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Abstract

We review the hot QCD transition with varying number of flavors,
from two till the onset of the conformal window. We discuss the
universality class for Nf = 2, along the critical line for two massless
light flavors, and a third flavor whose mass serves as an interpolator
between Nf = 2 and Nf = 3. We identify a possible scaling window for
the 3D O(4) universality class transition, and its crossover to a mean
field behaviour. We follow the transition from Nf = 3 to larger Nf ,
when it remains of first order, with an increasing coupling strength;
we summarize its known properties, including possible cosmological
applications as a model for a strong electroweak transition. The first
order transition, and its accompanying second order endpoint, finally
morphs into the essential singularity at the onset of the conformal
window, following the singular behaviour predicted by the Functional
Renormalization Group.
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1 Phases of QCD and critical behaviour

Strong interactions have different phases in the space of the number of fla-
vors Nf , quark mass, temperature [1, 2]. At low temperatures and low num-
ber of flavors their chiral symmetry is spontaneously broken. The hot sym-
metric phase is known as quark gluon plasma; in the chiral limit the phase
transitions may be of a second order for Nf = 2, probably in the universality
class of the three dimensional O(4) ferromagnet. The addition of a third
flavor to the Nf = 2 theory produces the so-called Nf = 2 + 1 theory, which
interpolates between Nf = 2 and Nf = 3 [3]. The strength of the transi-
tion increases with Nf [4], and it is unclear when it turns into a first order
transition [5–7]. At zero temperature the symmetric phase is conformal: it
is separated from the broken phase by a conformal phase transition[2, 8] -
similar to a Berezinskii–Kosterlitz–Thouless (BKT) transition:the scaling of
the order parameter reveals an essential singularity. It is not clear - to our
knowledge - how the line of first order phase transitions expected at large
Nf would turn into a conformal transition, and indeed other scenarios are
possible, including a power-law scaling [9] and even a first order transition
[10, 11].

The critical line of QCD (Figure 1) separates the hadronic phase from a
hot phase where chiral symmetry is restored - for physical values of the quark
masses, this is the phase explored in heavy ion collisions, much explored also
on the lattice [12, 13]. At zero temperature, in the broken phase, we have
the Goldstone singularity. Above a critical number of flavors the theory is
conformal, with anomalous dimension [2]. The global symmetry of QCD:
U(n)L×U(n)R ∼= SU(n)×SU(n)×U(1)V ×U(1)A valid at classical level is
broken by topological fluctuations, for which the η′ mass gives an experi-
mental evidence. The remaining symmetry is then U(n)L×U(n)R/U(1) ∼=
SU(n)×SU(n)×U(1)V . This prompted the question [14]: Which chiral sym-
metry is restored at high temperature? U(1)A will always be broken, but the
amount of breaking may well be sensitive to the temperature, leading to an
approximate restoration, and a natural question arises on the interrelation of
the SU(N) × SU(N) symmetry with the U(1)A symmetry. Since the chiral
condensate breaks the U(1)A symmetry, the only possibilities are a near-
coincidence of the two transitions, or an axial breaking persisting beyond
chiral restoration.

The axial symmetry is discriminating: if its breaking is not much sensitive
to the chiral restoration, the breaking pattern for Nf = 2 is indeed SU(2)L×
SU(2)R → SU(2)V or O(4) → O(3) [1]. Due to the associate diverging
correlation length, the theory is effectively three dimensional, leading to the
well known 3D O(4) universality class. If instead axial symmetry is correlated
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with chiral symmetry, the relevant breaking pattern is U(2)L×U(2)R →
U(2)V , hinting either at a first or even at a second order transition with
different exponents [15].

Beyond two flavors, the issue of the anomaly becomes more subtle: the
definition of a proper order parameter for axial symmetry is entangled with
different susceptibilities associated with different flavors [16]. Some studies
indicate restoration above Tc [17–31], others find hints of a near-coincidence
of the two transitions [5, 29]. Our recent study [32], which will be reviewed
in detail in Section 4, attempts at quantifying the limit of the scaling window
and finds compatibility with 3D O(4), thus implicitly suggesting a separation
between the two transitions. However, we have also observed a correlation
between the η′ meson mass and the chiral condensate around the transition,
which may also be compatible with their coincidence [33, 34]. Figure 2 and
Figure 3 illustrate two possible scenarios for the critical behaviour and scaling
window between Nf = 2 and Nf = 3. We will discuss them in detail in
Sections 3 and 4.

For Nf = 3, 4 the standard lore is a first order transition, even if some
contrasting evidence has been reported [5]. The strength of the transition
increases with Nf [4, 35–37], and this has been used as a possible paradigm
for the generation of gravitational waves at a strong electroweak transition
in models with composite Higgs [38].

All the phenomena above are intrinsically non-perturbative, and the lat-
tice approach has been extensively used to address them. They are often
discussed from different viewpoints, having in mind different applications.
Here, we would like to present a general overview, attempting at a synthe-
sis. The remaining of this report is organised as follows: in the next Section
we review the theoretical knowledge about the critical line. The following
two Sections contain results for Nf = 2 and Nf = 2 + 1. In these Sections
we rely mostly on our work, and, for the latter case, we include some un-
published analysis. In addition, we use this case to illustrate some recent
proposal for the study of the critical behaviour. Section 5 reviews the effort
towards the identification of the critical endpoint of a first order transition
for Nf = 3, 4. Section 6 is devoted to large Nf and to the approach to the
conformal window. We conclude with a brief summing up.

