
ar
X

iv
:2

11
1.

01
00

5v
1 

 [
he

p-
th

] 
 1

 N
ov

 2
02

1
YITP-21-110

Solving information loss paradox via Euclidean path integral
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The information loss paradox associated with black hole Hawking evaporation is an unresolved
problem in modern theoretical physics. In this paper, we revisit the entanglement entropy via the
Euclidean path integral (EPI) of the quantum state and allow for the branching of semi-classical
histories along the Lorentzian evolution. We posit that there exist at least two histories that con-
tribute to EPI, where one is an information-losing history while the other is information-preserving.
At early times, the former dominates EPI, while at late times the latter becomes dominant. By
so doing we recover the essence of the Page curve and thus the unitarity, albeit with the turning
point, i.e., the Page time, much shifted toward the late time. One implication of this modified Page
curve is that the entropy bound may thus be violated. We comment on the similarity and difference
between our approach and that of the replica wormholes and the island conjecture.

Introduction The information loss paradox of
black holes [1] is an unresolved problem in modern
theoretical physics. This paradox implies a contradic-
tion between general relativity (GR) and local quan-
tum field theory (QFT) [2, 3]. There have been at-
tempts to solve the paradox within GR and QFT. For
example, the ‘soft hair’ proposed by Hawking, Perry
and Strominger [4] invokes the BMS symmetry within
GR, but it was soon argued that the soft hair can-
not carry information [5, 6]. The ‘firewall’ conjecture
[3], on the other hand, attempts to solve the paradox
by violating GR equivalence principle near the black
hole horizon, but was argued to be problematic [7, 8].
In order to render the black hole evaporation process
unitary, it may be necessary to invoke some unknown
new mechanism or a hidden sector [9–11] that lies out-
side proper GR and QFT. A natural consequence is
that such new element must be derived from quantum

gravity.

It is important to stress that entanglement entropy

is the physical quantity that measures the information
flow from a black hole to its radiation [12]. In this
bipartite system of a black hole and its Hawking radi-
ation, the radiation entropy will increase as the evap-
oration proceeds. On the other hand, the black hole
entropy, known as the Bekenstein entropy, which is
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supposed to describe the black hole’s microscopic de-
grees of freedom, will decrease as the black hole mass
decreases. Then in the middle of the process, the two
versions of the entropy coincide with each other. Page
asserted that the entanglement entropy of the system
is approximately the minimum of the two [13]. This
curve of the evolution of the entanglement entropy,
known as the Page curve, with the turning point, the
Page time, occurring at a time when the black hole
mass reduces to roughly half, plays an essential role
in the investigation of the information loss problem.

In spite of Page’s demonstration in a quantum me-
chanical system, the attempt to derive the Page curve
in GR has failed [14], which is often regarded as the
deficiency of the semi-classical perturbative calcula-
tions in GR. In particular, the decrease of the en-
tanglement entropy after Page time would require
non-perturbative effects in quantum gravity beyond
our current understanding of GR. One possible cir-
cumvention of a full-blown quantum gravity calcula-
tion, which does not yet exist, would be via a new
classical saddle point, e.g., a soliton, deduced from
a valid approximation of quantum gravity, where a
semi-classical tunneling around such a new saddle-
point, e.g., via instantons, might be able to capture
the essence of non-perturbative quantum effects eval-
uated around the original saddle-point. Under this
light, the Page curve would result from nothing but a
transition between those two saddles.

Under this philosophy, that there exist two stages
in black hole evaporation. First, before a modified
Page time, GR and QFT work well and any hidden
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contributions are negligible. After the modified Page
time, however, the hidden contributions are no more
negligible. In fact, it must be dominant at late times.
Otherwise, the contributions via proper GR and QFT
may erase the information.
Inspired by the above thinking, we investigate the

information loss paradox via the Euclidean path in-
tegral (EPI) approach [15]. The EPI formalism is
widely regarded as one of the most promising can-
didates of quantum gravity that can describe a non-
purturbative processes [16]. Though not the final the-
ory, EPI manages to capture the essence of a full-
blown quantum gravity theory by dealing with the
entire wave-function, which includes not only pertur-
bative but also non-perturbative gravity effects [17]
via Wheeler-DeWitt equation [18].
Essential conditions We posit that a successful so-

