total derivative at the leading order in fields and throwing away the total derivative we may
write egeg R? ~ w?R? ignoring terms of higher than fifth order in fields.

Here we will use the requirement of O(d,d) symmetry of the reduced action to fix the
couplings involving the B-field up to the fifth order in fields. We will see that O(d, d) requires a
surprisingly intricate form for these couplings. The full set of couplings of the NS sector fields
have been previously found in [10, 11] by a brute force calculation — writing the most general
ansatz in ten dimensions and requiring T-duality symmetry of the circle reduction.! This was
shown to lead to a unique result. Unfortunately, the resulting action is extremely complicated
and it is very hard to see any structure in it. This is the reason we revisit the calculation here
using tools adapted to the O(d,d) symmetry and finding a simpler, though still complicated,
form for the effective action. We find the following form for the effective action (up to the overall
coefficient)

L = LI:?“ + L(w2+H2)R3 + L(H/\H)R3 + LHQVHQR + .o, (1.5)

where the ellipsis denotes terms involving the dilaton and RR-fields, which we don’t determine,
and terms of sixth and higher order in fields. These couplings have the following form. First we

have
1

Ly = 1—6t8t8R4 (1.6)
where we have defined
Rabcd = R(i)abcd - %HabeHecd = Rabcd - v[aflb]cd + %H[aceHb]ed - %HabeHecd (17)
and R®) is the Riemann tensor computed from the torsionful spin connection wéi)bc = we +
%Habc. The second contribution is given by
1 2 2153
L(w2+H2)R3 = —aé’g&’g[w + H ]R
1 _ 1 N\ aa---ag
:6—45858(R( ))4 + 6—4€a1...a9€b1 bo (%Ha1a2a3Hblb253 — Hbla1a2Ha3beS) (R?’) by---by + ...

(1.8)

where the term in brackets in the first line stands for

% <W£j)ala2w(7)a3b2b3 - [W(Jr) - %H]alagag [w(i) + %H]bleba) +Hb1ala2Ha3b2b3 - %HalaQaSHbleb?,

(1.9)
and the ellipsis denotes total derivatives and terms of sixth order or higher in fields. In particular,
we reproduce the egegR* term with the correct coefficient. The equality of the two expressions
is shown in appendix A. Then we have additional H?R3-terms which take the form

6! - on 5! A
Lisintnyre = gag Hape HT B9 R o R ) + 5 Hope Hae R g R R
5! .
+ §HabcHdengh[adR|hk|beRfkc]g- (1.10)

Note that they do not contain any contractions between the H’s. The need for such terms was
seen from amplitude calculations in [15]. Finally, we have the terms of the form H?VH’R,
which are by far the most complicated. They take the form

3. 4!
Lipvper = 6HHYI N  H 3N o Hyg, ROy, s+ 3H HYS v’chdekafghRghabJrT(L1+L2) ,
(1.11)

LA cosmological reduction of all spatial dimensions has also been considered [12, 13, 14], but this is not enough
to fix the form of the D-dimensional action.



where L and Ly are distinguished by the structure of the contractions and are given in (4.21) and
(4.22). The total number of these terms is 42 and their structure is surprisingly intricate. Still,
compared to the 106 terms of this form in [11], we have clearly achieved some simplification.?

Ignoring terms of order H? it is easy to see that our results match precisely those of [15],3
4 Due to the very
complicated form of the H* terms in [11], we have not attempted a comparison of these.

which determined all the H? couplings using string amplitude calculations.

To derive this result our strategy is the following. We start with the known tgtgR?* term
in D =10 (or D = 26). Then we use ideas from Double Field Theory (DFT) [17, 18, 19] to
rewrite it in terms of an O(D, D) invariant analog of the Riemann tensor. This object is not
Lorentz invariant and we have to add terms quadratic in the spin connection to compensate
for this. These extra terms can also be expressed in terms of objects from DFT. In doing so
we obtain an expression which looks O(D, D) invariant, except for the fact that the double
Lorentz symmetry needed to have a consistent DFT formulation is explicitly broken. Only its
diagonal, the usual Lorentz group, is preserved. It is important to note that we are working
only with completely gauge-fixed objects from DFT, which can always be expressed only in
terms of the usual metric/vielbein and B-field. Therefore, the explicit breaking of the DFT
symmetries does not lead to any inconsistencies. It seems that we could just as well work with
the usual metric and vielbein, rather than involve the DFT notation. However, the reason for
using the DFT notation is 1) that the dimensional reduction of the action expressed in terms
of the DFT fields to D — d dimensions is simple to perform, but more importantly 2) that
one can read off directly which terms in the reduced action are compatible with O(d,d) and
which terms are not. More precisely, we work with a frame-like formulation where the global
O(d, d) symmetry is made manifest at the cost of introducing a local (internal) double Lorentz
symmetry O(d) x O(d) which is not manifest, but needed for consistency. We require that the
terms in the reduced action which would explicitly violate the O(d) x O(d) symmetry, by having
an index transforming under the first factor contracted with an index transforming under the
second factor, should cancel. This is a very strong requirement and, in fact, we argue that
at least in the present case it is equivalent to O(d,d) invariance. We find that the required
cancellations are only possible if one adds particular terms involving the NSNS field strength H
to the D-dimensional action. We determine these by working order by order in H. To simplify
the calculations we make the following assumptions

1. We look only at the terms in the reduced action quadratic in the gauge vectors and not
containing the internal scalars.

2. We ignore terms involving the dilaton.

3. We use the equations of motion in the reduced theory, i.e. we allow field redefinitions after
reduction.

Regarding the first point, it is not hard to see that the remaining terms, i.e. terms quartic in the
gauge vectors or terms containing scalars, will cancel along very similar lines, though these are
typically less constraining. The second assumption means that we cannot determine any of the
couplings involving the dilaton. With some extra work one can of course go back and determine

2Curiously, while the complicated (H A H)R® and H*VH?R terms found above are required at tree-level by
O(d,d), they are absent at one loop [16]. The one-loop R*-terms therefore seem to have a much simpler structure
than the tree-level ones, even though in the type IIB case the purely metric terms are exactly the same. In
particular this means that there must be several supersymmetric R* invariants, as already argued in [15].

SExcept that our Lipramyrs is 8 times that of [15].

“Note that we may replace H*1%2% Hy pp. — 3Hp, “1%2 H% . in (1.8) up to H* terms, as follows from a
similar calculation to (A.11) with w™) replaced by H.



them by keeping track of them everywhere. Finally, regarding the last point, ideally one would
like to allow only field redefinitions in the D-dimensional theory, but we did not investigate this
as the calculations become more complicated. We also did not attempt to prove that the result
is unique (up to field redefinitions), since this already follows from [11].