2 Universal approach to phase transitions

We summarize here a few general aspects of the different critical behaviours
encountered along the critical line, while the numerical evidence for the dif-
ferent possibilities is discussed in the following Sections.

3



T<latexit sha1_base64="WFrLjTrTFc6C2bdpQ73AJAwFL50=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGLkKwFC9pY52LC3d9ndMyEXfoKNhcbY+ovs/DcucIWCL5nk5b2ZzMzzY8G1cd1vJ7exubW9k98t7O0fHB4Vj09aOkoUwyaLRKQ6PtUouMSm4UZgJ1ZIQ19g25/czf32EyrNI9kw0xj7IR1JHnBGjZUey43yoFhyK+4CZJ14GSlBhvqg+NUbRiwJURomqNZdz41NP6XKcCZwVuglGmPKJnSEXUslDVH308WpM3JhlSEJImVLGrJQf0+kNNR6Gvq2M6RmrFe9ufif101McNNPuYwTg5ItFwWJICYi87/JkCtkRkwtoUxxeythY6ooMzadgg3BW315nbSqFe+qUn2olmq3WRx5OINzuAQPrqEG91CHJjAYwTO8wpsjnBfn3flYtuacbOYU/sD5/AFn7I02</latexit>

Nf
<latexit sha1_base64="3DPnMnspixFuXq8v3mx9oU5BIgc=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWBlMBEngQvaWPdiwt3fZnTMhF36DjYXG2PqD7Pw3LnCFgi+Z5OW9mczMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHbROnmvEWi2WsOwE1XArFWyhQ8k6iOY0CyR+D8c3Mf3zi2ohYPeAk4X5Eh0qEglG0Uqt61w+r/XLFrblzkFXi5aQCOZr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+bHTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPIzoZIUuWKLRWEqCcZk9jkZCM0ZyokllGlhbyVsRDVlaPMp2RC85ZdXSbte8y5q9ft6pXGdx1GEEziFc/DgEhpwC01oAQMBz/AKb45yXpx352PRWnDymWP4A+fzB9VLjgk=</latexit>

Conformal 

BKT

Quark Gluon Plasma

Goldstone modes

Hadron gas

1st order 

2nd order

Figure 1: Sketchy view of the phases of strong interactions in the space
spanned by Nf massless flavors, and temperature T .

To make this discussion self-contained, let us summarize a few facts about
phase transitions and critical behaviour, see e.g. Ref. [39] for a complete
discussion. We consider a system undergoing a phase transition between
phases characterised by different symmetries, under the action of an external
parameter (temperature, for instance). Early descriptions of such systems
were made in the framework of the Landau mean-field theory, which is based
on a local, space homogeneous order parameter M . The free energy F is
analytic in M and in the temperature T , and it is truncated to fourth order
in M : F (M,T ) = F (0, T ) + V a(T )M2 + V b(T )M4, with a(T ) = a0τ and
b = b0, and a0, b0 are positive. τ is the reduced temperature τ = (T −Tc)/T .
Under these assumptions, the miniminization of the free energy gives the
well-known power-law behaviour for the order parameter withM(T ) = M0τ

β,
β = 1/2. The Landau theory is readily generalised to include an external field
linearly coupled to the order parameter, F (M,T ) = F (0, T ) + V a(T )M2 +
V b(T )M4 − VMh. The power-law singularity at h = 0, T = Tc is washed
out, while a singular behaviour at Tc is manifest in the scaling of the order
parameter M ∝ hδ, δ = 1/3. Experiments, however, show that the mean
field exponents are not accurate: to address this, a phenomenological scaling
theory has been developed, which still produces a power-law behaviour for
the order parameter, but with different exponents. A pivotal assumption,
theoretically motivated within a Renormalization Group approach, is that the
behaviour of the system is completely controlled by a diverging correlation
length at the critical point. The essence of the behaviour is captured by
the universal Equation of State (EoS), which is characteristic of a given
combination of symmetry breaking pattern and dimensionality:

M/h1/δ = f(t/h1/βδ). (1)
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In the QCD EoS we will identify M ≡ ψ̄ψ, h ≡ mq, t ≡ T − Tc, mq is the
quark mass, and Tc is the critical temperature in the chiral limit: the bare
quark mass and the chiral condensate play the role of the external breaking
field and of the spontaneous magnetization. Note that there are two arbi-
trary normalizations for M and for T . A detailed discussion together with
explicit calculations in spin models may be found e.g. in Ref. [40]. f is a
regular function: by expanding it to first order, and setting β = 0.5, δ = 3
one recovers the Landau mean field behaviour. The question now is, what
triggers the crossover from mean field to the critical behaviour? A short
answer is to follow the Ginzburg criterium [41]: the correlation length in-
creases towards the critical point, and at some point the fluctuations take
over, the details of the microscopic behaviour do not matter, and the system
shows the appropriate universal behaviour. Interestingly, the same reason-
ing applies to weakly first order transitions [42]. In short summary, when
approaching a critical region, one may observe first a mean-field behaviour,
then, when the Ginzburg criterium is satisfied, the true critical behaviour
will appear. The crossover between the interaction-dominated region, which
follows mean-field predictions, to the true critical regime, dominated by the
diverging correlation length, has been extensively studied in condensed mat-
ter systems [15, 43]. In the following, we will search for it in the QCD
transition where it is much less explored.

