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1 Introduction

The idea of the black hole uniqueness started with the seminal work of Israel [8]. The topic

was heavily investigated for over fifty years now with a notable results from Hawking [6],

Carter [1], Robinson [18], Mazur [17], Chruściel and Wald [3]. For the modern review, see

[2].

Killing horizons, which are central objects in virtually all uniqueness theorems, can be di-

vided into two categories: non-degenerate or degenerate (extremal) ones, on which Killing

vector fields are affinely parametrized. This second type required separate analysis, in par-

ticular solving the infamous Near Horizon Geometry equation (1.5). In this paper we will

focus entirely on the degenerate case, albeit from a different perspective: given a solution

to (1.5), in what ways can we extend it to the bulk?

The question of the black holes’ uniqueness changes drastically when one introduces a cos-

mological constant. Indeed, there is a plethora of static solutions to the Einstein-Maxwell-Λ

equations which are asymptotically AdS, and they do not possess any spatial symmetry [7].

On the other hand, it may be shown that the only static NHG with the electromagnetic field

is given by the extremal Reissner-Nordström-(A)dS [11], thus suggesting that the extremal

case is more rigid when Λ 6= 0. We will further strengthen this result, showing that the

first-order deformations must be spherically-symmetric as well.
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1.1 Near Horizon Geometry limit

On the neighborhood of the extremal horizon, one can introduce a null gaussian coordinate

system in which the metric reads:

g = 2dv

(

dr + rhadx
a +

1

2
r2Fdv

)

+ γabdx
adxb, (1.1)

where the horizon is located at r = 0, xa are coordinates on the cross-section (a sphere, in

our case) and F, ha, γab depend upon r and xa only. The Killing vector field is given by ∂v.

Maxwell field around r = 0 admits a similar form1:

F = Ψdv ∧ dr + rWadv ∧ dxa + Zadr ∧ dxa +
1

2
Babdx

a ∧ dxb, (1.2)

where Ψ,Wa, Za, Bab are smooth and depend only upon r, xa.

We may now consider a one-parameter family of diffeomorphisms

φǫ(v, r, x
a) = (ǫ−1v, ǫr, xa) (1.3)

for ǫ > 0. Quite remarkably, objects g(ǫ) := φ⋆
ǫg and F(ǫ) := φ⋆

ǫF possess well-defined

limit when ǫ → 0. Since φǫ is no longer diffeomorphism in this limit, it may be an entirely

new (yet much simpler) solution to the Einstein-Maxwell equations. Indeed, we can write

those limits as

lim
ǫ→0

φ⋆
ǫg = 2dv

(

dr + rh(0)a dxa +
1

2
r2F (0)dv

)

+ γ
(0)
ab dx

adxb

lim
ǫ→0

φ⋆
ǫF = Ψ(0)dv ∧ dr + rW (0)

a dv ∧ dxa +
1

2
B

(0)
ab dx

a ∧ dxb,

(1.4)

where all objects h
(0)
a , F (0),Ψ(0),W

(0)
a , B

(0)
ab are now r independent, and they are given by

the limits as r → 0 of associated objects in the original spacetime. Einstein-Maxwell

equations in this setting read

R
(0)
ab =

1

2
h(0)a h

(0)
b −D(ah

(0)
b + Λγ

(0)
ab + 2BacB

(0) c

b +
2

D − 2
γ
(0)
ab Ψ

(0)2 −
1

D − 2
γ
(0)
ab B

(0)2

(1.5)

F (0) =
1

2
h(0) 2 −

1

2
Dah(0)a + Λ− 2

D − 3

D − 2
Ψ(0)2 −

1

D − 2
B(0)2 (1.6)

W (0) = dΨ(0) (1.7)

dB(0) = 0 (1.8)
(

Da − h(0)a

)

Ψ(0) +
(

Db − hb(0)
)