Let us emphasize again that, while some of our expressions are written using a mix of DFT
and standard notation, this is just a trick to simplify the bookkeeping and we are always working
with the standard gravity fields and symmetries. In any expression where the generalized fluxes
I appear they are understood to be expressed in terms of the usual spin connection and H as
in (2.5), i.e. the DFT symmetries are completely gauge-fixed. However, from our results it is
straightforward to extract a non gauge-fixed DFT description of the reduced theory, where only
the internal coordinates are doubled. All one needs to do is keep all the O(d, d) compatible terms
in the dimensional reduction and forget about the DF'T gauge fixing of the internal coordinates.
One should also include the scalars which we set to zero. We did not try to write the resulting
action since it would contain quite a large number of terms and our main interest here is the
original D-dimensional action.

It might seem that we could have worked instead within DFT from the beginning, but we
believe this is actually not possible. Indeed, in [20] it was shown that while the R*-terms can be
cast in O(D, D) invariant DF'T form at the quartic order in fields, it is not possible to complete
them (within DFT and with some mild assumptions) by terms of fifth order in fields. This
might seem surprising given the fact that the lower order o/ and o/ corrections to the bosonic
and heterotic string can be cast in DFT form [21, 22] (see also [23, 24| for earlier attempts).
However, the reason is that these lower corrections (together with an infinite tower of higher
corrections) can be generated from an uncorrected extended gauged DFT action, by imposing an
identification of the gauge field and spin connection [25, 26] (see also [27]), a la Bergshoeff and
de Roo [28, 29]. There is no similar trick for generating the ¢(3)a’ corrections we are interested
in here. Indeed, our calculations show explicitly how terms that are not compatible with an
O(D, D) invariant DFT description in D dimensions can lead, upon dimensional reduction to
D — d dimensions, to terms which are compatible with and O(d, d) invariant DFT description of
the reduced theory, thanks to additional cancellations possible only after dimensional reduction.
Note that the difference between the O(D, D) and O(d, d) invariant case is not just that d < D,
the more important difference is that in the latter case there are d isometries, which are ‘rotated’
by O(d, d), while in the former case no isometries are assumed, which is much more restrictive.

The remainder of the paper is organized as follows. In section 2 we introduce the DFT
parametrization of the fields that we will use. Then in section 3 we discuss the dimensional
reduction in terms of these fields. The main part of the paper is section 4 where we require the
non-invariant terms in the reduced action to cancel, fixing the form of the D-dimensional action.
We end with some conclusions. Details of the calculations are provided in the appendix.

2 DFT parametrization of fields

Here we introduce the necessary concepts from DFT. As the name suggests DFT involves dou-
bling the spacetime coordinates x — (Z, ). One then imposes an O(D, D) invariant “section
condition” which effectively removes half of them. Here we will mostly ignore the doubling and
work with the solution to the section condition where the additional coordinates & are set to
zero. In fact, in the rest of the paper we will work only with completely gauge-fixed DFT, which
is equivalent to the usual gravity description. The reason for still using DFT notation is that it
provides a natural way to organize the fields in order to recognize directly which terms in the
reduced action are compatible with O(d, d) symmetry and which are not.



We will use the so-called flux formulation of [30], building on the frame-like formulation of
DFT [31]. The basic field is the generalized vielbein

1 ( e(+)am — e(+)aanm e(+)am )

EM = (2.1)

ﬁ _eg;L) - egL_)anm eg_)m

It is constructed from two sets of vielbeins e for the metric G, which transform inde-
pendently as AFeE) under two copies of the Lorentz group, and the B-field.® The standard
supergravity fields are recovered by fixing the gauge e(t) = e(-) = ¢, leaving only the diagonal
copy of the Lorentz group. In this formulation a global O(D, D) symmetry acting on the doubled
coordinate index M = (™, ,,) is manifest. Instead, consistency requires the local double Lorentz
symmetry O(D — 1,1) x O(D — 1,1) acting on the index A = (%,,), which is not manifest, to
be preserved.

There are two constant metrics, the O(D, D) metric nAB and the generalized metric HAB,
which take the form

0 0
UAB = ( 7786 _nab ) ) HAB = ( ngb nab > ’ (22)

where n = (—1,1,...,1) is the D-dimensional Minkowski metric. The O(D, D) metric is used
to raise and lower indices. The projection operators

1
A A A
PiBzi(n B APy | (2.3)
are easily seen to project on upper and lower indices respectively. The analog of the spin
connection is the “generalized flux”%

Fape = 304E8" Ecyy - (2.4)

Since we can use the projection operators to project onto upper or lower indices we actually
have four objects. After fixing the double Lorentz symmetry by imposing the gauge e(*) = ()
(and solving the section condition) they reduce to

1 1

e o= —— (—)a - Fabc - (+)bc’
VO R V2
1 _ 1
Fope = %(3("}[((117)@} + Habc) ) Fabc = _ﬁ(?)w(Jr)[abC] - Habc) . (25)

By construction Fspc is invariant under constant O(D, D) transformations since these simply
rotate the coordinate indices M, NN, .... However, it transforms similarly to a connection under
the O(D —1,1) x O(D —1,1) double Lorentz transformations acting on the indices A, B, .... In
particular, after splitting the indices into upper and lower ones using the projectors, the upper
indices are rotated by the first Lorentz group while the lower indices are rotated by the second.
This means that F’s with different index placements, e.g. F,* and F®¢, are independent fields
(in DFT) since they transform differently.” We are therefore not allowed to raise and lower the

®The dilaton ®, which will not play any role here, is encoded in the generalized dilaton d defined as

672d _ 672<I> /*G )

“Here we have defined 04 = Ea™ 0 where Oy = (0, 0y) after solving the section condition in the standard
way.

7 After fixing the gauge ()

= ¢{7) they are no longer independent, as is clear from (2.5).



indices on these fields. Importantly for our later discussion it also means that a contraction of

two indices with 74, e.g.
770L6l}?(1l)cF1ale]” ) (26)

is compatible with the double Lorentz symmetry, since the contracted indices transform under
the same group. On the other hand a contraction of an upper and a lower index, e.g.

Fachade ’ (2 7)

would explicitly break the symmetry, since the two contracted indices transform under different
Lorentz groups. It is terms of this form (with the contracted index an internal index) that we
will require to cancel in the reduced theory.

We can also introduce a DFT analog of the Riemann tensor. Following [32] we define®

Rabcd = 26[an]cd — nefFabechd + 2?7€fF[acer]fd . (2.8)

When we fix the gauge e(t) = (=) this reduces to
1 —)a ea -
Rabcd = §(R( ) bcd + W(Jr) bw( )ecd) ) (29)

which shows that unlike the usual Riemann tensor this object is not Lorentz covariant. Con-
versely, we can instead take the combination

Rabcd + FeabFecdy (210)

which is Lorentz covariant, in fact it reduces to %R(_)“bcd on setting e(t) = (=), but is not

compatible with double Lorentz symmetry due to the contraction of an upper and a lower index
in the second term. It therefore only makes sense to work with this object after gauge-fixing the
DFT symmetries.