lution to the black hole information loss paradox must
satisfy the following two conditions during the black
hole evaporation.
1. Multi-history condition: There exist at least two
histories, say h1 and h2, that contribute to EPI, where
h1 is an information-losing history while h2 is an
information-preserving history [19–21].
2. Late-time dominance condition: At early times,
the probability p1 of h1 dominates EPI. At late times,
the probability p2 of h2 becomes dominant.
Here by ”information-losing history” we mean the

semi-classical history of an evaporating black hole in
which the unitary evolution would be lost when the
black hole has completely evaporated. Based on these
two conditions, the entanglement entropy Sent can be
approximately expressed as (we will prove this equa-
tion later)

Sent ≃ p1S1 + p2S2, (1)

where S1,2 is the entanglement entropy of h1,2, re-
spectively. Initially, p2 ≪ p1 ≃ 1 and eventually,
p1 ≪ p2 ≃ 1. S1 increases monotonically or never
approaches zero due to the information-losing nature
of the history [14], whereas S2 eventually decreases to
zero. Therefore, if these two conditions are satisfied,
then the unitary Page curve would be explained, be-
cause the entanglement entropy eventually becomes
zero again at the end. We will demonstrate that EPI
can indeed deliver such a conclusion.
Euclidean path integral Let us focus on the follow-

ing EPI [15]:

〈Ψcl

j |in〉 =
∫

DgDφ e−SE[g,φ], (2)

where |in〉 is the initial state, g is the metric, φ is
a matter field, SE is the Euclidean action, and we
sum over all histories that connect |in〉 with a clas-
sical boundary |Ψcl

j 〉. The final out-state can there-
fore be expressed as a superposition of many classical

t

tunneling

t

FIG. 1: Left: the causal structure of the usual semi-
classical black hole, where the green curve is the trajec-
tory of the collapsing matter, the red curve is the apparent
horizon, and the blue line is the event horizon. Right: the
causal structure after a quantum tunneling at the time
slice t. After the tunneling, matter or information (red
curve) is emitted and the black hole structure disappears.

boundaries [22, 23]:

|out〉 =
∑

j

aj |Ψcl

j 〉, (3)

where aj = 〈Ψcl

j |in〉 is the coefficient of a specific clas-
sical future boundary.
Let h1 be the usual history with a semi-classical

black hole geometry (left of Fig. 1), while h2 is
an information-preserving geometry due to the non-
perturbative tunneling (right of Fig. 1). Under nor-
mal situations the information-preserving geometry is
exponentially suppressed. We will show that such a
history becomes dominant at late times. Since tun-
neling can happen at any time, the histories will con-
tinue to branch out. Eventually, infinitely many his-
tories appear in the out-state, while the in-state is
fixed (Fig. 2) [22, 23].
Thermal thin-shell model In order to realize the

information-preserving history in the EPI approach,
we introduce the thin-shell model [24] without black
hole interiors. We consider a spacetime with spher-
ically symmetric metric: ds2± = −f±(R)dT 2 +

f−1
± (R)dR2 + R2dΩ2. Let a thin-shell be located at
r, which follows the metric ds2 = −dt2 + r2(t)dΩ2.
The region outside the shell corresponds to r < R
(denoted by +), and that inside the shell is R < r
(denoted by −). We impose the metric ansatz for
outside and inside the shell, f±(R) = 1 − 2M±/R,
where M+ and M− are the mass parameters of each
region. We assume M+ > M− = 0, and hence the
inside has no black hole.
The equation of motion of the thin-shell is deter-
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FIG. 2: Conceptual figure for interpretations. h1

is the information-losing history, while h
(1,2)
2 are the

information-preserving history. For any time, histories can
be branched; the tunneling probability must be dominated
at the late time.

mined by the junction equation [24]:

ǫ−
√

ṙ2 + f−(r)− ǫ+
√

ṙ2 + f+(r) = 4πrσ(r). (4)

Here, we impose ǫ± = +1. σ(r) is the tension parame-
ter, where it satisfies the energy conservation relation

σ′ = −2σ (1 + w)

r
, (5)

where w is the equation of state of the shell. w ≥ −1
is necessary for the null energy condition. In general,
we assume the following form of the tension [23]

σ(r) =

n
∑

i=1

σi
r2(1+wi)

, (6)

where σi and wi are constants.