Bba = 0, (1.9)

where D is the number of spacetime dimensions, Da is the covariant derivative associated

with γ(0) and all indices are lowered and raised using γ(0). Those equations, although easier

than the full set of Einstein-Maxwell equations, are still being studied, especially in 4 and 5

dimensions. Nevertheless, significant results were achieved. For example, in four dimensions

1Einstein equations implies that Fva pull-backed to the horizon vanishes
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they allowed to classify all possible topologies of the horizons in the vacuum case [4], also

all axially-symmetric solutions were found [13]. In higher dimensions (first considered in

[14]) much less is known because those equations are much less restrictive. For a recent

review, see [12].

1.2 Deformations

In [15] it was proposed to systematically study extremal black holes in the small ǫ limit and

equations for the first order terms were derived. They were generalized to include matter

fields in [5, 16]. They can be obtained from the Einstein-Maxwell equations satisfied by

(g(ǫ), ǫ) and differentiating them with respect to ǫ. Those equations, although linear, are

rather lengthy and not especially illuminating. Their special case is presented below as

(2.9) and (2.10). Interested readers should consult original papers on the topic.

One could naively think that those results are valid only in linearized gravity, since they

involve expansion in the small parameter. However, these equations also appear as part of

the exact constraints on the characteristic Cauchy data defined on a degenerate (extremal)

Killing horizon [8], (or, more generally, on an extremal isolated horizon that is Killing to the

appropriate order). The knowledge of this connection is necessary to obtain a well-posed

characteristic initial value problem. On the other hand, one could truly interpret solutions

to (2.9) and (2.10) as zero-modes living on the background of the near-horizon geometry.

Thus, they could be of some interest in the holographic context.

The rest of the paper is organized as follows: in Sec. 2 we present the most general

deformation and sketch reasoning behind the derivation. We discuss its properties in Sec.

3. Technical details are relegated to the Appendix A.

2 Classification of the transverse deformations

2.1 Background

We consider the following solution to the Einstein–Maxwell equations2:

g = 2dv

(

dr +
1

2
r2Fdv

)

+ r2+

(

dx2

1− x2
+ (1− x2)dφ2

)

F = Ψdv ∧ dr,

(2.1)

where Ψ = − Q

r2
+

, Q is an electric charge, F = Λ−Ψ2 and r+ is an area radius of the horizon.

They satisfy
1

r2+
= Λ+Ψ2 (2.2)

and so

r+ =

√

2Q2

1±
√

1− 4Q2Λ
. (2.3)

Solution (2.1) can be obtained as a near-horizon limit of the extremal Reissner–Nordström-

(A)dS black hole. It will serve a rôle of the background for the horizon deformations (which

2Notice that for simplicity we changed notation with respect to the previous Section
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can be seen as well as a zero-modes in this spacetime). For future convenience, let us denote

metric induced on the surfaces r, v = const. as q = r2+q̊. We will denote geometrical objects

associated with q̊ by a small circle.

A few remarks are in place:

(i) It is clear that when Λ > 0, there is an upper bound on the charge. It should not

come as a surprise, since the mass is bounded as well.

(ii) When Λ > 0, for the given charge, there are two possible values of r+. Indeed,

generically, a Reissner–Nordstrom-dS black hole posses three horizons. Extremal case

corresponds to the merger of either two of those.

(iii) Solution (2.1) is not the most general spherically symmetric near horizon geometry

in the Einstein–Maxwell theory, since one could employ magnetic field as well. The

general case reads:

g = 2dv

(

dr + r2(Λ−Ψ2 −
1

2
BabB

ab)dv)

)

+ r2+

(

dx2

1− x2
+ (1− x2)dφ2

)

F = Ψdv ∧ dr +
1

2
Babdx

a ∧ dxb,

(2.4)

where Bab = Qmǫ̊ab and the radius is given by

1

r2+
= Λ +Ψ2 +

1

2
BabB

ab. (2.5)

However, the latter can be obtained from the former by a simple dual symmetry:

Q 7→
√

Q2
e +Q2

m

F 7→
qe

√

Q2
e +Q2

m

F −
Qm

√

Q2
e +Q2

m

⋆F ,
(2.6)

where ⋆ is a Hodge dual associated with g. Since this field rotation is a symmetry of

Einstein–Maxwell theory, we can assume Bab = 0 without loss of generality. Indeed,

one can simply apply dual transformation to the deformed solution, which would

transform background and deformation separately.

