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In quantum cosmology the DeWitt boundary condition is a proposal to set the wave function of
the universe to vanish at the classical big-bang singularity. In this Letter, we show that in many
gravitational theories including general relativity, the DeWitt wave function does not take a desired
form once tensor perturbations around a homogeneous and isotropic closed universe are taken into
account: anisotropies and inhomogeneities due to the perturbations are not suppressed near the
classical singularity. We then show that Hořava-Lifshitz gravity provides a satisfactory DeWitt wave
function. In particular, in the limit of z = 3 anisotropic scaling, we find an exact analytic expression
for the DeWitt wave function of the universe with scale-invariant perturbations. In general cases
with relevant deformations, we show that the DeWitt wave function can be systematically expanded
around the classical big-bang singularity with perturbations under control.

INTRODUCTION

Quantum cosmology is an attempt to describe the en-
tire universe based on quantum theory. Due to the lack
of a complete theory of quantum gravity, however, the
quantization of spacetime is not a trivial task, especially
in general relativity (GR). Nonetheless there exist several
approaches to quantum cosmology, in which one hopes to
grasp a coarse-grained description of the quantized space-
time in the very early universe.

One of them is based on the canonical quantum grav-
ity [1], which treats gravity in the Hamiltonian formula-
tion using the Arnowitt, Deser and Misner (ADM) for-
malism [2]. In this approach the Hamiltonian constraint
is interpreted as an operator equation, Ĥ [g]Ψ[g] = 0,
called the Wheeler-DeWitt equation. Here, g repre-
sents the spatial metric induced on a 3-geometry, Ĥ [g]
is the operator corresponding to the Hamiltonian con-
straint and Ψ[g] is the so-called wave function of the
universe. Alternatively, the wave function of the uni-
verse can be formulated by the path integral, Ψ[g] =
∫

Dg(4) eiS[g(4)]/~, where it is understood that the 4-
dimensional metric g(4) is restricted to those inducing
g on the 3-geometry and that the diffeomorphism invari-
ance is properly treated [3]. The Wheeler-DeWitt equa-
tion is thought to describe a coarse-grained nature of the
entire quantum universe but allows for various solutions.
Therefore, in order to select the wave function of the uni-
verse, a proper boundary condition has to be imposed.
Correspondingly, in the path integral approach one needs
to specify the range and contour of the path integral.

In quantum cosmology, there are two famous boundary
conditions to define the wave function of the universe: the
no-boundary proposal [4] and the tunneling proposal [5].
However, there are some doubts on these proposals un-

der the inclusion of perturbations around a homogeneous
and isotropic background [6, 7]. Based on the real-time
path integral formulation, it has been claimed that the
wave function of small perturbations around the back-
ground takes the form of inverse-Gaussian and will be
out of control. For instance, when tensor perturba-
tion h is included, the wave function takes the form
Ψ(a, h) ∝ exp[+α(k, a)h2

k/~] for a mode hk with the co-
moving wavenumber k, where α(k, a) > 0. A similar con-
clusion holds for scalar perturbations as well. These re-
sults are likely to be inconsistent with cosmological obser-
vations. The issue of perturbations in the no-boundary
and tunneling proposals has recently been further dis-
cussed in the literature [8–17].

In this Letter, we instead adopt the so-called DeWitt

boundary condition, which states that the wave function
of the universe should vanish at the classical big-bang
singularity [1]. For a homogeneous and isotropic uni-
verse the DeWitt boundary condition can be expressed as
Ψ(a = 0) = 0, which is known to successfully regularize
the behavior of the wave function near the classical singu-
larity. In the minisuperspace where the dynamics of the
universe are only parameterized by the scale factor a(t),
one can easily find an analytic expression for the DeWitt

wave function, i.e. the solution to the Wheeler-DeWitt
equation with the DeWitt boundary condition. However,
the generalization beyond the minisuperspace is not triv-
ial. In this Letter, we actually show that in many gravity
theories including GR, the DeWitt wave function for a
homogeneous and isotropic background with small per-
turbations is not well-behaved and that the supposedly
small perturbations cannot be suppressed near the clas-
sical big-bang singularity.

