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Abstract

In this work, we study the structure of the leading order Martin-Ryskin-Watt (MRW) uninte-

grated parton distribution function (UPDF) and explain in detail why there exists discrepancy

between the two different definitions of this UPDF model, i.e., the integral (I-MRW) and dif-

ferential (D-MRW) MRW UPDFs. We perform this investigation with both angular and strong

ordering cutoffs. The derivation footsteps of obtaining the I-MRW UPDF from the D-MRW ones

are numerically performed, and the reason of such non-equivalency between the two forms is clearly

explained. We show and find out that both methods suggested in the papers by Golec-Biernat and

Staśto as well as that of Guiot have shortcomings, and only the combination of their prescriptions

can give us the same UPDF structure from both of these two different versions of the MRW UPDF,

namely I-MRW and the D-MRW UPDFs.

PACS numbers: 12.38.Bx, 13.85.Qk, 13.60.-r

Keywords: kt-factorization, UPDF, LO-MRW, differential form, integral form, Angular ordering, Strong

ordering

I. INTRODUCTION

Unintegrated parton distribution functions (UPDFs) are one of the essential ingredients

of theoretical hadronic cross sections calculation, within the kt-factorization scheme (kt is

the transverse momentum of a parton). In contrast to the collinear factorization framework,

where partons evolve according to the DGLAP evolution equations, the evolution equa-

tions within the kt-factorization is only limited to the gluon, i.e., Balitsky–Fadin–Kuraev–

Lipatov (BFLK) [1–4] and Catani-Ciafaloni-Fiorani-Marchesini (CCFM) [5–8]. Therefore,

different methods are introduced for obtaining both quarks and gluon UPDFs within the

kt-factorization framework, which are mostly based on the DGLAP evolution equations.

Among these methods Kimber-Martin-Ryskin (KMR) [9], Martin-Ryskin-Watt (MRW) [10],

and parton-branching (PB) [11, 12] are mostly used in the phenomenological study and suc-

cessfully they could describe the experimental data [13–18]. In the MRW formalism, which

is the main focus of this work, it is assumed that the parton moves collinear to the incoming
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proton till the last evolution step, where it becomes kt dependent, and after emitting a real

emission evolves to the factorization scales with the help of Sudakov form factor. While in

the PB UPDFs, the kt dependency enters into formalism from the beginning of the evolution

via an initial Gaussian distribution. Then the UPDFs are obtained by using Monte Carlo

(PB) method and taking into account the transverse momentum of the parton along the

evolution ladder.

But, the MRW formalism at the leading order (LO) level, can be written in two alter-

native forms, i.e., integral (I-MRW) and differential (D-MRW) UPDFs derivations. The

apparent equivalency of these two forms becomes questionable in the reference [19], where

it is shown that these two versions can actually become different in certain regions of x (x is

the fractional momentum) and kt. In order to address this problem, the authors of reference

[19] suggested that only in the cutoff-dependent parton distribution functions (PDFs) can

solve this discrepancy. On the other hand, the reference [20] contradicts the above idea [19]

and claims that there is no need for the cutoff-dependent PDFs, if one introduces another

term to the D-MRW UPDF.

However, in this work we show that both of the solutions suggested in the references

[19, 20] are incomplete, and the true equality between the I-MRW and D-MRW UPDFs

derivations can only be obtained if the cutoff-dependent PDFs and the additional term at

the same time be included into the formalism.

The structure of the paper is as follows: In the section II, the integral and differential

forms of the MRW UPDFs are in detail explained. In section III, we show the numerical

results of I-MRW and D-MRW UPDFs, to explain why one obtains different results, and

also what should be done in order to bring back the equivalency between the two forms. In

the section IV, we derive the same UPDFs from both of the I-MRW and D-MRW UPDFs,

using our analysis in the section III. Finally, in the section V, the conclusions are presented.

