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Abstract – The non-zero minimal length arises in various theories of gravity, leading to the so-
called generalized uncertainty principle (GUP). In this short paper we analyze the GUP effects on
neutron interferometry, showing that the obtained phase shifts depend on the mass and velocity
of the particle. New upper bounds on the dimensionless GUP parameter have been found that
are in agreement with the literature.

Introduction. – According to Heisenberg uncer-
tainty principle (HUP), the minimum uncertainty on po-
sition can theoretically take the zero value which corre-
sponds to a state with maximum (infinite) uncertainty on
its momentum. This result is arguable when gravity is
taken into account, even when we only consider its clas-
sical features [1]. Moreover, various quantum gravity sce-
narios suggest generalized versions of the HUP, leading to
the so-called generalized uncertainty principle (GUP):

∆X∆P ≥ ~

2
[1 + β(∆P )2 + · · · ], (1)

where β denotes the GUP parameter [2, 3]. The above
expression imposes a non-zero lower bound on the min-
imum value of ∆X which is of order of Planck length;
this is also supported by gedanken experiments [4]. Such
generalization has various implications for a wide range of
physical systems [5]. Theoretically, the GUP parameter is
usually assumed to be of the order of unity [6]; however,
this choice renders quantum gravity effects too small to
be measurable. On the other hand, if one does not impose
the above condition a priori, current experiments predict
large upper bounds on it, which are compatible with cur-
rent observations and may signal the existence of a new
length scale [7].
It is now several decades since the groundbreaking work

written by Werner and his co-workers showed that gravi-
tational [8, 9] and rotational [10] effects were to be found
in neutron interference experiments performed on the
Earth’s surface [11,12]. The predicted and experimentally
confirmed gravitational phase shift is the only expression
in physics to feature both Newton’s constant of gravitation
G and Planck’s quantum of action ~, which surely makes
these experiments particularly noteworthy. The two ex-
periments are referred to hereafter as the COW experi-
ment and the neutron Sagnac effect. It is worth mention-
ing that the Sagnac effect has been deeply studied due to
its importance in understanding fundamental physics (see
for instance [13, 14]).
In the present work it will be shown how the non-zero

minimal length affects the phase shifts obtained in differ-
ent regimes; in particular, we will see that such corrections
will depend on the mass and velocity of the particle. Then,
starting from these corrections, upper bounds on the di-
mensionless parameter β will be found.
The paper is organized as follows. In Section II we

briefly recall some important facts about the GUP and
the possibility to study its effects on physical systems.
Then, in Section III, we study the GUP-deformed COW
effect. In Section IV we investigate the modification in-
duced by the GUP on the neutron Sagnac phase shift,
both in non-relativistic and in special relativistic regimes.
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Furthermore, a general relativistic application involving
the Kerr metric is considered and analyzed. Finally, in
the last section, the GUP dimensionless parameter will be
constrained, concluding the paper with some remarks.

Deformed algebra. – The investigations in string
theory and quantum gravity (see, e.g., [15]) lead to the
GUP:

∆X ≥ ~

2

(

1

∆P
+ β∆P

)

, (2)

from which follows the existence of the fundamental min-
imal length ∆Xmin = ~

√
β, which is order of Planck’s

length lp =
√

~G/c3. It was established that a minimal
length can be obtained in the frame of small quadratic
deformation of the Heisenberg algebra [2]

[X,P ] = i~(1 + βP 2). (3)

If we now consider the classical limit (i.e., ~ → 0), the
quantum-mechanical commutator for operators is replaced
by the Poisson bracket for corresponding classical vari-
ables, that is

1

~
[X,P ] → {X,P} , (4)

which in the deformed case (3) reads

{X,P} = (1 + βP 2). (5)

Looking at Eq. (5), we see that Poisson brackets deform in
a way similar to the quantum GUP commutator and it is
clearly a violation of the equivalence principle (EP). That
is, the equation of motion of a test particle in a gravita-
tional field depends on the mass of the test particle itself
(and on its speed) [16]. It should be mentioned here that
an interesting discussion about the GUP modified Poisson
equation can be found in Ref. [17]. This issue, namely if
the GUP modifications on Sagnac effect can be disentan-
gled from a (possible) violation of the EP is beyond the
goals of this paper.
The observation that the GUP can be obtained from

the deformed Heisenberg algebra opens the possibility to
study the influence of minimal length on properties of
physical systems, both on the quantum level as well as
on the classical one. In order to study the GUP effects on
the physical systems considered here, let us introduce the
following deformed algebra:

[Xi, Pi] = i~
√

1 + βP 2 (δij + βPiPj) , (6)

[Xi, Xj ] = [Pi, Pj ] = 0, (7)

which can be obtained using the representation

X = x,

P =
p

√

1− βp2
,

(8)

where x = (x1, x2, x3) and p = (p1, p2, p3) represent the
coordinates and momentum in non-deformed space with
canonical commutation relations

[xi, pi] = ~δij , [xi, xj ] = [pi, pj] = 0.