(iv) In higher dimensions, the aforementioned magnetic term breaks the spherical sym-

metry, since there is no spherically symmetric two-form Bab on S
d when d > 2. Thus,

our choice shall allow for a simpler generalization to the higher-dimensional horizons.

We will discuss in more details in the Sec. 3.

2.2 Deformations

We can now consider transverse deformations of (2.1). Our discussion will follow closely

the derivation of [16] with a small changes in notation. At the leading order, the general

form of the deformation is

δg = r3F (1)dv2 + 2r2h(1)a dvdxa + rγ
(1)
ab dx

adxb

δF = rΨ(1)dv ∧ dr + r2W (1)
a dv ∧ dxa + Z(1)

a dr ∧ dxa +
1

2
rB

(1)
ab dx

a ∧ dxb.
(2.7)
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All terms written above are r and v independent. Data (F (1), h
(1)
a ,Ψ(1),W

(1)
a , B

(1)
ab ) can be

obtained algebraically from γ
(1)
ab , Z

(1)
a as follows:

h(1)a = −
1

2
Dbγab +

1

2
Daγ + 2ΨZ(1)

a

F (1) = −
1

3
Dah(1)a −

1

6
(Λ−Ψ2)γ −

2

3
ΨΨ(1)

Ψ(1) = DaZa −
1

2
Ψγ(1)

W (1) =
1

2
dΨ(1)

B(1) = dZ(1),

(2.8)

where γ(1) = qabγ
(1)
ab . From the Einstein equations, the remaining equation for γ

(1)
ab follows3

0 = ∆Lγ
(1)
ab +

1

2
D(aDb)γ

(1) − 2Ψ2

(

γ
(1)
ab −

1

2
γ(1)qab

)

+ 4Ψ

(

D(aZb) −
1

2
DcZcqab

)

, (2.9)

where ∆Lγ
(1)
ab = −1

2∆γab + R
(

γ
(1)
ab − 1

2γ
(1)qab

)

is a Lichnerowicz operator associated with

qab and ∆ = qabDaDb. Notice that these equations are automatically traceless. Maxwell

equations on Za on the other hand read:

0 = ∆Z(1)
a −

1

r2+
Z(1)
a − 4Ψ2Z(1)

a − 2FZ(1)
a +ΨDbγ

(1)
ab −

3

2
ΨDaγ

(1). (2.10)

Our theory can be regarded as a linearized gravity, and thus it enjoys a large group of gauge

transformations:

δg 7→ δg + Lξg

δF + LξF .
(2.11)

Since we consider a very specific form of δg, δF , vector fields ξ generating gauge transforma-

tions must preserve it. It is quite a severe restriction, the most general allowed ξ (modulo

isometries of f) is:

ξ = −
1

2
f∂v +

1

2
rDaf∂a, (2.12)

where f = f(xa) is an arbitrary smooth function on a sphere. Geometrically, gauge sym-

metry is equivalent to the freedom in choosing a cross-section v = 0 of the horizon. Action

of ξ can be explicitly written as

γ
(1)
ab 7→ γ

(1)
ab +DaDbf

h(1)a 7→ h(1)a −
1

2
FDaf

F (1) 7→ F (1) +
1

2
+

1

2
DafDaF

Ψ(1) 7→ Ψ(1)

Z(1)
a 7→ Z(1)

a +
1

2
ΨDaf.

