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Parity violating (PV) as well as parity and time-reversal invariance violating (PTRIV) effects are
enhanced a million times in neutron reactions near p-wave compound resonances. We present the
calculation of such effects using a statistical theory based on the properties of chaotic eigenstates and
discuss a possibility to extract the strength constants of PTRIV interactions from the experimental
data, including nucleon-nucleon and pion-nucleon CP-violating interactions, the QCD θ-term and
the quark chromo-EDM. PV effects have random sign for all target nuclei except for 232Th, where
PV effects of a positive sign have been observed for ten statistically significant p-wave resonances,
with energy smaller than 250 eV. This may be an indication of a possible regular (non-chaotic)
contribution to PV effects. We link this regular effect to the doublets of opposite parity states in
the rotation spectra of nuclei with an octupole deformation and suggest other target nuclei where
this hypothesis may be tested. We also discuss a permanent sign contribution produced by doorway
states. An estimate of the ratio of PTRIV effects to PV effects is presented. Although a polarised
target is not needed for the measurement of PV effects, for the interpretation of the results, it may
be convenient to do both PV and PTRIV experiments with a polarised target.

I. INTRODUCTION

It was predicted that the effects of parity violation are
enhanced a million times in neutron reactions which oc-
cur near p-wave nuclear compound resonances [1–4]. Ex-
periments performed at the Joint institute for Nuclear
Research in Dubna [5–7] first confirmed this, and further
verification was provided after an extensive experimental
study was undertaken, across several locations, including
the Petersburg Institute of Nuclear Physics, the Joint In-
stitute for Nuclear Research (Dubna), KEK (Tsukuba),
and in Los Alamos, see reviews [8, 9].

The same mechanism of enhancement can also be ex-
tended to effects which violate both parity and time-
reversal invariance (PTRIV) [10–14]. PTRIV effects in
the transmission of polarized neutrons through a po-
larized target have been suggested in Refs. [15, 16].
Currently, experiments measuring PTRIV effects are in
progress, see [17–21].

The neutron forward scattering amplitude can
schematically (think of the lowest order Born approxi-
mation) be represented in the following form:

f(0) = a+ b{s · I}+ c{s · p}+ d{s · [p× I]}, (1)

where s,p and I are the operators for the neutron
spin, neutron momentum and target spin correspond-
ingly. The terms a and b{s · I} govern the strength of
the spin-independent and spin-spin strong interactions,
while c{s · p} and d{s · [p × I]} are responsible for PV
and PTRIV effects. In PV experiments, the number of
neutrons transmitted through the target is measured for
neutrons of positive and negative helicities. In PTRIV
experiments neutron spin s, neutron momentum p and
nuclear spin I are all perpendicular to each other.

For PV effects, although a polarised target is not
needed, for comparison with PTRIV effects it may be
convenient to do both PV and PTRIV measurements

with a polarised target, by changing the orientation of
neutron spin s; for PV measurement s is parallel or an-
tiparallel to the neutron momentum p (correlation (s·p),
with s and p perpendicular to I). As we will show below,
in the case where the spin of the p-wave compound res-
onance is equal to J = I − 1/2, the ratio of PTRIV and
PV effects is reduced to the ratio of the PTRIV and PV
weak interaction matrix elements (in the two-resonance
approximation; in the general case it is the ratio of the
weighted sums of the PTRIV and PV matrix elements).
This looks important since in the case of J = I+1/2 and
for PV effects measured with an unpolarised target, the
ratio of PTRIV and PV effects contains the unknown
ratio of the p3/2 and p1/2 neutron capture amplitudes,
M3/2/M1/2. We will discuss possibilities to measure this
ratio M3/2/M1/2 within the same experimental arrange-
ment.

It is important to note that although nuclear reac-
tions such as scattering and particle decay exhibit T-
odd angular correlations, this alone is not sufficient to
establish time-reversal invariance violation. These cor-
relations may arise due to the phases from strong, weak
and electromagnetic interactions. For example, T-odd
correlations in neutron beta decay are imitated by elec-
tromagnetic interaction in the final state. This is not the
case in forward elastic scattering, as the initial and final
state is the same. A consequence of this is that PTRIV
correlation in neutron transmission cannot be imitated
by scattering phases [22–26]. A discussion of possible
systematic errors and specific schemes to eliminate them
have been presented in Refs. [22, 27–37].

In compound states with several excited particles the
density of energy levels is very high, and the residual
interaction between the particles exceeds the energy in-
tervals. As a result, excited states |n〉 in all medium
and heavy nuclei near the neutron separation energy (as
well as in atoms and ions with several excited electrons
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in an open f-shell) are chaotic superpositions of thou-
sands or even millions of Hartree-Fock basis states |i〉,
|n〉 =

∑
i C

n
i |i〉. For the planning and interpretation of

experiments we need reliable calculations. Although at
first this seems impossible, due to the complicated na-
ture of chaotic compound states, chaos allows us to de-
velop a statistical theory [38–41], similar to the Maxwell-
Boltzmann theory for macroscopic systems, which al-
lows for very accurate predictions. This theory allows
us to calculate the root-mean-squared values of matrix
elements of different operators and the transition am-
plitudes between chaotic states, and processes involving
chaotic compound resonances in nuclei [38, 39, 42–45],
atoms and ions [41, 46–50].

Chaos implies that PTRIV and PV effects have ran-
dom sign, when they are considered in a set of p-wave
compound resonances. Such randomness has indeed been
observed in many nuclei, however there exists a notable
exception: PV effects in neutron capture by the target
nucleus 232Th [9, 51, 52]. These publications found that
for 10 observed statistically significant PV effects in p-
wave resonances with energies below 250 eV the sign of
the PV effect was the same (positive). According to the
interpretation of the experimental data in Ref. [9], PV
effects in 233Th are better described as a linear combina-
tion of the constant effect and random sign effect. The
constant component is slightly bigger and determines the
permanent sign of the PV effects for energies below 250
eV. Above 250 eV, PV effects have both negative and
positive signs. A critical review of suggested explana-
tions of the permanent sign of PV effect in 233Th and
corresponding references may be found in [9, 53].

A possible explanation for the constant sign compo-
nent in PV effects may be due to the octupole defor-
mation in the excited states of 233Th (to avoid misun-
derstanding, note that there is no need for octupole de-
formation in the ground state of this nucleus). This is
compounded by indications of octupole deformation in
the ground states of 226Th and 228Th, while 233Th has
octupole deformation in the fission channel [9, 54, 55],
a property which is used to explain large PV effects in
nuclear fission [2, 56–58]. A permanent sign contribu-
tion to the PV effects may be due to the mixing by PV
interaction of the opposite parity doublet states in the
rotational spectra, which appears in nuclei with octupole
deformation and non-zero spin [59–61].

As known, the third well in the deformation potential
energy corresponds to the octupole deformation (see e.g.
Ref. [62]). Assuming resonances with energy below 250
eV in 233Th are excited compound states built on the
isomer state with octupole deformation, mixing of the
doublet states by the weak interaction may give a no-
ticeable permanent sign contribution to PV effects. Note
that a compound resonance wave function may contain
both types of components, components with octupole de-
formation and components with no octupole deformation
- see e.g. papers on PV in nuclear fission [2, 56–58]. The
distribution function for the masses of fission fragments

has maximum for significantly different fragment masses.
This may be considered as evidence for the octupole de-
formation of components in the compound state wave
function.

Statistical theory predicts mean squared values of the
weak matrix elements, requiring measurements on many
compound resonances in order to extract the strength
constants of the PV and PTRIV interactions with a high
accuracy (PV effects with significance above 1σ have
been detected in ∼ 150 resonances). This may not neces-
sarily be the case for regions of a possible constant sign
effect, and is especially important for the measurements
of the PTRIV effects which are expected to be very small.
A possible outcome may be a limit on the strength con-
stant rather the non-zero value of this constant. Further-
more, the need for polarised targets complicates signifi-
cantly experiments for PTRIV effects. In the case of the
proposed permanent sign effect, it may be sufficient to
measure one or a few resonances to extract quantitative
information about PTRIV interactions. Also, if the dou-
blet mechanism is confirmed, the measurements of PV
effects may be used to search for nuclei with octupole
deformation.

Given this, it seems that performing measurements and
calculations on nuclei which may exhibit a permanent
sign effect may be advantageous. There are two main ar-
eas of proton numbers Z and neutron numbers N where
octupole deformation is expected in the ground state, or
in a low energy isomer state (below the neutron separa-
tion threshold) [63–66]. These areas are the lanthanides
in Z ∼ 56 − 66, N ∼ 88 − 97 (including Ba, La, Ce,
Eu, Gd, Dy and Sm isotopes) and the Z ∼ 88 − 102,
N ∼ 134 − 194 mass region (including Rn, Ra, Ac, Th,
Pa, U, Np, Pu and Cm isotopes). The study of PTRIV
effects requires the target nuclei to be polarised, meaning
isotopes with non-zero spin are necessary. Furthermore,
the stability of the nuclei must be considered, as many
candidate nuclei with an odd number of nucleons are un-
stable, meaning they are not suitable for experiments. It
is also important to note that octupole deformation is
required in the nucleus excited by the neutron capture.
Information regarding octupole deformation can be ex-
tracted from the nuclear rotational spectra presented in
the database [67] (see also [66, 68]). In nuclei with non-
zero spin with octupole deformation, doublets of oppo-
site parity states with the same spin (along the rotational
bands) can be seen. Energy splitting of this doublet in
the ground state typically ranges from 25 keV to 400 keV.
In nuclei with zero spin and octupole deformation, the
negative parity rotational band 1−, 3−, 5−, ... is separated
from the positive parity rotational band 0+, 2+, 4+, ... by
roughly 0.1 - 1 MeV. Note that this is smaller than the
typical excitation energy of octupole vibration which is
∼ 2.5− 3 MeV in most nuclei [69].

Note the energy interval between doublet states in the
case of octupole deformation is never zero, due to the
Coriolis interaction and “tunneling”. In these nuclei, the
splitting of doublet states is dominated by the “tunnel-
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ing” of the octupole bump (excess nucleons on one side)
to the other side of the nucleus, removing a pre-existing
degeneracy between them. As this process is similar to
an octupole vibration mode, there is no sharp bound-
ary between the static octupole deformation in the deep
minimum of the potential energy and dynamical octupole
deformation (low energy octupole excitation) when this
minimum is shallow or flat.

In a compound state this tunneling amplitude may be
small, as tunneling of the nucleon number excess from one
side of the pear shape nucleus to another side has a small
probability to return the system back to exactly the same
intrinsic state of all nucleons, due to a very large number
of the principal components, N ∼ 104, in the compound
state wave function. Due to this possible suppression of
the tunneling amplitude, the energy interval between the
opposite parity doublet states in the compound nucleus
may be significantly smaller than such an interval in the
ground state. Indeed, in the fission channel’s structure,
the energy interval between the opposite parity doublet
states is practically invisible [54, 55].

Several papers [60, 70–76] described in the review [9]
suggested mixing of the doorway states of opposite par-
ity as a source of the permanent sign effect in 233Th. For
example, in Refs. [70–72] the doorway states are two-
particle-one-hole states excited by the first collision of
neutron with nucleus (Ref. [70] also mentioned rotation
and vibration excitations). In section VIII of the present
paper we calculate the doorway states contribution to PV
and PTRIV effects. We treated doorway states as compo-
nents of the nuclear compound states wave functions and
found an additional term, which may have both positive
and negative sign. This term may dominate if the dis-
tance between the s-wave compound resonance and the
p-wave compound resonance is small, |Es − Ep| < d/2,
where d ≈ 20 eV is the interval between compound res-
onances with the same spin and parity (note that such
cases may produce the largest PV effects). This term
may be important for the contribution of any local door-
way states (with energies close to a p-wave compound
resonance). For distant doorway states this term is not
significant, however, the total distant doorway states con-
tribution looks too small to explain the observed constant
sign effect (see discussion in review [9]).

A possible factor of enhancement in the local doorway
mechanisms is the interval between the opposite parity
doorway states, which accidentally happened to be very
small near the neutron threshold in 233Th nucleus. In-
deed, the opposite parity states do not repel each other
and the probability density to have a zero energy inter-
val (E+−E−) is not suppressed. PV effects P have been
measured in 20 nuclei, so in one of them the interval
(E+ − E−) between the opposite parity doorway states
is expected to be 20 times smaller than the average value
of such an interval, and the value of the corresponding
contribution to the PV effect P could be 20 times big-
ger than a typical value of this contribution to P (since
P ∝ 1/(E+−E−)). However, in the case of the doorway-

induced effect, this enhancement is limited if we take into
account the finite spreading width of the doorway states,
which stays in the energy denominator E+−E−+iΓd/2 of
the doorway state contribution to P . According to Ref.
[77], observations indicate Γd ∼100 keV and a distance
between the doorway states of D ∼ 300 keV. Refs. [60, 78]
argue that Γd and D may be smaller.

In other words, the doorway state is just one of N
principal components of the compound state, meaning it
hardly can dominate in the weak matrix element between
opposite parity compound states as N ∼ 104. Indeed, a
sum of N random sign terms increases as N1/2, therefore
one may expect that a single doorway state contribution

is suppressed as N−1/2 ∼
(

d
Γspr

)1/2

relative to the sta-

tistical contribution of all N terms. To overcome this
suppression, the doorway width should be exceptionally
small, Γd < 1 keV, for both opposite parity doorway
states, and both of these states should be in close vicin-
ity, within 1 keV, of the p-wave resonances of interest (see
section VIII of the present paper). Is is not clear if the
probability of such a coincidence is significantly higher
than the probability of ten random sign PV effects hav-
ing the same sign.