This specific representation is also considered in [3, 18].

GUP-deformed COW effect. – The milestone ex-
periments of Colella, Overhauser, and Werner, commonly
referred to as the COW experiments, provided the first
link between general relativity and quantum mechanics.
Indeed, the authors treated the gravitational field us-
ing Newtonian mechanics, but the formula for the phase
shift contains both Newton’s gravitational constant G and
Planck’s constant ~. The experimental setting is accu-
rately described in Ref. [8]; it is based on the splitting of
the neutron beam by Bragg diffraction from perfect crys-
tals, as first implemented for X rays by Bonse and Hart
(see [19] for further details). The interference involved is
“topologically equivalent to a ring”, which we represent as
a rectangle, of macroscopic dimensions (cm). The parti-
cles enter at the bottom left corner where the beam splits
into two, such that they can travel at different heights in
the gravitational field of the Earth, with different veloci-
ties. Then the beams recombine at the top right corner,
where the interference takes place. Let us briefly describe
a simple derivation of the COW effect. The spatial part of
a plane matter wave (a neutron beam in this case) is given
by eik·r, where k is the wave vector, k ≡ |k| = 2π/λ is the
wave number, with λ = ~/p (p is the particle’s momen-
tum). We can now easily compute the phase accumulated
by the neutrons over a particular path:

φ(r) =
1

~

∫ r

r0

p · dr. (9)

The phase difference is then

∆φ =
1

~

∫ r

r0

(p1 − p2) · dr, (10)

where the subscript “1” refers to the lower route and “2”
to the upper one. The only non-vanishing contributions
to the phase shift are the ones coming from the horizontal
parts of the routes; writing p1 = mv and p2 = mv′, where
v and v′ are the particle speeds, we get

∆φ =
1

~
m(v − v′)L, (11)

where L is the length of the interferometer. The principle
of energy conservation gives

1

2
mv′2 =

1

2
mv2 −mgH, (12)

where, as usual, g denotes the gravitational acceleration
and H the height of the interferometer. Since the product
gH is much smaller than v2 (in the COW experiment they
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considered thermal neutrons) we have that v1−v2 ≈ gH/v,
and so we arrive at the final result:

∆φ =
mgA

~v
, (13)

where A is the area of the interferometer.
It is worth mentioning that the above results can also

be obtained starting from the following Lagrangian:

L =
p2

2m
+mg · r, (14)

with p = mṙ = ∂L
∂ṙ

.
In order to analyze the influence of minimal length on

the COW effect, it is commonly supposed that the de-
formed Hamiltonian has the form of the non-deformed
Hamiltonian where instead of canonical variables of non-
deformed phase space are written variables of deformed
phase space. Then, by using the P (p)-relation in (8), we
get

HGUP
COW =

P 2

2m
+ U(r)

=
p2

2m(1− βp2)
+ U(r)

=
p2

2m
+ β

p4

2m
+ U(r) +O

(

β2
)

≃ HCOW + β
p4

2m
. (15)

The COW phase is then given by

∆φGUP
COW =

1

~

∮

p · dr = mgA

~v
(1− 6βm2v2). (16)

In the limit β → 0, we immediately obtain the standard
result. Therefore, the deviation induced by the GUP on
the COW effect is

∣

∣

∣

∣

∆ΦGUP
COW −∆ΦCOW

∆ΦCOW

∣

∣

∣

∣

= 6βm2v2, (17)

where ∆ΦCOW = mgA
~v

denotes the standard phase shift.