(2.13)

3Notice that those equations are already evaluated at the background of (2.1) and thus are much simpler.
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It is easy to check that the equations of motion are invariant with respect to those transfor-

mations. Thus, it may be concluded that Eq. (2.9) and (2.10) are undetermined. However,

it was shown in [5] that they become elliptic once properly gauged (see [15] for a proof

in the absence of an electromagnetic field). It follows from the Fredholm theory that the

moduli of solutions (up to the gauge transformations) is finite dimensional. One globally

available gauge condition is γ(1) = const. However, we will not impose it but rather work

with gauge invariant potentials for (γ
(1)
ab , Z

(1)
a ) from the start.

2.3 Solutions

In this section we will write down the solutions to Eq. (2.9) and (2.10) and discuss when

they exist. Derivation, which is quite lengthy, is redirected to the Appendix A.

The most general solution to the Eq. (2.10) is:

γ
(1)
ab = −2

(

ǫ̊c(aD̊b)D̊
c
)(

∆̊− 2
)

χ+

(

D̊aD̊b −
1

4
qab(∆̊− 2)

)

Φ+ D̊aD̊bf

Za = −ΨǫacD̊
c(∆̊ + 2)χ+

1

2
ΨD̊af,

(2.14)

where D̊ is a covariant derivative associated with q̊, ∆̊ = q̊abD̊aD̊b and χ does not have

l = 1 components in the decomposition on the spherical harmonics4, it means

∫

S2

Y ⋆
1mχ = 0. (2.15)

Moreover, notice that l = 1 component of Φ and l = 0 component of χ do not affect

(γ
(1)
ab , Z

(1)
a ) and thus we will set them to zero for simplicity. Inserting those solutions to

(2.9) leads to

(

∆̊− 2 + 8r2+Ψ
2
)

Φ = const.

∆̊
(

∆̊− 2 + 8r2+Ψ
2
)

χ = 0
(2.16)

Thus, there is always a Φ = const. solution. For generic Q,Λ operator
(

∆̊− 2 + 8r2+Ψ
2
)

is invertible, and thus it is the only solution. It is not invertible only when

4Q2Λ = 1−

[

l(l + 1)− 2

4

]2

(2.17)

for l ≥ 2 in which case χ and φ can be arbitrary linear combinations of spherical harmonics

with given l number.5 Notice that when l = 2, one obtains Λ = 0 and Λ < 0 whenever l is

larger.

Thus, we can formulate our main result:

4from now by l — components we will mean components in the aforementioned decomposition
5Notice that we excluded l = 1 case earlier on and l = 0 does not contribute anything new.
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Theorem 1. All solutions to the system of equations (2.9) and (2.10) are of the form:

γ
(1)
ab = −2

(

ǫ̊c(aD̊b)D̊
c
)(

∆̊− 2
)

χ+

(

D̊aD̊b −
1

4
qab(∆̊− 2)

)

Φ+ D̊aD̊bf

Za = −ΨǫacD̊
c(∆̊ + 2)χ+

1

2
ΨD̊af,

(2.18)

where

• χ = 0,Φ = c when Λ > 0

• χ =
∑2

m=−2 a2mY2m,Φ = c+
∑2

m=−2 b2mY2m when Λ = 0

• χ =
∑l

m=−l almYlm,Φ = c+
∑l

m=−l blmYlm when 4Q2Λ = 1−
[

l(l+1)−2
4

]2
for l ∈ N>2

• χ = 0,Φ = c when Λ < 0 and not included above,

where alm, blm, c are constants and f is an arbitrary function which does not encode any

physical degrees of freedom.

Moreover, a necessary condition for the horizon to be still a marginally outer trapped surface

(MOTS) after deformation is [15]
∫

S2

γ(1) > 0 (2.19)

which implies c > 0.