This is a serious problem in gravity theories includ-
ing GR if one is to adopt the DeWitt wave function as
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a description of the very early universe. This suggests
that the DeWitt boundary condition introduced as a pro-
posal to tame the classical big-bang singularity in quan-
tum cosmology requires gravity beyond GR. Fortunately,
in the context of Hořava-Lifshitz (HL) gravity [18], we
find that the introduction of higher dimensional opera-
tors that are required by perturbative renormalizability
renders the wave function of perturbations well-behaved.
Indeed, the wave function is shown to be of the form of
a Gaussian distribution for the vacuum of the pertur-
bations (or similarly suppressed distributions for excited
states) all the way up to the classical big-bang singu-
larity. This is a reminiscence of the fact that the same
higher dimensional operators lead to a novel generation
mechanism of scale-invariant cosmological perturbations
without inflation [19].

The rest of the Letter is organized as follows. First we
show a No-go result in GR for the DeWitt wave func-
tion: tensor perturbations around a homogeneous and
isotropic closed universe are not suppressed at the clas-
sical big-bang singularity. Then we extend the theory of
gravity and show that the Hořava-Lifshitz gravity pro-
vides a satisfactory DeWitt wave function. Thus the
DeWitt boundary condition is consistent in the Hořava-
Lifshitz quantum gravity.

NO-GO IN GR

We shall begin with the analysis in GR and show a
negative result. The gravitational action SGR is written
as

SGR =
M2

Pl

2

∫

dtd3xN
√
g
(

KijKij −K2 +R− 2Λ
)

.

(1)
with the ADM form of the metric [2], ds2 = −N2dt2 +
gij(dx

i + N idt)(dxj + N jdt), where N , N i and gij are
respectively the lapse function, the shift vector and the
3-dimensional spatial metric. Kij is the extrinsic cur-
vature tensor defined by Kij = (∂tgij − gjk∇iN

k −
gik∇jN

k)/(2N), with ∇i being the spatial covariant
derivative compatible with gij , K

ij = gikgjlKkl and K =

gijKij where gij is the inverse of gij . MPl = 1/
√
8πG is

the Planck mass, R is the Ricci scalar of gij , and Λ is the
cosmological constant. Hereafter we adopt the unit with
MPl = 1.

To simplify the analysis we consider a closed
Friedmann-Lemâıtre-Robertson-Walker (FLRW) uni-
verse with tensor-type metric perturbations. The metric
takes ds2 = −N2(t)dt2+a2(t) [Ωij(x) + hij(t ,x)] dx

idxj ,
where Ωij is the metric of the unit 3-sphere [34] and
Ωij is the inverse of Ωij . hij is the tensor perturbation
satisfying the transverse and traceless condition, namely
Ωijhij = ΩjkDkhij = 0 where Di is the spatial covari-
ant derivative compatible with Ωij . Hereinafter, spatial

indices i, j, · · · are raised and lowered by Ωij and Ωij .
For this metric, the action is expanded up to the second

order in perturbation as SGR = S
(0)
GR + S

(2)
GR +O(h3):

S
(0)
GR = V

∫

dt

(

3N

a

)[

−
( a

N
ȧ
)2

+ a2 − Λa4

3

]

,

S
(2)
GR =

∫

dt (Na)

∫

d3x
√
Ω

× 1

8

[

a2

N2
ḣij ḣij − hij

(

D2 − 6
)

hij

]

,

(2)

where V =
∫

d3x
√
Ω = 2π2 is the volume of the unit

3-sphere and D2 = ΩijDiDj .
The tensor perturbation hij can be expanded in terms

of the tensor hyper-spherical harmonics [20],

hij(t, x
i) =

∑

snlm

hs
nlm(t)Qsnlm

ij , (3)

where s = ± is the polarization label, the integers
(n, l, m) run over the ranges n ≥ 3, l ∈ [0, n −
1], m ∈ [−l, l], and Qsnlm

ij are the tensor eigenfunc-

tions of the Laplacian operator D2[Ω] on the unit 3-
sphere, D2[Ω]Qsnlm

ij = −
(

n2 − 3
)

Qsnlm
ij , normalized as

∫

d3x
√
ΩΩikΩjlQsnlm

ij Qs′n′l′m′

kl = V δss
′

δnn
′

δll
′

δmm′

.
Substituting the expansion (3) into the action (2), we

obtain

S
(0)
GR + S

(2)
GR = V

∫

dt

{

(

3N

a

)[

−
( a

N
ȧ
)2

+ a2 − Λa4

3

]

+
∑

snlm

1

8
(Na)