This paper is organised as follows. In section II we
present our results for the general expressions for the PV
and PTRIV effects, including the angular coefficients for
both polarised and unpolarised targets. In section III we
use a statistical approach to express the mean squared
values of the matrix elements of the PV and PTRIV in-
teractions by values of PV and PTRIV effects P (de-
fined as the asymmetry in the neutron transmission). In
section IV we provide a brief overview of the statisti-
cal theory of finite systems based on the properties of
chaotic compound states. In section V we use this the-
ory to calculate the mean squared values of the matrix
elements of PV and PTRIV interactions. In section VI
we summarise the experimental results which indicate a
possible regular component in PV effects, using the tar-
get nucleus 232Th. In section VII we present a possible
octupole doublet mechanism for a regular component of
PV and PTRIV effects in neutron scattering. In section
VIII we derive expressions for the doorway states contri-
bution to PV and PTRIV effects. Section IX contains
comments about other potential mechanisms for the per-
manent sign PV and PTRIV effects. In Appendix A, we
present our calculations for the angular coefficients of PV
and PTRIV effects, for both a polarised and unpolarised
target. Appendix B presents a brief overview of the the-
ory used to calculate the root-mean-squared values of the
matrix elements of the PV and PTRIV interactions.
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II. SCATTERING AMPLITUDES FOR PARITY
VIOLATION AND TIME REVERSAL

VIOLATION

A. Brief introduction to parity violation in
compound nuclei

Let us start from a simple qualitative explanation of
the origin of the enhanced parity violating effect. For
simplicity, we will initially assume that nuclear spin is
zero. Resonances which are excited by ` = 0 neutrons
are called s-wave resonances and have positive parity,
while resonances excited by ` = 1 neutrons are called
p-wave resonances and have negative parity. In such a
compound nucleus close to p-wave resonance, the wave
function can be written as

ψ′p = ψp +
∑
s

βsψs, (2)

with the mixing coefficient

βs =
Wsp

Ep − Es
, (3)

where Wsp = 〈s|W |p〉 is the matrix element of the weak
interaction mixing s-wave and p-wave resonances. We
can present the parity violating effect in terms of the
widths of the s-wave and p-wave resonances. Since the
width Γn is proportional to the amplitude squared, the
amplitudes of s and p-wave captures can be represented
as
√

Γns ηs and i
√

Γnpηp respectively where ηs and ηp are

the sign factors of each amplitude (equal to ±1). The
cross section σ is proportional to the square of the am-
plitude:

σ± ∝

∣∣∣∣∣±i√Γnpηp +
∑
s

Wsp

Ep − Es

√
Γns ηs

∣∣∣∣∣ , (4)

where σ± are the cross sections for the positive and neg-
ative helicities. The ± sign in the p-wave amplitude cor-
responds to a positive or negative helicity, see Section
II B. It follows that the longitudinal asymmetry P can
be expressed as [1]

P =
σ+ − σ−
σ+ + σ−

= 2
∑
s

iWsp

Es − Ep

√
Γns
Γnp
, (5)

where the sign coefficients ηs and ηp have been moved
inside the matrix element Wsp. Note, in the standard
defintion of the angular wave functions, Wsp is imaginary.
A proper derivation of (5) including the case of a non-
zero nuclear spin will be presented in Section II B. Here
we assume that the non-resonant part of (σ+ + σ−) has
been subtracted, as it has been done in the PV neutron
transmission experiments.

Upon analysis of (5), two reasons for the enhancement
of the PV effect can be identified. Firstly, in a nucleus
excited by neutron capture, the interval Es − Ep be-
tween the chaotic compound states (resonances) of op-
posite parity is very small. This contribution is labelled
dynamical enhancement, and it enhances the mixing of
these states (by the weak PV interaction between nu-
cleons) by three orders of magnitude. Secondly, the ad-

mixture between the large s-wave amplitudes
√

Γns and

the small p-wave amplitudes
√

Γnp allows neutron capture
in the s-wave channel to contribute to the p-wave reso-
nance. At small neutron energies the s-wave amplitude
is three orders of magnitude larger than the p-wave am-

plitude (
√

Γns /Γ
n
p ∼ 103). This contribution is referred

to as kinematic enhancement. The ratio of the strength
of the weak interaction to that of the strong interaction
is ∼ 10−7. As a result of these two 103 factors acting
together, the factor of enhancement is as large as ∼ 106,
see [1–4, 6].

The relative difference of the neutron cross sections
for positive and negative helicities has been measured in
a range of nuclei. These measurements have been done
in various polarised neutron transmission experiments,
by flipping the neutron spin orientation s from parallel
to anti-parallel to neutron momentum p by a magnetic
field pulse. Once the spin has been flipped, the number
of neutrons passing through a material can be counted,
i.e. measuring the correlation s · p, see e.g. [9]. Further,
there has also been measurements of PV correlations in
neutron radiative capture, (n, γ) reactions. The theory
of these correlations is presented in [3, 4].

B. Calculation of the forward scattering amplitude
with parity violation

In this section, we follow the derivation in Ref. [3], in
which the authors use a resonance diagrammatic tech-
nique to calculate the forward elastic scattering ampli-
tude with parity violation fp.v. Let us consider the parity
violating effects in neutron optics. The angle of neutron
spin rotation around the direction of motion in matter is

ϕ =
2πN0l

k
2 Refp.v, (6)

where N0 is density of the target atoms, l is the neutron
path length, k is the neutron momentum. The differ-
ence in total cross sections ∆σ for right and left handed
polarised neutrons can be expressed in terms of fp.v

∆σ = σ+ − σ− =
4π

k
2 Imfp.v, (7)

The main contribution to the forward elastic scattering
amplitudes comes from mixing by the PV weak inter-
action of the wave functions of compound resonances.
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Other contributions, such as neutron scattering on the
parity violating potential of the nucleus are not enhanced
by small energy denominators, and may be neglected.

We will now present a calculation of this resonance
amplitude. In this derivation, we will skip the summation
over all s-wave and p-wave resonances for brevity. Let nk
denote the neutron’s initial momentum direction and I be
the angular momentum of the initial nucleus. J = I + j
is the spin of the compound resonance and j = l + s
denotes the momentum of the p-wave neutron at which
the capture occurs. Let us begin by writing down the
wave-function of the incident neutron

eikr|χα > =
∑
l,m

4πiljl(kr)Y
∗
lm(nk)Ylm(nk)|χα >, (8)

where |χα > is the neutron spinor with spin projection
α and jl(kr) is the spherical Bessel function. In neutron-
nucleus scattering, the capture amplitude of the neutron
into the s-resonance is

CJJz
IIz

1
2α
ηs
√

Γns (E), (9)

while the capture amplitude of the neutron into the p-
resonance is

∑
jjzm

CJJzIIzjjz
Cjjz

1m 1
2α

√
4π Y ∗1m(nk)iηj

√
Γnpj (E), (10)

where CJJz
IIz

1
2α

is the Clebsch-Gordon coefficient; Γnpj is

the neutron width corresponding to the emission of a
neutron with momentum j and ηs,j = ±1 is, as defined
above, the sign of the amplitude [3]. We further define
the Green function of a compound nucleus

1

E − Ec + 1
2 iΓc

. (11)

Now, in conjunction with the above rules, we may write
the forward elastic scattering amplitude near the s-
resonance [3];

f(0) = − 1

2k
CJJz
IIz

1
2α

√
Γns (E)

1

E − Es + 1
2 iΓs

CJJz
IIz

1
2α

√
Γns (E),

(12)

where −1/2k is the common factor for the scattering am-
plitudes, given the neutron momentum k. Next, sum-
ming over Jz (using the standard relations for the cou-
pling of angular momenta) and averaging over Iz, we ob-
tain the standard Breit-Wigner Formula [3]

f(0) = − 1

2k

gΓns (E)

E − Es + 1
2 iΓs

, (13)

where the factor

g =
(2J + 1)

2(2I + 1)
, (14)

appears after averaging over the initial nucleus’ spin pro-
jections. Performing a similar calculation for the p-wave
resonance yields

f(0) = − 1

2k

∑
jjzm

j̃j̃z ˜̇m

CJJzIIzjjz
Cjjz

1m1
2α

√
4πY ∗1m (nk)

√
Γnpj (E)

× 1

E − Ep + 1
2Γp

CJJz
IIz j̃j̃z

C j̃j̃z
1m1

2α

√
4πY1m̃ (nk)

√
Γn
pj̃

(E),

(15)

which, after summation over Jz and averaging over Iz is
again equal to

f(0) = − 1

2k

gΓnp (E)

E − Ep + 1
2 iΓp

, (16)

where Γnp = Γnp1/2 + Γnp3/2 . Using the above calculations

as guides, we may now write down the forward elastic
scattering amplitude with parity violation

fp.v.(0) = − 2

2k
CJJz
IIz

1
2α
ηs
√

Γns (E)
1

E − Es + 1
2 iΓs

×Wsp
1

E − Ep + 1
2Γp

×(−i)
∑
jjzm

CJJzIIzjjz
Cijz

1m 1
2α

√
4πY1m (nk) ηj

√
Γnpj(E),

(17)

where Wsp is the weak interaction matrix element be-
tween compounds states. Once again, we may sum over

Jz and average over Iz to obtain [3]
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fp.v.(0) = ± 1

2k

2g
√

Γns (E)iWsp

√
Γn
p 1

2

(E)ηsη 1
2(

E − Es + 1
2 iΓs

) (
E − Ep + 1

2 iΓp
) .
(18)

The sign of this expression corresponds to the positive
or negative helicity neutron (respectively). We also note
that the term with j = 3/2 vanishes after summation over
Jz. The sign factor ηsη1/2 can be excluded by means of
the redefinition of the states s and p (i.e. we introduce
it into the matrix element Wsp).

Note that all neutron widths are energy dependent,
and should be taken at neutron energy E. If the energy
E is close to p-wave resonance, then they must take the
form Γns (Ep) and Γnp (Ep).

Equation (18) can now be related to the total cross
section via the optical theorem

σ =
4π

k
Imf(0). (19)

Upon application of the optical theorem to the forward
scattering amplitude with parity violation, we yield the
predicted longitudinal asymmetry (5).

C. Forward scattering amplitude with time
reversal invariance and parity violation

In this section, we will present our calculation of the
forward scattering amplitude of neutron-nucleus scat-
tering with time and parity violation. In the case of
PTRIV effects, the spin of the target nucleus and neu-
tron momentum are perpendicular. As such, it is con-
venient to set the nuclear target spin I along the z-
axis, thus I = Iz. Neutron spin is along x-axis, so the
spinor has equal amplitudes 1/2 and -1/2 along z -axis,
1√
2
[|sz = 1/2〉 + |sz = −1/2〉], and neutron momentum

is along y axis, therefore we substitute θ = π/2 and
φ = π/2 as the arguments of the Y ∗1m(θ, φ) in Eq. (10).
In this case, we have contributions to the capture ampli-
tude from both the s-wave and p-wave resonances, with
a total spin of J = I + 1/2 or J = I − 1/2. We will

make the substitutions Ms =
√

Γns ηs,Mp,j =
√

Γnp,jηj
for brevity. Following the method described above, we
can write the time and parity violating amplitude ft.p.v

ft.p.v = ±1

k

MsW
T,P
sp (α1/2,JMp,1/2 + α3/2,JMp,3/2)(

E − Es + 1
2 iΓs

) (
E − Ep + 1

2 iΓp
) ,

(20)

where the angular coefficients αi.J are

α1/2,J=I+1/2 =
I

2I + 1
,

α3/2,J=I+1/2 = −
√
I(2I + 3)

2(2I + 1)
,

α1/2,J=I−1/2 =
I

2I + 1
,

α3/2,J=I−1/2 = − I

2(2I + 1)

√
2I − 1

I + 1
.

(21)

The calculation of this amplitude is presented in Ap-
pendix A 1. In this amplitude we should sum over s-wave
resonances (if the energy is close to a p-wave resonance).
However, for comparison with Ref. [79] it is instructive to
present the ratio of the two scattering amplitudes ft.p.v

(20) and fp.v (18) taking into account only one s-wave
resonance:

ft.p.v

fp.v
= κ

WT,P
sp

Wsp
, (22)

where the angular coefficient of the ratio κ includes am-
plitudes of the partial neutron widths which depend on
spin channels J = I ± 1/2, and can be determined via
our calculations above;

κ(I ± 1/2) =

(
α1/2,JMp,1/2 + α3/2,JMp,3/2

)
gMp,1/2

, (23)

where g is as defined by Equation (14),

g =
2J + 1

2(2I + 1)
=

{
I+1
2I+1 , J = I + 1

2 ,
I

2I+1 , J = I − 1
2 .

(24)

Hence, calculations yield

κ(I + 1/2) =
I

I + 1
−
Mp,3/2

Mp,1/2

√
I(2I + 3)

2(I + 1)
, (25)

κ(I − 1/2) = 1−
Mp,3/2

Mp,1/2

√
2I − 1

2
√
I + 1

. (26)

Our results for the factors κ(I±1/2) seem to be in agree-
ment with the values calculated by in Ref. [79], however
their calculations do not include the sign factors ηs, ηj
from the amplitudes Ms =

√
Γns ηs and Mp,j =

√
Γnp,jηj

(their results are expressed in terms of
√

Γns and
√

Γnp,j
assuming that both Ms and Mp,j are positive; this as-
sumption is not justified). Ref. [79] limits their cal-
culation to one s-wave resonance. This approximation
is not justified in the case of the statistical theory. Fi-
nally, the experiments measure the relative difference P
of the number of passing neutrons for opposite orienta-
tion of neutron spin. The relative difference contains the
p-wave amplitude in the denominator, which also should
be calculated.
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D. Forward scattering amplitude for parity
violation with a polarised target

Now, in a similar way, we may also calculate the par-
ity violating forward scattering amplitude for a polarised
target. In this case, we require neutron momentum and
spin to be parallel, and both perpendicular to the nu-
clear target spin. Setting once again nuclear target spin
along the z-axis, we have I = Iz. We once again have
neutron spin along the x-axis, meaning the spinor is
1√
2
[|sz = 1/2〉 + |sz = −1/2〉]. However now, we require

neutron momentum to also be along the x-axis, and thus
we substitute θ = π/2 and φ = 0 as the arguments of
the Y ∗1m(θ, φ). Using a similar method to Section II C,
we yield the following for the forward scattering ampli-
tude with parity violation with a polarised target (see
Appendix A 2)

fP
p.v = ±1

k

MsiWsp(δ1/2,JMp,1/2 + δ3/2,JMp,3/2)(
E − Es + 1

2 iΓs
) (
E − Ep + 1

2 iΓp
) , (27)

where the angular coefficients δi.J are

δ1/2,J=I+1/2 = − I + 1

2I + 1
,

δ3/2,J=I+1/2 = − 2I − 1

2(2I + 1)

√
I

2I + 3
,

δ1/2,J=I−1/2 = − I

2I + 1
,

δ3/2,J=I−1/2 =
I

2(2I + 1)

√
2I − 1

I + 1
.

