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Abstract

We consider the theory of N free Dirac fermions with a uniformly winding mass,

meiqx, in two spacetime dimensions. This theory (which describes for instance a su-

perconducting current in an N -channel wire) has been proposed to have a higher-spin

gravity with scalar matter as the large-N dual. To order m2, however, thermodynamic

quantities in it can be computed using standard general relativity instead. Here, we

consider the question if the same is true for the entanglement entropy (EE). By com-

paring results obtained on two sides of the duality, we find that general relativity indeed

accounts correctly for the EE of an interval to order m2 (and all orders in q).

1 Introduction

In semiclassical gravity, the Gibbons-Hawking (GH) formula [1] interprets the Euclidean

effective action of a spacetime as the free energy (of gravity plus matter) and thus provides

a method of computation of gravitational entropy. If the spacetime is asymptotically anti-de

Sitter (AdS), the same effective action also determines the entropy of the dual conformal field

theory (CFT) in the context of AdS/CFT duality [2]. Furthermore, if the CFT is deformed

by a relevant operator, the correspondence [3, 4] between operators in the CFT and fields

in AdS tells us the precise way in which the entropy of the CFT can be computed from the

action of a deformed spacetime.

Replacing the thermal density matrix in the von Neumann entropy formula with one

obtained by integrating out a subset of degrees of freedom defines entanglement entropy

(EE). It has been shown [5] that the EE of a spherical region in a CFT vacuum is the same

as the entropy of a thermal state in an auxiliary hyperbolic space and that application of

the AdS/CFT correspondence to this thermal state, in the case when the gravitational dual

is standard general relativity, reproduces the result of the minimal-surface formula of Ryu

and Takayanagi [6]. Furthermore, it has been argued [7], in a similar context, that the EE
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can be related to the area of a minimal surface directly, without going through a thermal

state as an intermediary; that argument applies to a region of any shape.

In studies of the AdS/CFT correspondence, of special interest are cases when the CFT

is solvable, e.g., a free theory. One such case is the theory of N free Dirac fermions in two

spacetime dimensions (d = 2), which has been conjectured [8] to be dual, in the large N

limit, to a higher-spin gravity with scalar matter in AdS3 [9]. Deformation of the CFT by a

mass term corresponds to a nontrivial profile of a scalar. A scalar of amplitude A sources the

higher-spin fields at the same (quadratic [9]) order in A as it sources the metric correction.

To this order, however, neither those fields nor the metric correction contribute to variation

of the action; the latter is given simply by the action of the scalar on the undeformed

background. As a result, the O(A2) correction to the thermal entropy can be computed

from the GH formula as if the dual theory were standard general relativity.

One may then wonder if to order A2 the generalized GH formula [7] also works the same

way as in general relativity, in particular, if the Ryu-Takayanagi (RT) formula for the EE

still applies. In this paper, we address this question by making comparisons between results

obtained on two sides of the duality.

The theory of N Dirac fermions in d = 2 is of interest and perhaps some practical

importance in its own right. It can be used to describe a quantum wire with N transverse

channels. If we identify the chiral charge of the fermion with the electric charge in the wire,

the fermion mass corresponds to a superconducting pairing amplitude induced for instance

by proximity to a larger superconductor. The mass winding along the wire as m̃(x) = meiqx,

where m > 0 and q are real constants, corresponds to a state with non-zero supercurrent.

According to the preceding, we may hope to use standard general relativity to compute both

the thermal and entanglement entropies to order m2 and all orders in q.

Our main focus will be a non-vacuum, thermal state in the CFT, related holographically

to the BTZ black hole [10]. In this case, there is potentially a small parameter m/T , where

T is the temperature. On the gravity side, a small m/T corresponds to a small deformation

of the BTZ background. In contrast, if m is larger than both T and |q|, the deformation

cannot be small everywhere, and the only small dimensionless parameter proportional to m

is ml, where l is the length of the entangling region. We briefly discuss this case towards the

end of the paper.

We start in Sec. 2 with establishing a relation between the scalar amplitude A in gravity

and the fermion mass m in the CFT. The relation uses only the leading near-boundary

asymptotics of the scalar and amounts to a computation of the scalar two-point function in

the special, logarithmic case of the AdS/CFT correspondence. In Sec. 3, we consider the

thermal entropy and in Sec. 4 the EE of an interval of length l in a thermal state of the CFT.

In both cases, we find agreement between O(m2) results obtained on two sides of the duality.

For the EE, our evidence in mostly numerical, but in the case of a short interval, which we
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consider in Sec. 5, some results can be extracted analytically. In particular, the coefficient of

the leading (ml)2 ln2 l term in the O(m2) correction obtained from the RT formula is found

to coincide with that obtained in Ref. [11] directly in field theory. We present a discussion

of our results in Sec. 6.

2 Asymptotic analysis

We consider deformations of a Euclidean non-rotating BTZ black hole [10], due to a small-

amplitude complex scalar field φ. The metric is of the form

ds2 = r2dτ 2 + F (r)dx2 +G(r)dr2 . (1)

The asymptotic (near-boundary) region corresponds to large r, where F (r) → r2 and G(r) →
1/r2, after we set the AdS radius to unity. The coordinates x and τ are subject to the

following peridocities:

x ∼ x+ Lx , (2)

τ ∼ τ + β . (3)

The GH formula interprets T = 1/β as the temperature of the spacetime. According to the

AdS/CFT correspondence [2], it is also the temperature in the dual CFT, while Lx is the

length of the spatial circle on which the CFT lives.