GUP-deformed neutron Sagnac effect. – In 1975,
in a beautiful paper, Page observed that the rotation of the
Earth could induce corrections to the phase shift elicited
by the Earth’s Newtonian potential; these corrections are
of the same order as the COW term derived in the previous
section [20]. This phenomenon is commonly regarded as
the counterpart of the Sagnac effect for matter waves. The
actual experiment was then performed in 1979 by Werner,
Staudenmann and Colella [10]. Starting from these consid-
erations, the Hamiltonian governing the neutron’s motion
will involve a third term in addition to the kinetic energy
and the gravitational potential energy [21]. Moreover, the
momentum becomes

p = mṙ+mω × r, (18)

and the phase coming from the term in ω is

∆α =
1

~

∮

m[ω × r] · dr =
2mω ·A

~
. (19)

Let us now write down the Hamiltonian explicitly,

HS =
p2

2m
+mg · r− ω · L, (20)

where the subscript “S” stands for “Sagnac”, p is the
momentum of the neutron, L = r × p is the angular mo-
mentum of the neutron’s motion about the center of Earth
(r = 0), and m its mass; Eq. (20) can also be written as

HS =
p2

2m
+mg · r− p · (ω × r). (21)

By substituting canonical variables with variables of de-
formed space we have

HGUP
S =

P 2

2m
+mg · r−P · (ω × r)

=
1

2m

p2

1− βp2
+mg · r− p · (ω × r)

√

1− βp2
. (22)

We now consider the linear approximation over the param-
eter of deformation β; in this approximation the Hamilto-
nian reads

HGUP
S =

p2

2m
+

β

2m
p4 +mg · r

− p · (ω × r)

(

1 +
1

2
βp2

)

+O
(

β2
)

. (23)

By recalling that ṙ = ∂H
∂p

, we obtain

∂HGUP
S

∂p
=

p

m
+

2β

m
p3 − (ω × r)

− 3

2
βp2(ω × r) +O

(

β2
)

= v. (24)

In first order over β we get

p = mv +m(ω × r)− 2βm3v3 +
3

2
βm3v2(ω × r). (25)

The phase shift coming from the terms in ω is

∆αGUP
S =

1

~

∮

p · dr =
2mω ·A

~

(

1 +
3

2
βm2v2

)

= ∆αS

(

1 +
3

2
βm2v2

)

. (26)

Thus, we have found a modification induced by the GUP
on the neutron Sagnac effect; again, by considering the
limit β → 0, we immediately obtain the phase shift in
non-deformed space. Therefore, a non-relativistic neutron
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motion can generate an extra phase when GUP corrections
are taken into account:

∣

∣

∣

∣

∆αGUP
S −∆αS

∆αS

∣

∣

∣

∣

=
3

2
βm2v2. (27)

Let us now generalize the above discussion to the special
relativistic case. In order to do that, let us consider the
relativistic expression for kinetic energy and momentum,
namely [22]

K = γmc2 −mc2 (28)

and
p = γmv, (29)

where γ denotes the Lorentz factor. By expanding the
expression for the kinetic energy in powers of the small
number (p/mc), we get

K =
√

p2c2 +m2c4 −mc2

=
p2

2m
− p4

8m3c2
+O

(

1/c4
)

. (30)

Thus, the corresponding Hamiltonian for a particle in the
relativistic limit can be written as

HR,S =
p2

2m
− p4

8m3c2
+mg · r

− γp · (ω × r) +O
(

1/c4
)

, (31)

where “R,S” stands for “Relativistic, Sagnac” (we are con-
sidering relativistic effects up to first post-Minkowskian
order).
Again, by substituting canonical variables with vari-

ables of deformed space and by using the P (p) relation, we
can write the system Hamiltonian as a function of canon-
ical coordinates p and r:

HGUP
R,S =

1

2m

p2

1− βp2
− 1

8m3c2
p4

(1− βp2)2

+mg · r− γ
p

√

1− βp2
· (ω × r), (32)

where we omitted O
(

1/c4
)

for the sake of simplicity. In
first order of β, we obtain

HGUP
R,S =

p2

2m
+

β

2m
p4 − p4

8m3c2
(

1 + 2βp2
)

+mg · r

− γp · (ω × r)

(

1 +
1

2
βp2

)

, (33)

where we also omitted O
(

β2
)

. By considering terms up
to p4, and computing the derivative of the GUP-corrected
Hamiltonian with respect to p, we get

∂HGUP
R,S

∂p
=

p

m
+

2

m
p3

(

β − 1

4m2c2

)

− γ(ω × r)− 3

2
γβp2(ω × r)

= v, (34)

obtaining, in first order of β,

p = mv − 2γ3m3v3

(

β − 1

4m2c2

)

+mγ(ω × r) +
3

2
βγ3m3v2(ω × r). (35)

Then, the phase shift coming from the terms in ω reads

∆αGUP
R,S =

1

~

∮

p · dr

= γ∆αS

(

1 +
3

2
βm2v2 +

3

2
β
m2v4

c2

)

. (36)

In the semiclassical limit, namely for c → ∞ (or, equiv-
alently, for γ → 1), Eq. (36) reduces to Eq. (26), as
expected. Therefore, the discrepancy in the relativistic
case is given by

