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We investigate the role of inhomogeneous field configurations in systems with a spontaneously
broken continuous global symmetry. Spontaneous breaking is usually defined as a specific double
limit, first infinite volume at finite explicit breaking sources, which are then extrapolated to zero.
We consider a different approach in which the order parameter is constrained under the path
integral, which we simulate using lattice Monte Carlo techniques. In this way we access the flat
region of the effective potential and we show that inhomogeneous configurations are dominant
there. We topologically classify the important configurations and measure the excess energy
stored in the inhomogeneities allowing for the definition of a generalized differential surface
tension. We show that this contribution becomes negligible at large volumes restoring the flatness
of the effective potential in the thermodynamic limit.
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1. Introduction

One of the most ubiquitous phenomena in physics is the spontaneous breaking of symmetries.
Examples range from condensed matter to high energy physics and in classical as well as quantum
systems. More directly in quantum field theory prime examples are the Higgs mechanism, the
chiral symmetry breaking of strongly interacting matter or even the Peccei-Quinn mechanism in the
theory of axions.

Furthermore, in all of the above examples in field theories, inhomogeneous order parameters
were also considered. In the Higgs sector this means impurities in the condensate [1–4], while
for axions inhomogeneous miniclusters may exist [5]. In QCD and in lower dimensional similar
models, the very dense strongly interacting matter is expected to form inhomogeneous chiral-spirals
[6–10].

In this work we discuss inhomogeneities, which emerge due to the coexistence of phases
corresponding to different orientations of the order parameter. This coexistence is responsible for
the flatness of the effective potential, which is well described by the formation of bubbles of different
phases when the broken symmetry is discrete. The inhomogeneity of the local order parameter
allows the average order parameter to change continuously between the discrete set of homogeneous
phases, with the excess energy due to the inhomogeneity being stored in the bubble walls. The
flatness of the effective potential in the thermodynamic limit is due to the fact that the surface energy
becomes negligible in the energy density for large volumes. In the case of a continuous symmetry
being spontaneously broken, bubble walls do not form since the local order parameter can change
continuously. In this case we expect spin-wave like structures within the coexistence region of the
effective potential [11, 12]. In what follows we demonstrate this in a simple model, uncovering finer
details of this mechanism as well as introducing a well quantifiable generalization of the bubble
wall surface tension. More details of our results can be found in Ref. [13].

2. The model and the method

We discuss specifically the three dimensional 𝑂 (2) symmetric 𝜙4 model defined by the La-
grangian density

L(𝑥) = 𝑚2

2

∑︁
𝑎

𝜙2
𝑎 (𝑥) +

𝑔

24

[∑︁
𝑎

𝜙2
𝑎 (𝑥)

]2
+ 1

2

∑︁
𝜇,𝑎

[𝜕𝜇𝜙𝑎 (𝑥)]2 , (1)

with 𝑎 = 0, 1 denoting the two components of the scalar field. We investigate the parameter region
where 𝑚2 < 0 and 𝑔 > 0, so the model is in the spontaneously broken phase. Shifting (1) by a
spatially constant, linear explicit symmetry breaking term ℎ𝜙0(𝑥) in the 𝑎 = 0 direction (without
loss of generality) the effective potential of the model has a well defined minimum. The textbook
definition of the value of the order parameter in the spontaneously broken case (denoted by 𝜙min)
is then given by the following limiting procedure. 𝑉−1〈∑𝑥 𝜙0(𝑥)〉ℎ, the expectation value of the
volume average of the field at some value of ℎ is evaluated, slowly removing the explicit breaking,
strictly in the thermodynamic limit. Notice that the removal of ℎ is also driving the system into a
first order type of criticality as the direction of the order parameter depends entirely on the direction
of ℎ. Therefore at ℎ = 0 we refer to the values of the order parameter 𝜙 < 𝜙min regardless of
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direction as being inside the coexistence disk. Our goal is to explore the coexistence disk as well as
to understand and describe the inhomogeneities leading to the flatness of the effective potential in
this region.

