# arXiv:2111.02565v1 [physics.pop-ph] 4 Nov 2021

# Espectroscopia Mesónica Moderna: o Papel Fundamental da Unitariedade

Eef van Beveren<sup>a</sup> e George Rupp<sup>b</sup>

<sup>a</sup>Centro de Física da UC, Departamento de Física, Universidade de Coimbra; eef@uc.pt

<sup>b</sup> Centro de Física e Engenharia de Materiais Avançados, Instituto Superior Técnico; george@tecnico.ulisboa.pt

The importance of implementing unitarity constraints in meson spectroscopy is very briefly outlined for Portuguese students of engineering sciences and therefore non-experts in the field. After explaining the profound differences between meson spectroscopy and atomic spectroscopy, attention is paid to the shortcomings of standard Breit-Wigner parametrisations in the case of broad and/or overlapping resonances. Finally, the manifestly unitary Resonance-Spectrum-Expansion model, which lies at the heart of a recent invited review paper by the present authors, is graphically presented, together with a simple yet typical application to the long-controversial  $K_0^{\star}(700)$ resonance.

# I. INTRODUÇÃO

A Espectroscopia Mesónica tem como objectivo principal descrever de forma sistemática as massas dos estados fundamentais e excitados de mesões observados em experiências nos vários aceleradores de partículas por esse mundo fora. Os mesões são sistemas de spin inteiro que consistem em dois fermiões, um quark (q) e um antiquark ( $\bar{q}$ ). Quando a massa e os números quânticos o permitem, um mesão desintegra-se rapidamente em pares de mesões mais leves por meio da criação de um par  $q\bar{q}$ , tratandose de um estado energeticamente favorecido. Neste caso, falamos de uma *ressonância mesónica*, com largura inversamente proporcional ao seu tempo de vida. A mesões que não se podem desintegrar desta forma chamamos, ignorando decaimentos muito mais lentos, *estados ligados*.

A força que liga o par  $q\bar{q}$  não é inteiramente conhecida, pois resulta da Cromodinâmica Quântica (QCD), que é uma teoria não solúvel a baixas energias. Mesmo assim, sabemos empiricamente que o respectivo potencial é sempre crescente à medida que a distância entre o par  $q\bar{q}$  aumenta, já que (anti)quarks nunca foram observados isoladamente. Por isso se fala num potencial confinante, característica essa que já foi confirmada em simulações numéricas num espaço-tempo discretizado e finito cálculos na rede, "LQCD"). Para perceber melhor o potencial confinante convém analisar os espectros de mesões com números quânticos diferentes, e também compostos de (anti)quarks dos diversos sabores (u, d, s, c)e b). No entanto, uma comparação com a Espectroscopia Atómica revela logo várias complicações, que iremos ilustrar através das Figuras 1 e 2.

Figura 1 exibe as massas dos mesões vectorial (spin 1)  $\rho(770)$  e escalar (spin 0)  $f_0(500)$  com as suas excitações radiais até cerca de 1.7 GeV (1700 MeV). Representamos todos estes mesões aqui por um rectângulo, a fim de mostrar a dificuldade em atribuir uma massa precisa a cada um. A altura dos rectângulos corresponde à respectiva incerteza experimental na massa, na escala da ordenada e segundo as tabelas do Particle Data Group (PDG), actualizadas anual e publicadas [1] bienalmente. As correspondentes dimensões na abscissa dão as larguras de decaimento dos vários mesões, outra vez na mesma es-



Figura 1:  $\rho(770)$ ,  $f_0(500)$  e as suas excitações.

cala que a da ordenada. Como já referimos, ressonâncias mesónicas desintegram-se rapidamente e os estados  $\rho$  e  $f_0$ , que se desintegram ambos em dois piões, "vivem" durante tão pouco tempo  $(10^{-24} \text{ a } 10^{-23} \text{ seg.})$  que até se torna discutível atribuir-lhes uma massa. Torna-se assim indispensável definir de uma forma não ambígua o que se entende por massa no caso de partículas altamente instáveis. Esta problemática é o ponto central do presente artigo e será abordado nas secções seguintes.

Falta ainda chamar a atenção para mais diferenças entre os, à primeira vista, incompreensíveis espectros dos  $\rho \in f_0$ , quando comparados com o simples espectro de hidrogénio atómico na Figura 2 (da Ref.<sup>a</sup> [2]). Neste caso, a incerteza nos níveis de energia é quase nula, pois



Figura 2: Níveis de energia de hidrogénio atómico.

tanto teórica como experimentalmente se trata de um sistema extremamente bem conhecido e medido. Também a largura de decaimento dos níveis é totalmente desprezável em comparação com as separações entre eles, o que manifestamente não se aplica aos referidos mesões. Finalmente, os níveis de energia de hidrogénio têm uma referência relativa na energia de desintegração num protão e um electrão, enquanto os mesões não se podem desintegrar num quark e um antiquark, pelo que é necessário usar a massa total do mesão como referência.