The conditions for the existence of thermal thin-
shell solutions are as follows: there exists a value r0
such that ṙ|r=r0 = 0. This is possible, for example,
if one chooses w1 = 0.5, w2 = 1, and tune σ1,2. This
ensures the asymptotic flatness of the spacetime, and
can thus mimic causal structures of both perturba-
tive and non-perturbative processes due to Hawking
radiation.

Late-time dominance condition For each on-shell
history of EPI, the nucleation rate is Γ ∝ e−2B, where

B = SE (solution)− SE (background) . (7)

Due to the thermal condition, the shell is stationary
in Euclidean signatures. Hence the Euclidean action

is simply

SE = −
∫ √

+gd4x

( R
16π

− V

)

+ σ

∫

Σ

√
+hd3x

−
∫

∂M

K −Ko

8π

√
+hd3x, (8)

where R is the Ricci scalar, V is the vacuum en-
ergy of the matter fields, Σ is the hypersurface
of the thin-shell, and K and Ko are the Gibbons-
Hawking boundary terms at infinity for the solution
and the Minkowski background, respectively [25]. Af-
ter straightforward computations, we obtain 2B =
4πM2

+ [26].
If the shell is static, then the solution has two parts,

one from the bulk integration, 4πM2
+, and the other

from the boundary term at infinity, 4πM2
+. The last

term in Eq. (8) must be cancelled between the so-
lution of the boundary term at infinity and that of
the background. Eventually, one obtains the result
2B = 4πM2

+.
There is an important point in this computation

that we like to emphasize. In general, the Euclidean
time of the background cannot be chosen freely. The
Euclidean periodicity of the solution, on the other
hand, is free to adjust. In principle, as long as the
final boundary remains the same, one can introduce
an arbitrary periodicity for the Euclidean time. One
then obtains the following factorization:

2B = n ((bulk term of solution)

+ (boundary term of solution))

−(boundary term of background), (9)

where n ≥ 1. Interestingly, n = 1 is the most domi-
nant contribution (one can thus ignore higher terms in
general), but the subdominant contributions become
important as M+ decreases. The tunneling probabil-
ity is therefore

∞
∑

n=1

e−S(2n−1) =
1

eS − e−S
, (10)

where S = 4πM2
+.

If one considers only two histories, where one is the
semi-classical black hole and the other is the black
hole with a thermal-shell emission, then the proba-
bility of the history, p1 and p2, respectively, are as
follows:

p1 =
eS − e−S

1 + eS − e−S
, p2 =

1

1 + eS − e−S
. (11)

Interestingly, there is a golden-cross point near S ≃
1 (Fig. 3). Such a golden-cross is actually generic.
That is, even if one does not invoke multiple Euclidean
time-periods, one can still obtain the same qualitative
result of such a crossing, e.g., by assuming the time-
accumulation, etc.
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FIG. 3: Probabilities of the semi-classical history (p1, blue
curve) and histories with thermal-shell emission (p2, black
curve) as a function of the entropy S. For large S, p1 is
dominated; however, there exists a golden cross between
two probabilities, and eventually, p2 is dominated.

Modification of the Page curve A generic quantum
state with two classical histories can be described as
follows: |ψ〉 = c1|ψ1〉 + c2|ψ2〉, where 1 and 2 de-
note two different histories and c1,2 are complex coef-
ficients. The total density matrix ρ is

ρ =

(

|c1|2 c∗1c2
c1c

∗
2 |c2|2

)

. (12)

We assume that after averaging over a long time, the
off-diagonal terms will become less dominated; this is
in accordance with the decoherence condition. With
this assumption, one can write

ρ ≃
(

p1 0
0 p2

)