(28)

E. Ratio of PTRIV and PV effects in experiments
with a polarised target

Now we can present the ratio of the PTRIV and PV
forward scattering amplitudes for a polarised target. We
start from the results in the two-resonance approxima-
tion:

ft.p.v

fPp.v
=
WT,P
sp

iWsp

[
α1/2,JMp,1/2 + α3/2,JMp,3/2

δ1/2,JMp,1/2 + δ3/2,JMp,3/2

]
. (29)

Specifically, for J = I + 1/2, we have

ft.p.v

fPp.v
=

WT,P
sp

iWsp

−2I
√

2I + 3Mp,1/2 + (2I + 3)
√
IMp,3/2

2(I + 1)
√

2I + 3Mp,1/2 + (2I − 1)
√
IMp,3/2

,

(30)

while for J = I − 1/2 we have a very simple result,

ft.p.v

fPp.v
= −

WT,P
sp

iWsp
(31)

A more accurate treatment requires summation over s-
wave resonances in the numerator and denominator since
the PTRIV and PV matrix elements are not proportional
to each other (according to our statistical theory calcula-
tion [44], the relative correlator between WT,P

sp and Wsp

is 0.1). Therefore, in the above expressions, we should
make the substitution

WT,P
sp

iWsp
→

∑
sAspW

T,P
sp∑

sAspiWsp
, (32)

where

Asp = 2
1

Es − Ep

√
Γns
Γnp
. (33)

The width Γnp is a common factor and may be cancelled.
However, after statistical averaging the ratio of PTRIV
and PV effects for J = I − 1/2 will again be given by
a simple expression containing only root-mean-squared
values of the PTRIV and PV matrix elements (see be-
low). Eq. (31) is also valid for the octupole doublet and
doorway state mechanisms (the permanent sign contribu-
tion) where the two-level approximation is justified (see
below).

F. p-wave amplitude for a polarised target (PTRIV
and PV configurations)

We will now present our results for the p-wave ampli-
tude in the configurations above which use a polarised
target. Firstly, let us consider the case when neutron
momentum, neutron spin and target spin are all perpen-
dicular to each other, i.e. for the configuration presented
in section II C. This calculation was performed using the
method presented in Section II B, from which we yield
(see Appendix A 3)

fp = − 1

2k

β1,JM
2
p,1/2 + β13,JMp,1/2Mp,3/2 + β3,JM

2
p,3/2

E − Ep + 1
2 iΓp

,

(34)

where, in the case when J = I + 1/2

β1,J=I+1/2 =
I + 1

2I + 1
= g,

β13,J=I+1/2 =

√
I√

2I + 3

2I − 1

2I + 1
,

β3,J=I+1/2 =
2I2 + 5I + 9

2(2I + 3)(2I + 1)
,

(35)
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and in the case when J = I − 1/2

β1,J=I−1/2 =
I

2I + 1
= g,

β13,J=I−1/2 = − I

2I + 1

√
2I − 1

I + 1
,

β3,J=I−1/2 =
I(I + 4)

(2I + 1)(2I + 3)
.

(36)

Next, we consider the case when neutron momentum and
neutron spin are parallel to each other, and both per-
pendicular to the nuclear target spin (the configuration
presented in section II D). A similar calculation verifies
that the p-wave amplitude in this configuration coincides
with Eq. (34) above.

G. Ratio of p1/2 and p3/2 capture amplitudes

The expressions presented above contain the unknown
ratio of the p1/2 and p3/2 capture amplitudes, T =
Mp,3/2/Mp,1/2. This ratio may be extracted via mea-
surement of the ratio of the total p-wave resonance cross
sections (transmission probabilities) for the polarised and
unpolarised target, i.e. from the ratio of the forward scat-
tering amplitudes in Eqs. (34) and (16):

σ(polarised)

σ(unpolarised)
=

1

g
(β1,JR

2
1/2+β13,JR1/2R3/2+β3,JR

2
3/2) .

(37)
where

Rj =
Mp,j√

M2
p1/2

+M2
p3/2

. (38)

Here M2
p,1/2 + M2

p,3/2 = M2
p = Γnp . Note that R2

1/2 +

R2
3/2 = 1. This ratio T = Mp,3/2/Mp,1/2 may also be

extracted from the ratio of the PV forward scattering
amplitudes for a polarised and unpolarised target, which
is equal to

∆σ(polarised)

∆σ(unpolarised)
=

1

g

[
(δ1/2,J + δ3/2,JT )

]
. (39)

III. STATISTICAL ANALYSIS OF PARITY
VIOLATION AND TIME REVERSAL

VIOLATION IN COMPOUND NUCLEI

The statistical theory predicts mean squared values of
the amplitudes. However, if we treat the energy inter-
vals between the opposite parity energy levels Es−Ep as
random variables, which have a finite probability density
to be zero, we obtain a meaningless infinite result for the
variance of the effect

〈
P 2
〉

in Eq. (5). Inclusion of the

widths Γs into the energy denominators makes
〈
P 2
〉

fi-
nite but so big that one would require many thousands of

measurements on different compound resonances to find〈
P 2
〉

from experiments [80]. The solution is to take the
energy intervals from experimental data, i.e. do not treat
them as random variables.

A. Parity violation for zero nuclear spin

In this section, we follow Bowman et al. [81] in their
analysis using the statistical mechanism of parity viola-
tion in nuclear resonances, the effects of which are pro-
duced by the mixing of opposite parity states. As such,
individual weak matrix elements between s- and p-wave
resonances can be considered to be mean-zero Gaussian
random variables, with variance W 2 =

〈
|Wsp|2

〉
.

Let us first consider the case of targets with spin I = 0.
In such cases, we have for s-wave resonances, J = 1/2+,
while for p-wave resonances, J = 1/2−, 3/2−. As p-wave
resonances with 3/2− cannot mix with the 1/2+ s-wave
levels via a parity violating interaction, these levels will
not show parity violation.

For a given p-wave level, the observed asymmetry has
contributions from many s-wave levels, as per Eq. (5).
We may rewrite this equation as

P =
∑
s

iAspWsp, (40)

where

Asp = 2
1

Es − Ep

√
Γns
Γnp
, (41)

in order to separate factors which are taken from exper-
imental data and not affected by averaging. Squaring
Equation (40) yields

P 2 =

∣∣∣∣∣∑
s

AspWsp

∣∣∣∣∣
2

=
∑
s

A2
sp|Wsp|2 +

∑
s6=i

AipAspWipWsp,

P

A2
J

=
1

A2
J

∑
s

A2
sp|Wsp|2 +

1

A2
J

∑
s6=i

AipAspWipWsp,

(42)

where we define A2
J ≡

∑
sA

2
sp. Now, given that each Wsp

is statistically independent, upon averaging over matrix
elements the cross terms vanish. We can rewrite this
expression in terms of W [81]

W 2 =

〈
P 2

A2
J

〉
. (43)

Thus, we conclude that each P/AJ is also a Gaussian
random variable, with mean zero and variance |W |2. This
means that given several experimental measurements for
the quantity P ,

〈
|Wsp|2

〉
≡W 2 can be extracted.
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B. Parity violation for an unpolarised target with a
non-zero spin

Let us now consider neutron scattering from an unpo-
larised target with nonzero spin, I 6= 0. Given parity π,
these targets have spin and parity (I ± 1/2)π in s-wave
levels and (I ± 1/2)−π, (I ± 3/2)−π in p-wave levels. As
the weak interaction is a scalar, angular momentum con-
servation implies only I±1/2 has a nonzero P-odd effect.
Only the j = 1/2 p-wave capture amplitude contributes
to the effects of parity violation, see Section II B. The
projectile j is further coupled to the spin of the target
nucleus I to form the total spin J = j + I. Once again
defining Ms ≡ ηs

√
Γns and Mp ≡ ηp

√
Γnp as the neutron

decay amplitudes of the levels s and p respectively, we
can rewrite Eq. (5) as (see Section II B)

P = R1/2

∑
s

2iWsp

Es − Ep

√
Γns
Γnp
, (44)

where R1/2 is given by Eq. (38). Let us rewrite Equation
(44) in the form

P =
∑
s

iW̃spAsp, (45)

where W̃sp ≡ WspR1/2 and coefficients Asp are given by
Eq. (33). Thus, in a similar method to the case when

I = 0, we obtain 〈
|W̃sp|2

〉
=

〈
P 2

A2
J

〉
, (46)

where A2
J ≡

∑
sA

2
sp. Assuming that Wsp and R1/2 are

statistically independent, their product can be averaged
separately. Then, the average squared matrix elements
between compound states are

W 2 =
1〈

R2
1/2

〉 〈P 2

A2
J

〉
. (47)

〈
R2

1/2

〉
can be extracted experimentally, and for masses

near A = 110, it typically lies between 0.6 and 0.8 [9].

C. Time reversal and parity violation for a
polarised target

In this section, we consider the PTRIV configuration,
and perform a similar calculation to that above. Firstly,
we note that the p-wave forward scattering amplitude
for neutron momentum, neutron spin and target spin
perpendicular to each other, does not coincide with Eq.
(16). As per the result presented in section II F, the p-
wave forward scattering amplitude in this case is given
by Equation (34). Using the calculation of the PTRIV
amplitude in section II C, we can now write PTRIV ef-
fect in a similar form to that of the unpolarised P-odd,
T-even effect (5)

PT,P =

[
(α1/2,JMp,1/2 + α3/2,JMp,3/2)Mp

β1,JM2
p,1/2 + β13,JMp,1/2Mp,3/2 + β3,JM2

p,3/2

]∑
s

WT,P
sp

Es − Ep

√
Γns
Γnp
, (48)

where αp,J are the angular factors for the PTRIV ampli-
tude in Eq. (21) and WT,P

sp is the matrix element of the
PTRIV interaction. We can further rewrite this equation
in the familiar form

PT,P =
∑
s

W̃T,P
sp Asp, (49)

where Asp is as defined in (33), and

W̃T,P
sp =

[
α1/2,JR1/2 + α3/2,JR3/2

β1,JR2
1/2 + β13,JR1/2R3/2 + β3,JR2

3/2

]
WT,P
sp ,

where Rj is as defined in Eq. (38). Once again, we aim
to determine the average of this relation. In the same
way as above, we yield

〈
(W̃T,P

sp )2
〉

=

〈
P 2
T,P

A2
J

〉
. (50)

Assuming that R1/2, R3/2 and WT,P
sp are statistically in-

dependent, the products R2
1/2W

T,P
sp and R2

3/2W
T,P
sp can

be averaged separately, and using the same method as
Section III B, we may determine the average squared ma-
trix elements of the T,P-odd interaction. Neglecting the
terms linear in R1/2 or R3/2 (as they have a random

sign), assuming that
〈
R4
j

〉
≈
〈
R2
j

〉2
and averaging the

numerator and denominator separately gives
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〈
(W̃T,P

sp )2
〉
≈

 α2
1/2,J

〈
R2

1/2

〉
+ α2

3/2,J

〈
R2

3/2

〉
β2

1,J

〈
R2

1/2

〉2

+ β2
13,J

〈
R2

1/2

〉〈
R2

3/2

〉
+ β2

3,J

〈
R2

3/2

〉2

〈(WT,P
sp )2

〉
. (51)

Thus, we conclude that the average squared matrix elements of time and parity violating effects are

(WT,P )2 ≈

β2
1,J

〈
R2

1/2

〉2

+ β2
13,J

〈
R2

1/2

〉〈
R2

3/2

〉
+ β2

3,J

〈
R2

3/2

〉2

α2
1/2,J

〈
R2

1/2

〉
+ α2

3/2,J

〈
R2

3/2

〉
〈P 2

T,P

A2
J

〉
. (52)

Note that R2
1/2 +R2

3/2 = 1. According to [9],
〈
R2

1/2

〉
' 0.7 and

〈
R2

3/2

〉
' 0.3 for masses near A=110.

D. Parity violation for a polarised target

We also may perform a similar calculation for the par-
ity violating interaction with a polarised target. Here,
we once again note that the p-wave forward scattering

amplitude in this configuration coincides with Eq. (34).
Thus, we may write the PV effect, and its corresponding
mean-squared matrix elements for a polarised target (re-
placing the coefficients αj,J with δj,J in Equations (48)
and (52))

Ppolarised =

[
(δ1/2,JMp,1/2 + δ3/2,JMp,3/2)Mp

β1,JM2
p,1/2 + β13,JMp,1/2Mp,3/2 + β3,JM2

p,3/2

]∑
s

iWsp

Es − Ep

√
Γns
Γnp
, (53)

|W |2 ≈

β2
1,J

〈
R2

1/2

〉2

+ β2
13,J

〈
R2

1/2

〉〈
R2

3/2

〉
+ β2

3,J

〈
R2

3/2

〉2

δ2
1/2,J

〈
R2

1/2

〉
+ δ2

3/2,J

〈
R2

3/2

〉
〈P 2

polarised

A2
J

〉
. (54)

IV. STATISTICAL THEORY OF FINITE
SYSTEMS BASED ON THE PROPERTIES OF

CHAOTIC EIGENSTATES.