## II. RESSONÂNCIAS BREIT-WIGNER

A forma tradicional de modelar uma ressonância isolada é através de uma parametrização *Breit-Wigner* (BW), que mostramos esquematicamente na Figura 3 (da Ref.<sup>a</sup> [3]). A respectiva expressão como função da energia é

$$P(E) \propto \left[ (E - M)^2 + \Gamma^2 / 4 \right]^{-1}$$
, (1)

onde M é a massa e  $\Gamma$  a largura da ressonância. Verificase facilmente que a curva na Figura 3 atinge o seu máximo  $P_{\max}$  quando E = M e  $\Gamma$  é mesmo a sua largura a meio



Figura 3: Ressonância Breit-Wigner [3].

de  $P_{\text{max}}$ . Se permitirmos energias complexas, P(E) vai para infinito se  $E \to M \pm i\Gamma/2$ , ao que se chama pólos nesta função. Isto pode parecer apenas uma curiosidade académica, mas não o é, como veremos na secção seguinte sobre unitariedade. De qualquer modo, a parametrização BW de uma ressonância só é boa quando esta estiver bastante afastada tanto de possíveis outras ressonâncias como de um limiar de decaimento, que corresponde à soma das massas das partículas em que a ressonância se desintegra. Por exemplo, o  $\rho(770)$  tem, como único limiar, a energia de 280 MeV, ou seja, a soma das massas de dois piões  $(\pi\pi)$ . Uma vez que o intervalo de energia entre o  $\rho(770)$  e esse limiar é mais de 3 vezes a largura total do  $\rho(770)$ , enquanto a distância até à primeira excitação  $\rho(1450)$  (segundo o PDG [1], Figura 1) é ainda maior, a parametrização BW afigura-se razoável neste caso. Porém, isso já não se pode dizer da ressonância escalar  $f_0(500)$  (Ref.<sup>a</sup> [1], Figura 1), que fica a menos de metade da sua massa e largura média do mesmo limiar  $(\pi\pi)$ . Para este e também outros mesões na Figura 1 impõe-se evidentemente uma descrição mais realista.

### III. MODELO RSE E UNITARIEDADE

Há muito anos, conseguimos descrever [4] a ressonância  $f_0(500)$  e os outros mesões escalares leves  $f_0(980)$ ,  $K_0^{\star}(700) \in a_0(980)$  [1] num modelo de quarks [5, 6] desenvolvido com colegas na Universidade de Nijmegen, Países Baixos. A essência do modelo era a descrição, com uma só expressão incluindo todos os possíveis estados ligados e ressonâncias mesónicos com os mesmos números quânticos e conteúdo de sabor, através de um tratamento em pé de igualdade do confinamento de quarks e o decaimento forte. Este formalismo é muito técnico e fica fora do âmbito do presente breve resumo. No entanto, convém ainda mencionar que o mesmo modelo descrevia com sucesso os então conhecidos espectros de charmónio (estados  $c\bar{c}$ ) e bottomónio  $(b\bar{b})$  [5], além de prever [6], entre muitos outros mesões, uma ressonância  $\rho(1250)$  (ver também a Ref.<sup>a</sup> [7]) no largo intervalo de energia onde o PDG apenas identifica um  $\rho(1450)$  (ver Figura 1). Outra grande surpresa na Ref.<sup>a</sup> [4] foi a descrição dos mesões escalares leves como ressonâncias dinâmicas e não simplesmente ligadas ao espectro do potencial confinante, nem como estados do tipo  $qq\bar{q}\bar{q}$  ("tetraquarks").

Muitos anos depois, um conhecido físico experimental desafiou-nos para desenvolver um modelo de quarks semelhante, mas de mais fácil utilização, o que nos levou ao modelo **RSE** (*"Resonance Spectrum Expansion"*) [8]. A ideia básica é que ressonâncias mesónicas podem ser consideradas estados intermédios em colisões entre dois mesões mais leves, mas que ao mesmo tempo têm a identidade de estados  $q\bar{q}$  com os mesmos números quânticos (spin, *paridade*, ...). Isso é simbolicamente retratado na Figura 4, onde o primeiro diagrama representa o processo mais simples, com os dois mesões se "fundindo" no primeiro vértice, propagando-se depois como um con-



Figura 4: Representação esquemática do modelo RSE.

junto de estados  $q\bar{q}$  e desintegrando-se novamente em dois mesões no segundo vértice. Os processos nos vértices são a aniquilação e criação de um par  $q\bar{q}$ , respectivamente. O segundo diagrama na Figura 4 corresponde a um processo quântico de ordem superior, envolvendo duas aniquilações e duas criações de  $q\bar{q}$ . Os pontinhos representam todas as ordens superiores, que pela estrutura dos diagramas permitem somar tudo, algébrica e analiticamente, para se obter uma expressão fechada para o que se chama a *amplitude* deste processo. Isto equivale a resolver uma equação do tipo Schrödinger. Com a tal amplitude constrói-se directamente a chamada matriz S, que é a grandeza quântica mais geral para descrever processos de colisões entre partículas.