II. INTEGRAL AND DIFFERENTIAL FORMS OF THE MRW UPDFS

The MRW model as explained in the introduction can simply be obtained by assuming

the evolution of parton collinear to the parent hadron, till the last evolution step. At this

step, the parton in the last evolution step becomes kt dependent, i.e. fb(x, k
2
t ). Then the

parton emits a real emission with the probability
αs(k

2
t )

2π
Pab(x/z), and finally evolves to the
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factorization scale µ with the help of the Sudakov form factor Ta(k
2
t , µ

2), i.e.,:

fa(x, k
2
t , µ

2) = Ta(k
2
t , µ

2)
αs(k

2
t )

2πk2t

∑
b=q,g

∫ 1

x

dzPab(z)fb(
x

z
, k2t )[Θ(zmax − z)]δ

ab

, (1)

where the Sudakov form factor is as follows:

Ta(k
2
t , µ

2) = exp

(
−
∫ µ2

k2t

dk2t
k2t

αs(k
2
t )

2π

∑
b=q,g

∫ 1

0

dξξPba(ξ)[Θ(ξmax − ξ)]δ
ab

)
, (2)

with

Ta(k
2
t > µ2, µ2) = 1. (3)

It should be noted that in the equation (1) the momentum weighted PDFs are used, i.e.

fb(x, k
2
t ) = xb(x, k2t ). Because of using the collinear input PDFs with this approach, the

MRW formalism is not valid at kt less than a certain starting point, µ0 ∼ 1 GeV . Therefore,

to define the UPDFs at kt < µ0, one can utilize the normalization condition as a constraint,

i.e.,:

f(x, µ2) =

∫ µ2

0

dk2t f(x, k2t , µ
2), (4)

and obtain UPDFs at kt < µ0 as [10]:

fa(x, k
2
t < µ2

0, µ
2) = Ta(µ

2
0, µ

2)f(x, µ2
0). (5)

Expanding the equations (1) and (2) for the quark and gluon, gives divergent behavior for

the probability terms corresponding to the soft gluon emission, i.e., Pqq and Pgg. However,

the Heaviside step function avoids this soft gluon divergences. On the other hand we should

note that in the Kimber-Martin-Ryskin (KMR) model [9] which is used by the reference

[19], this cutoff is wrongly imposed on both emissions.

In the literature two kinds of cutoffs are used. The first one that is most commonly used

is based on the angular ordering constraint (AOC) of the soft gluon emissions. Imposing

this constraint on the last emission step, i.e., zq̃t = z
kt

(1 − z)
< µ where q̃t is the rescale

transverse momentum [10, 16, 19], leads to the cutoff on z which can be obtained as follows:

zmax =
µ

(µ+ kt)
. (6)

Using the above cutoff allows the parton to have emission even at the kt > µ, and hence the

UPDFs can become large in this limit, mostly because the Sudakov form factor is limited to
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the kt < µ. The other cutoff on z can be obtained by using the strong ordering constraint

(SOC) of the gluon emission, i.e., q̃t =
kt

(1 − z)
< µ [21]:

zmax = 1 − kt
µ
. (7)

The SOC is harsher with respect to the AOC one, and it limits the transverse momentum

of emitted gluon to the kt < µ. However, we should be aware that parton within the MRW

UPDF model is still free to have transverse momentum larger than the factorization scale

via the quark emission term.

Although, in the MRW model, the parton has the freedom to have the transverse momen-

tum larger than the factorization scale via the quark emission term, but within the KMR

model, the parton is limited to the kt ≤ µ, due to the cutoff on both emission terms. As a

result of this, one can notice from the figure 1 of the reference [19] that the UPDF model

adopted in this reference is in fact the KMR model, in which the author of reference [20] not

correctly refers to it as the MRW UPDF. Also, we should point out that the same author

uses the strong ordering cutoff along with the hard constraint Θ(µ− kt), to limit the parton

transverse momentum to the kt ≤ µ.