The number of combinations for the distribution of n
particles over m orbitals, m!/[n!(m − n)!], increases ex-
ponentially with the number of particles. Therefore, in
compound states with several excited particles, the den-
sity of energy levels is exponentially high, and the resid-
ual interaction between the particles exceeds the energy
intervals. As a result, the excited states |n〉 in all medium
and heavy nuclei near the neutron separation energy (as
well as in atoms and ions with several excited electrons
in an open f-shell) are chaotic superpositions of thou-
sands or even millions of Hartree-Fock basis states |i〉,
|n〉 =

∑
i C

n
i |i〉. Chaos allows us to develop a statistical

theory, including a method to calculate the matrix ele-
ments between chaotic states in finite systems (in excited
nuclei, atoms and molecules) [38–41].

Following Ref. [82], we treat the expansion coefficients
Cni as Gaussian random variables, with average values

Cni = 0 and variance

C2(Eα) =
1

N
∆(Γspr, E − Eα),

∆(Γspr, E − Eα) =
Γ2

spr/4

(E − Eα)2 + Γ2
spr/4

. (55)

where N =
πΓspr

2d is the number of the principal compo-
nents in the compound state found from the normaliza-
tion condition

∑
i(C

n
i )2 = 1, Γspr is the spreading width

calculated using Fermi’s golden rule and d is the average
energy interval between compound states with the same
angular spin and parity (see details in Appendix B).

The function (Cni )2 ≡ f(En−Ei) gives the probability
to find the basis component |i〉 in the compound state |n〉,
i.e. it plays the role of the statistical partition function.
The difference from conventional statistical theory is that
the partition function depends on the total energy of the
isolated system En instead of temperature for a system in
a thermostat (recall the Boltzmann factor exp(−Ei/T )).
One may compare this with the microcanonical distri-
bution where equipartition is assumed within the shell
of the states with fixed energy Ei. Expectation values of



11

matrix elements of any operator Ô in a chaotic compound
state are found as

|〈n|Ô|n〉| =
∑
i

(Cni )2|〈i|Ô|i〉|2. (56)

For example, substituting the occupation number oper-

ator ν̂ = a†kak into this expression gives the distribution
of the orbital occupation numbers ν in finite chaotic sys-
tems which replaces the Fermi-Dirac (or Bose-Einstein)
distribution. The average values of the non-diagonal ma-

trix elements of any perturbation operator W are equal
to zero, 〈n|W |m〉 = 0, while the average values of the
squared matrix elements

|〈n|W |m〉|2 =
∑
i,j

(Cni )2(Cmj )2 |〈i|W |j〉|2 (57)

are reduced to the sum over simple matrix elements be-
tween the Hartree-Fock states |〈i|W |j〉|2. A convenient
formula for the root-mean-squared values of the matrix
elements has been derived in Ref. [39] (we also present
the derivation in Appendix B):

W ≡
√
|Wsp|2 =

√
2d

πΓspr

{∑
abcd

νa (1− νb) νc (1− νd)
1

4

∣∣∣W̃ab,cd − W̃ad,cb

∣∣∣2 ×∆ (Γspr, εa − εb + εc − εd)
} 1

2

, (58)

where the summation goes over orbitals a, b, c, d; E −
Eα = εa − εb + εc − εd is the change in energy. The
function ∆ (Γspr, εa − εb + εc − εd), defined in Eq. (55),
can be viewed as an approximate energy conservation
law, with accuracy up to the spreading width of the basis

states [39]. Indeed, ∆(Γspr, E − Eα) → πΓspr

2 δ(E − Eα),
when Γspr → 0.

In Refs. [38, 39, 42] we calculated the PV matrix ele-
ments. The matrix elements of the P,T- violating inter-
actions have been obtained in our papers [14, 43, 44].

Let us now consider the correlator between two differ-
ent operators (e.g. P-violating and T,P-violating). In
general, we obtain [44]

〈n|WP |m〉 〈m|WT,P |n〉 =∑
i,j

(Cni )2(Cmj )2 × 〈i|WP |j〉 〈j|WT,P |i〉 . (59)

Note that our theory predicts the results averaged over
several compound resonances.

We have done many tests comparing the statistical the-
ory results with both experimental data and with numer-
ical simulations for electromagnetic amplitudes, electron
recombination rates, and parity violation effects in nu-
clei - see e.g. Refs. [38, 39, 41, 42, 45–50]. For example,
we obtained an enhancement (of the order of 103) of the
electron recombination rate with highly charged tungsten
ions (charge q = 18–25) due to the very dense spectrum
of chaotic compound resonances [41, 47, 49, 50]. The re-
sults agree with experimental data that is only available
for lower charge q = 18–21 ions. These results are impor-
tant for the thermonuclear reactors in which the diverters
are made from tungsten. The tungsten ions contaminate
the plasma and significantly affect the energy output.

V. MATRIX ELEMENTS OF PV AND PTRIV
INTERACTIONS BETWEEN NUCLEAR

COMPOUND STATES

In this section we present a brief summary of the
calculations of the PV and PTRIV matrix elements
between chaotic compound states performed in Refs.
[14, 38, 39, 42–44]. The details are presented in Appendix
B. The parity violating weak potential of nucleons in a
nucleus may be presented as

Ŵ =
Ggp,n

2
√

2m
{(σp), ρ}, (60)

where G is the Fermi constant, m is the mass of the
nucleon, σ and p are the neutron’s sigma matrix (dou-
bled spin operator) and momentum respectively, ρ is the
nuclear number density and gp,n are the nucleon dimen-
sionless constants which are of the order of unity. The
calculation described in Appendix B gives the following
result for the root-mean-squared value of the matrix ele-
ment between compound states:

W = 0.57 meV
√
g2
n + 0.76g2

p. (61)

The values of W are actually proportional to (N)−1/2 ∝
d1/2, where d is the average interval between resonances
with the same spin and parity, which determines the
number of principal components in the compound state,

N =
πΓspr

2d - see details in Appendix B. This specific num-

ber for W has been calculated for d = 17 eV in 233Th.
A more universal parameter is the weak spreading width
ΓW = 2πW 2/d, where the dependence on d cancels out.

The constants gp and gn may be expressed in terms
of the weak nucleon-meson interaction constants h and f
[38, 83–85]
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Reference gp gn

DDH (1980) [84, 85] 4.5 0.2

ND (1986) [86] 4 1

DZ (1986)[87] 2.4 1.1

FCDH (1991) [88] 2.7 -0.1

Wasem (2012) [89] 2.6 1.5

NPDGamma (2018) [90] 3.4 0.9

TABLE I. Values of gp and gn based on the meson ex-
change constants from different publications: Desplanques,
Donoghue, and Holstein (DDH) [84, 85]; Noguera and Des-
planques (ND) [86]; Dubovik and Zenkin (DZ) [87]; Feldman,
Crawford, Dubach, and Holstein (FCDH) [88]. In the line
of Wasem [89] , the best DDH values for all the values of
h were used, except fπ = h1

π, which was recently derived
by the lattice QCD methods [89, 91] to be h1

π = 1.1 · 10−7

(as presented in [14]). A recent experiment measuring P-
violation in the neutron radiative capture by proton [90] gave
h1
π = [2.6± 1.2(stat.)± 0.2(sys.)]× 10−7 which is larger than

the theoretical estimate h1
π = 1.1 · 10−7. Using this exper-

imental value, and the rest from DDH, gives slightly larger
gp = 3.4 ± 0.8 and smaller gn = 0.9 ± 0.6 which are close to
the values gp = 4 and gn = 1 used in the numerical calculation
of PV matrix elements in Ref. [39].

gp = 2× 105vρ

[
176

vπ
vρ
fπ − 19.5h0

ρ − 4.7h1
ρ

+ 1.3h2
ρ − 11.3

(
h0
ω + h1

ω

)]
,

(62)

gn = 2× 105vρ

[
−118

vπ
vρ
fπ − 18.9h0

ρ + 8.4h1
ρ

− 1.3h2
ρ − 12.8

(
h0
ω + h1

ω

)]
,

(63)

where h and f are the weak NN -meson couplings, and
vπ and vρ are constants which account for the repulsion
between nucleons at small distances and for a finite range
of the interaction potential. These quantities were found
to be vρ = 0.4 and vπ = 0.16, as in [83, 85].

Now, using the updated values of the meson-nucleus
interaction constants published by the NPDGamma col-
laboration [90], we obtain gp = 3.4 and gn = 0.9 - see
the last line in Table I. This gives W = 1.78 meV which
corresponds to d=17 eV, the interval between s (or p1/2)

resonances in 233Th. It is in agreement with the experi-
mental value of 1.39+0.55

−0.38 meV in in 233Th [51, 81]. The

scaling of W with d1/2 is also in agreement with the mea-
sured parity violating effects in other nuclei presented in
the review [9].

In the short-range approximation, the PTRIV poten-
tial of nucleons in a nucleus may be presented as [92, 93]

ŴT,P =
G

2
√

2m
ηp,n(σ · ∇)ρ(r), (64)

where ηp, ηn are dimensionless constants which charac-
terise the strength of the interaction for protons and neu-
trons respectively. The matrix elements of the operator
ŴT,P between discrete spectrum states in the standard
definition of the angular wave functions are real. Ac-
cording to the calculation presented in Appendix B, the
root-mean-squared matrix elements WT,P between nu-
clear compound states is equal to

WT,P = 0.15 meV
√
η2
n + 0.76η2

p . (65)

The value of WT,P is also proportional to N
−1/2 ∝ d1/2.

Specific values for W and WT,P have been calculated for
d = 17 eV in 233Th. However, in the ratio of WT,P /W

the number of principal components N cancels out, and
the result may be extended to all compound nuclei:

WT,P

W
= 0.09

√
η2
n + 0.76η2

p. (66)

If, following Refs. [44, 94], we take |ηp| = |ηn|, this ratio
becomes

w

v
= 0.12|ηn| . (67)

The relative correlator between PV and TRIV matrix
elements is [44]

C =

∣∣∣ 〈p|W |s〉 〈s|WT,P |p〉
∣∣∣

WWT,P
≈ 0.1. (68)

PTRIV nuclear forces are dominated by π0 meson ex-
change. Such an exchange is described by the interaction
[95–97]

W (r1 − r2) = − ḡ

8πmN

[
∇1

(
e−mπr12

r12

)]
· {(σ1 − σ2)

× [ḡ0τ1 · τ2 + ḡ2 (τ1 · τ2 − 3τ1zτ2z)]

+ḡ1 (τ1zσ1 − τ2zσ2)}
(69)

where ḡ = 13.6 is the strong-force T,P-conserving πNN
coupling constant, ḡ0, ḡ1, and ḡ2, are the strengths of
the isoscalar, isovector, and isotensor T,P-violating cou-
plings, respectively, mN is the nucleon mass, mπ is the
pion mass, σ is the nucleon spin, τ is the nucleon Pauli
isospin matrix in vector form, and r12 is the separation
between nucleons.

The strength constants ηn,p can be expressed in terms
of different fundamental interactions. The PTRIV in-
teraction between nucleons is dominated by the pion ex-
change. Ref. [94] gives the following values:

ηn = −ηp = (−gsḡ0 + 5gsḡ1 + 2gsḡ2)106. (70)
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Thus, the ratio (66) becomes

WTP

W
= 0.12|ηn| = |(−1.2gsḡ0 + 6.0gsḡ1 + 2.4gsḡ2)105|.

(71)

Similarly, we can express η in terms of the QCD θ-term
constant. Using results presented in Refs [98, 99]

gsḡ0 = −0.21 θ, (72)

gsḡ1 = 0.046 θ, (73)

we have

ηn = −ηp = 4.4× 105 θ, (74)

WTP

W
= 5.3× 104|θ|. (75)

Expressing η via the quark chromo-EDMs d̃u and d̃d:
gsḡ0 = 0.8 × 1015(d̃u + d̃d)/cm, gsḡ1 = 4 × 1015(d̃u −
d̃d)/cm [100] gives:

ηn = −ηp = (−0.8(d̃u + d̃d) + 20(d̃u − d̃d))1021/cm.
(76)

WTP

W
= |(−1.0(d̃u + d̃d) + 24(d̃u − d̃d))1020|/cm (77)

Note that the current limits on the CP-violation param-
eters presented above correspond to WTP

W < 10−5 [14].
The expected experimental sensitivity is an order of mag-
nitude better, 10−6 [22, 101].

Finally, a PTRIV interaction, similar to the pion-
exchange-induced Eq. (69), may be due to exchange
by any scalar particle which has both scalar (with the
interaction constant gs) and pseudoscalar (with the in-
teraction constant gp) couplings to nucleons. The most
popular examples are the dark-matter candidates axion
[102, 103] and relaxion [104–106], which have very small
masses.1 A numerical estimate shows that due to the
long range of the interaction the matrix elements in the
small-mass case (e−mr ≈ 1) are ∼ 1.5 times larger than
the pion exchange matrix elements; i.e., we have instead
of Eq. (71) the following estimate:

WT,P

W
∼ |1× 106gsgp| . (78)

The limit on gsgp may be obtained from the proton EDM
calculation,2

dp =
gsgpe

8π2mp
, (79)

1 The limits on the T,P-violating electron-nucleon interactions me-
diated by the axion or relaxion exchange from EDM measure-
ments were obtained in Ref. [107], where more references may
be found.

2 The calculation is similar to that for electron EDM [107].

and measurement [108], |dp| < 2×10−25e cm, |gsgp| < 1×
10−9. Using limits from the proton EDM and the 199Hg
nuclear-Schiff-moment measurements in Ref. [109], the
authors of Ref. [110] concluded that the limit on |gsgp|
is between 10−9 and 10−11. This gives a rather weak
limit on WT,P /W induced by axion exchange:

WT,P

W
< 10−3 − 10−5 . (80)

With the expected experimental sensitivity 10−6 [22,
101], limits on the axion interaction constants may be
significantly improved.