The partition function of the system in the presence of the explicit breaking term can be written
as

𝑍ℎ =

∫
[d𝜙𝑎 (𝑥)] exp

{
−
∫

d3𝑥 [L(𝑥) − ℎ 𝜙0(𝑥)]
}
, (2)

which we refer to as the canonical partition function and objects derived from it as being in the
canonical formulation (the corresponding expectation values are denoted by 〈.〉ℎ). The effective
potential is then defined as the Legendre transform of log 𝑍ℎ with respect to ℎ,

Γ(𝜙) ≡ sup
ℎ

(
ℎ · 𝜙 − 1

𝑉
log 𝑍ℎ

)
. (3)

As the microcanonical counterpart, one can define a constrained partition function, where the
volume average of the field is restricted to a certain value (𝜙 in one direction and vanishing in the
other in line with the choice of ℎ in the canonical formulation)

Z�̄� =

∫
[d𝜙𝑎 (𝑥)] 𝑒−

∫
d3𝑥 L(𝑥) 𝛿 (2)

(
1
𝑉

∫
d3𝑥 𝜙𝑏 (𝑥) − 𝜙 𝛿𝑏0

)
. (4)

In the microcanonical formulation one can define the constraint potential Ω(𝜙) = − logZ�̄�/𝑉
as well as expectation values according to Z�̄� (denoted by 〈.〉 �̄�). One can show that in the
thermodynamic limit Ω(𝜙) = Γ(𝜙) [14–16]. Consequently, their respective 𝜙 derivatives also
coincide in and only in the infinite volume limit.

We carry out Monte Carlo lattice simulations according to the constrained partition function
on 𝑉 = 𝐿3 lattices (L={40, 60, 80}), using the model parameters 𝑚2 = −15.143 and 𝑔 = 102.857.
The simulated range of 𝜙 is from 0 to 𝜙 ' 𝜙min. The generation of fixed 𝜙 configurations is done
using a hybrid Monte Carlo algorithm based on [17].

3. Results

We first examine the configurations appearing in the fixed 𝜙 Markov-chains. We find that
configurations giving the dominant contribution to the partition function (and to observables) are
inhomogeneous even after smearing out ultraviolet (UV) fluctuations. The inhomogeneities are one
dimensional, therefore, without loss of generality, we can always choose the 𝑥1 spatial coordinate
to point in that direction. In order to characterize the configurations based on their behaviour in the
𝑥1 direction we define 𝑥1-slices of the field by averaging in the other two directions to suppress UV
fluctuations:

Σ𝑎 (𝑥1)=𝐿−2
∫

d3𝑦 𝜙𝑎 (𝑦) 𝛿(𝑦1 − 𝑥1) . (5)

We find that the magnitude of Σ(𝑥1) is around 𝜙min everywhere, however its direction changes as
a function of 𝑥1. Specifically, an integer winding number 𝑤 can be assigned to each configuration
based on how many times the O(2) group is mapped to the circle corresponding to the periodic
𝑥1 coordinate. Finally, we find that the dominant contributions are coming from configurations
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Figure 1: Examples for the dominant configurations of the constrained path integral in the 𝜙 < 𝜙min region.
The torus represents the𝑂 (2) space and the 𝑥1 coordinate and the curves depict Σ(𝑥1) in the 𝑤 = 1 and 𝑤 = 0
cases. All lines are solid (dashed) when they are in front of (behind) the torus. The example configurations
were generated at 𝜙 ≈ 0.5 on a 𝑉 = 803 lattice.

with 𝑤 = 1 or 𝑤 = 0. Hence, we refer to the two sectors as winding or non-winding cases. An
example pair of configurations is plotted next to a homogeneous configuration in Fig.1, highlighting
the topological aspects. One can see that only the non-winding configuration can be continuously
deformed into a homogeneous one. From a simulational viewpoint, we note that due to the
topological nature of the configurations, tunnelings between the two sectors are rare even when the
relative action differences are small. Later on we see that this is a relevant effect only in a small
window in 𝜙 and that instead it is sufficient to measure observables in separate sectors (denoted by
a 𝑤 index).