Let us consider first the case of a continuous, second order transition.
The discussion is general, we will use, however, as concrete examples the
mean field and the three dimensional O(4) universality class.

To describe the critical behaviour it is convenient to use an alternative,
equivalent form of the EoS for the order parameter:

M = h1/δfG(t/h1/βδ). (2)

The high x and low x expansions

fG(x) = x−γ
∞∑
n=0

dnx
−2n∆, x→ +∞ (3)

= (−x)β
∞∑
n=0

cn(−x)−n∆/2, x→ −∞ (4)

with x ≡ t/h1/βδ, ∆ ≡ βδ, γ = β(δ − 1) are known [44], and the coefficients
have been computed in spin models for the O(4) continuous universality
class [44]. Ref. [44] found a good interpolating form around x = 0:

f ′G(x) = b1 + 2b2x+ 3b3x
2 + 4b4x

3 + 5b5x
4 + 6b6x

5, (5)
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whose coefficients are tabulated in the paper [44].
To identify the critical scaling, and the critical temperature in the chiral

limit, at finite temperatures there are basically three (interrelated) strategies:

• direct comparison with the Equation of State

• the study of the dependence of the pseudo-critical temperatures on the
breaking field, also known as scaling of pseudo-critical temperatures

• definition of RG invariant quantities, which do not depend on the break-
ing field at the critical point.

The second one is probably the most popular: in practice, one relies on
pseudo-critical temperatures associated with features of the order parame-
ter, or related observables. For instance, considering the expression for the
susceptibilities

χL =
∂ψ̄ψ

∂m
,

χ∆ =
∂ψ̄ψ

∂T
(6)

derived from the EoS, one finds that for the O(4) universality class they peak
at t/h1/βδ = 1.35(3) and t/h1/βδ = 0.74(4), respectively. The corresponding
pseudo-critical temperatures

T sc (mπ) = Tc(0) + ksm
2/βδ
π (7)

(where s labels the different observables) should scale with the pion mass
mπ with the same exponent 2/βδ, but with different k′ss, whose ratio is a
prediction of universality. The longitudinal and transverse susceptibility χL
and χT , where χT ≡ 〈ψ̄ψ〉/m, may be used to implement the third approach,
based on RG invariant quantities [45–47].

All these approaches are prone to suffer from the contamination of regular
terms, especially when the pseudo-critical temperature T sc associated with
the particular observable s under consideration has a strong dependence on
the breaking field, i.e. on the pion mass (see also Refs. [17, 32]). These
considerations suggest an alternative order parameter [32], see also [48, 49],
free from linear contributions:

〈ψ̄ψ〉3 ≡ m(χT − χL) ≡ 〈ψ̄ψ〉 −mχL ≡ 〈ψ̄ψ〉 −m
∂〈ψ̄ψ〉
∂m

. (8)

We dubbed this order parameter 〈ψ̄ψ〉3 to highlight the fact that the leading
m correction in its Taylor expansion, when defined, is m3. Longitudinal and
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Mean field

Figure 2: Zooming in the region between Nf = 2 and Nf = 3: assuming a 3D
O(4) scenario, with hypothesized scaling windows in the ml,ms plane (upper
diagram).The dotted lines are a possible sketchy behaviour of the crossover
between the mean field region and the critical region.

transverse susceptibility become degenerate at the transition in the chiral
limit, hence their difference is an order parameter.

The m factor has been included to avoid divergencies in the chiral limit
in the broken phase. The associated Equation of State reads:

〈ψ̄ψ〉3
m1/δ

= fG(x)(1− 1/δ) +
x

βδ
fG(x)′. (9)

Interestingly, the high temperature leading term is 〈ψ̄ψ〉3 ∝ t−γ−2βδ rather
than 〈ψ̄ψ〉 ∝ t−γ: the decay is rather fast, not surprisingly given that this
observable is closer to the chiral condensate in the chiral limit.

In Figure 4 we compare the EoS for 〈ψ̄ψ〉3 with the one for 〈ψ̄ψ〉 for the
3D O(4) Universality class, and for mean field. Note the sharper decrease of
〈ψ̄ψ〉3, consistent with it being closer to the critical behaviour. Away from
criticality dimensional reduction is less and less justified, and the system
remains four dimensional and possibly closer to mean field. For instance,
mean field scaling has been reported in large-N Gross-Neveu [50], where the
scaling window shrinks to zero, and also in weak first order transitions [42].
The extent of the scaling window is a non-universal feature - a recent analysis
for spin models is in Ref. [51]. It is then very natural to compare the 3D
O(4) Equation of State with the prediction of mean field: mean field is indeed
very close to 3D O(4) (see again Figure ??), so the transition from the scaling
window to a regime with small fluctuations could be very smooth.

From the Equation of State data we can estimate the inflection point,
which will drive the behaviour of the pseudo-critical temperature associated
with 〈ψ̄ψ〉3, xinfl = 0.55(1) where the error has been estimated from the dis-
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1st order 

Z2 critical line

Z2 scaling window

Figure 3: As Figure 2, but for a first order transition extending from Nf = 2
to Nf = 3. There are no theoretical predictions for the shape of the critical
Z2 line and the scaling window, the lines are merely indicative. Above the
upper dotted line the behaviour should be compatible with mean field.

Observable χ 〈ψ̄ψ〉 〈ψ̄ψ〉3
ks 1.35(3) 0.74(4) 0.55(1)

Table 1: ks for three chiral observables, from the 3D O(4) Equation of State,
see Eq. (7).

persion of different fits interpolating the high and low temperature branches.
Table 1 summarizes the finding for the k′ss for the different chiral observables.