VI. A POSSIBLE REGULAR COMPONENT OF
PARITY VIOLATION IN NEUTRON

SCATTERING: EXPERIMENTAL RESULTS

As aforementioned, there were a large number of ex-
periments performed which confirmed the existence of
the enhanced longitudinal asymmetry (5). The first to
do so directly was performed at the Joint Institute for
Nuclear Research (JINR), Dubna. Firstly parity viola-
tion was measured for the p-wave resonance at 1.3 eV in
117Sn [5]. Then the p-wave resonances in 139La, 111Cd
and 81Br were probed, where the weak matrix element
was found to be ∼ 1 meV, while the mixing coefficients
were inferred to be of the order 10−4 [6, 7]. These find-
ings were in agreement with the predictions made in Ref.
[1].

These initial observations of parity violation in p-wave
resonances were limited to one or two p-wave resonances
per target in the neutron energy region up to ∼ 10 eV.
The subsequent breakthrough came from the formation
of the Time Reversal Invariance and Parity at Low Ener-
gies (TRIPLE) collaboration, who were able to optimise
the experiment to be able to probe a larger number of
resonances per nucleus. After initial success in the mea-
surements on 238U [81] and 139La [111], measurements
on 232Th [51] were completed, with a number of statis-
tically significant PV effects observed, which all had the
same sign, seemingly contradicting the statistical nature
of the reaction mechanism. Since these initial experi-
ments, there have been numerous measurements on the
nuclear resonances of a vast range of nuclei. The re-
view [9] contains data for 20 nuclei and several hundred
resonances.

A. Parity violation for neutron resonances in 232Th

The unexpected outcome of early measurements con-
ducted by the TRIPLE collaboration was by Frankle et
al. [51] who reported on measurements of 23 p-wave res-
onances in 232Th, with energies ranging from En = 8 to
En = 392 eV. Among these resonances, seven had PV ef-
fects which all contained a relative significance of 2.4σ or
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higher. However, contrary to the expectations, the lon-
gitudinal asymmetry of these resonances had a constant
sign.

The outcomes of this experiment seemed to develop
more questions than answers. It became clear that the
current experimental set-up was not sufficient to ex-
tensively study parity violating effects in neutron reso-
nances. Furthermore, the two-level approximation used
in the analysis was not adequate, implying the need for
the development of a statistical approach which includes
the contributions of many s-wave resonances, and has the
ability to more accurately describe complex resonance
structures. However, it is important to note that the
collaboration’s observations were consistent with the no-
tion that sufficiently precise experimentation can detect
parity violation in every p-wave resonance with the spin
J = 1/2 (which may be mixed by the weak interaction
with s-wave resonances with the spin J = 1/2).

In order to confirm or reject the non-random nature
of PV effects in 232Th, a new experimental system was
developed, with an upgraded polarizer, spin flipper and
neutron detector. Using the new system, transmission
experiments were once again performed on 238U and
232Th. These experiments refined previous results with
much better statistics, and were able to detect more lon-
gitudinal asymmetries. Specifically in 232Th, the per-
manent sign observation in measured parity violating ef-
fects was confirmed, and extended to 10 in a row [52].
The probability of obtaining ten out of ten randomly dis-
tributed quantities with the same sign is ≈ 0.2%. The
magnitude of the PV effect was found to be in agree-
ment with the statistical theory calculations and consis-
tent with experimental results in other nuclei where PV
effects have a random sign. Moreover, upon probing neu-
tron energies higher that 250 eV, the PV effect in 232Th
has 4 resonances with a negative sign, and 2 with a pos-
itive sign, see Refs. [9, 112].

Upgraded results for the resonances below 285 eV are

shown in Table II (reproduced from [52] with added data
for the weak matrix elements defined as |W | = P/AJ
). Measurements were taken with no initial knowledge
of the J value, and as such, J = 1/2 was assigned to
resonances with a large parity violating asymmetry (P ≥
3σ). These resonances are denoted with parentheses.

VII. A POSSIBLE OCTUPOLE DOUBLET
MECHANISM FOR A REGULAR COMPONENT

OF PV AND PTRIV EFFECTS IN NEUTRON
SCATTERING

The target of 232Th (and consequently, the compound
nucleus 233Th) may be a special case due to some pecu-
liarities of its structure. Several thorium isotopes display
strong octupole correlations. Octupole deformation may
be present in the ground state or in excited states near
the neutron threshold.

The wave function of a deformed nucleus is the prod-
uct of the internal nuclear wave function and rotational
wave function. For a given internal function with a non-
zero projection of nuclear spin I on symmetry axis n,
K = (nI) 6= 0, presence of octupole deformation (or of
any axially symmetric shape that has no symmetry with
respect to reflection in the equatorial plane) leads to ro-
tational doublets with definite parity P = ±1 [82],

∣∣ΨI
MK;P

〉
=

√
2I + 1

8π
{DI

MK(ϕ, θ, 0)|a;K〉+ P (−1)I+K

DI
M−K(ϕ, θ, 0)|a;−K〉}.

(81)

Here Wigner functions DI
M±K(ϕ, θ, 0) describe nuclear

rotation and states |a;±K〉 are internal states of the ro-
tating nucleus.

Let us start with the calculation of the PTRIV effect.
In other relevant calculations of static PTRIV effects,
e.g. in the calculations of the nuclear Schiff moments
[66, 113, 114], the lower energy component of the dou-
blet is the ground state of the nuclei, whereas in our
case of PTRIV in neutron scattering the doublet states
are excited compound states of a nucleus with octupole
deformation. These states are superpositions of simple
quasiparticle configurations |Φi;±K〉:

|a;±K〉 =
∑
i

Cai |Φα;±K〉, (82)

where the expansion coefficients Cai are not dependent
on the sign of K, given the fact that strong and electro-

magnetic interactions preserve party and time reversal
invariance.

Both the T-P,odd interaction WT,P (64) and K = (nI)
are pseudoscalars, meaning the following relationship
holds:

〈a;K|WT,P |a;K〉 = −〈a;−K|WT,P |a;−K〉 . (83)

This results in the matrix element of WT,P between the
doublet states of opposite parity being reduced to the
expectation value over the internal nuclear state:

〈
ΨI
MK;+1

∣∣WT,P

∣∣ΨI
MK;−1

〉
= 〈a;K|WT,P |a;K〉 , (84)



15

E(eV) P (%) [52] P/∆P [52] |AJ | (1/eV) [52]

8.36032 (1.78± 0.09) 19.8 25.0

13.1377 0.16± 0.14 1.1 38.5

36.982 −0.01± 0.17 -0.1 20.5

38.232 (6.41± 0.32) 20.0 27.1

41.066 −0.09± 0.27 -0.3 27.0

47.068 (2.52± 0.13) 19.4 17.3

49.941 −0.24± 0.39 -0.6 40.0

58.786 0.02± 0.03 0.7 58.3

64.575 (14.16± 0.41) 34.5 103.0

90.139 0.21± 0.19 1.1 11.6

98.057 (0.70± 0.22) 3.2 12.9

103.63 0.22± 0.16 1.4 13.4

128.17 (2.31± 0.12) 19.2 13.6

145.83 0.00± 0.10 0.0 2.89

148.06 −0.11± 0.34 -0.3 12.4

167.11 (3.21± 0.10) 32.1 33.8

178.86 0.19± 0.28 0.7 15.5

196.20 (0.90± 0.18) 5.0 11.4

202.58 (1.10± 0.25) 4.4 11.2

210.91 −0.23± 0.32 -0.7 10.5

231.95 (4.77± 0.68) 7.0 12.6

234.07 −0.16± 0.45 -0.4 10.1

242.25 0.18± 0.17 1.0 7.04

276.45 0.46± 0.76 0.6 17.1

|W | (meV)

(0.712± 0.036)

0.0416± 0.036

0.00488± 0.083

(2.37± 0.12)

0.0333± 0.10

(1.46± 0.075)

0.0600± 0.098

0.00343± 0.0052

(1.37± 0.040)

0.181± 0.16

(0.543± 0.17)

0.164± 0.12

(1.70± 0.088)

0

0.0887± 0.27

(0.950± 0.030)

0.123± 0.18

(0.789± 0.16)

(0.982± 0.22)

0.219± 0.30

(3.79± 0.54)

0.158± 0.45

0.256± 0.24

0.269± 0.44

TABLE II. P-odd asymmetries in 232Th.

where

〈a;K|WT,P |a;K〉 =
∑
i

(Cai )
2 〈Φi;K|WT,P |Φi;K〉 .

(85)

The matrix elements between simple basis states has been
estimated in Ref. [114]:

〈Φi;K|WT,P |Φi;K〉 ≈
β3η

A1/3
eV, (86)

where β3 is the octupole deformation parameter and
η is the dimensionless strength constant of the nuclear

PTRIV potential ŴT,P in Eq. (64). Implementing the

normalisation condition
∑
i (Cai )

2
= 1, the PTRIV ma-

trix element is approximately equal to [114]

W±T,P ≡
〈
ΨI
MK;+1

∣∣WT,P

∣∣ΨI
MK;−1

〉
' β3η

A1/3
eV, (87)

Hence, the expression for the proposed constant sign
component of the T,P-odd effect will bear a similar form
to (5), and can be written as

PT,P '

[
(α1/2,JMp,1/2 + α3/2,JMp,3/2)Mp

β1,JM2
p,1/2 + β13,JMp,1/2Mp,3/2 + β3,JM2

p,3/2

]
β3η

A1/3

[eV]

Es,doublet − Ep

√
Γns
Γnp
. (88)

Here, the sign factors cannot be absorbed inside the ma-

trix element WT,P
± , as was the case for the parity vio-

lating, time-conserving effect, due to contributions from
both the p1/2 and p3/2 amplitudes. The parameters of
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Es,doublet−Ep and the kinematic factor
√

Γns /Γ
n
p are un-

known at the present time. However, they also appear in
P-odd (but T conserving) effects, meaning upon calcu-
lating the ratio of the T,P-odd effect to the P-odd effect,
these parameters cancel.

In the derivation of Eq. (88) we assumed that the op-
posite parity doublet component to the p-wave compound
state is a stationary state of a definite energy. In fact, this
state may have a small spreading width. Indeed, we as-
sume that the opposite parity component of the doublet
has the same internal state |a;±K〉 in Eq. (81). How-
ever, the “exact” copy of the internal state |a;±K〉 of
the p-wave resonance in the doublet component of oppo-
site parity may be mixed with nearby s-wave resonances
by the Coriolis interaction. The Coriolis force is rela-
tively weak, therefore, the corresponding spreading width
should be small. This means that every s-wave resonance
within this small spreading width may have this doublet
state as a component. In this case, we should replace
1/(Es,doublet−Ep) with Re(1/[Es,doublet−Ep−iΓspr/2]).
There is also an additional contribution coming from
close s wave resonance, similar to that calculated in the
Section VIII. Since this situation happens in both PV
and PTRIV effects, such spreading does not significantly
affect the ratio of PTRIV and PV effects.

With regards to the P-odd weak matrix element, the
expectation value of the P-odd weak interaction matrix
element in the body frame of the nucleus with octupole
deformation vanishes, 〈Φi;K |W |Φi;K〉 = 0. This is a
consequence of time-reversal invariance [2, 59]. There-
fore, the direct matrix element of W between the oppo-
site parity components of the same doublet vanishes. As
noted in Ref. [59], the mixing with the opposite parity
component of another doublet state is allowed.

Let us explain how the P-odd effect appears. We need
an additional interaction H ′ which conserves P and T but
can mix components of different doublets,

∣∣ΨaI
MK;P

〉
and∣∣ΨbI

MK;P

〉
, with the same parity P. This may be the same

interaction which produces mixing of the doublet compo-
nents, |a;K〉 and |a;−K〉, and results in the splitting of
the opposite parity states of the same doublet,

∣∣ΨaI
MK;+

〉
and

∣∣ΨaI
MK;−

〉
. For example, H ′ may be tunneling of an

excess cluster of nucleons or the Coriolis force [82]. As
a result of the two interactions W and H ′ combining,
the total rotational function acquires an admixture of a
component of the same doublet with opposite parity [59]

∣∣ΨaI
MK;P

〉
→
∣∣∣Ψ̃al

MK;P

〉
=
∣∣ΨaI

MK;P

〉
+ βP

∣∣ΨaI
MK;P

〉
,

(89)

where the mixing amplitude βP is

βP = −2
1

Ep − Es,doublet
(90)

×
∑
b

〈a;−K|H ′|b;K〉 〈b;K|WP |a;K〉
Ep − Eb

, (91)

where Ep is the energy of the p-wave resonance. Since
the energy spectrum is very dense, the additional order
of the perturbation theory involving H ′ does not produce
any significant suppression of the PV effect. This conclu-
sion is supported by the non-conservation of the quantum
number K due to the enhancement of the Coriolis force
effect in compound states, see [115, 116]. Moreover, the
energy denominator Ep − Eb is also due to H ′, so the
effective strength constant of interaction H ′, even if it is
small, cancels out. Therefore, the ratio of the PTRIV
effect to the PV effect in the doublet mechanism is ap-
proximately the same or only slightly bigger than the
corresponding ratio in the statistical mechanism consid-
ered in the previous sections.

A. Specific target nuclei where octupole doublet
mechanism may produce regular PV and PTRIV

effects

In this section, we present a few candidate nuclei which
may be used to search for the permanent sign PV and
PTRIV effects due to the octupole doublet mechanism.
We start from Lanthanide nuclei with zero spin, which
would only be suitable for PV measurements. Firstly,
we have 148

60 Nd88, which according to the theoretical re-
sults has octupole deformation in the ground state [63].
This nucleus is stable, with a natural abundance of 5.8%.
The rotational spectra look consistent with octupole de-
formation, and the negative and positive parity bands
are separated by ' 1000 keV. Ref. [63] also identifies
150
62 Sm88 to have octupole deformation. This nucleus is
stable, with a natural abundance of 7.4%. However, the
spectra do not exhibit the expected band structure start-
ing from the ground state (octupole deformation may still
exist in excited states). Other stable isotopes of Nd and
Sm, as well as other nuclei with a comparable number of
protons and neutrons are also potential candidates for a
permanent sign PV effect.