From now on, in order to simply prove the above points and show how to remove this

discrepancies, in the following sections, we only consider the non-singlet (NS) quark UPDF,

i.e.:

fNSq (x, k2t , µ
2) = TNSq (k2t , µ

2)
αs(k

2
t )

2πk2t

∫ zmax

x

dzPqq(z)fNSq (
x

z
, k2t ), (8)

where fNSq (x, k2t ) =
∑Nf

i=1(fi(x, k
2
t ) − f i(x, k

2
t )) is the non-singlet distribution, and the Su-

dakov form factor for this distribution is:

TNSq (k2t , µ
2) = exp

(
−
∫ µ2

k2t

dk2t
k2t

αs(k
2
t )

2π

∫ zmax

0

dξξPqq(ξ)

)
. (9)

We should note that in the non-singlet distribution the KMR and MRW UPDFs have

the same form, due to this fact that the non-diagonal quark emission terms of the DGLAP

evolution equation are no longer exist. The most important benefit of using this distribution

is that the DGLAP evolution equation is not a coupled integro-differential evolution any

more, and we can simply obtain the cutoff-dependent PDFs at different k2t , see the section III.

The MRW UPDF explained above is usually written in its integral form, I-MRW. How-

ever, in the reference [10] it is shown that it can also be written as a compact D-MRW
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UPDF as follows:

fNSq (x, k2t , µ
2) =

∂

∂k2t
[fNSq (x, k2t )T

NS
q (k2t , µ

2)] = TNSq (k2t , µ
2)
αs(k

2
t )

2πk2t

∫ 1

x

dzPqq(z)fNSq (
x

z
, k2t ).

(10)

In order to reach from the D-MRW to the I-MRW one can do as follows:

∂

∂k2t
[fNSq (x, k2t )T

NS
q (k2t , µ

2)] = TNSq (k2t , µ
2)
∂fNSq (x, k2t )

∂k2t
+ fNSq (x, k2t )

dTNSq (k2t , µ
2)

dk2t
, (11)

now the derivative with respect to k2t can be written as the form of the modified DGLAP

evolution equation (MDGLAP), i.e.:

∂fNSq (x, k2t )

∂k2t
=
αs(k

2
t )

2πk2t

[∫ zmax

x

Pqq(z)fNSq (
x

z
, k2t ) − fNSq (x, k2t )

∫ zMax

0

zPqq(z)

]
, (12)

and using the following relation for the Sudakov form factor:

1

TNSq (k2t , µ
2)

∂TNSq (k2t , µ
2)

∂k2t
=
αs(k

2
t )

2πk2t

∫ zmax

0

zPqq(z), (13)

one can simply obtain the I-MRW UPDF. The important point about this derivation is that

the derivative with respect to the Sudakov form factor has the role to remove the virtual

contribution, which comes from the modified MDGLAP. Considering this fact, therefore one

expects that the I-MRW UPDF to be always positive.

III. NUMERICAL INVESTIGATION OF THE D-MRW AND I-MRW UPDF

In this section we explain the D-MRW and I-MRW UPDFs by considering only the first

three quarks NS distribution, i.e. fNSq (x, k2t , µ
2) =

∑
q∈u,d,s[fq(x, k

2
t , µ

2) − fq(x, k
2
t , µ

2)]. For

the calculation, we consider the central MSTW2008lo90cl-nf3 (MSTW) input PDF sets [22]

via the LHAPDF library [23]. We calculate the UPDFs with respect to k2t at different values

of x = 0.01 and x = 0.1 with µ2 = 100 GeV 2.

Looking at the figure 1, it makes clear the issues related to the equality of the differential

and integral forms of the MRW pointed out in the references [19, 20]. In the case of MRW

with AOC, two problems can be spotted quickly by looking at this figure. First, as we move

toward the large x limit, the difference between the two forms is more significant, and at

some points, even in the kt < µ D-MRW UPDF becomes negative, while the I-MRW UPDF

is always positive. Second, the D-MRW has a discontinuity at kt = µ. Also in the case of the
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FIG. 1. The left (right) panel shows the comparison of the non-singlet quark MRW UPDF with the

AOC (SOC). The differential (integral) form of the equation (10) is denoted by D-MRW (I-MRW).