The two configuration types can be approximated using a common (up to the winding number)
ansatz motivated by classical solutions of the equations of motion (in the presence of the constraint).
The ansatz assumes a constant length of the field and only the 𝑂 (2) angle depends on 𝑥1.

𝜙 (𝑤) (𝑥1) = 𝜙min · (cos𝛼𝑤 (𝑥1), sin𝛼𝑤 (𝑥1))> , (6a)

𝛼𝑤 (𝑥1) =
2𝜋𝑤𝑥1

𝐿
+ 𝛼lim sin

(
2𝜋𝑥1
𝐿

)
. (6b)

Using the classical ansatz not only the configurations can be fitted well, but certain observables
can also be very well approximated. In Fig. 2 we show the 00 component of the slice correlator
matrix

𝐶𝑎𝑏 (𝑥1) = 〈Σ𝑎 (𝑥1)Σ𝑏 (0)〉 �̄� (7)

in the two topological sectors compared to the convolutions of the respective ansatz functions.
Notice that for the correlators, inhomogeneities survive the ensemble averaging, which one would
not be able to see by looking at e.g. the 1-point function at a certian value of 𝑥1.

We also want to investigate how exactly the inhomogeneities contribute to the flattening of
the effective potential. In the microcanonical formulation we cannot access this quantity directly,
instead we can reconstruct the constraint potential, Ω(𝜙). We use the integral method, by measuring

〈ℎ〉 �̄� ≡ 𝜕Ω(𝜙)
𝜕𝜙

= 𝑚2𝜙 + 𝑔

6𝑉

〈∫
d3𝑥

∑︁
𝑎

𝜙2
𝑎 (𝑥)𝜙0(𝑥)

〉
�̄�

, (8)
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Figure 2: Slice correlators as measured in the winding and non-winding sectors for 𝑉 = 803, at 𝜙 ≈ 0.25.
The respective lines following closely the two datasets are the correlators calculated from the classical ansatz,
where the parameter 𝛼lim was optimized in a least squares fashion.

and integrating with respect to 𝜙. As mentioned earlier, we measure 〈ℎ〉 �̄�,𝑤 in the two sectors
separately, and therefore the constrained potential in the respective sectors is

Ω𝑤 (𝜙) =
∫ �̄�

0
𝑑𝜙′ 〈ℎ〉 �̄�′,𝑤 + 𝑐𝑤 , (9)

where 𝑐𝑤 are integration constants to be set later. The results for 〈ℎ〉 �̄�,𝑤 are shown in Fig. 3, reveal-
ing how the magnetic field approaches zero in the thermodynamic limit from opposite directions
for 𝑤 = 0 and 𝑤 = 1. Notice that the vanishing point of 〈ℎ〉 �̄�,0 is the finite volume estimate for the
edge of the coexistence disk, which can be interpolated with a good precision. The extrapolation to
the thermodynamic limit gives 𝜙min = 0.6899(6).

For the full reconstruction of the constraint potential we need the integration constants 𝑐0 and
𝑐1. The non-winding case can be set simply since this sector connects continuously to the edge
of the coexistence disk. Hence we require that Ω(𝜙min)0 = 0 which sets the value of 𝑐0. In the
winding case we use that a) the dominant configuration type changes at some intermediate 𝜙c, b) the
excess energy compared to Ω(𝜙min) stems from the inhomogeneity of the configurations and can be
characterized by a generalization of the surface tension known from bubble formation. Statement
b) is made formal by introducing the kinetic energy of the sliced fields (again to suppress UV
fluctuations)

𝐸Σ(𝜙) =
1

2𝐿

∑︁
𝑎,𝑥1

〈
[𝜕𝑥1Σ𝑎 (𝑥1)]2〉

�̄�
. (10)

Then we parametrize the excess energy for a 𝜙 where inhomogeneities are already dominant as