3 Dimensional reduction

We will denote D-dimensional quantities by calligraphic letters in order to distinguish them
from the corresponding quantities in the dimensionally reduced theory. We take the following
dimensional reduction ansatz for the generalized vielbein

EM=EN+U)M, (3.1)
where F is diagonal with non-zero components
E % and  ELP (3.2)
while the non-zero components of U are
Untn = Appms Un = AN Uy = —3AK Ager,, . (3.3)

Note that this form guarantees that 1+U € O(D—d, D—d)xO(d, d). Internal indices are denoted
with primes and the various indices and groups under which they transform are summarized in
table 1. We are interested only in the internal symmetries (O(d,d) and O(d) x O(d)) and we
will take the external part to be gauge-fixed, removing O(D —d, D — d) and breaking O(D —d —
1,L1) xO(D—-d—1,1) - O(D —d — 1,1), the usual Lorentz group for the external directions.



Index Internal/External Transforms under

M = (M, M) - Global O(D, D)
A= (AA) - Local O(D —1,1) x O(D —1,1)
M=) External Global O(D —d, D — d)
A=(%,) External Local O(D —d—1,1) x O(D —d—1,1)
M =) Internal Global O(d, d)
A= () Internal Local O(d) x O(d)

Table 1: Summary of index notation.

We have grouped the two gauge fields, coming from the metric and B-field respectively, into an

O(d, d) vector
AP
A = ( e ) . (3.4)

mn/
Gauge fixing e(t) = () one recovers the usual Kaluza-Klein reduction ansatz.?

The dimensional reduction of the generalized flux Fpc becomes

3y /
Fapc = Fapc + §F[QBAC]DI ,  Fapo=—Fapc,  Fapc=0cEs™ Epnp, (3.5)
while F 4/ gr¢cr vanishes. Here we have introduced the field strength of the doubled gauge field

FK, =20,,AK (3.6)

N]
and used the generalized vielbein to convert the indices, i.e. Axp = EaY "Eg™A,,N and
Fupe = ExX Eg™Ec"F,.k. Note that this means in particular that here A, = %ebmAmb/,
rather than the standard definition without the /2. In DFT this reduction breaks the O(D, D)
symmetry and double Lorentz symmetry down to their internal parts, i.e. O(d,d) and double
Lorentz transformations (rotations) acting on the primed indices O(d) x O(d).

For the remainder of this paper we will set the scalars that arise on dimensional reduction to
zero, since this will be enough for our purposes. This amounts to 4™ being constant. Since
we are also ignoring the dilaton we are starting from an action in D dimensions which can be
expressed in terms of Hye and R, and their covariant derivatives.!® Our strategy is to
first write this in terms of gauge-fixed DFT fields. In particular we have from (2.5)

Habc _ \/i(Fabc _ 377d[adeC}) , Hupe = \/E(Fabc _ 377d[adec]) ] (37)

This is of course not the only way to express H in terms of the F’s but it is the way that violates
the would-be double Lorentz symmetry the least, since it involves only one 7 (remember that
upper and lower indices on F are rotated by different groups in DFT). Similarly we may express
R()b ; through the combination (2.10) as

R)ab  — oRab 4 2F e . (3.8)
8Defining Rap® similarly we have Rar®® = =R s
9Namely
e (et Aew” g Ben— AR AT+ AW AP By AT+ A B
0 em/a 7A£r27,2n + Bm/k’A'Ezl)k Bm/n’
9Note that we use a,b, ... both for D-dimensional indices and for external (D — d)-dimensional indices. Since

these never occur together in the same expression it is hopefully clear from the context which one we mean.



However, it will be more convenient for our purposes to include some quadratic terms in H and
work instead with

}?abcd = R(i)abcd + aHabeHecd + bHae[cHd] be ) (3'9)

where a and b are constants to be fixed. Let us now compute the dimensional reduction of this
object. We first promote it to an expression in terms of (gauge-fixed) generalized fluxes using
(3.7) and (3.8). Next, we use the reduction of the generalized flux (3.5), recalling the definition
of R%.; in (2.8) and letting F 4/ M he constant. Denoting again the D-dimensional R as R one
finds the reduction - . ,
R cd =R" cd+Aa cd s
ﬁa bcd = Ra/bcd + Aa/bcd )
ﬁabc/d = Rabc/d + Aabc/d )
ﬁa,blcd = Ralblcd + Aalb,cal )

Rabc’d’ :Rabc’d’ + Aabc’cl’ )
/

A~ A !
R® bc’d =R" bc’d + A” bc’d )

(3.10)

while the components with more than two primed indices vanish. As discussed at the end of
the previous section, the object we started with does not respect the D-dimensional double
Lorentz symmetry. After the reduction we are interested only in the internal double Lorentz
symmetry rotating the primed indices. We have therefore split the RHS into terms which are
compatible with this symmetry (primed indices contracted only with n“,b,) and terms which
would explicitly violate it (primed indices contracted with 53//). The ones that are compatible
with such a symmetry are

Rob_, — R(-)ab o aHlabeHéCd + bHéa[cH/ebd] +2(a — D)ne g Fe/achfd/
+ 2a776/f/Fe’abFf’cd + 2b776’f’Fe/a[ch/bd] + 2(b - 2)ne/f/Fe’c[aFf'db] )
Ra’bcd — \/5 <V(_)bFa’Cd + aFa/beHéCd —_b g[’cH/ebd]> :
R =2 (vﬁj VF,% — aH'™ Fg, + bF" H" ed) , (3.11)
R g =2(2 - b)Fl F¥ley
Rabc’d’ = 2(2 - b)Fac’eFd/}eb,
R g =(2 = b)FYFY — 2aF " F, .,

C

where V(&) uses the spin connection wéi)bc and H is everywhere replaced by
H}y = Hape — 3V2F 5 Agpr (3.12)

The precise form of these terms will not be important for us, only that they are compatible
with an internal double Lorentz symmetry and so could arise from a DFT description. What
will be important here is the form of the terms which would explicitly violate O(d) x O(d), by
containing contractions of an upper and a lower internal index (or a raising/lowering of a free



internal index by %" /5y ). They are

APy =2aF P Fyeq +2(1 + o) FSPFS + 40F 1 F Yy
Ay = —av2f FH, g+ b\@??a/f/Ff/e[cH/ebd} ;
A, = g \/inc’f’ Fé‘e’ H'abe 4y, \/inc’f’ o f'ela gl ods
AT g = — a1 Fp g PV ¢ + 26071 Fpr ooV F g (3.13)

Aabc/d/ = — 4bF[iEand/]f/F|fl‘b}e —+ 2[)77f/ [C/Fflaend/]g/Fglbe ,

Aa,bc/d = - 2a77a,lef’bch/ed - bnc/f’Ff,beFeac; - 2alebenc’f/Fuueal - ngena,f,Ff/ed
— 20//’]alf Ff/be’r}c/g/Fg/ed — b?]c/f/Ff/bena gng/ed .