∣

∣

∣

∣

∣

∆αGUP
R,S − γ∆αS

γ∆αS

∣

∣

∣

∣

∣

=
3

2
βm2v2

(

1 +
v2

c2

)

. (37)

Some comments are in order here. The GUP and the
related minimum length are normally considered in non-
relativistic quantum mechanics. Extending it to relativis-
tic theories is important for having a Lorentz invariant
minimum length. Indeed, in Ref. [23], a covariant gener-
alization of the standard GUP is formulated. By starting
from the GUP proposed in the above mentioned paper, one
can follow our approach to find the modified Sagnac phase.
We have found that the order of β would not change sig-
nificantly. However, a possible violation of Lorentz invari-
ance is still object of debate.

General relativistic corrections. We now assume that
the external gravitational field of Earth is described by
the Kerr metric. The weak field approximation up to the
first post-Newtonian order, i.e., up to O(1/c2), gives [24]

ds2 ≃
(

c2 + 2φ+
2φ2

c2
+

φb2

c2r4
(x′2 + y′2)

)

dt2

− φ

c2
4b

r2
(x′dy′ − y′dx′)dt

−
(

1− 2φ

c2

)

(dx′2 + dy′2 + dz′2), (38)

where φ is the Newtonian gravitational potential of the
Earth, φ = −GM/r with r =

√

x′2 + y′2 + z′2, and b is
its angular momentum per unit mass, b = J/M = 2

5
R2

ω.
In order to express physical quantities observed on the
laboratory coordinate (xyz-frame), we replace (x′, y′, z′)
with (x, y, z) defined by

t′ = t,
x′ = x cos (ωt)− y sin (ωt),
y′ = x sin (ωt) + y cos (ωt),
z′ = z′.

(39)

Following [25], we use the 3+1 formalism for representing
the spacetime, where the four-dimensional metric tensor
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Table 1: Upper bounds on the GUP parameter considering different sources.

Sources v (m/s) Eq. β
(

GeV−2
)

β0

Ultracold Neutron 5 27 ≤ 2.6× 1016 ≤ 2.6× 1054

Cold Neutron 800 27 ≤ 1.04× 1012 ≤ 1.04× 1050

Thermal Neutron 2200 27 ≤ 1.3× 1011 ≤ 1.3× 1049

Fission Neutron 107 37 ≤ 6× 103 ≤ 6× 1044

gµν is split as follows:

g00 = N2 − γijN
iN j,

g0i = −γijN
j,

gij = −γij ,
(40)

where N is the lapse function, N i is the shift vector and
γij is the spatial metric on the t-constant hypersurface.
The slowly rotating and weak gravitational field of Earth
in the observer’s rest frame is expressed by the quantities

N = c
(

1 + φ
c2

+ φ2

2c4

)

,

Nx = −
[

1 + 4φR2

5c2r2

]

ωy,

Ny =
[

1 + 4φR2

5c2r2

]

ωx,

Nz = 0,

γij =
(

1− 2φ
c2

)

δij .

(41)

In order to derive the Hamiltonian of a free neutron mov-
ing in the curved spacetime produced by the gravitational
field of the Earth, we introduce the relativistic Lagrangian
for a particle with mass m [26]:

LGR = −mc
√

gµν ẋµẋν

= −mc
√

N2 − γij(N i + ẋi)(N j + ẋj). (42)

Using the canonical momentum, we obtain the following
classical Hamiltonian for the particle:

HGR ≡ piẋ
i − LGR −mc2

= N
√

m2c2 + γijpipj −N ipi −mc2, (43)

where the rest mass energy is subtracted from the conven-
tional definition of the Hamiltonian for later convenience.
As before, by substituting the canonical variables with
variables of deformed space and by using the P (p) rela-
tion, we can write

HGUP
GR = N

√

m2c2 + γijPiPj −N iPi −mc2, (44)

where the momentum in the non-deformed space is defined
as

Pi =
pi

√

1− βγijpipj
. (45)

By defining p2 ≡ γijp
ipj , the Hamiltonian (44) becomes

(in first order over β)

HGUP
GR = N

√

m2c2 + p2(1 + βp2)

−N ipi

(

1 +
1

2
βp2

)

−mc2, (46)

where we omitted O
(

β2
)

for the sake of simplicity. By
assuming γijp

ipj ≪ m2c2, we get

HGUP
GR =

(

N

c
− 1

)

mc2 +
N

c

p2

2m
(1 + βp2)

−N ipi

(

1 +
1

2
βp2

)

+O
(

1/c2
)

. (47)