As we will discuss in Section 4, as of today, Nf = 2 is serious candidate
for a second order behaviour.

We move from second to first order transition by increasing Nf . One
way to interpolate continuously between different Nf ’s is by tuning the mass
of the ’extra’ flavor. The original discussion is Ref. [3], and refers to the
horizontal axis of Figure 2: there is a first order transition for Nf = 3,
terminating at a critical point in the Z2 universality class at ms = ms

crit. For
ms � ms

crit, ms merely renormalizes the coefficients of the effective action,
resulting in a shift of the critical temperature, without changing the critical
behaviour [3]. In this case one conventionally assumes that there is a line
of second order transition ∞ > ms > ms

crit, Tc = Tc(ms). The question is,
how the scaling window for Nf = 2 morphs into the scaling window around
ms

crit. Figure 2 presents a simplistic scenario: the scaling windows in ml

on either sides shrink till they almost disappear in the middle. So the two
scaling windows basically do not communicate. A more compelling answer
would require an analysis of the pseudo-critical behaviour around ms

crit [52].
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x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

O4, ψ̄ψ

Mean Field

O4,ψ̄ψ3

Mean Field

O4,ψ̄ψ3 , scaled

Mean Field,scaled

Figure 4: The Equation of State for the chiral condensate 〈ψ̄ψ〉 and the new
order parameter 〈ψ̄ψ〉3 in the critical region for the O(4) three dimensional
universality class, and for mean field. For a more direct comparison we also
plot the results suitably rescaled as thin lines (from Ref. [32]).

Interestingly, in Ref. [16] the standard subtracted condensate

χS − χK =
2ms

m2
s −m2

l

[
〈q̄q〉l(T )− 2

ml

ms

〈s̄s〉(T )
]

(10)

has been advocated as a diagnostic tool for the behaviour with a finite ms.
Figure 3 shows the alternative first order scenario, which is also a generic
prototype for larger Nf .

The first order region for larger Nf is ’uneventful’ from the perspective
of the critical behaviour. Its important feature is the endpoint: when the
breaking field becomes stronger, the transition weakens, and finally it be-
comes a continuous one. The weakening of the first order transition has been
studied in detail in q-state Potts models [42], where the strength of the tran-
sition has been linked to the position of the spinodal point - the apparent
divergence point of the correlation length. At the endpoint of the first order
transition the strength becomes zero, and the spinodal points collapse on the
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critical point. The axes are no longer the usual ones, and are defined by
the directions of the first order line. A clean observation of the endpoint is
essential to complete the analysis of a first order behaviour.

When Nf increases, the coupling at the transition is known to become
stronger [36, 37]. The zero temperature theory has scale separation, and may
be used to model a composite Higgs [38]. The high temperature first order
transition may offer a model of a strong electroweak transition [53], a very
attractive possibility for gravitational wave generation.

The zero temperature quantum phase transition is expected to be confor-
mal [2], although other possibilities cannot be excluded, including a first
order transition [10, 11], and a power-law scaling [9]. It occurs for a non-
integer number of flavors, and observing it by extrapolation needs a control
on the scaling setting procedure for different theories. The behaviour with a
finite mass is less established in this case. It is studied in Ref. [54], but to
our knowledge this general scaling has not been directly applied to the case
at hand. The universal behaviour of a conformal transition with a breaking
field remains an open problem.

3 Nf = 2

A much discussed scenario for Nf = 2 is a second order transition, see Fig-
ure 2. The search for universality is mostly done via the scaling of the
pseudo-critical temperature according to Eq. (7). The scaling works, within
the large errors: basically, the data are consistent with a linear scaling of the
pseudo-critical temperature with the pion mass, to be compared with the
predicted power law scaling with Tc(mπ) ∝ m

2/δ
π ' m1.08

π for the 3D O(4)
universality class. The U(2) × U(2) → U(2) pattern predicts a very similar

scaling, m
2/δ
π ' m1.16

π , leading to an indistinguishable behaviour within the
current errors.

The possibility of a first order transition is also explicitly considered for
two flavors. In such scenario, depicted in Figure 3, the first transition region
stretches all the way till there Nf = 3, bordered by a line of Z2 endpoints [5].

The Z2 endpoint has been extensively searched for in QCD with three
flavors (see next Section), and it has proven to be elusive and very sensitive
to lattice details. As a part of these uncertainties, there is no clear indication
of mixing at the critical point, so in practical analysis the mixing is ignored.
The search for a first order scenario then relies on direct searches, so far
unsuccessful, at small masses, as well as on the scaling of the pseudo-critical
temperature:

T sc (mπ) = Tc + ksA(m2
π −m2

c)
1/βδ (11)
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with 1/βδ = 0.64 for the Z2 universality class [55].
The outcome of these analysis [56] is that there is no evidence for mc.

A recent study [29] confirms these findings, after performing a careful com-
parison of the different breaking patterns. Summing up, it is impossible to
discriminate among different universality classes on the basis of the scaling
of Tc(mπ) alone. On the positive side, the critical temperature in the chiral
limit is robust against different choices: Tc(0)(O(4)) = 163(27) MeV and
TC(0)(U(2) × U(2)) = 167(25) MeV, which compares well with the twisted
mass results Tc = 152(26) [56].