Actually, we will only need the first three expressions, because we will confine ourselves only to
terms quadratic in the KK gauge field strength. Now we are ready to turn to the question of
O(d, d) invariance of the reduced action.

4 Requiring O(d,d) invariance of the reduced action

We wish to fix the form of the D-dimensional action by requiring that the reduced theory is
O(d,d) invariant. Actually, rather than directly requiring O(d, d) invariance, we will just require
that the terms which would explicitly violate it, by not being compatible with an internal double
Lorentz O(d) x O(d) symmetry and therefore cannot come from a DFT formulation, cancel out.
These are precisely the terms which contain contractions of an upper and a lower internal
(primed) index, since these indices would have to transform differently under the two O(d)
factors.

This is clearly a necessary condition for O(d, d) invariance. In fact it is also sufficient, as we
will now argue. Consider the internal double Lorentz O(d) x O(d) transformation of the reduced
action (promoted to a DFT action by forgetting the gauge fixing of the internal DFT fields).
From the formulas in the previous section it is clear that internal (primed) indices sit only on
Fc‘z/, the field strength of the (doubled) KK vectors. Contractions without a derivative on F,
F - F (where the dot denotes contraction of the internal index), are automatically invariant since
we made sure only the invariant contractions survive. Therefore we only need to check terms
with a derivative on F' and since, in our case, we never get more than one derivative these are
of the form VF - ' and VF - VF. However, we must also remember to reinstate the scalars
by dropping the condition E 4™ " = constant that we imposed in the last section. This leads
to additional terms involving Fap/cs given in (3.5) and the relevant fields are Fpy s and Fe
which transform as connections under the internal double Lorentz transformations. Taking all
these contributions into account the internal double Lorentz variation of the reduced action
becomes (setting the scalars to zero after the variation for simplicity)

— lbl ’ ) — d f
Led =V Aty FSFJU o g + VX' o F8 T
—a'b ) —
+ VN FEVPFIIV oy + VX' FL NV FE T (4.1)
—a'b , S
+ VDN VO FLNVFIIW ey + Vo' VyFg W FL W
for some functions of the fields U, U, V, V, W and W (here we have suppressed the n“,bl
contracting the primed indices, which may not be raised or lowered, unlike the unprimed ones
which are ordinary external Lorentz indices). The point is now to note that the reduced action
must be invariant under (standard) Lorentz transformations, since it arises from reduction of a



Lorentz invariant theory. This means that, gauge-fixing DFT to go to supergravity and setting
A = —)\ = ), the above variation must vanish. Since each term is independent however (recall
that F* involves the vectors coming from the metric while F involves the vectors coming from
the B-field) this requires U =U =V =V = W = W = 0 and it follows that the Lagrangian is
actually invariant under the full internal double Lorentz symmetry.

The cancellation of all terms with index contractions not compatible with O(d,d) turns out
to be a very strong requirement, which will completely fix the form of the D-dimensional action.
In fact, it turns out to be enough to ignore the internal scalars and to consider only the terms
in the reduced action which are quadratic in the gauge field strength F g,; As mentioned in the
introduction we will further ignore the dilaton and work only up to fifth order in fields.

We start from the following ansatz for the D-dimensional Lagrangian'!

1 1 R
L= 1—675875834 + g»sgesg(F2 + HHR?. (4.2)

These terms are shorthand for the following expressions

4 bi---bg 1 » » 5
tStSR = tal---agt ! 8Rala2b1b2Ra3a4b3b4Ra5a6b5b6Ra7a8b8bg ) (43)
2 2\ 53 by-bg [ € 1
e9eg(F* + H*)R® =¢cqy.qqe™t ™ <Z |:Fb1a1a2Fa3b2b3 - §Fa1a2a3Fb1b2bg} (4.4)
d e - - -
+ %HalaQaaHblebg + ZHb1 ai1a Ha3 bgbg) R(I4a5 b4b5 Ra6a7b6b7Ra8a9b8b9 ,

where tg is defined in (1.4) and R in (3.9). Note that R contains two free parameters a,b and
above we have introduced three additional free parameters ¢, d, e. These will become fixed later.
The F’s appearing in the above expression can be written in terms of the spin connection w and
H using (2.5), but we write them this way here since then we can carry out the dimensional
reduction directly. The precise combination of F’s with different index structure is dictated by
the requirement that the action should be Lorentz invariant up to a total derivative. This means
that one can add a total derivative to complete these terms to egeg R* (see the introduction).

Dimensionally reducing this Lagrangian using the results of the previous section gives rise
to terms that would explicitly violate an internal double Lorentz symmetry of the following
schematic form (ignoring the scalars and terms with more powers of F')

1. . . .
1—6t8t8R4 — tgtg F?R® + ts FHVFR? | (4.5)

1 . N . .

g&g&g(FQ + H*)R? — eges F2R? + eges(WF + HF)VEFR? + eges(w? + H)VF2R, (4.6
where we have kept only terms up to fifth order in fields, so R can be replaced by R(7). The
last term in the second line looks very non-Lorentz covariant. To write it more covariantly we
have to integrate by parts. It is convenient to organize the calculation in powers of H. We start

by considering the double Lorentz violating terms in the reduced theory which do not contain
H.

11 . . . . —2® . .
The numerical factors are introduced for convenience. We ignore the factor e since we set the dilaton to
zero here.
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4.1 Terms of order H°

Setting H = 0 and looking at the order F? terms we have, up to total derivatives and higher
order terms,

tsts F2R3 = % (wa/cha,ab +(1+a)FAES — 2bFa’caFa/bd) (tstsR*)* ca,

eses F2R3 = 1_16 [(c +d+3e)FSFY + (d + 36)Fa/CdFa'ab] (esesR*)*eq )
eseswFVFR? = %Fgfl % (cges R2) g |
egesw’VE?R = f—gFacfl (f,; (5868R3)“bcd.