The above Hamiltonian can be rewritten in the following
way. First, let us notice that the quantity N ipi can be
written as

N ipi =

[

1 +
4φR2

5c2r2

]

ω · L, (48)

where L = r × p with r = (x, y, z) and p = (px, py, pz).
The first term on the right-hand side of Eq. (47) can be
written as

(

N

c
− 1

)

mc2 = mφ+
m

2c2
φ2. (49)

Finally,

N

c

p2

2m
(1 + βp2) =

p2

2m
+ β

p4

2m

+
φ

c2
p2

2m
(1 + βp2) +O

(

1/c4
)

. (50)

Therefore, the Hamiltonian becomes

HGUP
GR,S =

p2

2m
+ β

p4

2m
+mφ− ω · L

(

1 +
β

2
p2
)

+
φ

c2
p2

2m

(

1 + βp2
)

+
mφ2

2c2

− 4φR2

5c2r2

(

1 +
β

2
p2
)

ω · L. (51)

By defining

γG ≡ 4φR2

5c2r2
, (52)
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the derivative with respect to p of the modified GR Hamil-
tonian can be written as

∂HGUP
GR,S

∂p
=

p

m

(

1 +
φ

c2

)

+
2βp3

m

(

1 +
φ

c2

)

− (ω × r)(1 +
3

2
βp2)(1 + γG)

= v, (53)

leading to

p = mv

(

1− φ

c2

)

− 2βm3v3

+m(ω × r)

(

1 +
3

2
βm2v2

)

(54)

× (1 + γG)

(

1− φ

c2

)

. (55)

Now we can compute the phase shift, obtaining

∆αGUP
GR,S = ∆αS

[(

1 +
3

2
βm2v2

)

×
(

1− φ

c2

)

(1 + γG)

]

. (56)

If c → ∞ (Galilean limit), Eq. (56) approaches Eq. (26),
as expected.

∣

∣

∣

∣

∣

∆αGUP
GR,S −∆αS

∆αS

∣

∣

∣

∣

∣

= − φ

c2
+

3

2
βm2v2

(

1− φ

c2

)

+ γG

(

1 +
3

2
βm2v2

)

, (57)

up to second order in φ.

Bounds on β and conclusion remarks. – To the
best of our knowledge, the estimated error on the mea-
surements of the phase shift in the COW experiment is
of the order of 1%, confirmed by Michelson–Morley and
Michelson–Gale experiments [27]; as the minimal length
is not detectable in the current experimental setups, the
GUP distributions should be smaller than the accuracy of
Sagnac interferometers. This means that the deviations
that we have obtained in the different regimes should sat-
isfy the following condition:

∣

∣

∣

∣

∆αGUP
S −∆α

∆α

∣

∣

∣

∣

≤ 10−2. (58)

For example, let us consider a neutron (m ≈ 10−27 kg)
having speed v ≈ 103m/s, which experiences a modi-
fied COW phase due to the presence of GUP corrections.
By using Eq. (17), we obtain 6βm2v2 ≤ 10−2, and so
β ≤ 6.6 × 1011 GeV−2. Defining the dimensionless GUP
parameter as β0 = βMpc

2, we get β0 ≤ 6.6 × 1049; this
result is in agreement with previous bounds. Let us now
focus on the neutron Sagnac experiment; in this case, an

error of about 30% is considered [28]. Since the phase
shifts we have found depend on the mass and velocity of
the particle, we collect the upper bounds on β in table 1
for different sources (see [29]). All the bounds we have
found are in agreement with previous ones (see for exam-
ple Refs. [30–32]). It should be mentioned that, in order
to find the constraints, we assumed γ ≃ 1.005, and the
factors 1± φ

c2
, R

r
approximately equal to 1.

In summary, among the numerous quantum gravity ef-
fects, one which is of particular importance is the so-called
GUP. It is well known that HUP lies at the heart of quan-
tum mechanics; according to this principle, upon the loss
of information on the momentum, the length can be ar-
bitrarily precisely measured. On the other hand, various
quantum gravity models predict the existence of a mini-
mum measurable length. So, to be consistent with the still
unknown theory of quantum gravity, the HUP should be
consistently modified. Its effects on a wide range of physi-
cal systems have been recently investigated. Moreover, in
recent years, rapid technological progress in matter wave
interference experiments has been made, which provides
us with a new tool with which to study the GUP. We have
argued that there are some extra distributions induced by
the GUP effects on the neutron Sagnac effect which de-
pend on the particle velocity and its mass. Finally, we
have used such results to constrain the dimensionless pa-
rameter β.
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