3 Discussion

3.1 Physical interpretation

Stationary spacetime is static when its time-like Killing vector is hypersurface orthogonal,

it means

K[a∇bKc] = 0. (3.1)

In the case of linear deformations on the static background6, it reads (up to the first order

in ǫ)

dh(1) = 0

dF (1) = 0.
(3.2)

It can be checked that this is equivalent to χ = 0. Thus, when non-trivial deformations

exists, we still can have static spacetimes. It would be of interest to find such solutions.

For simplicity, one could restrict themselves to the axially symmetric case (it means that

Φ is a linear combination of a constant and of Yl,m=0 spherical harmonic). Unfortunately,

when Λ 6= 0 standard techniques of finding static, axially symmetric solutions do not work

and so it is highly non-trivial task. On the other hand, it could be reasonably simpler to

find them numerically around the horizon.

6In fact, it may be shown that (2.4) is the most general static, degenerate Killing horizon in Einstein-

Maxwell theory [11]
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So far we were mainly focused on the non-generic case. Perhaps more interesting case is

the generic one in which only the spherically symmetric deformations exist. It suggests

(although does not prove!) that certain spacetimes (e.g. Ernst ones) cannot be generalized

to the case of non-vanishing cosmological constant. In particular, a stationary embedding

of the electrically charged Reissner-Nordström black hole into the magnetic field7 seems to

be excluded. Of course, it may happen that such spacetimes exist, but their leading-order

deformations are just spherically symmetric. Nevertheless, it is a noticeable difference in

contrast to the Λ = 0 case.

In the asymptotically flat setting, one could also have Majumdar-Papapetrou spacetime,

which describes multi-centered extremal black holes in which gravity and electromagnetism

balance each other. As checked in [16], their leading-order deformation is exactly spheri-

cally symmetric, so our result cannot tell anything about the existence of such black holes8.

It seems from this discussion that it is worth investigating is going beyond the first order

perturbation in ǫ. The extremely simple form of the solutions in the first order (at least, for

generic values of charge) encourages one to go beyond that. If the spherical symmetry per-

sisted, it would be a rather strong argument for the uniqueness of the Reissner-Nordström-

(A)dS spacetimes. We plan to address it in the future work.

3.2 Connection to the previous work

As already mentioned, the systematic study on the extremal horizons’ transverse deforma-

tions was initiated in [15] with further developments in [5, 10, 16]. In particular, in [16] all

axially symmetric deformations, which consists a 3-dimensional family (including spheri-

cally symmetric one), of Reissner–Nordström were found.

We were able to remove this symmetry assumption in our work, discovering 11-dimensional

space of allowed deformations. Obviously, since Eq. (2.9) and (2.10) are linear, one can

superpose solutions which are axially symmetric with respect to the different choices of

axis. (Whether they are realized as a solution to the non-linear Einstein-Maxwell equations

is an entirely different matter, which lies beyond the scope of this work.) However, they

span only 7-dimensional space, and thus they do not cover all solutions presented here.

Unfortunately, we are not aware of any extremal black holes solutions without spatial sym-

metry, so we do not know whether those linearized deformations can be embedded into

the non-linear solution. Of course, from the rigidity theorem, it follows that such solutions

could not be asymptotically flat. Axially-symmetric case is much better understood and

large portion of the solutions space was embedded (into Ernst solutions and very special

cases of Kerr-Melvin ones).

The problem of finding solutions to (2.9) and (2.10) with non-zero cosmological constant

and charge were not investigated so far in the literature9. Since for generic charge we

7Note that generic Reissner-Nordström-Melvin suffer from the conical singularity and thus are excluded

since we are working with smooth objects from the first.
8In fact, multi-centered black hole solutions with Λ > 0 are known [9]. However, they do not possess

any Killing vector and thus are excluded from our analysis.
9Having finished this work, we were informed by James Lucietti about his unpublished result regarding

classification of the axially-symmetric deformations of the Reissner-Nordström-(A)dS black holes which
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find only spherically symmetric deformations, there is no problem with an embedding into

well-known solutions. Much more interesting are backgrounds with non-generic charges,

since they admit a plethora of deformations. Unfortunately, we are not aware of any exact

solutions to the Einstein-Maxwell equations in which such particular values of charges were

distinguished, so for now their meaning is rather obscure. Even if they exist, they seem to

be highly non-generic, even for the standards of the extremal black holes, in vast contrast

with the Λ = 0 case. Perhaps this work could serve as a suggestion that this fine-tuning is

needed for constructing new interesting solutions.