These terms explicitly violate the would-be internal Lorentz symmetry since they contain a
contraction of a lower and upper primed index. To get an O(d,d) invariant reduced action we
must require that they cancel. Clearly the terms with the tgtg structure and egeg structure must
cancel separately. The only way this can happen is if the combinations of F?-terms are such
that (F2)aped = —(F?)cdap, since then they give zero due to the contraction with the R? terms
which are symmetric under exchanging the pairs of indices due to the symmetry of the Riemann
tensor. This in turn requires the free coefficients to satisfy'?

a=—=, b=0 and d+3e= —bc. (4.8)

Having partially fixed the free parameters we can now go back to the general H # 0 case

and we find (to this order R = R())
2 H3 1 a’ a’ N3
tgts F“R° = Ztgtg(Fa/F —F*Fo)R, (4.9)
where the index structure on the first factor is F g,bF fc; — FYabp, o and

H2 by---b d / ~ ~
ts FHVFR? =12t"" S F3*VF . Hepypy Rachsbs R dbrbg
/ A A~
— 12ta1~~~a8 Fl?e Vngll@ H€a3a4Ra5a5bcRa7a86d
bi---b / ~ed ~
=3t Bth’evaFlibgHebgb4Rc bSbGRdcb7bg

Bty ap Bl VO RO [Te0ats Rasac  parasde (4.10)
while the egeg-terms are, again dropping total derivatives and higher order terms,
€8€8F2R3 = — %8888(4}7@/}7(1, + 5FalFa/)}?3 s (4.11)

.3 I~ 3 , .
eses(w? + H)VF2R = ngggg(Fa,Fa VR + = ees(Fu F)VHVHR

8! o
— (A4 €) Vo BV Hoa, Fy ™ F 7% g (412)
3 .3 A
eses(wF + HF)YWFR? = gcegsg(Fa/F“ VRS — gegsg(Fa/F“ )WV HR?
+ 7!(d + e) (Ha1a2a3 Fa’[alag VMF(;I?:M + H[alagagF;/laQ Va4Fa’a3a4> Ra5a6a5a6 Ra7a8a7a8] ) (4.13)

121n fact, this also ensures that the order F* terms vanish since the symmetries of the Riemann tensor are the
same.
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4.2 Terms of order H!

Again we consider the terms in the reduced theory which would not be compatible with an
internal double Lorentz symmetry, but this time the ones linear in H. From the eg-terms we
have

15¢ + 12¢

‘7a417a’
8

eses(Fy F*)VHR? +2-7/(d + ) H 2% F iy 0 @

asae aras
R a5a6}% arag]

(4.14)

Note that in the first term we may integrate by parts to have the derivative acting on F' rather
than H. The tg-terms give

3 : /
- Ztgtg(pa, FYYWHR? + 12t S F%N 4 Hygyay Racasas B aras

+ 3ta1"'a812$b‘7a1?a/ }Jba3a4}%cda5a6}%6da7as __(]?a/ A laﬂ)' (4'15)

aiaz

The first step is to rewrite the first term so that the derivative is acting on F' instead of H, since
all other terms can be written in that form. To start with we have

tats(Fy F¥)WHR? ~ 8t S FPFY N7y Hog0, R a6 Rdaay as

a1a2
+8ﬁ1%Fgfzqu{%mRM%%R%m%_4ﬂl%Fngwaﬁmec%%R%m%
b ’ d b / d
+ 8t a8‘7c(l2$ figlaz)}gba3a4}%c asaslgdaa7as + 2t a8‘7a(123 l2g1a2)1150304}%c a5“6}%0da7a8
- b ra’ d
+ 8t ETEY o Hyazay Ve R a5a6 Rdaaras » (4.16)

where ‘~’ means up to total derivatives and higher order terms. The last term can be removed
by a field redefinition since it is proportional to the equations of motion at this order. The
next step is to rewrite the first three so that the derivative is acting on F' rather than H. It
is convenient to start with the terms with the fewest number of ‘traces’ (contractions of pairs
of anti-symmetrized indices) and work upwards in the number of traces. The calculations are
long and some details are provided in appendix B.1. When the dust settles one finds that the
contribution of the ¢g-terms in (4.15) can be written as

3 ' / /
— g&g&g(FwFa )VHR2 + 12Fa/abHdefYa abdef _ 12ngHdefYa/abdef s (4.17)

where Yo' abdef and Y, 2bef have the structure VFR? and are defined in (B.3). Importantly, the
Y -terms involve no contractions between the F' and H sitting in front. This means that they
can be canceled by adding terms quadratic in H, with no index contracted between the two
H'’s, to the D-dimensional Lagrangian without introducing additional unwanted terms in the
reduced theory. One finds that the following terms do the job

6 < g H HF 09, R, Rckfg 4 SH,CH Radgh R, ngcf _AH,,, H%S Rabdg R, ngfh
_ AH, HT fas Rbhfk f%ckgh _9H,° Hdef }?abgh R BRI, 4 o, HO R, fred, thfg
- Hope HOS R R 4RI 51+ Hope HOS RIM 4 R 5, }?ckgh> _
But we will work with a simpler form for these terms, which agrees with the above up to terms

of order H*, given in (1.10). Finally, the remaining term cancels against the eg-term in (4.14)
provided that

1 1
= d= 5 €= 735,
) 2 2
fixing all remaining free coefficients in our ansatz (4.4).

CcC =

(4.18)
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4.3 Terms of order H?

At this order we have from the tg-terms (4.9) and (4.10)!3

_ 12ta1---a8 c?l; VdFOCLl/laQ Hba3a4(VH)aca5a6 Rd?dscd _ 12ta1---a8 a%vng’laQ Hba3a4Raca5a6 (VH)cda7a8
— Gy qp FO VO F%02 fbasas (7 f)edasas garas 4 (R o F) (4.19)

and from the eg-terms (4.11)—(4.13)

- zsgsg(Fa/F“,)VHVHR ~ —28!F§bv0F§’bHdcdver ef BRI oy (4.20)
In addition we have the terms coming from the reduction of the H2R3-terms in (1.10). It is not
hard to see that these terms cannot cancel. It is therefore clear that one has to add terms of the
form H?>VH?R to the D-dimensional Lagrangian. However, if these terms have a contraction
between the two H’s without derivatives they will give terms of the form F?VH?R, but all the
terms we need to cancel have the form F'VFHVH R. Therefore, we should only add such terms
if they can be integrated by parts to put one derivative on F'. This shortens the list of possible
terms. Taking a basis of such terms (see the appendix) one finds after a long calculation that to
cancel all internal double Lorentz violating terms in the reduced action one should add to the

D-dimensional Lagrangian the terms in (1.11), where the terms involving a contraction of HH

or VHVH are

3
2
- 3Hakakegv[cHabhvdHf‘gh|Reﬂcd + 5Hgakaebv[cHabhvdHf|gh‘Ref]cd
5
2
— 5H. " H "I H NV Ho RO gy + 2HON H 9"V H g V9 Hop R o (4.21)
— HYH, "V Hy, MV H Ry + 11HY H, "V H MV Hypp RO,
— 2H " H .V Hyp VO H " R — 2B H 9"y V) H g R o
— 6H®H VI H 1),V Hy M RET ) — 6 Hy ™ H 9"V H o, VEH 1 RETT
— H Hyoge V' Hoeq V' Hyp R — 8H ™ H gV H 01,V Hpy M R

11
L HO 9"V ooV Hygn R g — —- H™ He "V Hop M9 Hygr, R g

5
H® HI" VI H, FIVHy 0 Ry, + EH“kakghV[CHde sVeH R,

YHere (VH) .4 = VI*HY 4.
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while those containing no such contractions are