[

( a

N
ḣs
nlm

)2

+
(

n2 + 3
)

(hs
nlm)2

]

}

. (4)

Hereafter, for simplicity we restrict our consideration to
the dynamics of the scale factor and one mode of the
tensor perturbation. We then denote hs

nlm of our interest
by h, suppressing the indices snlm.
Following the standard canonical quantization proce-

dure, where the canonical momenta Πa and Πh conju-
gate respectively to a and h are transformed to Her-
mitian operators −i∂/∂a and −i∂/∂h, the Hamiltonian
constraint of the system is transformed to the Wheeler-
DeWitt equation,

{

1

2γ

(

∂2

∂a2
+

p

a

∂

∂a

)

+
(

−3a2 + Λa4
)

−
[

2

a2V 2

∂2

∂h2
+

a2

8

(

n2 + 3
)

h2

]}

Ψ(a, h) = 0 , (5)

where Ψ(a, h) is the wave function of the universe. Here,
we have defined γ = 6V 2 and introduced the param-
eter p in order to take into account the ambiguity of
the operator ordering. In quantum cosmology there are
two well-known choices of p: the Laplace-Beltrami oper-
ator ordering (p = 1) and the Vilenkin operator ordering
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(p = −1) [21–23]. To maintain the generality, however,
we keep p as an arbitrary constant.
To seek a solution of the equation (5) we employ the

DeWitt boundary condition Ψ(0, h) = 0 for ∀h. More
specifically, we demand that

Ψ(a, h) = ac
∞
∑

i=0

Fi(h) a
i , (6)

for small a, where c is a positive constant and we as-
sume that F0(h) is not identically zero. In addition, as a
necessary condition for Ψ(a, h) to give non-divergent cor-
relation functions of h on a = const. hypersurfaces (with
a reasonable choice of the norm that we do not need to
specify) [35], we demand that

lim
h→±∞

Fi(h) = 0 , (i = 0, 1, · · · ) . (7)

Otherwise, correlation functions of h (such as the power
spectrum) on a = const. hypersurfaces would diverge. In
order to determine the positive constant c, we demand
that F0(h) be a non-trivial smooth function satisfying the
condition (7) (with i = 0) so that the leading behavior
of Ψ(a, h) near a = 0 is Ψ(a, h) ≃ acF0(h) +O(ac+1).
By substituting (6) to the Wheeler-DeWitt equation

(5), at the leading order in a we obtain

∂2
hF0 − V 2(c+ p− 1)c F0 = 0 . (8)

For any values of the parameters, there is no non-trivial
smooth function F0(h) satisfying the condition (7) (with
i = 0). (This conclusion holds even for a complex c.)
In other words, no DeWitt wave function gives non-
divergent correlation function of h on a = const. hyper-
surfaces near the classical big-bang singularity. Although
we have shown this only for GR, this no-go result is quite
generic and is applied to other theories of gravity as long
as higher spatial derivative terms are absent as we shall
see below.

HOŘAVA-LIFSHITZ GRAVITY

In the following we shall show that the above no-go
result can be avoided in the Hořava-Lifshitz (HL) grav-
ity [18], which is renormalizable, unitary and regarded as
one ultraviolet (UV) completion possibility of quantum
gravity.
In the HL gravity the anisotropic scaling (t, ~x) →

(bzt, b~x) with the dynamical critical exponent z = 3 in
the ultraviolet (UV) regime ensures the renormalizabil-
ity [24, 25]. In cosmology, this scaling has some intrigu-
ing implications. It serves as a mechanism of generating
scale-invariant cosmological perturbations [19], solving
the horizon problem without inflation. It also provides
the so-called anisotropic instanton, which is expected to
solve the flatness problem [26].