We mark this result in the mπ,ms, T space in Figure 8, and in the Nf , T
plane in Figure 9, which we will discuss more later.

On the analytic side, interesting studies in four dimensions [9] have sug-
gested scaling behaviour only for pion masses below 1 MeV. There is, how-
ever, an apparent scaling for much larger masses, and it would be interesting
to see whether the apparent scaling for larger masses is compatible with a
mean field analysis.

Important complementary information comes from the analysis of screen-
ing masses [14]: some studies find the axial breaking much reduced at the
chiral transition. A detailed discussion is found in Ref. [28], but the issue
remains open as different observables appear to give different information.

4 Nf = 2 + 1, and the physical point

This is a much studied theory, as it includes the physical case of a strange
mass (see Figure 2) with hope that the light quarks will still be within, or not
too far from, the scaling window. We note that the results in the chiral limit
may have a phenomenological relevance, according to low energy effective
theory computations: the two massless flavor chiral transition temperature
is an upper bound for the temperature of the critical endpoint [47]. Clearly
only a full ab-initio computation may confirm or disprove this, and, in turn,
such observation would be a validation of these models.

This Section is mostly based on our recent work [32], where we have made
use of the ad-hoc order parameter introduced in Section 2. The results are
obtained with a dynamical charm. However, around the critical tempera-
ture a dynamical charm is completely decoupled, hence we are effectively
discussing the Nf = 2 + 1 theory, with a physical strange mass. We have
simulated four different pion masses, from the physical value till 470 MeV.
Our simulations are performed in the fixed scale approach, where we keep the
bare lattice parameters fixed and vary temperature by varying the number
of lattice spacings in the temporal direction, to cover a temperature span

11



mπ [MeV] T∆ T∆3 Tχ
139 157.8(7)(10) 146.2(21)(1) 152.7(13)(23)
225 172(3)(1) 163.3(18)(8) 171(6)(1)
383 187(5)(1) 178(4)(0) 192(3)(1)
376 197(2)(0) 181(1)(4) 197(2)(3)

Table 2: Pseudo-critical temperature extracted from the chiral observables,
from Ref. [32].

ranging from 120 MeV till 800 MeV, approximatively. Our ensembles as well
as more details can be found in Refs. [32–34].

Before turning to our results, let us briefly summarize the current status.
By use of a subtracted condensate and related susceptibilities, as well as
finite volume scaling, Refs. [13, 17] find a satisfatory O(4) scaling up to
nearly physical pion mass, with Tc = 132+3

−6 MeV. A recent FRG study [57]
confirms these findings, but with a slightly larger Tc = 142 MeV in the chiral
limit.

For the discussion of the universality class and the chiral limit we con-
sider the chiral condensate, the connected and the full susceptibility. These
observables suffer from an additive renormalization, which, in our fixed scale
approach, does not affect the estimate of the pseudocritical point. However,
it hampers the direct comparison with the Equation of State, and blurs the
behaviour of the pseudo-critical temperatures, which receive mass correc-
tions. By contrast, the observable 〈ψ̄ψ〉3:

〈ψ̄ψ〉3 = 〈ψ̄ψ〉 −mlχL (12)

is free from linear additive renormalization as well as from linear correction
to scaling.

We use various functional forms to parameterize our observables in vari-
ous intervals, and to identify the associated pseudo-critical temperature. We
then use the difference among results from different intervals/fitting forms
to estimate the systematic error. In some cases, in particular for the full
susceptibility, no explicit parameterization fared well through the data. In
this case, we have also used cubic splines as smooth interpolators, estimat-
ing statistical uncertainty by adding random Gaussian noise to each point,
weighted by statistical uncertainty of our data points. The details can be
seen in our recent publication [32].

In Table 2, reproduced from Ref. [32], we summarize our results for the
pseudo-critical temperatures extracted from different chiral observables.
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Figure 5: Pseudo-critical temperatures with their chiral extrapolations: com-
parison with the results from the HotQCD Collaboration [58], FASTSUM
Collaboration [59, 60], Wuppertal-Budapest Collaboration [61]. The purple
diamond at mπ = 0 marks the critical temperature [47], which compares well
with our result T0 = 134+6

−4 MeV (light-green cross, slightly shifted for better
readability). From Ref. [32].
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The fits for the pseudo-critical temperatures proceed exactly as for the
Nf = 2 case, so we do not repeat the discussion here, and simply show the
summary plots, from Ref. [32], in Figure 5. Mutatis mutandis, it remains
true that the results in the chiral limit do not depend on the universality
class.

An interesting added feature is the possibility to check the ratio of the
k′ss: the scaling is not quantitatively accurate, but to some extent consistent
with 3D O(4).

We plot the result for the critical temperature in the chiral limit in the
mπ,ms, T space in Figure 8, and in the Nf , T plane in Figure 9. In the latter
case, we have used the input from Ref. [9], which predicts a linear behaviour
of the critical line for small Nf , and an estimate of the critical temperature
for Nf = 3 in the chiral limit to convert the result in the chiral limit for
light quarks, and a physical strange mass, to a non-integer number of flavor
Nf ≈ 2.6.