Next, we consider nuclei with non-zero spin, which
would be candidates for both PV and PTRIV measure-
ments. 139

57 La82 may be suitable (Z = 56), however the
neutron number N = 82 + 1 = 83 is outside the de-
sired interval N = 88 − 92. After neutron capture, it
is possible that 140

57 La83 has an excited isomeric state
with octupole deformation. Further, the spectra of the
stable 153

63 Eu90 isotope (IP = 5/2+) indicates octupole
deformation in the ground state [66, 68], with an en-
ergy band gap of 97 keV. This is a good candidate to
search for PV and PTRIV effects. Finally, theoretical
data again suggests the existence of octupole deformation
in 149

62 Sm87, IP = 7/2−, which after neutron capture be-
comes 150

62 Sm88 [63]. Other candidates in the Lanthanides
region include 141

59 Pr82, IP = 5/2+, 143
60 Nd83, IP = 7/2−,

145
60 Nd85, IP = 7/2−, 147

62 Sm85, IP = 7/2−, 151
63 Eu88,

IP = 5/2+, 155
64 Gd91, IP = 3/2−, 157

64 Gd93, IP = 3/2−,
159
65 Tb91, IP = 3/2+, 161

66 Dy91, IP = 5/2+, and 163
66 Dy93,

IP = 5/2−, which all have non-zero spin.
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In the actinide region, Ref. [63] suggests the existence
of octupole deformation in many unstable even-even nu-
clei, which are hardly suitable for neutron experiments.
However, more stable nuclei may have octupole defor-
mation in low energy excited states, the most obvious
one being the entire reason for research into this area,
232
90 Th142, as per discoveries made by [9, 52]. This isotope
has 4 extra neutrons as compared to 228

90 Th138 (228
90 Th138

has a lifetime of 1.9 years). There is evidence of octupole
deformation in 228

90 Th138 [117].

As an example, let us analyse the rotational spectrum
of 226Th, using the database [67]. Upon inspection of the
spectra (Figure 1), we see that there is a common rota-
tional band, containing both the positive (0+, 2+, 4+, . . . )
and negative parity states (1−, 3−, 5−, . . . ). This prop-
erty is a clear indicator of the presence of octupole de-
formation in this isotope, as such nuclei permit both odd
and even values of J on the rotational band. This is in
contrast to nuclei with only quadrupole deformation, as
in this case only even levels are permitted on the rota-
tional band (0+, 2+, . . . ). Thus, we see that this isotope
226Th appears to have a static octupole deformation. The
energy interval between the 0+ state and 1− state is 230
keV. If we subtract an ordinary rotational energy differ-
ence between the J = 1 and J = 0 states, the energy
gap between the odd and even parts of the rotational
bands does not exceed 200 keV. This is much smaller
than the typical energy gap for the dipole and octupole
excitations, which is a few MeV. For higher J there is
practically no gap.

To conclude this section we should stress that the ex-
istence of octupole deformation in stable nuclei is not
certain, so the absence of the permanent sign PV effect
in some of these nuclei can not prove that the doublet
mechanism is not efficient. However, if the permanent
sign effect is observed, this would provide important evi-
dence in favour of the existence of octupole deformation
in stable nuclei, which is a hotly debated topic.

VIII. DOORWAY STATES CONTRIBUTION TO
PV EFFECTS

Let us assume for simplicity a nuclear target spin
I = 0, as in 232Th. To begin, we will first separate the
contribution of the two-particle-one-hole doorway com-
ponents ψ1s and ψ2 in the wave functions of positive and
negative parity compound states corresponding to s-wave
and p-wave resonances:

ψs = C1sψ1s + other components, (92)

ψp = C2ψ2 + other components. (93)

The amplitudes of neutron capture may be expressed in
terms of the amplitudes of capture to s-wave and p-wave
doorway states M1 and M2: Ms = C1sM1 and Mp =
C2M2, and the weak matrix element between compound

FIG. 1. Plot of the Excitation Energy E (keV) vs Angular
Momantum J in 226Th. At higher values of J , the negative
parity rotational band (11−, 13−, 15−, . . . ) and the positive
parity rotational band (12+, 14+, 16+, . . . ) coincide. This is
a clear indication of octupole deformation. The maximum
distance between these bands occurs at 1− (a), and is ' 200
keV, i.e. it is small on the nuclear scale. This graph was
obtained using the database [67].

states may be presented as

Wsp = C1sC2W1,2 + other contributions. (94)

Thus, the contribution of the doorway states to the PV
forward scattering amplitude Eq. (18) may be presented
as

f (d)
p.v.(0) = ± 1

2k

2gM1M2iW1,2|C2|2(
E − Ep + 1

2 iΓp
) S , (95)

where for E ≈ Ep

S =
∑
s

|C1s|2(
Ep − Es + 1

2 iΓs
) . (96)

This expression for S has two maximums. The first is for
Es ≈ Ep (s-wave resonances close to p-wave resonance)
and the second is for Es ≈ E1 (s-wave resonances close
to the energy of the doorway states E1), where

|C1s|2 =
1

N

Γ2
d/4

(Es − E1)2 + Γ2
d/4

(97)

has maximum. Here N = πΓd

2d is the normalization con-
stant. Note that the doorway state spreading width Γd

is the sum of two widths, the decay width to the con-

tinuum Γ↑d ≡ Γoutd (decay out) and the “decay” width to

the other compound state components Γ↓d ≡ Γind (decay
in, mixing of the doorway state with compound states).
According to Ref. [78], the width to decay out Γoutd =0.18
keV, is much smaller than the “decay in” width, which
according to Ref. [71] is Γind ∼ 30 keV. This allows us to
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treat the doorway state as a component of the nuclear
compound state wave function and apply perturbation
theory for stationary states.

First case: close s-wave resonances. Using Γns =
|C1s|2|M1|2, the sum S may be presented as

S1 =
B

|M1|2
, (98)

B ≡
∑
s

Γns
Ep − Es

, (99)

where the sum B may be found using experimental data.
For a qualitative comparison with other contributions it
is sufficient to keep one s-wave resonance (close to p-wave
resonance) in the sum S in Eq. (96).

Second case: distant s-wave resonances close to
the doorway state energy. In this case the distance d
between compound states is much smaller than E1−Ep,
meaning a large number of s-wave resonances contribute.
To evaluate S we may replace the summation over s by
the integral dEs/d:

Γ2
d

4Nd
Re

∫ ∞
−∞

dEs

[(Es − E1)2 + Γ2
d/4]

(
Ep − Es + 1

2 iΓs
) .

Note that this integral is similar to the normalisation
integral for |C1s|2, with an extra factor in the denomi-
nator, (Ep − Es + 1

2 iΓs) - see Eq.(96). Performing the
integration by closing the loop at infinity in the complex
plane and using Cauchy’s residue theorem, we obtain

S2 =
Ep − E1

(Ep − E1)2 + Γ2
d/4

. (100)

Note that S2 vanishes if the s doorway energy E1 co-
incides with the position of the p-wave compound reso-
nance. This is a result of the cancellation between the
contributions of the s-wave resonances with Es < Ep and
Es > Ep.

The ratio of the contributions of the distant s-wave
resonances and close s-wave resonances may be presented
as

S2

S1
=
π

2
xz (101)

where x = 2(E1−Ep)/Γd, z = 2(Es−Ep)/d. The maxi-
mum of S2 is for x = 1 (the distance of the s wave door-
way to the p compound resonance is |Ep − E1| = Γd/2),
z . 1 (the p resonance is between s resonances, |Ep −
Es| . d/2). In this case typically S2 ∼ S1. However, for
the biggest PV effects we may have (Ep − Es)� d, and
in this case S1 may dominate. Only S2 and its contribu-
tion to the PV effect has a permanent sign for all p-wave
resonances on one side of E1. The sign of S1 fluctuates
as Es − Ep may be of any sign.

Now we may compare the permanent sign contribution
(S2) of a doorway state to the statistical contribution of

all compound state components:

f
(d)
p.v.

fp.v.
∼ xz√

(x2 + 1)(y2 + 1)

(
dΓspr

)1/2
Γd

, (102)

where y = 2(E2 − Ep)/Γd. We have taken into account
that the weak matrix element between compound states

is suppressed by 1/N
1/2

in comparison with the matrix
element between simple states - see Eq. (B12) in Ap-
pendix B:

Wsp

W1,2
∼ 1

N
1/2
∼
(

d

Γspr

)1/2

. (103)

The maximum of the first factor in Eq. (102) is for x = 1
and y = 0. From its definition, z . 1. Therefore,

f
(d)
p.v.

fp.v.
.

(
dΓspr

)1/2
Γd

. (104)

In 233Th the average interval between compound states is
d = 17 eV. To have a noticeable permanent sign contribu-
tion of the doorway states we require the energies of the
s and p doorway states to be close to p-wave compound
resonances (|E1−Ep| ≈ Γd/2, E2 ≈ Ep) as well as a very
small doorway spreading width Γd < 1 keV. However, at
the moment we do not see any reason for the inequality
Γd � Γspr to hold (i.e. the spreading width of the door-
way states to be much smaller than the average spread-
ing width of the compound state components). Numeri-
cal simulations [46, 118–120] have shown that spreading
widths for different components of compound states are
approximately the same. Fluctuations of the spreading
widths are small due to a large number k of “decay”
channels of each component, δΓspr/Γspr ∼ k−1/2 [13].

IX. COMMENTS ABOUT OTHER
MECHANISMS OF THE PERMANENT SIGN PV

AND PTRIV EFFECTS

There are also other explanations of the permanent
sign effect in 232Th. The contributions from Distant
doorway states [60, 73–76] appear to be too small. The
neutron PV potential scattering contribution [70, 121],
as well the contributions calculated using optical poten-
tials [71, 122, 123], also seem to be too small. For a
discussion of these mechanisms, see the review [9].

Ref. [70], in the section ”quasi-elastic mechanism”,
attempted to find a coherent contribution to PV and
PTRIV effects related to the components of the com-
pound state wave function, which may be presented as
ΨnΨ′target, where Ψn is the wave function of the projec-
tile neutron (which obtains an additional resonance term
localised mainly inside the nucleus when neutron energy
is close to that of the compound resonance[70, 121]; this
term may be treated as a component of the compound
state wave function, a doorway state) and Ψ′target is the
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low-energy excitation of the target nucleus, e.g. the nu-
clear rotation, vibration or particle excitation. However,
the result is inconclusive. Ref. [70] also derived an analyt-
ical estimate for the ratio of PTRIV effect to PV effect for
the potential scattering and ‘”quasi-elastic” mechanisms:

fT,P
fP

=
η

2g

(1 + f0/R)

(1 + 2f0/R)
C(J, I), (105)

where C(J, I) is the angular coefficient (similar to that
considered in section II), R is the nuclear radius and

f0 = −a− 1

2k

Γns
Ep − Es + 1

2 iΓs
. (106)

Here a is the off-resonance neutron scattering length.
Mixing of the projectile neutron p wave state with p

wave states above the centrifugal barrier as a mechanism
of enhancement, considered in Ref. [124], raises a purely
theoretical question. There are always states above the
barrier ψabove, and we may arrange mixing with them by
some small perturbation. Consider the simplest exam-
ple of a small correction to the barrier potential δV . If
we use first order perturbation theory to include mixing
with a state above the barrier as a correction to the wave
function, δψ = Ciψ

above
i , this may seem like an enhance-

ment of the tunneling probability since ψabove
i does not

decrease under the barrier. However, a small correction
to the particle interaction can not remove the suppres-
sion of the tunneling amplitude when the energy of the
particle is deep below the barrier energy (for example,
a classical particle still can not travel through a wall).
This example shows that using perturbation theory may
be insufficient when we consider the under-barrier effect.
Anyway, the contribution considered in Ref. [124] seems
to be too small (see discussion in review [9]).

X. CONCLUSION

In this work we considered the parity violating (PV) ef-
fect and the parity and time reversal invariance violating
(PTRIV) effect in elastic neutron transmission. While
for PV effects a polarised target is not needed, for com-
parison with the PTRIV effect it may be convenient to
do both PV and PTRIV measurements with a polarised
target. In the case where the spin of p-wave compound
resonances is equal to J = I−1/2, the ratio of the PTRIV
and PV effects is reduced to the ratio of the PTRIV and
PV weak interaction matrix elements, i.e. the p1/2 and
p3/2 capture amplitudes and all angular factors cancel
out. This greatly simplifies the interpretation of the re-
sults. In the case of J = I + 1/2 for polarised target and
for PV effects measured with an unpolarised target, the
ratio of PTRIV and PV effects contains the unknown
ratio of the p3/2 and p1/2 neutron capture amplitudes,
M3/2/M1/2. We presented two possibilities to measure

this ratio M3/2/M1/2 within the same experimental ar-
rangement.

Furthermore, statistical theory formulas linking root-
mean-squared values of the weak matrix elements W and
WPT for PV and PTRIV interactions with experimental
observables were presented, in both the polarised and
unpolarised (for PV) target cases. We also presented
numerical values of these matrix elements for different
models of PV and CP-violating interactions.

Possible explanations for the constant sign PV effects
in neutron capture by 232Th nucleus, observed in Refs.
[9, 51, 52], have been discussed and the corresponding
expressions for the PV and PTRIV effects have been
presented. Our first preference is mixing by the weak
interaction of the opposite parity doublet states in the
nuclei with octupole deformation, in the excited state
produced by the neutron capture. This mechanism was
suggested in Refs. [59–61]. There are experimental and
theoretical indications that 233Th may have a significant
component with octupole deformation in the compound
states formed after the neutron capture. We suggested
a number of other target nuclei where such a mecha-
nism may manifest itself, in order to test this hypothesis
via PV experiments. If true, such nuclei with the con-
stant sign effect may be convenient for the interpretation
of PTRIV measurements since the ratio of the PTRIV
and PV effects does not fluctuate as a random variable
(within statistical theory this ratio is a random variable
and requires proper statistical treatment). Also, if the
doublet mechanism is confirmed, measurements of PV
effects may be used to search for nuclei with octupole
deformation.