I(D)-MRW UPDF with SOC, one can observe the same issues as the case of the I(D)-MRW

UPDF with AOC, but, since there is no quark emission terms, the UPDFs with the integral

form are suppressed down to zero. In order to understand the roots of these problems, we

show numerically the derivation steps of reaching to the I-MRW UPDF from the D-MRW

UPDF, i.e., the equations (12) and (13).

In the figure 2, we numerically demonstrate the validity of the left and right hand sides

of the equation (12), i.e., the MDGLAP with collinear PDFs. It can be seen from this figure

that when the parton transverse momentum increases and becomes close to the factorization

scale, or as x becomes large, the difference between the left and right hand sides of the

MDGLAP become more significant. This is actually related to the imposition of the soft

gluon emission cutoff on the final evolution step in the right hand side of the MDGLAP.

While in the left hand side, we only use the PDFs input, that has no cutoff on it. Henceforth,

in order to solve this discrepancy, in the left hand side of the MDGLAP, one has to use PDFs

with AOC and SOC imposed in the last evolution step. However, this is an arduous task,

and one can alternatively solves the equation (12) with the cutoff on all evolution steps. In

the reference [19], one needs the cutoff dependent-PDFs, in order to reach this equivalency

between the I-MRW and D-MRW UPDFs. However, as it is discussed in the following
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FIG. 2. The left (right) panel shows the comparison of the left and right hand sides of the modified

MDGLAP for the non-singlet quark distribution with the AOC (SOC).

paragraphs and also in the reference [20], it is questionable, how the same UPDFs from the

I-MRW and D-MRW UPDFs in the kt ≥ µ is obtained. It should also be mentioned again

that if one considers MRW quark distributions, and not the non-singlet one, then in the case

of SOC with the I-MRW UPDF, the UPDF has a tail at kt > µ.

The problem with discontinuity and different distribution arising from the I-MRW and

D-MRW UPDFs is related to the this fact that equation (13) does not hold in the kt > µ.

Because if we look carefully at the equation (9), we observe that the maximum value of the

integral over k2t is µ2, and as a result of this, the equation (13) is only truly valid at kt ≤ µ.

Henceforth, one should modify and correct this equation simply by adding the virtual term

explicitly for kt > µ:

1

TNSq (k2t , µ
2)

∂TNSq (k2t , µ
2)

∂k2t
+ Θ(k2t − µ2)

αs(k
2
t )

2πk2t

∫ zmax

0

zPqq(z) =
αs(k

2
t )

2πk2t

∫ zmax

0

zPqq(z). (14)

As a result, one can modify the equation (10) as follows:

∂

∂k2t
[fNSq (x, k2t )T

NS
q (k2t , µ

2)] + Θ(k2t − µ2)fa(x, k
2
t )
αs(k

2
t )

2πk2t

∫ zmax

0

zPqq(z)

= TNSq (k2t , µ
2)
αs(k

2
t )

2πk2t

∫ 1

x

dzPqq(z)fNSq (
x

z
, k2t ).

(15)

This equation is derived in another way in the reference [20] by redefining the Sudakov form
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factor as T̃a(k
2
t , µ

2) = Θ(µ2−k2t )Ta(k2t , µ2)+Θ(k2t−µ2) and inserting this Sudakov form factor

inside the equation (10). However, the above reference [20] claims that with this additional

term to the MRW formalism, one can reach to identical UPDFs, both from the I-MRW and

D-MRW UPDF, while one can not trace this conclusion [20]. As it is obvious from what is

discussed in this section, in order to obtain this equality, one also needs cutoff-dependent

PDFs, in addition of using the equation (15) instead of the equation (10) . Therefore, we

can expect that none of the prescriptions mentioned in the [19, 20] alone, can give us same

UPDFs from both the I-MRW and D-MRW UPDFs, and one needs to use them along with

each other. In the following section, we provide our numerical results and show such an

equivalency.