In the following, we consider the projectable HL grav-
ity, where the lapse function is dependent only on time,
N = N(t). In the notation of [27], the action is given by

SHL =
M2

HL

2

∫

dtd3~xN
√
g
(

KijKij − λK2 + c2gR

− 2Λ +Oz>1

)

,

(9)

where MHL is a mass scale and the higher dimensional
operators Oz>1 is given by

Oz>1

2
= c1∇iRjk∇iRjk + c2∇iR∇iR+ c3R

j
iR

k
jR

i
k

+ c4RRj
iR

i
j + c5R

3 + c6R
j
iR

i
j + c7R

2 , (10)

λ and cn (n = 1, · · · , 7) are coupling constants that are
subject to running under the renormalization group (RG)
flow, ∇i is the spatial covariant derivative compatible
with the 3-metric gij . In the UV regime the terms with
two time derivatives and those with six spatial derivatives
are dominant, rendering z = 3. On the other hand, in
the infrared (IR) regime, higher derivative terms are not
important and thus the theory automatically flows to z =
1. If λ flows to 1 (from above) in the IR and if it does
sufficiently quickly, then GR is recovered, thanks to an
analogue of the Vainshtein mechanism [27–29], and the
linear instability of the scalar graviton does not show
up [27].

The 3-dimensional space at each time may or may not
be connected. To make the argument as general as pos-
sible we thus allow the 3-dimensional space to be the
union of connected pieces, Σα (α = 1, · · · ). In the follow-
ing we call each Σα a local universe, while the union of
all Σα represents the global universe. In this case, while
the lapse function N = N(t) is common for all α, we
have a set of shift vectors and a set of spatial metrics,
N i = N i

α(t, ~x) and gij = gαij(t, ~x) for ~x ∈ Σα.

Now we shall derive the Wheeler-DeWitt equation in
the HL gravity. The wave function of the universe can be
expressed as Ψ =

∏

α Ψα(aα, hα;Cα) , where aα stands
for the scale factor of a local universe Σα, hα represents
one mode of the tensor perturbations and {Cα} are sepa-
ration constants satisfying

∑

α Cα = 0. Each separation
constant Cα corresponds to the amplitude of “dark mat-
ter as integration constant” [30, 31] in Σα. A general
solution can be then written as a linear combination of
the special solutions,

Ψ ({aα, hα}) =
∫

(

∏

β

dCβ

)

A{Cβ}
∏

α

Ψα (aα, hα;Cα) .

(11)
In this expression, Ψ ({aα, hα}) represents the wave func-
tion of the global universe while each Ψα (aα, hα;Cα) rep-
resents the wave function of Σα.
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After the canonical quantization, we obtain
{

1

2

(

∂2

∂a2
+

p

a

∂

∂a

)

+
(

C a− g3
a2

− 3g2 − 3g1a
2 + g0a

4
)

− 1

2V 2a2
∂2

∂h2
+

h2

2

(

f1a
2 + f2 +

f3
a2

)}

Ψ(a, h) = 0 .

(12)

where we have omitted the index α and also abbrevi-
ated Ψα (aα, hα;Cα) to Ψ(a, h). The above variable and
parameters are defined by

h = hα/(2
√
γ), C = γ Cα, g3 = 24γ(c3 + 3c4 + 9c5),

g2 = 4γ(c6 + 3c7), g1 = γc2g, g0 = γΛ,

f1 = −γ2(n2 + 3), f2 = −8γ2
[

c6(n
2 + 3)2 + 18c7(n

2 − 4)
]

f3 = −8γ2
[

−c1(n
6 − 9n4 − 9n2 + 81) + 6c3(n

2 + 3)2

+ 6c4(n
4 + 9n2 − 3) + 162c5(n

2 − 4)
]

(13)

with γ = 3 (3λ− 1)V 2. This equation is applicable to
both projectable and non-projectable HL theories, if one
sets C = 0 for the latter.

SCALE-INVARIANT SOLUTION

Let us consider the special case where terms with z < 3
are absent. We set the parameters as g2 = g1 = g0 =
0 , f1 = f2 = 0 , f3 > 0. In each of the regions h > 0 and
h < 0, we can find the following exact solution of (12)
satisfying (7),

Ψ(a, h) =

{

A ac

√
h
Wκ,1/4(w) , (h > 0)

B ac

√
−h

Wκ,1/4(w) , (h < 0)
, (14)

where c (> 0), A andB are constants, κ and w are defined
by

κ = − V

4
√
f3

[

c2 + (p− 1)c− 2g3
]

, w = V
√

f3h
2 .