3.3 Generalizations and further work

3.3.1 Higher dimensional horizons

For now we restricted ourselves only to the four-dimensional spacetimes. Nevertheless,

equations for the deformations in the Einstein–Maxwell theory were derived in an arbitrary

dimension [16]. It can be easily seen that

γ̃ab = γab +
2

Ψ
D(aZb) (3.3)

is still a gauge invariant quantity10. Hodge decomposition on Sd reads

Za = Dbωab +Daf, (3.4)

where ωab is a gauge-invariant two-form (defined up to the term which is ⋆d⋆-exact). It

seems that one could rewrite all equations using those invariant objects and hopefully solve

them again due to the simplicity offered by a spherical symmetry. We hope to address it

in the future.

Moreover, in higher-dimensional theories different matter fields could be included (e.g.

Chern-Simons term in odd-dimensional ones), those were described in detail in [5]. Of

course, one should start by investigating the simplest possible horizons, it means those

which cross-sections are maximally-symmetric. In particular, in d = 5, all homogenous

horizons in the Einstein-Maxwell-Chern-Simons theory were classified in [12].

3.3.2 Beyond spherical symmetry

Our arguments so far depend heavily upon the assumption of the spherical symmetry of

the background. Obviously, the most interesting background would be Kerr-Newman-(A)dS

which is only axially symmetric. Unfortunately, we were not able to construct gauge in-

variant quantities like γ̃ab above. Instead of looking for them, one could split γab, Za into

Fourier modes with respect to the Killing vector field ∂φ. This reduces the problem to

the system of (undetermined, due to the gauge symmetry) ODEs11. Unfortunately, solving

such a system is again a non-trivial task. In the background of both Kerr and Kerr-AdS

agrees with the solutions presented here.
10It would be still true if one omitted symmetrization in DaZb. Such non-symmetric γ̃ab may be proven

to be more useful.
11Indeed, investigation of the axially symmetric deformations of the Kerr-AdS in [16] relies exactly on

this
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it was shown that the only axially symmetric solutions are gauge equivalent to the Kerr

and Kerr-AdS itself, respectively. It would be of interest from the point of view of both

AdS/CFT correspondence and uniqueness of black holes to determine whether this is still

true without additional symmetry assumptions.
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A Technical details

In this Section we will describe in more details how Theorem 1 can be derived. For simplicity,

we will omit subscript (1).

Let us start by a simple observation that a quantity

γ̃ab := γab −
2

Ψ
D(aZb) (A.1)

is gauge invariant. Moreover, we have Hodge decomposition of Za:

Za = ΨǫacD
cS +ΨDaf (A.2)

in which f is pure gauge and S is gauge-invariant. (Since Ψ is a non-vanishing constant, it

can multiply both terms without loss of generality.) For simplicity, we will multiply both

Eq. (2.9) and (2.10) by r2+. In this way we describe everything in terms of geometrical

objects associated with q̊ab. Inserting γ̃ab to (2.10) leads to

ΨD̊b

(

γ̃ab −
3

2
γ̃q̊ab

)

= −2
(

∆̊δbc − δbc − D̊aD̊
b
)