5
Ly =5 Ho" IV Hygo VP He g R gy, + 6H® H VY Heoge Vo R g,

+ 2H™ H% VU Hyyp, VI H o, R™ , — 3H ™ H ;Y Hyop, V9 Hyo R,

2
— 11H™ H%* VU Hy.VIH R, — gHabclaldef VI H o VI Hypo, R™

5
— 6H™ H®IV )y VIH 1, R, — iHabcHde VI Hyqo VT Hyp RMM9,,

11
+ ﬁlﬁf%cHdef VU H ey VEH 1 RM19, + 16 H® . H V1 H g,V Hyoy RS9,

+ AH " HT P H o, Vo H g R, + AH H oIV Hyo VOH o R, (4.22)
— H%H* VU Hy ) V9 H g, R ) — 3HY HY (VU H 0 VI H 0, RM
— 8H,"H*I N H, 1,V Hygp, "™ g — 6H, " H V1 Hyg VT Ho g R,

11
— 5 Ha" HIV Hyo V* Hoqe R, — 12Ho HT V1 Hy g V* Hye R
+ 3H, " H pV 1" Hyypo V7 Hyge REM9), — 8H oy H pV1* Hy o VP H oy RTF9

+ 32H H ;Y H g VP Hopp RFFIM — gHabcHde sV H 4.V Hypy RTFIS

+ gHabcHde VI Hy g VP H, gy RTFII 4 1—12HabcHdef V1 Hy g VP H g, RIS
Here we have written the answer as far as possible in terms of terms with an anti-symmetrization
of four indices which allows them to be integrated by parts to put the reduced terms in the form
FVFHVHR. We find only two terms left over which cannot be cast in this form, namely the
first two terms in (1.11). This result is highly non-unique due to the many ways one can integrate
by parts and use Bianchi identities to rewrite it. Our strategy was to simplify the expressions
for L1 as much as possible first, before simplifying Lo, but the above expressions are probably
not the best way to write these terms. Note that, ignoring factors of 2, the coefficients of the
terms above involve only the prime factors 3, 5 or 11. This seems to suggest some substructure
to these terms, but it is hard to say more without having a more systematic way to organize the
terms.

We could now go on and consider terms of order H? in the reduced action. However, since
we have already fixed all the possible terms in the D-dimensional action that are relevant for us
these terms would have to cancel automatically. It would be nice to verify this as a consistency
check, but we have not done so since the calculations are quite long, we have only checked that
all terms in the reduced action which need to cancel can again be put in the form FVFHYVH?.

5 Conclusions

We have seen how to complete the R*-terms in the tree-level string effective action by requiring
that the effective action reduced to D — d dimensions should have O(d, d) symmetry. In fact, we
showed that it is enough to require that all terms with an index contraction not compatible with
O(d,d), or rather an internal double Lorentz symmetry O(d) x O(d), cancel out. We carried this
out to fifth order in fields ignoring dilaton terms. It is in principle straightforward to extend this
to compute all the couplings, though it requires some work. However, given the complicated
structure of the H?VH?R terms, it would be important to first understand how to organize
these terms. That the result is unique follows from [11] and our result can be used as a guide
to organizing the full (NS sector) completion of R* found there in a better way.
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It is clear from our calculations that O(d,d) symmetry appears due to very non-trivial
cancellations in the reduced theory. Another important question is if it is possible to make the
O(d,d) symmetry more manifest already in D dimension, probably at the expense of making
Lorentz invariance less manifest.
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A Proof of (1.8)

For completeness we give here a direct proof of the equality of the two expressions in (1.8). We
make the proof slightly more general by considering an arbitrary power of R().

A.1 Vanishing of terms linear in the spin connection

Let us first consider terms with one spin connection and show that they vanish up to total
derivatives and higher order terms. They are

_ n!walagagH[ R(*)a4a5a4a5 - R(*)an—lanan_lan] =+ (H — —H) s (Al)

ajazas
which consists of a sum of terms with an even number of H’s of the form

Ra8+2ka9+2k

. Ran—lan

aijaasz a4 fras ... \J%6+2k [JO7+2k
w H[alagagv H asas \% H an—1an] *

(A.2)

A6+2kA7+2k a8+2kA9+2k

This term can be rewritten as follows

1
s :(: na5bwala2a3 H[alazas Ve Hba4a5 (VH e VH)%MGWF% a6 a74+2k (R e R)a8+2kman

+ 77a5bwala2a3Hb[a1a2va4Ha3a4a5 (VH e VH)GGMW-F%
4k

+ gnasbwalﬂmas H[alagag Va4Ha4a5a5 V%Ha7|b|a7 (VH - VH)“8“'0L7+2k ageam sk (R - R)“8+2k“'“n

+71—5—41{
3

agq ok +an]

(R--- R)s+2kan

a6 a742k agyok - an]

ag 4ok +an)

asb, .ajasas a4 a6 -a742k ag 2k a
now H[alagagv Han—1a4a5 (VH U VH) a6 a742k (R e R) " agyok-+|blan] -

(A.3)
The first term is zero by the anti-symmetry in a5 and b and the last vanishes by the Bianchi
identity for the last Riemann tensor. Integrating the second term by parts and dropping the
total derivative and terms of higher order in fields it becomes minus the term we started with.
This term is therefore given by 1/2 times the third term, i.e.
2k

— 119243 a4 asaear ... ag-+a742k
w H[alazagv Ha4a5a5 VawH (VH VH)

R---R ag42k"an
; (R---R)

a8+2k"'an] :

(A.4)
This vanishes if £ = 0. If k£ > 0 we can apply the same trick as above to lower the ag index and
following the same steps we find that the result vanishes unless k£ > 1. Clearly, continuing in
this way we find that the result must vanish to all orders in H. This completes the proof that
the terms linear in the spin connection vanish modulo total derivatives and higher order terms,
which are not relevant for our discussions here.

ag--ar42k

A.2 Remaining terms

Looking now at the terms quadratic in the spin connection, the first step is to note that

bi-bn, (+ (=) -
€ayan€ n el )“1“2“3wb1b2b3R( )a4a5b4b5"

= — n!w(+)a1a2a3w[((;lzmaBR(’)“‘l%aws ... R(5)an—1an

. R(_)anflan by 1bn

an—lan]

= - (’I’L + 1)!nbalw[(:)QQQSW((z:cZgagR(_)M%a4a5 e R(_)anilananflan]

bar  (+)azas, () 49
- n'n alw[al ’ Sw‘b\a2a3R(_)a4a5a4a5 o R(_)anilanan—lan}
- 2n!nba1w[(;r1)a2a3wc(;33|blR(f)a4a5a4a5 .. R(*)an—mnan_lan}