(15)
and Wµ,ν(w) is the Whittaker function.
We now require the continuity of Ψ(a, h) and ∂hΨ(a, h)

at h = 0, which is necessary to ensure the smoothness of
the solution. Since

lim
h→+0

Ψ(a, h) = A
π1/2V 1//4f

1/8
3

Γ(3/4− κ)
,

lim
h→−0

Ψ(a, h) = −B
π1/2V 1//4f

1/8
3

Γ(3/4− κ)
,

(16)

we have B = −A from the continuity of Ψ(a, h) at h = 0.
We also find

lim
h→±0

∂hΨ(a, h) = ∓2A
π1/2V 3//4f

3/8
3

Γ(1/4− κ)
. (17)

The continuity of ∂hΨ(a, h) at h = 0 then requires the
argument of the Gamma function in the denominator to
be 1/4− κ = −N , (N = 0, 1, · · · ). This can be rewritten
as

c2+(p−1)c+

[√
f3
V

(4N + 1)− 2g3

]

= 0 , (N = 0, 1, · · · ) ,
(18)

which determines c. Therefore we have

Ψ(a, h) =

{

A ac

√
h
WN+1/4,1/4(w) , (h > 0)

−A ac

√
−h

WN+1/4,1/4(w) , (h < 0)
. (19)

One can consider a linear combination of solutions with
different values of N as far as the corresponding values
of c are positive.
For instance, the solution (19) for N = 0 corresponds

to the ground state and takes the Gaussian form for h,

Ψ(a, h) = A(V
√

f3)
1/4ace−

V
√

f3h2

2 , (20)

which suggests that two-point tensor correlator is com-
pletely scale-invariant, 〈h2〉 = N

∫

dh h2 |Ψ(a, h)|2 ∝ n−3

since f3 ∝ n6, where N = (
∫

dh |Ψ(a, h)|2)−1. This is
consistent with the result of [19].
In general case of (19), the expectation value of w ∝ h2

on a = const. hypersurfaces is independent of a and of
order unity, 〈w〉 = O(1), for each value of N (= 0, 1, · · · ),
provided that f3 > 0. This again implies that the
power spectrum is scale-invariant and independent of a
as n3〈h2〉 = O(1)×M2 where we have defined the mass
scale M so that f3 ∼ n6/M4 for large n.

GENERAL SOLUTION NEAR a = 0

Leading order solution F0(h)

Let us now consider the general case for the HL gravity.
By substituting (6) to (12), at the leading order in a, one
obtains

∂2
hF0 − V 2

[

f3h
2 + (c+ p− 1)c− 2g3

]

F0 = 0 . (21)

By requiring (7) (with i = 0) and the continuity of F0(h)
and ∂hF0(h), we can easily find (18) determining c and
the following solution

F0(h) =

{

A√
h
WN+1/4,1/4(w) , (h > 0)

− A√
−h

WN+1/4,1/4(w) , (h < 0)
, (22)

where N = 0, 1, · · · , provided that f3 > 0. (One can
consider a linear combination of solutions with differ-
ent values of N as far as the corresponding values of
c are positive.) This solution is the same as the pre-
vious solution (19) that was obtained for the strictly
z = 3 case. Hence, for f3 > 0, in the a → +0 limit
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we have the scale-invariant and finite power spectrum,
lima→+0 n

3〈h2〉 = O(1)×M2 for large n, which is again
consistent with the result of [19].
On the other hand, for f3 ≤ 0 there is no non-trivial

smooth solution satisfying (7) (with i = 0). In particu-
lar, this is the case in the absence of z = 3 terms (for
which f3 = 0). This no-go result applies to many gravi-
tational theories (including GR) in which the action does
not contain terms with six spatial derivatives.

First order correction F1(h)

From here, let us consider the higher-order corrections.
At the next-to-leading order in a, one obtains,

∂2
hF1 − V 2

[

f3h
2 + (c+ p)(c+ 1)− 2g3

]

F1 = 0 . (23)

In each of the regions h > 0 and h < 0, we can easily find
the following solution satisfying the boundary condition
(7) (with i = 1),

F1(h) =

{

Ã√
h
Wκ+κ1,1/4(w) , (h > 0)

B̃√
−h

Wκ+κ1,1/4(w) , (h < 0)
, (24)

where Ã and B̃ are constants, κ and w are defined in
(15), κ1 = −V (2c + p)/(4

√
f3) and c has already been

determined by (18).
By requiring the continuity of F1(h) at h = 0, one

obtains B̃ = −Ã. The continuity of ∂hF0(h) at h = 0 then
requires that 1/4−κ−κ1 be a non-negative integer or that
Ã = 0. Since 1/4− κ is already set to be a non-negative
integer, the former condition can be satisfied only if κ1

is an integer, which requires a fine-tuning. Avoiding the
fine-tuning, we conclude that Ã = 0, i.e. F1(h) = 0.