IV. NUMERICAL RESULTS OF THE EQUIVALENCY BETWEEN I-MRW AND

D-MRW UPDFS

In this section, we solve the equation (11) for the NS distribution with the brute-force

method [24]. For the PDFs at the initial scale we use MSTW-PDF at 1 GeV , i.e starting

point of this PDFs set, and then evolve PDFs according to the equation (11). We perform

this evolution for µ2 = 100 GeV 2 and obtain grid files in the x-k2t space. Then with the

help of the two dimensional linear interpolation, we can obtain PDFs at different values of

x and k2t . One important point here is that the results with good accuracy can only be

obtained, if the grids are dense enough. Now, we are in a position to show our results with

the cutoff-dependent NS distribution.

First, in the figure 3 we compare the cutoff-dependent PDFs, i.e., the AOC and SOC,

with the corresponding PDFs of MSTW at x = 0.5 and x = 0.0001 to give an insight about

their similarities and differences. One can see from this figure that as we approach to the

small x and k2t , i.e., where the choice of the cutoff is not important, cutoff-dependent PDFs

and MSTW ones become similar to each other. Another, important point that one can

observe in this figure is that, at large x, the MSTW-PDF has a decreasing form, while for

the cutoff-dependent PDF, such a behavior is not observed. This is the reason that the

I-MRW UPDF with ordinary PDFs are always positive, while if we use the D-MRW UPDF

with these PDFs, it can become negative at large x and k2t , see D-MRW UPDF at x = 0.1

in the figure 1. However, by using the cutoff dependent-PDFs, one can also obtain, always,
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FIG. 3. The left (right) panel shows the comparison of the non-singlet quark distributions of

AOC (SOC) cutoff-dependent PDF with the MSTW one at µ2 = 100 GeV 2.

positive UPDFs from the D-MRW UPDF , too. Now, we are in a position to check the claim

of the reference [19] that with cutoff-dependent PDFs one can obtain equivalency between

the I-MRW and D-MRW UPDFs in all k2t including the k2t > µ2. In the left and right

panels of the figure 4 we show numerical result of the equation (10) with AOC and SOC

cutoff-dependent PDFs. As can be seen in this figure, the UPDFs obtained with I-MRW

and D-MRW UPDFs are the same in the k2t ≤ µ2 region. However, using the equation (10)

leads to the different I-MRW and D-MRW UPDFs for the ones with the AOC cutoff. We

should note that if one obtains UPDFs with the SOC, i.e., not using the NS ones, we would

also observe non-equality between the two forms at the kt > µ. Henceforth, in the figure 5,

we show the numerical results of employing the equation (15) in order to obtain equality

between the two forms. Therefore, it is seen that the cutoff-dependent PDFs alone are not

enough for obtaining the same UPDFs both from the I-MRW and D-MRW UPDFs, and

using the equation (15) is essential in obtaining the same UPDFs in all kt regions. Finally,

we should state that, although our results are limited to the non-singlet PDF, but one can

generalize them and obtain the same results.
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FIG. 4. The left (right) panel of the figure 4 shows the numerical result of the equation (10) with

the AOC (SOC) cutoff-dependent PDF. The differential (integral) UPDF of the equation (10) is

denoted by D-MRW (I-MRW).

V. CONCLUSIONS

In this work, we investigated the equivalency of the differential and integral forms of

the MRW UPDF model using angular and strong ordering cutoffs. For simplicity, we only

considered the non-singlet quark distribution at the LO level. We first explained the short-

comings associated with the references [19, 20], and then showed that none of the solutions

mentioned within these two references are enough to obtain the same UPDFs with the

differential and integral forms. Then, we showed that, the methods explained in the afore-

mentioned references are working in certain k2t region, and in order to obtain equivalent

UPDFs from both the differential and integral forms, one needs to employ both of these

methods, i.e., cutoff-dependent PDFs along with the ”modified” differential form. Finally,

employing these two prescriptions, we can obtain unique UPDFs in all k2t regions.

[1] V. S. Fadin, E. A. Kuraev, and L. N. Lipatov, Phys. Lett. B 60, 50 (1975).