+ (TL - 3)n!77ba1w[a1 (+)a2a3wc(1;a)3a4R(7)a4a5 [blas © " ° R(i)an_lanan_lan] .
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The first term vanishes by the anti-symmetry in a; and b. Using the Bianchi identity R(7)abdd ~
éadH abe wwhere we neglected terms with more fields, and integrating by parts the last term
becomes
n—3 ()
nlw

1203 p(—)asas R(H)an—1an

[a1a2a3 agas " an_1an} ) (AG)

where we dropped total derivative terms and terms of higher order in fields. Using this we have

by--+b (H)araz (—)a +arazas, (—) —)aga —Yan—1a
Eay-an€ " <wb1 w( ) 3b2b3 _w( Jara2 walbgbg R( Jas 5b4bs"'R( Jan-1 "bn_1bn

Agmw&mmwe>%(ReLnRe0“”%m %r_”—3 (-)

B IR
aza3 n'w[alazagH e (R( ). R( )) ag-+an ]
(A7)
and we may further rewrite the first term as
— 2l H <R(*) s R(*)>a4man asan]
+Mn—nw<mﬁ‘(><R<>~R“Umwdwwn
_ 2(’1’L _ 3)(n _ 1)!w((l‘lf')[almwc(;rgazxR(_)\b\asmlas <R(_) Ce. R(_)>a6---an —
~ — 2n!w[(;)alaQHa as as (R(*) . R(*))Mman as _an} (A 8)
(+H)azb (+) a Sy '
+4(n — 1)!(,u[a1 aslb] <R( )... R( )> ag--an]
ala a a _ 3\ @6 ran
—2(n = 8)(n — Dl 20y, [wl) “wle] (RO ROYVT L)
~ — inw[(Jr)alaQHaQaSa:a (R(*) - R(*))M“-an a--an]
_ — DlParb, (D) as (p=) R
(n+ 1)(n = Dl 0 o2 (RO ROV
Adding now the total derivative term
(n+1)(n —1)! VE;‘) < (+)a1a2R( agaq asag .-R(_)an72an71an Ja. 1]>
1 aian
:“+(n_U%ReynRe01 ]
e (A.9)
arb a _ _ 4 Qn
+(n+1)(n—1)! &JHJ%ﬁ<R(L”R(U aaoa]
+ n+ 1n!H[ala2a1w£43r)a2a3 (R(*) ... R(*))Mman a4-an]
cancels the w?-term and we are left with
n+1 _ _y\ @1an ana _ )\ Garan
m_4ﬂ<m).n3(g arovan] + — m%ﬂ23H®% (R<LHR(0 aatn]
n—3 () pgaaas (p- _a4%
-2 MMW@%H423(R<LHR<Q asan] -
(A.10)
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Finally, we use the fact that

w(+)a2a3[—[a2a3“1 <R(7) e R(7)>a4~~an ag--an)

la1
N nT_?)nalbw[(;)aQaSHa4a2a3R(7)a4a5 blas <R(*) e R(*)>a6man a6+ -an)
N %w(ﬂalagagH[alaQaa <R(—) . R(_)>a4~~an o (A.11)
and we get

ntlo <R(—) . R(—))“"'“” farean]
ek SO ( RO R(—))““"'“" asman]
- 3n!w[((;22a3Hala2a3 (R(—) e R(—))M“an ag--an]

=1 (RO ROV

where we used our previous result which says that the terms linear in the spin connection vanish.
Putting this together we have shown that

ala —)a. alaza, — — _)\ d4ran
2o gt (wélﬂ 102,,(2Jas, o wt) — LEmazes () 4 %H]blbgb;:,) (R< ). R )) bty

_ 3\ @1an n—1 aana _ )\ G4aran
~ (= 1) (RO RO U H O (RO ROYVT
(A.13)

and setting n = 9 we recover (1.8).

B Details of cancellation of non-invariant terms
Here we provide some further details of the calculations at order H and H?.

B.1 Order H!

The F?VHR?-terms in (4.16) not involving any ‘traces’ (contracted anti-symmetric pairs of
indices) are rewritten as terms of the right structure, i.e. FVFHR?2, plus terms involving at
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least one trace as follows

s e B NV H 0, Raaasas Rbcaras ~ 8V (F FY ) He Ryq g Ry
+ 2V (P F ) Ho Ryqgn Rye™™ — AFSP F4 Ve H" Ry Roggr,
— AR VI H Ry g Raegn + AFSLFYIIIH Ryt Rgagn
+ 8FS PO H Ry P9V Ryegr,

(B.1)

and

/ 5' ’
4 ast/nglaQ vbflcagaul RCda5a6 Rdaa7a8 ~ 5Fa’abFeafv[bH‘Che'ngcdea} gh

+AFPFYIN H" R g R gn — AFSFCIN HO Ry p o R% g
+AFP FY N Hogh R faca Ry™ " + 2FS FOINIy Hogy Ry g RE"

— AR FYIN  Hpoo Ry R + AR FY N Hpe f Rag® Rpa®"

— 2R PV N H oo R Ry, — 2F % FY Ny H oy R s R "

— 2FP PV Ny Heogh RO Ry + AF% FY Ny Hope Ry gy R

+2- 31 Py Py VP HM Ry RY ), + 2 - 31y FE VA H R 4RI,
— 31 Fyp F VI HM R (R — 2F oy F& VT H R 3 RY, .

(B.2)

The last five terms are proportional to the equations of motion, modulo terms we are ignoring,
and can be dropped. Continuing in this way one eventually finds that the tg-terms can be
written as in (4.17) with Y given by
Ya/abdef _ SVCFa/thahgeRbgfc _ 16cha/thahgeRbfcg _ SVCFa’thaethbfcg
_ 16cha/thaethbgfc + 8vaFa/thbcgeRhcgf _ 4Vcha];Ragcdehef
_ 4cha’thecthabfg + 4cha’thahgcRbgef _ 4cha’deRagthbghf
_ 4vaFa/cdeeghRfcgh + 4vaFga];RdgbcRefhc 4+ QVCFa/efRanthdgh (B3)
_ QVCFa’ngchefRabgh _ QVaFa/ebecghRdcgh + VCF;};RabdeRghcf
o QVaFga];RghcdRcbef + cha/efRabgthdgh _ 2VaFa’chbcghRefgh
+ VCF;];RabcdRefgh

Yabdef

and similarly for Y, with the primed index lowered.
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B.2 Order H?