, (13)

where p1 = |c1|2 and p2 = |c2|2.
Now let us assume that for each |ψ1〉 and |ψ2〉, one

can define subsystems A and B, respectively. Phys-
ically, A corresponds to the subsystem outside the
horizon, while B is that inside the horizon. (If there
is no horizon, then B is empty.) One can then write

|ψν〉 =
∑

i

aν,i|A(ν)
i 〉|B(ν)

i 〉 (ν = 1, 2) . (14)

The entanglement entropy should follow the Shannon
information formula:

S (A|B) =
∑

ν,i

pν |aν,i|2 log pν |aν,i|2 (15)

= p1S1

(

A(1)|B(1)
)

+ p2S2

(

A(2)|B(2)
)

+p1 log p1 + p2 log p2, (16)

where the last two terms are negligible if the number
of degrees of freedom of the system is much greater
than 2. This proves Sent ≃ p1S1 + p2S2.

0.0 0.2 0.4 0.6 0.8 1.0
Srad/S0

0.2

0.4

0.6

0.8

1.0

Sent/S0

FIG. 4: Entropy of emitted radiation Srad/S0 ≡ 1− S/S0

vs. entanglement entropy Sent/S0, where S0 = 3 (black),
10 (blue), 50 (red) are initial black hole entropies, respec-
tively. The purple dashed curve is the usually expected
Page curve, while there exists a region where the curve
is outside the purple dashed triangle region. The thin
red dashed curve is the location of the Page time, i.e.,
dSent/dSrad = 0.

We can finally coin the entanglement entropy as a
function of S as

Sent = (S0 − S)× p1 + 0× p2 (17)

= (S0 − S)

(

eS − e−S

1 + eS − e−S

)

, (18)

where S0 is the initial entropy of the black hole. Here,
for simplicity we assume that the entanglement en-
tropy p1 monotonically increases, while the entangle-
ment entropy p2 goes to zero (because there is no
black hole at the end, Fig. 4). This preserves the uni-
tary of the black hole evolution.
Two salient feature of our new result is at hand.

First, the Page time (thin red dashed curve in Fig. 4)
deviates from Page’s original value. In our theory it
is located much later than the half-way point of the
radiation entropy. Second, at late times, the entangle-
ment entropy can become much greater than what ex-
pected in the conventional Page curve (purple dashed
curve in Fig. 4). This implies that there exists a situ-
ation where the entanglement entropy is greater than
that of the areal entropy. Thus the proposed monster
state or the remnant-like state [10, 27] seems to be re-
alized. However, this is not so surprising if the total
number of states varies as time goes on.
Conclusion In this paper, we demonstrate the

essence of the Page curve through the EPI ap-
proach. This approach can explain the existence of
the information-preserving history, as well as the late
time dominance condition. The original Page curve,
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however, is modified. One implication is that the en-
tropy bound may be violated and at the end of the
evaporation a monster or remnant state [27] would
seem permissible.

At this point, it is worthwhile to compare our re-
sult with the recent remarkable developments in string
theory about the information loss paradox. The ba-
sic idea stems from the gravitational fine-grained en-
tropy that can be computed by quantum extremal
surfaces (QES) [28], i.e., the global minimum among
saddles upon extremizing the generalized entropy. It
was shown [29–32] that in addition to the conventional
saddle, which reproduces Hawking’s result, there ex-
ists another saddle that induces an island region in-
side the black hole horizon. This second saddle with
an island dominates the black hole evolution after the
Page time and leads to the Page curve. It has been
shown that such a contribution from the new saddle
can be reproduced by the replica wormhole [33, 34].

Although our interpretation of the thin-shell tun-
neling shares common features with the island conjec-
ture and the replica wormhole, there exists a clear dif-
ference. The replica wormhole is based on Euclidean
path integral whereas our approach deals with branch-
ing of semi-classical histories along the Lorentzian
evolution. In this sense, our interpretation of thin-
shell tunneling may be more closely connected with
the recent studies in the context of real-time gravita-
tional replica wormholes [35, 36] for the generalization
of the island conjecture and the replica wormholes
with baby universes [37–39]. More detailed compar-
isons of our approach with the replica wormhole ap-
proach, either Euclidean or Lorentzian, are left for
future investigations.
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