Since 〈ψ̄ψ〉3 is free from additive renormalization, and the multiplicative
renormalization is available, we can convert it to physical units. This also
allows us to attempt a semi-quantitative check of critical scaling. One first
simple way of doing this is to identify the scaling of the condensate at Tc:

〈ψ̄ψ〉3(m) ∝ m2/δ
π . (13)

The results for the chiral condensate rescaled by m
2/δ
π should cross at the

critical point in the chiral limit. The curves for two lightest masses cross
around T = 138 MeV [32], which may be taken as a tentative estimate of the
critical temperature. We can then try to draw the (would be) scale invariant

plot 〈ψ̄ψ〉3/m2/δ
π versus (T − 138 MeV)/m

2
βδ
π for different masses. Indeed the

results fall more or less on the same curve, see Figure 6, and we have observed
that this approximate scaling behaviour degrades rapidly when Tc is varied
by more than a couple of MeV around Tc = 138 MeV. However, a fit to the
3D O(4) Equation of State and a constrained Tc = 138 MeV works nicely
only for the physical pion, see the continuous line in Figure 6. This behaviour
is reminiscent of that observed in Ref. [62], where an apparently good scaling
is observed at larger masses, which is, however, distinct from the predicted
three dimensional O(4) scaling. In conclusion, after constraining the critical
temperature to the best estimate in the chiral limit coming from the empirical
universal scaling, we observe a qualitative scaling for the reduced variables,
but the would-be universal curve is clearly different from that predicted by
the 3D O(4) universality.

Next, we fit to the 3D O(4) Equation of State with an open critical
temperature, and (pion mass dependent) scaling parameters. The fits are
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Figure 6: Emprical 3D O(4) scaling with fixed Tc = 138 MeV; there is an
apparent scale invariance, however the universal EoS fitted for the physical
pion mass – computed with a fit in the interval [120–160 MeV] and marked
as a continuous line – does not fare well on the results for the other masses.

satisfactory, but the would be critical temperature Tc depends heavily on
the pion mass: we find Tc = 142(2), 159(3), 174(2) MeV, from light to heavy
masses. Interestingly, for the physical pion mass the result for the critical
temperature in the chiral limit is consistent with the estimate from the mass
scaling of the condensate.

Summarizing: we obtain a good scaling with a common temperature
Tc = 138 MeV, but at the price of violating the universal EoS. Or, we fit all
the masses to the universal EoS, but at the price of forfeiting the parameters’
scaling. The only consistency is for the lowest pion mass, which may be taken
as an indication of the onset of the scaling behaviour for masses around the
physical values.

Finally, we consider the high temperature limit: in Figure 7, left, show
fits to a constrained O(4) behaviour, for our preferred critical temperature in
the chiral limit Tc = 138 MeV (the sensitivity to Tc is very mild in this case):
the results in the interval of temperatures [160:300] MeV (marked bold) fare
nicely through the data. For T > 300 MeV the behaviour is distinctly
different: in the right-hand plot (from Ref. [32]) we show the data rescaled
according to m3

q ' m6
π, the anticipated high temperature leading behaviour,

and indeed we see that the scaling is nicely satisfied above 300 MeV. This
suggests that the temperature extent of the scaling window above Tc extends
up to about 300 MeV, and then a simple regular behaviour follows, unrelated
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Figure 7: Fits to a constrained O(4) behaviour: the results in the interval
of temperatures [160:300] MeV (marked bold) fare nicely through the data.
For T > 300 MeV the behaviour is distinctly different. In the righthand
plot (from Ref. [32]) we show the data scaled according to m3 ' m6

π, the
anticipated high temperature leading behaviour.

with criticality. In a previous study [63, 64] we have found that this is
also the threshold for a behaviour consistent with the Dilute Instanton Gas
Approximation.

One final comment concerns the U(1)A symmetry: given its prominent
role, it is natural to resort to its analysis to try to shed more light on the
symmetry pattern. But, again, the problem remains open: the current un-
derstanding is that it seems to be effectively restored above Tc [17–31], but
there is no consensus on the restoration temperature. For instance, Ref. [17]
finds the axial symmetry still broken at T ' 1.6Tc, while Ref. [29] suggests
a near-coincidence of axial and chiral transition. An interesting probe of the
interrelation of the axial and chiral symmetry is the η′ meson, which seems
to be well correlated with the chiral condensate also around Tc, favoring to
some extent a close interrelation of the different symmetries [34].

As a summary of this discussion, we plot the results in the mπ,ms, T
space in Figure 8.
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Figure 8: The space spanned by the pion mass, the strange mass, and the
temperature, for strange masses ranging from infinite till the physical value.
The scaling window identified for Nf = 2 + 1 is marked in shades of red.

5 Nf = 3, 4: between the physical region and

the pre-conformal window

Much of the effort in these cases focuses on the search for the critical endpoint
of the expected first order transition. Nice overviews of recent results can be
found in [5, 65], including an extensive bibliography. The main conclusion
(shared by all authors) is that the precise location of the critical endpoint
is hard to pinpoint, and very sensitive to the lattice discretization. Recent
results from Ref. [66] indicate mc

π ' 110 MeV and Tc ' 134(3) MeV. This
value, rather close to the estimated critical temperature of the Nf = 2 +
1 flavor, is obviously an upper bound to the critical temperature in the
chiral limit for the Nf = 3 theory. Assuming - rather arbitrarily - that
the slope of the critical first order line is not too different from the slope of
the pseudo-critical line of the Nf = 2 + 1 + 1 theory, one may estimate a
critical temperature for the Nf = 3 theory at Tc(Nf = 3) ' 120 MeV. We
note that some recent unpublished studies presented at the latest Lattice
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Figure 9: A sketchy view of the numerical results for the critical tempera-
ture Tc in the temperature, number of flavor plane. The theories with Nf = 2
and Nf = 2 + 1 (marked as non-integer number of flavors) have been sum-
marized in Sections 3 and 4, Nf = 3 and Nf = 4 in Section 5, and larger Nf

in Section 6.
The approach to the conformal window for Nf ' 12 is apparent for Nf ≥ 4.