Second order correction F2(h)

At the next-to-next-to-leading order in a, one obtains

∂2
hF2 − V 2

[

f3h
2 + (c+ p+ 1)(c+ 2)− 2g3

]

F2

= V 2(f2h
2 − 6g2)F0 . (25)

Unlike its counter part (23) for F1, this equation for F2 is
sourced by F0. Therefore, F2 cannot be identically zero.
Once F0(h) is given, F2 is determined by this equation
and (7) (with i = 2). While the computation is straight-
forward, the result for F2 is complicated. Hence we show
the structure of the solution for N = 0, 1, 2 without ex-
plicit expressions. Using the leading-order solution,

F0(h) =







A0 exp
(

− 1
2w
)

, (N = 0)
(1 − 2w)A1 exp

(

− 1
2w
)

, (N = 1)
(

1− 4w + 4
3w

2
)

A2 exp
(

− 1
2w
)

, (N = 2)
,

(26)

F2 is shown to have the form

F2(h) =

N+1
∑

Ñ=0

aN,ÑwÑAN exp

(

−1

2
w

)

, (27)

where w = V
√
f3h

2. For eachN , c is determined by (18),
AN is an integration constant, aN,Ñ (Ñ = 0, · · · , N + 1)
are constants determined by the parameters in (12).

DISCUSSIONS

We have shown that, in many theories of gravity in-
cluding general relativity, the Wheeler-DeWitt equation
with the DeWitt boundary condition does not admit a
wave function of the universe that gives non-divergent
correlation functions of h on a = const. hypersurfaces
near the classical big-bang singularity once tensor pertur-
bations around a homogeneous and isotropic closed uni-
verse are taken into account, where a is the scale factor
of the universe and h is the amplitude of tensor perturba-
tion. The correlation functions of perturbations such as
the power spectrum diverge near the classical big-bang
singularity.

On the contrary, we have shown that the Hořava-
Lifshitz (HL) gravity provides a satisfactory DeWitt wave
function when tensor perturbations are included. In the
case of the strict z = 3 anisotropic scaling, we have ana-
lytically given the exact DeWitt wave function. Further-
more, in more general cases with relevant deformations,
we have analytically obtained the DeWitt wave function
near the classical big-bang singularity up to the second-
order in the scale factor. These DeWitt wave functions
in the HL gravity are uniquely determined by the pa-
rameters in the action, the operator ordering and the
quantum number N parameterizing the ground (N = 0)
and excited (N = 1, · · · ) states of the perturbations.
As a consistency check, we have shown that the DeWitt
wave function in the HL gravity correctly reproduces the
scale-invariant power spectrum of perturbations that was
found previously in [19].

We have restricted our consideration to only one mode
of the tensor perturbations after the harmonic expansion
(3). If we take into account other modes and if impose
the boundary condition (7) for all of them then the alge-
braic equation (18) determining c will be modified. By
demanding the positivity of c, we then obtain a theoret-
ical constraint on the operator ordering parameter p. It
is certainly worthwhile studying this issue in more detail
in future work.

It is known that the wave function of the universe in
homogeneous and anisotropic models tends to vanish to-
wards the classical big-bang singularity (see e.g. [33]). It
is also known that a Bianchi IX spacetime in the small
anisotropy limit corresponds to a closed FLRW spacetime
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with a particular mode of tensor perturbation. There-
fore our result in GR suggests that in the Bianchi IX
minisuperspace the wave function should spread over the
space of anisotropies, i.e. the anisotropies are not sup-
pressed [36]. Indeed, eq. (8) of [33] would correspond to a
complex value of c and (8) still suggests that the tensor
mode corresponding to homogeneous anisotropy is not
suppressed. Furthermore, nonlinear completions of gen-
eral tensor modes, forming the full set of gravitational
degrees of freedom without any symmetries, do not fit
into the Bianchi IX minisuperspace and are also unsup-
pressed, rendering the description based on GR broken
at the classical big-bang singularity.

In this Letter we have focused on the analytical in-
vestigation of the DeWitt wave function in vacuum. We
leave the numerical estimation, the effect of the inclusion
of matter fields and the detailed discussion of the inter-
pretation of the cosmic wave function for future work.
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