Zb, (A.3)

where ˜gamma = qabγ̃ab. Since the left-hand side is gauge-invariant, so must be the right-

hand one. Indeed, it is equal to −2ΨǫabD
b∆̊S. Any γ̃ab −

3
2 γ̃qab satisfying this equation

can be uniquely decomposed into the trace-free and divergence-free part, since there are

no non-vanishing trace-free, divergence-free symmetric tensors on S2. The most general

divergence-free tensor can be written as:

sab =
(

D̊aD̊b − (∆̊ + 1)q̊ab

)

Φ. (A.4)

Notice that q̊absab is an arbitrary function with an exception that it does not possess l = 1

components, which follows from the following

Lemma A.1. Let sab = s(ab), D̊
asab = 0. Then

∫

S2

Y ⋆
1mq̊absab = 0. (A.5)
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We will prove this lemma by contradiction. We already constructed solutions with an

arbitrary trace without l = 1 components, so we can assume without loss of generality that

q̊absab =: b has only a dipole part. Then, Dbf is a conformal Killing vector field on S2 and

D̊aD̊bf =
1

2
∆̊f q̊ab. (A.6)

Let us calculate:

D̊a
(

sabD̊
bf
)

= sabD̊
aD̊bf =

1

2
s∆̊s. (A.7)

Integrating this expression on S2 we obtain

0 =

∫

S2

D̊a
(

sabD̊
bf
)

=

∫

S2

1

2
s∆̊s = −

1

2

∫

S2

D̊asD̊as (A.8)

Thus we conclude that s = const. = 0. This proves this lemma and shows that (A.4) is

the most general divergence-free symmetric 2-expression. We are thus left with a task of

finding any solution to the non-homogenous problem. Natural ansatz is

sab = 2D̊(aǫb)cU (A.9)

which leads to

ǫbcD̊
c(∆̊ + 2)U = −2ǫbcD̊

c∆S, (A.10)

which can be solved by

U = 2∆̊χ

S = −(∆̊ + 2)χ
(A.11)

unless S has a non-vanishing dipole part. This case can be excluded in the way very similar

to the Lemma A.1. Indeed, without loss of generality, we may assume that S has only

dipole part. Then, −2ǫbcD̊
c∆S =: Kb is a Killing covector field and let D̊asab = Kb. One

can easily calculate:

D̊a
(

sabK
b
)

= K2 (A.12)

Integrating both sides, we get K2 = 0. Thus, the most general solution to (2.10) is

γ̃ab −
3

2
γ̃qab = −4̊ǫc(bD̊a)D̊

c∆̊χ+
(

D̊aD̊b − q̊ab(∆̊ + 1)
)

Φ

Za = −ΨǫabD̊
b(∆̊ + 2)χ.

(A.13)

After an easy algebra, one gets (2.14). Inserting it to (2.9) leads to

(

D̊aD̊b −
1

2
qab∆̊

)

W (Φ) +
(

ǫ̊c(bD̊a)D̊
c
)

V (χ) = 0, (A.14)

where

W (Φ) =

(

−
1

4
∆̊ +

1

2
− 2r2+Ψ

2

)

Φ (A.15)

V (χ) = ∆̊
(

∆̊− 2 + 8r2+Ψ
2
)

χ (A.16)
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Taking two divergences of (A.14) leads to

0 =
1

2
∆̊(∆̊ + 2)W (A.17)

which holds only when W is a linear combination of l = 0 and l = 1 spherical harmonics

and then
(

D̊aD̊b −
1

2
q̊ab∆̊

)

W = 0 (A.18)

is automatically satisfied and one is left with

(

ǫ̊c(bD̊a)D̊
c
)

V = 0. (A.19)

Multiplying by ǫ̊ b
d leads to

2

(

D̊aD̊d −
1

2
q̊ad∆̊

)

V = 0 (A.20)

and so also V is a linear combination of l = 0 and l = 1 spherical harmonics. However, we

already deduced that χ cannot have l = 1 components and its l = 0 component was set to

zero and thus V = 0. Also l = 1 part of Φ is meaningless and thus W = const. which leads

to (2.16).
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