Ω(𝜙) = 𝜎 · 𝐸Σ(𝜙) − 𝐸Σ(𝜙min)
𝜙2

min
, (11)
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Figure 3: The magnetic field expectation value 〈ℎ〉�̄�,𝑤 as a function of 𝜙. The gold (purple) points
correspond to measurements in the 𝑤 = 1(0) sector. Also shown is the thermodynamic limit extrapolation of
𝜙min obtained from the intersect of the results with 〈ℎ〉�̄� = 0. The region in the vicinity of 𝜙min is highlighted
by the inset.

where we used that we set Ω(𝜙min) = 0, hence no subtraction is necessary on the left hand side.
Statement b) can then be reformulated as the independence of 𝜎 of both 𝜙 and 𝑤. Notice that for
a discrete symmetry system with a domain wall of characteristic width Δ separating phases with
+𝜙min and −𝜙min, the same formula gives 𝑉Ω = 𝜎 · 𝐿2, where 𝜎 ∝ 1/Δ and the proportionality
factor depends on the precise profile of the wall. Therefore 𝜎 is an appropriate generalization
of the surface tension and we refer to it as differential surface tension. By confirming that 𝜎 is
indeed constant (see Fig. 4)1 we see that the transition from one dominant topological sector to the
other happens where 𝐸Σ,0 = 𝐸Σ,1 and at that point Ω0 = Ω1 as well. This allows us to determine
𝜙c = 0.2818(2) (already extrapolated to the thermodynamic limit) as well as the integration constant
𝑐1 for the reconstruction of the constraint potential in the winding sector.

Finally we reconstruct the full constraint potential, except in the immediate vicinity of 𝜙c.
We can always use the Ω𝑤 of the dominant sector as the other configurations are exponentially
suppressed in terms of relative probabilities. The results are plotted in Fig. 5

4. Discussion

We studied the three dimensional 𝑂 (2) symmetric scalar 𝜙4 model using constrained Monte
Carlo simulations to discuss some general features of spontaneously broken global symmetries. We
found that within the coexistence disk the constrained path integral and the corresponding potential
Ω(𝜙) is dominated by inhomogeneous field configurations. The macroscopic inhomogeneities can

1The errors on the points close to 𝜙min are blowing up , since 𝜎 is obtained as the numerical evaluation of a 0/0 type
limit as the edge of the coexistence disk is approached.
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Figure 4: The differential surface tension as defined in Eq. (11) for three different volumes in both relevant
topological sectors, together with the infinite volume limit, 𝜎 = 0.427(8) (gray band). The insets show each
volume separately to reveal more clearly the independence of 𝜎 of the topological sector. Some of the points
are shifted horizontally for better visibility.
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Figure 5: The constraint potential for different volumes. Regions are labeled based on which configuration
type is dominant there, and correspondingly lines are solid (dashed) in the regions where they are (sub-)
dominant. The potential is consistent everywhere with a flat thermodynamic limit, assuming an 𝐿−2 scaling.
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be described by approximately constant length spin-waves along a certain axis. These configurations
can be assigned into topological sectors based on their winding number 𝑤. While for values close
to 𝜙 = 0 the winding configurations are more important, at an intermediate value 𝜙c, the 𝑤 = 0
configurations become much more likely through a sharp transition. The other 𝑤 sectors are
suppressed everywhere.

We introduced the differential surface tension 𝜎 as a generalization of the usual excess energy
stored in bubble walls for discrete symmetry systems. In continuous symmetry systems bubble
walls do not form since the local order parameter can change continuously. Therefore the excess
energy stored in the inhomogeneity can be captured locally but nevertheless can be characterized
by a global quantity. We show that our definition is independent of 𝜙 and of 𝑤 and allows us to
reconstruct practically the full constraint potential. Since the energy stored in the inhomogeneities
is proportional to the linear length of the system, we show that the constraint potential indeed tends
to the flat effective potential in the thermodynamic limit.
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