See text for details.

conference indicate a lower value Tc(Nf = 3) ≈ 100 MeV [67].
The candidate endpoint, as well as the guess at the critical temperature

in the chiral limit are both marked in Figure 9 as a blue and cyan triangles,
respectively.

Since most studies for Nf = 3 have been carried out with staggered
fermions, a suggestion was made [65] that the rooting needed at Nf = 3
may be the source of the strong lattice artifacts observed. This motivated an
analysis of the Nf = 4 theory, which is free from the rooting issue. However,
also in this case it was not possible to locate the critical point with confidence.

In the most recent study [68] an extensive investigation with unimproved
staggered fermions covering the whole range of Nf = 2 to Nf = 8 was
reported. The results suggest that for all studied values of Nf the first order
region significantly shrinks upon taking the continuum limit and eventually
the chiral transition in the chiral limit might be second-order (although a
tiny first-order region cannot be excluded).
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6 Large Nf

From now on, we approach the conformal window: a region of the phase
diagram where chiral symmetry remains unbroken also at zero temperature.
Let us then take one step backwards, and ask: what triggers the breaking
of the SU(Nf )× SU(Nf ) symmetry? In the following we briefly summarize
the original model calculations leading to the discovery of the conformal
window [2, 69]. It is clear that, since these phenomena are strongly-coupled,
non-perturbative ones, ab-initio studies such as lattice QCD simulations are
needed to confirm, or disprove, analytic predictions.

Let us consider the renormalization group equation for the running cou-
pling:

µ
∂

∂µ
α(µ) = β(α) ≡ −bα2(µ)− cα3(µ)... , (14)

where α(µ) = g2(µ)/4π. With N colors and Nf fermions in the fundamental
representation

b =
1

6π
(11N − 2Nf ) , (15)

c =
1

24π2

(
34N2 − 10NNf − 3

N2 − 1

N
Nf

)
. (16)

Hence, the theory is asymptotically free if b > 0, i.e. Nf <
11
2
N , and it

has an infrared stable, non-trivial fixed point (FP) α∗ = −b/c if b > 0 and
c < 0. This happens for 34N3

13N2+3
< Nf <

11
2
N , in short N?

f < Nf < N??
f .

With the infrared FP for N?
f < Nf < N??

f the RG equation for the running
coupling can be written as

b log

(
q

µ

)
=

1

α
− 1

α(µ)
− 1

α∗
log

(
α (α(µ)− α∗)
α(µ) (α− α∗)

)
, (17)

where α = α(q).
For α, α(µ) < α∗ we can introduce a scale defined by

Λ = µ exp

[ −1

b α∗
log

(
α∗ − α(µ)

α(µ)

)
− 1

bα(µ)

]
, (18)

so that 1
α

= b log
(
q
Λ

)
+ 1

α∗
log
(

α
α∗−α

)
. Then, for q � Λ the running coupling

displays the usual perturbative behavior: α ≈ 1

b log( qΛ)
, while for q � Λ it

approaches the fixed point α∗: α ≈ α∗

1+ 1
e(

q
Λ)

bα∗ .
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These considerations, already present in the famous Banks-Zaks paper [70],
lead to the discovery of the conformal window [69], once one takes into ac-
count the condition for chiral breaking. The analysis of two-loop effective
potential finds that chiral symmetry breaking is favoured when

αc ≡
π

3C2(R)
= 2π

N

3 (N2 − 1)
, (19)

where C2(R) is the quadratic Casimir of the representation.
Till there are no zeros of the beta function, this large value is always

reached: as long as Nf is below the value N c
f at which α∗ = αc, chiral sym-

metry is spontaneously broken. When the breaking happens, it washes out
the IR fixed point and there is the usual running. For Nf > N c

f the chi-
rally symmetric theory is infrared conformal [2], with anomalous dimension.
The transition at N c

f is similar to the BKT one. Below, but not too far
from N c

f , there is scale separation: in ordinary massless QCD dimensional
transmutation generates a dimensionful parameters ΛQCD which is the nat-
ural mass scale of the theory. Close to the conformal window the coupling
’walks’ rather than running, between two scales - above the UV scale there
is the usual running, below the IR scale confinement sets in. In between the
behaviour is near-conformal. This behaviour, known as scale separation (re-
ferring the the distinction between IR and UV scale) offers [35] the possibility
to build models for a composite Higgs. Lattice studies have scrutinized in
detail the model with Nf = 8 [71–75], finding evidences of scale separation:
the lightest massive state, the scalar of the model, is suited for phenomenol-
ogy – it could be the Higgs meson. We emphasize that at T = 0, it is very
hard to distinguish a chirally broken theory from a mass-deformed conformal
theory, see, for instance, Refs. [76–78].

Other vector states lie much above - this is where scale separation is
needed - which is why they haven’t been observed so far [38, 74].

Coming back to the main motivation of this writeup, and so to Figure 1,
we are now interested in the thermal transition in the near-conformal region.
The first complete sketch of Figure 1 was obtained with FRG methods in
Ref. [79]. Lattice studies have focused on the very existence of the transition:
indeed, not knowing exactly where the conformal phase begins, the obser-
vation of a thermal transition is per se an evidence of a broken phase [73],
while within the conformal window temperature merely breaks conformality,
and there is no thermal phase transition [80].