11

https://doi.org/10.1016/0370-2693(75)90524-9


100 101 102

k2
t [GeV2]

10 4

10 3

10 2

10 1

100

101

fN
S

q
(x

,
2

=
10

0,
k

2 t
)[

1/
G

e
V

2 ]

AOC D-MRW, x = 0.1
I-MRW, x = 0.1
D-MRW, x = 0.01
I-MRW, x = 0.01

FIG. 5. This figure shows the comparison of the non-singlet quark MRW UPDF employing

AOC cutoff-dependent PDF. The differential (integral) UPDFs of the equation (15) is denoted by

D-MRW (I-MRW).

[2] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 44, 443 (1976).

[3] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 45, 199 (1977).

[4] I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).

[5] M. Ciafaloni, Nucl. Phys. B 296, 49 (1988).

[6] S. Catani, F. Fiorani, and G. Marchesini, Nucl. Phys. B 336, 18 (1990).

[7] S. Catani, M. Ciafaloni, and F. Hautmann, Phys. Lett. B 242, 97 (1990).

[8] G. Marchesini, Nucl. Phys. B 445, 49 (1995), arXiv:hep-ph/9412327.

[9] M. A. Kimber, A. D. Martin, and M. G. Ryskin, Phys. Rev. D 63, 114027 (2001).

[10] A. D. Martin, M. G. Ryskin, and G. Watt, Eur. Phys. J. C 66, 163 (2010), arXiv:0909.5529

[hep-ph].

[11] F. Hautmann, H. Jung, A. Lelek, V. Radescu, and R. Zlebcik, JHEP 01, 070, arXiv:1708.03279

[hep-ph].

[12] F. Hautmann, H. Jung, A. Lelek, V. Radescu, and R. Zlebcik, Phys. Lett. B 772, 446 (2017),

arXiv:1704.01757 [hep-ph].

12

https://doi.org/10.1016/0550-3213(88)90380-X
https://doi.org/10.1016/0550-3213(90)90342-B
https://doi.org/10.1016/0370-2693(90)91601-7
https://doi.org/10.1016/0550-3213(95)00149-M
https://arxiv.org/abs/hep-ph/9412327
https://doi.org/10.1103/PhysRevD.63.114027
https://doi.org/10.1140/epjc/s10052-010-1242-5
https://arxiv.org/abs/0909.5529
https://arxiv.org/abs/0909.5529
https://doi.org/10.1007/JHEP01(2018)070
https://arxiv.org/abs/1708.03279
https://arxiv.org/abs/1708.03279
https://doi.org/10.1016/j.physletb.2017.07.005
https://arxiv.org/abs/1704.01757


[13] M. Modarres, R. A. Nik, R. K. Valeshbadi, H. Hosseinkhani, and N. Olanj, J. Phys. G 46,

105005 (2019), arXiv:1901.00287 [hep-ph].

[14] A. Bermudez Martinez et al., Phys. Rev. D 100, 074027 (2019), arXiv:1906.00919 [hep-ph].

[15] R. Kord Valeshabadi, M. Modarres, S. Rezaie, and R. Aminzadeh Nik, J. Phys. G 48, 085009

(2021), arXiv:2107.14644 [hep-ph].

[16] Valeshabadi, Ramin Kord, Modarres, Majid, and Rezaie, Somayeh, Eur. Phys. J. C 81, 961

(2021).

[17] R. Kord Valeshabadi, M. Modarres, and S. Rezaie, Phys. Rev. D 104, 054019 (2021).

[18] M. Modarres, R. Taghavi, R. Aminzadeh Nik, and R. Kord Valeshabadi, Phys. Rev. D 104,

056005 (2021).

[19] K. Golec-Biernat and A. M. Stasto, Phys. Lett. B 781, 633 (2018), arXiv:1803.06246 [hep-ph].

[20] B. Guiot, Phys. Rev. D 101, 054006 (2020).

[21] M. A. Kimber, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C 12, 655 (2000), arXiv:hep-

ph/9911379.

[22] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009),

arXiv:0901.0002 [hep-ph].

[23] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr, and
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