Other possible explanations [60, 70–72] of the per-
manent sign PV effect in 232Th are based on the con-
tribution of local doorway states (with energies close
to the p-wave compound resonance). For example, the
two-particle-one-hole doorway state mechanism was sug-
gested in Refs. [71, 72]. We considered the contribu-
tion of local doorway states to PV and PTRIV effects.
We found an additional contribution, which has an arbi-
trary sign and may be bigger than the permanent sign
contribution considered in Refs. [60, 71, 72], if there is
an s-wave resonance very close to the p-wave resonance
where PV is measured (note that in this case we expect
the largest PV effects). As for the permanent sign con-
tributions [60, 71, 72], in order for the local doorway
state mechanism to dominate, we require both doorway
states of positive and negative parity to be close to the
p-wave compound resonance and to have exceptionally
small spreading widths. Therefore, these mechanisms do
not seem to be the most plausible explanations.

We would like to comment about a misconception
present in the literature. It is usually assumed that in
the case of a random sign of the PV and PTRIV in-
teraction matrix elements, the average value of the ob-
served effects 〈P 〉 must be zero. This is incorrect due
to PV and PTRIV effects having singular dependence on
the energy interval between the opposite parity states,
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P ∝ 1/(Es−Ep). If we treat the energy interval Es−Ep
as a random variable, which has a finite probability den-
sity to be zero, we obtain an infinite variance of the effect〈
P 2
〉
. As a result, P is an example of a random-sign ob-

servable non-vanishing upon averaging [80]. The average
value 〈P 〉 does not decrease when we increase the num-
ber of measurements n, it tends to a constant. There is a
simple qualitative explanation for this fact. For random
terms with a finite variance σ, the average of n random
terms decreases with n as σ1/2n−1/2. However, if one
does n measurements of P , in one of the measurements
the energy interval (Es − Ep) will be n times smaller
than the average interval and P will be n times bigger
than a typical value, Pbig ∼ nPtyp. This single term in
the sum for the average value of all P has contribution
Pbig/n ∼ nPtyp/n = Ptyp, which does not decrease with
n. Inclusion of the widths Γs into the energy denomina-
tors makes

〈
P 2
〉

finite, but so big that one would require
many thousands of measurements on different compound
resonances to achieve 〈P 〉 ≈ 0 [80].

Finally, we conclude that with the expected experi-
mental sensitivity 10−6 [22, 101], limits on the axion
PTRIV interaction constants and other mechanisms of
PTRIV may be significantly improved.
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Appendix A: Calculations of angular coefficients for
PV and PTRIV effects

1. Calculation of the Forward Scattering
Amplitude with Time and Parity Violation

In this section, we will present our calculation of the
forward scattering amplitude with time and parity viola-
tion, i.e. in the case when neutron momentum, neutron
spin and target spin are all perpendicular to each other.
Let us first consider the capture amplitude into s-wave
resonance. For J = I + 1/2 we have the amplitude

Ms√
2
C
I+1/2 I+1/2
I I 1/2 1/2 |I + 1/2, I + 1/2〉

+
Ms√

2
C
I+1/2 I−1/2
I I 1/2 −1/2 |I + 1/2, I − 1/2〉 ,

(A1)

while for J = I − 1/2, we have

Ms√
2
C
I−1/2 I−1/2
I I 1/2 −1/2 |I − 1/2, I − 1/2〉 (A2)

Now, considering the capture amplitude into p-wave res-
onance, for J = I + 1/2, we have

−
Mp,3/2

2

[
C
I+1/2 I+1/2
I I 3/2 1/2 |I + 1/2, I + 1/2〉+ C

I+1/2 I−1/2
I I 3/2 −1/2 |I + 1/2, I − 1/2〉

]
−
Mp,1/2√

2

[
C
I+1/2 I+1/2
I I 1/2 1/2 |I + 1/2, I + 1/2〉 − CI+1/2 I−1/2

I I 1/2 −1/2 |I + 1/2, I − 1/2〉
]
,

(A3)

while for J = I − 1/2

−
Mp,3/2

2
C
I−1/2 I−1/2
I I 3/2 −1/2 |I − 1/2, I − 1/2〉+

Mp,1/2√
2

C
I−1/2 I−1/2
I I 1/2 −1/2 |I − 1/2, I − 1/2〉 . (A4)

The Clebsch-Gordan coefficients of these states constitute the angular factors ζ of these capture amplitudes. Com-
bining the contributions from both the s-wave and p-wave resonances, we can calculate ζ for J = I ± 1/2

ζ(I + 1/2) =
Ms√

2

{
−
Mp,3/2

2

(
C
I+1/2 I+1/2
I I 1/2 1/2 C

I+1/2 I+1/2
I I 3/2 1/2 + C

I+1/2 I−1/2
I I 1/2 −1/2C

I+1/2 I−1/2
I I 3/2 −1/2

)
−
Mp,1/2√

2

[(
C
I+1/2 I+1/2
I I 1/2 1/2

)2

−
(
C
I+1/2 I−1/2
I I 1/2 −1/2

)2
]}

,

ζ(I − 1/2) =
Ms√

2

{
−
Mp,3/2

2
C
I−1/2 I−1/2
I I 1/2 −1/2C

I−1/2 I−1/2
I I 3/2 −1/2 +

Mp,1/2√
2

(C
I−1/2 I−1/2
I I 1/2 −1/2)2

}
.

(A5)

The values of the Clebsh-Gordon coefficients are

C
I+1/2 I+1/2
I I 1/2 1/2 = 1,

C
I+1/2 I−1/2
I I 1/2 −1/2 =

1√
2I + 1

,

C
I+1/2 I+1/2
I I 3/2 1/2 =

√
I

I + 3/2
,

C
I+1/2 I−1/2
I I 3/2 −1/2 =

√
8I

(2I + 3)(2I + 1)
,

C
I−1/2 I−1/2
I I 1/2 −1/2 =

√
2I

2I + 1
,

C
I−1/2 I−1/2
I I 3/2 −1/2 =

√
I(2I − 1)

(I + 1)(2I + 1)
.

Substituting these values for the J = I + 1/2 case yields
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ζ(I + 1/2) =
Ms

2I + 1

{
Mp,1/2I −

Mp,3/2

2

√
I(2I + 3)

}
.

(A6)

Similarly, for the J = I − 1/2 case

ζ(I − 1/2) =
MsI

(2I + 1)

{
Mp,1/2 −

Mp,3/2

2

√
2I − 1

I + 1

}
.

(A7)

Therefore following the method of [3], we can now write
the time and parity violating amplitude ft.p.v

ft.p.v = ±1

k

MsW
T,P
sp (α1/2,JMp,1/2 + α3/2,JMp,3/2)(

E − Es + 1
2 iΓs

) (
E − Ep + 1

2 iΓp
) ,

(A8)

where the angular coefficients αi.J are

α1/2,J=I+1/2 =
I

2I + 1
,

α3/2,J=I+1/2 = −
√
I(2I + 3)

2(2I + 1)
,

α1/2,J=I−1/2 =
I

2I + 1
,

α3/2,J=I−1/2 = − I

2(2I + 1)

√
2I − 1

I + 1
.

(A9)

2. Calculation of the forward scattering amplitude
for parity violation with a polarised target

Now, we will present our calculation for the forward
scattering amplitude for parity violation with a polarised
target. In this case, we require neutron momentum and
spin to be parallel, and both perpendicular to the nuclear
target spin. We begin by noting that the s-wave cap-
ture amplitudes coincide with that of the T,P-odd case,
(Equations (A1, A2)). For a total spin of J = I + 1/2,
the p-wave capture amplitude is

−i
Mp,3/2

2

[
C
I+1/2 I+1/2
I I 3/2 1/2 |I + 1/2, I + 1/2〉 − CI+1/2 I−1/2

I I 3/2 −1/2 |I + 1/2, I − 1/2〉
]

−i
Mp,1/2√

2

[
C
I+1/2 I+1/2
I I 1/2 1/2 |I + 1/2, I + 1/2〉+ C

I+1/2 I−1/2
I I 1/2 −1/2 |I + 1/2, I − 1/2〉

]
,

(A10)

while for J = I − 1/2

i
Mp,3/2

2
C
I−1/2 I−1/2
I I 3/2 −1/2 |I − 1/2, I − 1/2〉 − i

Mp,1/2√
2

C
I−1/2 I−1/2
I I 1/2 −1/2 |I − 1/2, I − 1/2〉 . (A11)

Performing a similar calculation to Appendix A 1, we
yield the following for the forward scattering amplitude
with parity violation (with a polarised target):

fP
p.v = ±1

k

MsiWsp(δ1/2,JMp,1/2 + δ3/2,JMp,3/2)(
E − Es + 1

2 iΓs
) (
E − Ep + 1

2 iΓp
) ,

(A12)

where the angular coefficients δi.J are

δ1/2,J=I+1/2 = − I + 1

2I + 1
,

δ3/2,J=I+1/2 = − 2I − 1

2(2I + 1)

√
I

2I + 3
,

δ1/2,J=I−1/2 = − I

2I + 1
,

δ3/2,J=I−1/2 =
I

2(2I + 1)

√
2I − 1

I + 1
.

(A13)

3. Calculation of the p-wave amplitude in the
PTIRV experiment configuration

In this section, will present our calculation for the p-
wave amplitude in the PTRIV configuration. In this case,
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neutron momentum, neutron spin and target spin are all
perpendicular to each other. Let us first consider the p-
wave capture amplitude for the J = I+1/2 case. Noting

that in calculations of the p-wave amplitude, in addition
to jz = ±1/2, we have contributions from j = 3/2, jz =
−3/2, the capture amplitude becomes

Ap(I + 1/2) = −
Mp,3/2

2

[√
3 C

I+1/2 I−3/2
I I 3/2 −3/2 |I + 1/2, I − 3/2〉+ C

I+1/2 I+1/2
I I 3/2 1/2 |I + 1/2, I + 1/2〉

+C
I+1/2 I−1/2
I I 3/2 −1/2 |I + 1/2, I − 1/2〉

]
−
Mp,1/2√

2

[
C
I+1/2 I+1/2
I I 1/2 1/2 |I + 1/2, I + 1/2〉

−CI+1/2 I−1/2
I I 1/2 −1/2 |I + 1/2, I − 1/2〉

]
.

(A14)

where

C
I+1/2 I−3/2
I I 3/2 −3/2 =

√
6

(2I + 1)(2I + 3)
. (A15)

Using the same method presented in Appendix A 1, the
p-wave amplitude is equal to

fp = − 1

2k

(Ap)
2

E − Ep + 1
2 iΓp

. (A16)

Thus, we must now calculate explicitly the square of the
capture amplitude. We note that states of differing pro-
jections do not interact, meaning their cross term is equal
to zero. Substitution of the Clebsh-Gordan coefficients
gives

(Ap)
2 = β1,J=I+1/2M

2
p,1/2 + β13,J=I+1/2Mp,1/2Mp,3/2

+ β3,J=I+1/2M
2
p,3/2,

(A17)

where

β1,J=I+1/2 =
I + 1

2I + 1
= g,

β13,J=I+1/2 =

√
I√

2I + 3

2I − 1

2I + 1
,

β3,J=I+1/2 =
2I2 + 5I + 9

2(2I + 3)(2I + 1)
.

(A18)

Now, let us consider the J = I − 1/2 case. In this case,
noting that there are contributions from j = 3/2, jz =
−3/2, the p-wave capture amplitude is

Ap(I − 1/2) =
Mp,3/2

2

[√
3 C

I−1/2 I−3/2
I I 3/2 −3/2 |I − 1/2, I − 3/2〉+ C

I−1/2 I−1/2
I I 3/2 −1/2 |I − 1/2, I − 1/2〉

]
+
Mp,1/2√

2
C
I−1/2 I−1/2
I I 1/2 −1/2 |I − 1/2, I − 1/2〉 ,

(A19)

where

C
I−1/2 I−3/2
I I 3/2 −3/2 =

√
3I

(1 + I)(1 + 2I)
. (A20)

Thus, in a similar way to above, we yield

(Ap)
2 = β1,J=I−1/2M

2
p,1/2 + β13,J=I−1/2Mp,1/2Mp,3/2

+ β3,J=I−1/2M
2
p,3/2,

(A21)

where

β1,J=I−1/2 =
I

2I + 1
= g,

β13,J=I−1/2 = − I

2I + 1

√
2I − 1

I + 1
,

β3,J=I−1/2 =
I(I + 4)

(2I + 1)(2I + 3)
.

(A22)

Therefore, the p-wave forward scattering amplitude can
be written as
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fp = − 1

2k

β1,JM
2
p,1/2 + β13,JMp,1/2Mp,3/2 + β3,JM

2
p,3/2

E − Ep + 1
2 iΓp

,

(A23)

where the coefficients for each individual case are given
by Equations (A18, A22). A similar calculation using
the capture amplitudes (A10, A11) shows that the p-
wave amplitude for parity violation with a polarised tar-
get (which requires neutron momentum and spin to be
parallel, and both perpendicular to the nuclear target
spin) coincides with this expression.

Appendix B: Calculation of the matrix elements of
PV and PTRIV interaction between chaotic

compound states.