We use the following basis for the H>V H?R terms involving a contraction of H with H or VH
with VH (contractions with the index on the derivative do not count)

fi = MH oy Hegh VI Hyoe )V Hia R g fos = AV H gy H gy V1 Hop VE Hpg R
fo = A HyepHogh VI Haat V Hyap R g fog = 41 Hopa Hygh VI Hope VO Hy g, R o
f3 = A Hyy Hegr VI Hae NV Hap R g for = 41 Hiy gy Hyogn V1 Hopo V Hopp R g
fa = AHyy Hogr VI Hoea Vi Hoe R g fog = AVHo p Hypo VI Hypo VO Hipgo R g
f5 = WHyeqHygn VI Hape VI Hap R g fog = AVHgo  Hygo V1 Hy oy Vo R g1
fo = MHyoeq Hygr VI HyegV O Hapy R g fag = A Hogpe H oo VI Hye VO o R g1
fr = A Haep Hygn VY Hyah VO Hane R gy f31 = A1 H) 0y Hyogo VI Hae V9 o R
fs = WHoea Hygn V' Heat Vi Hoe R g fag = A Hioq Hyog V1 oo fV Hoapn R g
fo=ANHoeqHygn V' Hyoe VI Hop s R g fag = AVHyeq Hye p VI Hy oy Vo R g
fro = A Haep Hyp VI Hopp VO Hape R g fag = A1 HyoqHyg p VI Hopoe VO Hop, R g
fi1 = A Hun Hyn N Hye VO Hape R g fas = Al Hyq g 1V Hope VO Hop RS g
fro = AH oy VI Hani VI Hp R g fag = A Hyeq Hog £ V1 Hope VHypn R g1
Sz = M He py Hign VI Haap VEHap R g far = A HyegHage VI Hyoy V4 Hyp s R
fua = AHpp Hyp VI Hap Vi H o R g fag = A1 H gy Hy 1 VI Hyoog Ve Hpp RS g1
fis = A He g HyogaV Hyat VO Hray R g a9 = A1 Hyoy Hoge VI Hy o VA R,
fi6 = M Haay Hpp VI Hye fV Higo R g fag = M Heop Hyea VI H py VEHpio R
fi1 = M Hyap HygaV Hpe ;N Hpop R oy fur = AV H oy H e V' Hop VEH g, . R o,
fis = M Hpay Hyp VI Hpe VI Hgpo R oy fuo = AV H e Hyge V1€ Hy i VEH g, RS
f19 = M Hyap Hygn V' Hpe f VI Hapa R oy fus = A Hyap Hiogh V' Hyo ;N Hye f R
foo = M Hpap Hyao VHpe f VU Hpan R oy fag = A Hyap H o V1 Hope VEH, 11, R
for = M Haap Hye VY Hap VO Honk R ey fus = 41 Hyoy Hyep VI Hyo VO Hie y R o
foo = A Hpap Hye yVE Hypp VEH i, R oy fi6 = A Hyop Hyop V1 Hyo f VEHp o RI
fos = A Hap Hon gV Hape VI Hiah R g a7 = ALH  H o V1€ Hyg, VEH RO
foa = A H oy Hop p V Hyep VEHyap R°Y

(B.4)

4The index placement here is chosen purely for readability.
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and those without such contractions

91 = M H oy Hae V1 Hyo ;VF Hogp R,
9o = M Hope Ho V1" Hye y VF Hye, R
93 = M Hope Haey VI Hoo p VF Hye R
91 = M Hop Hae V' Hygy VI Ho . R,
g5 = M Hope Hae ; V1 Hyog V9 Hpp R,
96 = M Hope Haep VI He V9 Hyer R™ o
97 = A Hope Hye VU Ho 1, VI Hogy R™ o,
gs = M Hope Hae y VI Hye VI H 1, R
99 = M Hope Haep VI Hye V9 Hopp R o
910 = M Hope Hae VP Hee V9 Hop R™ o
911 = M Hope Hyo V' HyogVF Hyp R,
gi2 = 4!HabcHdefv[bHcefvnghthk]ag
913 = A Hope Hae p VO Hye p VE H g R,
g1a = M Hopo Hae VP Hop VO He g R o
915 = M Hope Hae VP Hapg Vo He g R o
916 = M Hope Hyo VO Hyp VEH g R o,
917 = A Hope Hae p V' Hyp, V7 Hoqy R,
918 = M Hopo Hae p VY Hapt, V7 Hyeg R o
919 = M Hope Hae VP He p Ve Hagr R o
920 = M Hopo Hae VP He gy V4 Hegp R
go1 = M Hopo Hyo VO Hogy, Ve Hy g, R o,
922 = A Hope Hae p V' Hygp V/ Ho g R .,

Adding a linear combination of these

)

923 = M Hope H e V' Hyer, Ve Hy g, R o
gos = M Hopo Hyo VI H, 1tV H g R
o5 = A Hape Hae VI H, 1, V9 Hygr, R"™
926 = N Hope Hae V' Heqy VO H pon R™ o
927 = N Hope Hae VO He . VIH g, R™ g
gos = M Hope H e VO Hoo, V9 H g, R g
929 = A Hope Hae p VI H ooV H o REM
930 = N Hope Hae p V' Hye y VE Hagr R g
931 = M HopeHae p VY Hye VO Hogr, R g
932 = M HopeHae p V1 Hyea VP Hye R g1
933 = 4!HabcHdefv[aerfvagcdeh]gh
931 = A Hope Hae p V' Hyp VEH o REM ),
935 = M HopeHae p V1 Hype V Hyep R g1
936 = N Hope Hae V' Hye VP Hype R g
937 = A Hope Hge V' Hyo VP Hepe R
g38 = 4!HabcHdefv[achevafhdek}gh
939 = M Hope Hae V' Hye VP H oy R
910 = M Hope Hae V1 Hee VP Hop R™ g
911 = A Hope Hae p V1 Hyo VP Hygr, R,
Ga2 = 4!HabcHdefv[achevafghde}gh
943 = A Hope Hae p V' Hyo VO Heogn R,

(B.5)

> afit Zdigz‘, (B.6)

to the D-dimensional Lagrangian one finds after a long calculation that all the terms violating
the internal double Lorentz symmetry cancel if we take the following non-zero coefficients

15 5 15
c1 = c3 = — ce =
1 45 3 85 6 2’
c15 = —3, cig = —3, co5 = —9,
9 51
C43 = ——, 044:§, C45 = — 3,

11 = -3,

§
2 b
) C40 = _125 (B7)

C12 = —5, Cl4 =

2
3
626:_95 5

15

cr = ——
2

€39 =
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and

15 9 33
= — = f— —_ — —_ — _1
dv=-—, d=9, di=3, de=5, ds=-, d ;
15 11
dio = -9, di2 1 di3 6 dig ; dig = —6, doz = —0,
3 33
dy=5, dp=5, dr=-12, du=-9, dp=-,, dp=-18,
9 15
dgg =5, dgr=-12,  dgs =48, dp=-7, don=g, dp=-
(B.8)
and add the two terms in (1.11) without the anti-symmetization in the indices. Here we have

tried to pick a minimal solution by first setting as many of the ¢;’s as possible to zero, though

there may exist a better choice of solution. The solution then takes the form of (1.11).
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