Observe que, embora todas as linhas externas dos diagramas na Figura 4 sejam rotuladas com a mesma letra M, os pares de mesões dos lados esquerdo e direito não precisam de ser iguais. Por exemplo, na dispersão de piões pode-se formar uma ressonância da família dos  $\rho$ pela aniquilação de um par  $q\bar{q}$  leve. Caso a massa total o permita, esta ressonância pode também desintegrar-se num par de kaões (KK) através da criação de um par  $s\bar{s}$ . A matriz S descreve assim não apenas a dispersão de dois piões, mas também a sua transformação em pares de outros mesões e ainda a dispersão directa destes mesões.

A enorme vantagem de se ter uma forma explícita da matriz S é que a mesma contém toda a informação do processo, incluindo limiares de decaimento, estados ligados, ressonâncias simples e ressonâncias dinâmicas. Estas duas últimas correspondem a singularidades complexas em S, os tais  $p \delta los$  acima referidos, mas agora bem realistas e sem aproximações do tipo BW para cada uma destas ressonâncias separadamente. A matriz S assim derivada é manifestamente simétrica e unitária, propriedades matemáticas essas que garantem invariância de reversão de tempo e conservação de probabilidade, respectivamente. A unitariedade de S implica  $(S^*)^T S = 1$ , onde o asterisco significa complexo-conjugado e o"T" transposição.

Uma aplicação muito simples [9] do modelo RSE, com o único modo de decaimento  $K\pi$  em onda S (l = 0), resulta numa notável descrição da respectiva secção eficaz experimental até E = 1.6 GeV (ver Figura 5), com muito poucos parâmetros. Além disso, consegue identificar um pólo dinâmico de energia complexa a (714 - i228) MeV, correspondente à ressonância escalar  $K_0^*(700)$  [1].

Desde então fizemos muitas outras aplicações do modelo RSE à espectroscopia mesónica, descrevendo ressonâncias mais complicadas, que envolvem vários modos diferentes de decaimento. Exemplos bem-sucedidos, além dos mesões escalares leves e nalguns casos já confirmados pela LQCD, são os controversos mesões  $D_{s0}^*(2317)$  [10],  $D_0^*(2300)$ ,  $D_{s1}(2460)$ ,  $D_1(2430)$ ,  $D_{sJ}(2860)$ ,  $\chi_{c1}(3872)$  [11],  $\psi(4260)$ ,  $\psi(4660) \in \Upsilon(10580)$ . Tratámos de forma muito mais detalhada destas e doutras ressonâncias mesónicas num recente artigo de revisão por convite [12], que também aborda processos de produção e efeitos de limiares, com base no princípio da unitariedade.

### IV. RESUMO

Os resultados das experiências de colisões são dados em termos de seções eficazes ou amplitudes em função da energia total. Geralmente, a amplitude exibe várias elevações que podem indicar a existência de ressonâncias mesónicas nas respectivas energias. A descrição desta amplitude por uma só expressão para todos os membros de uma família de mesões é claramente mais realista do que uma parametrização um a um do tipo Breit-Wigner.



Figura 5: Secção eficaz  $K\pi$  em onda S [9].

- P. A. Zyla *et al.* [Particle Data Group], Prog. Theor. Exp. Phys. **2020** (2020) 083C01.
- [2] https://brilliant.org/wiki/energy-level -and-transition-of-electrons/
- [3] https://commons.wikimedia.org/wiki/ File:Breit-Wigner.svg
- [4] E. van Beveren, T. A. Rijken, K. Metzger, C. Dullemond, G. Rupp e J. E. Ribeiro, Z. Phys. C 30 (1986)

615 [arXiv:0710.4067 [hep-ph]].

- [5] E. van Beveren, C. Dullemond e G. Rupp, Phys. Rev. D 21 (1980) 772.
- [6] E. van Beveren, G. Rupp, T. A. Rijken e C. Dullemond, Phys. Rev. D 27 (1983) 1527.
- [7] N. Hammoud, R. Kamiński, V. Nazari e G. Rupp, Phys. Rev. D 102 (2020) 054029 [arXiv:2009.06317 [hep-ph]].
- [8] E. van Beveren e G. Rupp, Int. J. Theor. Phys. Group Theor. Nonlin. Opt. 11 (2006) 179 [arXiv:hep-ph/0304105].
- [9] E. van Beveren e G. Rupp, Eur. Phys. J. C 22 (2001) 493 [arXiv:hep-ex/0106077].
- [10] E. van Beveren e G. Rupp, Phys. Rev. Lett. **91** (2003) 012003 [arXiv:hep-ph/0305035].
- [11] S. Coito, G. Rupp e E. van Beveren, Eur. Phys. J. C 71 (2011) 1762 [arXiv:1008.5100 [hep-ph]].
- [12] E. van Beveren e G. Rupp, Prog. Part. Nucl. Phys. 117 (2021) 103845 [arXiv:2012.03693 [hep-ph]].