In this section we present the calculation of the weak
matrix elements between nuclear compound states, fol-
lowing the calculation performed by Ref. [39]. The short-
range weak interaction nuclear PV potential acting on a
nucleon may be presented in the following form:

Ŵ =
Ggp,n

2
√

2m
{(σp), ρ}, (B1)

where G is the Fermi constant, m is the mass of the
nucleon, σ and p are the nucleon sigma matrix and mo-
mentum respectively, ρ is the core nuclear number den-
sity and gp,n are dimensionless constants which are of the
order of unity (for example, Ref. [83] obtained the pro-
ton constant to be gp = 4.6 and the neutron constant to

be gn . 1). Since p = −i∇, the matrix elements of Ŵ
between discrete states are imaginary for a standard def-
inition of angular wave functions. For a given compound
state with angular momentum j and parity π, the wave
function may be expressed as

|jπ〉 =
∑
α

Cα |α〉 , |α〉 = (a†bc†de† . . .)jπ |0〉 , (B2)

where here, the states |α〉 are many particle excitations
over the ground state |0〉. Thus, the eigenstates |jπ〉 are
a chaotic superposition of a large number of Hartree-
Fock basis states |α〉. We note here that the normal-
isation sum of the compound state (B2),

∑
α C

2
α = 1,

is dominated by it’s “principal components”. Defining
the energy of the compound state to be E, the ener-
gies of the principal components are within the interval
[E − Γspr/2, E + Γspr/2], where Γspr is the component’s
spreading width. These components are produced by an
excitation of nucleons inside nuclear valence shells. As
per the book Nuclear Structure [82], the expansion coef-
ficients Cα can be treated as Gaussian random variables
(with 〈Cα〉 = 0), and can be written as

C2(Eα) =
1

N
∆(Γspr, E − Eα), , N =

πΓspr

2d
,

∆(Γspr, E − Eα) =
Γ2

spr/4

(E − Eα)2 + Γ2
spr/4

.

(B3)

Here, Eα is the energy of an arbitrary many-particle con-
figuration and N is the number of principle components,
which is expressed in terms of the average energy dis-
tance between nuclear compound resonances (with iden-
tical parities and angular momenta) d. The factor ∆ is a
Breit-Wigner-type factor, which governs the energy dis-
tance |E − Eα| ≤ Γspr/2 at which states may be called

principal components with the weight ∼ 1/N . Thus, we
can see that (B3) calculates the probability to find the
basis component |α〉 in the compound state |jπ〉, and
hence acts as a microcanonical partition function, which
depends on the energy of the isolated system E. The
canonical statistical partition function for a system in
a thermostat with temperature T gives the probability
∝ exp(−Eα/T ).

Now, we know that the weak interaction (60) only
mixes single-particle states with the same angular mo-
mentum, and opposite parity. No such states are present
in the valence shell, meaning it follows that the weak ma-
trix element between two compound states of close energy
is dominated by weak transitions between the “principal”
components, |jπ)〉 of one resonance, and the “small” com-
ponents of the other [39, 121].

This means that the excitation of particles from the
valence shell requires an energy as large as ∼ 8 MeV
(which is much larger than the matrix elements due to
the residual strong interaction V ) leading out a config-
uration from the partition function of “principal” com-
ponents according to (B3) [39]. Therefore, via the use
of first order perturbation theory in the residual strong
interaction V

V =
1

2

∑
ab,cd

a†bVab,cdc
†d, (B4)

an appropriate set of “small” configurations can be gen-
erated, meaning we can write the matrix elements of the
weak interaction between compound states as

〈s|W |p〉 =
∑
α

〈(s|V |α〉 〈α|W |p)〉
E − Eα

+
∑
β

〈(s|W |β〉 〈β|V |p)〉
E − Eβ

,

(B5)

where here, |α〉 and |β〉 are small components, and |s)〉
and |p)〉 are the principal components of the compound
states. As Eq. (60) is a single particle operator, it can
be included in the mean nuclear field, and thus transfer
the perturbation theory expansion in the single-particle
orbitals:
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ψ̃a = ψa +
∑
A

〈ψA|W |ψa〉
εa − εA

ψA, (B6)

where here, εa and εA are the energies of the orbitals ψa
and ψA respectively, which have opposing parity. There-
fore, the two-body weak interaction may be renormalized
by the strong interaction V [39, 42, 43], and defining

W̃ab,cd ≡ V (ãb̃, c̃d̃), we can express it as [39]

W̃abcd =
∑
A

VAb,cd
〈ψA|W |ψa〉
εa − εA

+
∑
B

VaB,cd
〈ψB |W |ψb〉
εb − εB

+

∑
C

Vab,Cd
〈ψC |W |ψc〉
εc − εC

+
∑
d

Vab,cD
〈ψD|W |ψd〉
εd − εd

.

(B7)

Thus, rewriting (B5) as 〈s|W |p〉 = 〈(s|W̃ |p)〉, we see
that the matrix elements between compound states can
be expressed in terms of the matrix elements between
single-shell particle states, meaning we can avoid con-
sidering explicitly the “small” components of each com-
pound state. This is favourable, as it is not clear whether
these components can be described by the same spread-
ing widths as the principal components (Equation (B3)).
The mean squared of this matrix element is

W 2
sp ≡ 〈p|W |s〉 〈s|W |p〉 = 〈(p|W̃ |s)〉 〈(s|W̃ |p)〉. (B8)

Expanding out the compound state |s〉 in terms of it’s
components using (B2) gives

W 2
sp =

∑
αβ

CαCβ 〈(p|W̃ |α〉 〈β|W̃ |p)〉. (B9)

Now, given the fact that the coefficients Cα and Cβ are
statistically independent, we can rewrite their product as
(see Ref. [82])

CαCβ = C2
αδαβ ,

= δαβ
1

N
∆(Γspr, E − Eα),

(B10)

using (B3). Thus, combining these expressions, the mean
squared of the matrix element can be written as

W 2
sp =

∑
α

1

N
∆(Γspr, E − Eα) 〈(p|W̃ |α〉 〈α|W̃ |p)〉.

(B11)

From here, we can use the fact that in the second quan-
tisation, the summation over α in (B11) is equivalent
to summation over the different components of the in-
teraction (B7), meaning we are left with calculating

〈(p|W̃W̃ |p)〉. Applying this method to (B11), we ob-
tain [39]

√
W 2
sp =

√
2d

πΓspr

{∑
abcd

νa (1− νb) νc (1− νd)
1

4

∣∣∣W̃ab,cd − W̃ad,cb

∣∣∣2 ×∆ (Γspr, εa − εb + εc − εd)
} 1

2

, (B12)

where E−Eα = εa− εb+ εc− εd is the change in energy.
The function

∆ (Γspr, εa − εb + εc − εd) , (B13)

can be viewed as an approximate energy conservation
law, with accuracy up to the width of the states [39].
Indeed,

∆(Γspr, E − Eα)→ πΓspr

2
δ(E − Eα), (B14)

when Γspr → 0 [39].
For the calculation of the nucleon orbital occupation

numbers, defined as 〈(p|a†b|p)〉 = δabνa, we can replace
the current microcanonical ensemble with the equivalent
canonical ensemble, as per [39]. In general, the canonical

ensemble may be chosen for a system with a large number
of degrees of freedom via the introduction of the chemical
potentials λn, λp and the effective nuclear temperature T .
Thus, we have that the expectation value in (B9) can be
reduced to a standard canonical ensemble average. In
doing so, we have that 〈(p|a†b|p)〉 = δabν

T
a , where νTa is

the finite temperature Fermi occupation probability;

νTa =
1

exp[(εa − λ)/T ] + 1
. (B15)

Numerical simulations [46, 125] have shown that the or-
bital occupation numbers νa are indeed very close to the
Fermi-Dirac distribution νTa . These formulas (B12, B15)
were used in [39] to perform numerical calculations of
the root-mean-square weak matrix element between com-
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pound states,
√
|W 2

sp| ≡ W . Furthermore, a calculation

of this form can also be performed to determine the time
and parity violating matrix elements between compound
states, see Ref. [44].

Numerical calculations of W and WP,T were done in
Refs. [39, 44] for specific values of gp, gn in the P-odd
interaction and ηp, ηn in T,P odd interaction (which ap-
pear in the PV and TRIV operators respectively). As the
values of these constants have been refined over time, we
must first take this into account. Let us rewrite WP,T and
W in terms of the nucleon interaction constants ηp, ηn
and gp, gn. Using [39, 44]

WP,T =√
2d

πΓspr

√(
Σ

(T,P )
pp ηp

)2

+
(

Σ
(T,P )
nn ηn

)2

+
(

Σ
(T,P )
pn ηpηn

)
,

(B16)

W =√
2d

πΓspr

√(
Σ

(P )
pp gp

)2

+
(

Σ
(P )
nn gn

)2

+
(

Σ
(P )
pn gpgn

)
.

(B17)

Here, Σ represents the sums of the weighted square ma-
trix elements of the weak interaction between nucleon
orbitals defined in Equation (B12) [14]. The cross terms

Σ
(P )
pn gpgn and Σ

(T,P )
pn ηpηn provide small contributions in

comparison to the other terms, as they contain products
of different matrix elements, with random sign. This is
not the case for the terms which have squared interaction
constants. As such, Equations (B16, B17) can be further
simplified

WP,T = KT,P

√
η2
n + kη2

p, (B18)

W = KP

√
g2
n + kg2

p, (B19)

where the value of the constant k should be slightly
smaller than 1 [14], as in heavy nuclei, the number of neu-
trons N = 1.5Z, where Z is the number of protons in the
nucleus. KT,P and KP are constants which follow from
(B16, B17). To estimate the behaviour of these mean
squared matrix elements under changes to the strength
constants, we can assume that the Σ in (B16, B17) are
proportional to the number of interaction terms in the
nucleus. These interactions are depicted in Figure 2.
Thus, there are Z2/2 terms for interaction between pro-
tons, N2/2 terms for interaction between neutrons, and
ZN for interactions between a proton and a neutron.
Therefore, one can write [14]

k =
Z2 + 2ZN

N2 + 2ZN
' 0.76.

FIG. 2. Possible configurations of weak interactions
Wab,cd [39] between protons and neutrons in the nucleus.
(a) Interactions between two protons; (b) interactions be-
tween two neutrons; (c) and (d) interactions between a pro-
ton and a neutron. These interactions contribute to the
PV matrix elements in Eq. (B12) by (Wnp + Wpn)2 =
W 2
np +W 2

pn + 2WnpWpn (as presented in [14]).

Ref. [39] completed calculations of the parity violating
mean squared matrix element W = 2.08 meV for gp =
4, gn = 1, yielding

W = KP

√
1 + 16k ' 2.08 meV, (B20)

=⇒ W = 0.57 meV
√
g2
n + 0.76g2

p . (B21)

For the PTRIV mean squared matrix elements calcu-
lations in [44] yielded WP,T = 0.2|ηn| meV, assuming
ηp = ηn. Thus, we can apply this result here to yield

WP,T = Kp

√
η2
n + 0.76η2

n = 0.2|η|meV, (B22)

=⇒ WP,T = 0.15 meV
√
η2
n + 0.76η2

p. (B23)

Appendix C: Possible evidence for static or
dynamical octupole deformation in rotational

spectra of various nuclei

In this Appendix, we will discuss the rotational spec-
tra for a few of the proposed nuclei in Section VII A.
For a target nucleus to be suitable for scattering experi-
ments, we require a lifetime which exceeds ∼ 106 years.
The following list of candidates are proposed based on
their rotational spectra, which may be obtained using
the database [67]. Here we discuss static or dynamical
octupole deformation (a soft octupole vibration mode) in
the ground state. The soft octupole vibration mode in-
dicates that the minimum of the deformation potential,
corresponding to the octupole deformation, may be be-
low neutron threshold. Some potential candidate nuclei
include:

• 153
63 Eu90 (stable): Rotational band including E0

(IP = 5/2+) and E ≈ 83 keV (IP = 7/2+). Oppo-
site positive parity band is evident, with the rela-
tively small energy intervals, which implies the ex-
istence of doublets of opposite parity states in this
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candidate nucleus. Interval between the doublet
(IP = 5/2+) and (IP = 5/2−) is 97 keV. This may
be an indication of static or dynamical octupole
deformation.

• 155
64 Gd91 (stable): Rotational band including E0

(IP = 3/2−) and E ≈ 86 keV (IP = 5/2−). Op-
posite parity band is evident, but it possibly corre-
sponds to a different internal nuclear state. Interval
between the states (IP = 3/2−) and (IP = 3/2+)
is 105 keV. Octupole deformation is not excluded.

• 157
64 Gd93 (stable): Rotational band including E0

(IP = 3/2−) and E ≈ 64 keV (IP = 5/2−).
Opposite parity band appears with the relatively
large energy interval between (IP = 3/2−) and
(IP = 3/2+) equal to 474 keV. Possible soft oc-
tupole mode. Rotational opposite parity band with
the small interval 10 keV appears at I = 9/2.

• 159
65 Tb94 (stable): Rotational band including E0

(IP = 3/2+) and E ≈ 58 keV (IP = 5/2+). Op-
posite parity band appears starting from I = 5/2
with the energy interval 305 keV. There may be
soft octupole mode.

• 161
66 Dy95 (stable): Rotational band including E0

(IP = 5/2−) and E ≈ 103 keV (IP = 7/2−). Op-
posite parity band is evident, ground state doublet
splitting 25 keV. However, this interval increases
with I. Possible octupole deformation.

• 163
66 Dy97 (stable): Rotational band including E0

(IP = 5/2−) and E ≈ 73 keV (IP = 7/2−). Op-
posite positive parity band is evident, interval with
the ground state 251 keV. However, positive par-
ity band appears to cross the negative parity band.
This implies that these bands may have differing
moments of inertia. Thus, we conclude that there is
weak evidence suggesting the existence of octupole
deformation in this nuclide.

• 233
92 U141 (half-life = 1.6 × 106 years): Rotational
band including E0 (IP = 5/2+) and E ≈ 40 keV
(IP = 7/2+). Opposite parity band is evident,
ground state doublet splitting 300 keV. Possible
soft octupole vibration mode.

• 237
93 Np144 (half-life = 2.1 × 106 years): Rotational
band including E0 (IP = 5/2+) and E ≈ 33 keV
(IP = 7/2+). Opposite parity band is evident.
Interval between the doublet (IP = 5/2+) and
(IP = 5/2−) is 59.5 keV. Possible octupole defor-
mation.
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