A systematic study of the thermal phase transition as a function of the
number of flavors has been carried out in Refs. [36, 37]. The pseudo-critical
temperature has been identified by performing lattice simulations for Nf =
4, 6, 8. After a suitable choice of a common scale among the different theories,
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it was possible to extrapolate Tc(Nf ) to zero, thus identifying the candidate
critical number of flavor. Here an interesting issue appears: shall Tc follow
an essential scaling, as expected of the conformal nature of the transition, or,
rather, a power law scaling [9]? Again, the quality of the numerical results
does not give a clear answer on the nature of the critical behaviour. However,
again, luckily, the estimated critical number of flavor does not depend on the
parametrization chosen, within the largish errors [35].

In Figure 9 we show the results in the Nf , T plane. We have used the
input from Ref. [9], which predicts a linear behaviour of the critical line for
small Nf , and an estimate of the critical temperature for Nf = 3 in the chiral
limit to convert the result in the chiral limit for light quarks, and a physical
strange mass, to a non-integer number of flavor Nf ≈ 2.6. The results for
Nf = 4, 6, 8 are normalized in such a way that Tc(Nf = 4) follows the linear
behaviour predicted for a small number of flavors. The continuous line is the
predicted scaling of the critical temperature [79]:

Tc = K(N c
f −Nf )

−2b20(Nc
f )/b1(Nc

f ) (20)

with a fixed N c
f = 12 (of course this does not depend on the normalization

chosen). The exponent −2b2
0(N c

f )/b1(N c
f ) ' −1.64 should be contrasted with

the theoretical prediction −2b2
0(12)/b1(12) = −1.05 and would correspond to

N c
f ' 12.9 [79].

We are not aware of any theoretical modeling which explains how the
first order behaviour for smaller Nf eventually develops into the conformal
transition. One possible scenario is that the second order Z2 line, which
terminates the first order region above the thermal line, shrinks to zero at
N c
f . Another possibility is a first order transition [10, 11]: in such a case

the would-be critical number of flavor would correspond to a spinodal point,
and the critical line would terminate at 8 < N1st

f < 12, where the lower
bound stems from the clean observation of chiral breaking in the eight flavor
theory. One interesting information emerging from the data is the strength
of the phase transition: it has been found that it becomes stronger and
stronger when approaching the conformal window [4, 5, 36]. Moreover, at
the critical point the coupling at the thermal transitions equals the coupling
at the infrared fixed point appearing there [36]. While the critical behaviour
remains unclear, the dynamical scenario seems thus well understood. In
particular, the Nf = 8 theory remains an interesting candidate for physics
beyond the Standard Model [71], and its strong first order transition may
then be used to model a strong Electroweak transition and the generation of
gravitational waves [53].
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7 Summary

The study of the critical line of strong interactions has several interesting
points and remaining unknowns.

We started from Figure 1 and we progressively filled in the qualitative
summary plot Figure 9 with numerical results. The linear, low Nf part of
the critical line has been imposed, by aligning the Nf = 2 + 1 results with
the Nf = 2 and Nf = 3, and by suitably renormalizing the results for large
Nf .

A detailed view for a small number of flavors is given in Figure 8. In
that plot we have concentrated on the beginning of the chiral critical line,
between Nf = 2 and Nf = 3. We have reviewed our results for Nf = 2 and
for Nf = 2+1+1, with the strange flavor serving as an interpolator between
Nf = 2 and Nf = 3. We have discussed the results at the physical point,
as well as the different scenarios for the chiral limit in the light sector for
Nf = 2, and Nf = 2 + 1. We have identified a candidate scaling window
for the 3D O(4) theory: the physical pion mass maybe right at the onset of
scaling, which extends up to temperatures of about 300 MeV.

Nf = 3 is an interesting unphysical model which would greatly help
understanding the critical behaviour for Nf = 2+1: we have briefly reviewed
the status of the search of the endpoint for three quarks of equal masses. Such
endpoint would belong to the same Z2 critical line as the ml = 0,mc

s point
in Figure 2. Establishing (or ruling out) such a line would greatly contribute
to building a consistent scenario for universality in the physical case.

We have then explored the large Nf region, and discussed the approach
to the conformal window. Clearly the results for the thermodynamics of
these large number of flavors are much less developed than in the other
cases, however there is at least a good compatibility between the anticipated
critical behaviour and the data, as well as between the estimated critical
number of flavors for the onset of conformality, and the one inferred from
the T = 0 studies. It is confirmed that Nf = 12 is a subtle, borderline case,
which justifies the use of Nf = 8 as a model for a walking theory, and related
phenomenology.

It remains to be understood how the transition changes its nature for
first to second order, towards Nf = 2. And, from the first order to BKT
transition, at the onset of the conformal window, if indeed the BKT transition
is realised – the possibility of a first order conformal transition has been
discussed as well [10, 11], as well as of a second order transition persisting for
large Nf [68], and this remains an open issue. In either cases this transition
may well happen for non-integer number of flavors, or, correspondingly, for
a finite value of the interpolating mass in the Nf + 1 model. The fate of the
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anomaly plays an important role in this discussion, and a close comparison
between numerical and analytic results may well hold the key to a complete
understanding of the properties of the chiral line of strong interactions.
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