For the undeformed black hole

F (r) = F0(r) ≡ r2 + α2 , G(r) = G0(r) ≡ [F0(r)]
−1 , (4)

with

α = 2πT . (5)

The entropy of this space is S0 = αLx/(4GN) [10], where GN is Newton’s constant. We now

proceed to finding corrections to this result, due to the presence of the scalar.

The Gibbons-Hawking method of finding gravitational entropy requires computing the

Euclidean action including, in our case, both gravity and the scalar. If we only want the

action to the leading (A2) order in the scalar amplitude A, we do not need to consider

changes to the gravitational part of the action, since that part was extremal for A = 0. This

leaves us with the bilinear action of the scalar,

IE =
∫
d3x

√
g
(
gmn∂mφ

∗∂nφ+M2φ∗φ
)
, (6)

where g refers to the metric of the undeformed background. On the equations of motion,

this reduces to the boundary term

IE =
∫
dτdx (rgrrφ∗∂rφ)|r=rm

, (7)
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where rm is some large value of the radius.

Here, we focus on the logarithmic case M2 = −1, corresponding, via the standard

AdS/CFT dictionary [3, 4], to an operator of dimension ∆ = 1 in the CFT. We restrict

attention to static x-dependent solutions of the form

φ(x, r) = eiqxφrad(r) , (8)

with a constant momentum q in the x direction. The leading and first subleading terms in

the asymptotic of the scalar in this case can be combined into

φrad(r) =
A

r
ln(rξ) + . . . , (9)

where A and ξ are constants, and the dots stand for terms suppressed by inverse powers of

r. The constant ξ is a function of q and T ,

ξ = ξ(q, T ) , (10)

but, in the present case, not of A itself. For q = 0, ξ can be considered as a holographic

definition of the correlation length. We will occasionally use this terminology also for q 6= 0.

For a scalar described by a bilinear action on the undeformed BTZ background, the

solution to the equations of motion is readily available, and one can read off it the full

dependence of ξ on its arguments. We will make use of this solution in the next section.

Here, let us observe that both Eqs. (7) and (9) depend only on the asymptotic form of the

metric and so are a bit more general than the case at hand. We can use them to obtain a

general relation of A to the mass parameter of the CFT. It will apply for instance also in

the case of vacuum AdS, which has the same large-r asymptotic as the BTZ metric (4) but

a different topology.

Substituting Eq. (9) in (7), we find that the action is divergent in the limit rm → ∞
and so needs to be renormalized. This is achieved by adding a boundary counterterm [12].

We do that by first stepping away from the logarithmic case, i.e., considering M2 somewhat

above −1, so that

λ ≡ 1 + (1 +M2)1/2 = 1 + s (11)

with 0 < s < 1, and then taking the limit s→ 0. The counterpart of Eq. (9) is

φrad(r) = Asr
s−1

[
1− (ξr)−2s

]
+ . . . , (12)

and the renormalized action, computed by the method of Ref. [12], is

IE,ren = 2s
∫
dτdx|As|2ξ−2s . (13)
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For Eq. (12) to reproduce (9) in the limit s → 0, As must go infinity as A/(2s) with a

constant A. We then see that the logarithmic case requires an additional subtraction, of the

O(1/s) term in (13). After this subtraction, the renormalized action for s = 0 becomes

IE,ren = −
∫
dτdx|A|2 ln(µξ) , (14)

where µ is a normalization momentum.

By the standard dictionary [3, 4], IE,ren generates the two-point function of an operator

of dimension ∆ = 1 in the dual CFT. The result can be compared to that obtained directly

in in the field theory of a N -component Dirac fermion in d = 2. The operator in question

there is O = Ψ̄RΨL, where ΨL,R are the left- and right-moving components of the fermion

field. The source of O in this theory is the position-dependent fermion mass meiqx, where

we can choose m to be real and positive. The two-point function, computed from a one-loop

diagram is, to logarithmic accuracy, (N/2π) ln(µ/Q) where Q is the largest of the three mass

scales: m, |q|, and T . Comparing this to Eq. (14), we see that, if the results on two sides of

the duality are to match, the amplitude A in the gravitational theory must be related to m

as follows:

A = m

√
N

2π
, (15)

up to an inessential constant phase factor.

We conclude this section with a comment concerning the relative magnitude of q and

m. In a superconductor, m represents the energy gap and q the superflow momentum per

Cooper pair. It is well known that, in a conventional intrinsic superconductor, the q/m ratio

cannot be arbitrarily large: at a sufficiently large q, the gap goes to zero signaling transition

to the normal state [13]. Here, however, we consider q and m as independent parameters, as

may be the case when superconductivity is induced by the proximity effect. Accordingly, we

extend our analysis to arbitrarily large q (and indeed will not detect any obstacles to doing

so).

3 Thermal entropy

The solution for the radial part of the scalar on the rigid BTZ background (4) is

φrad(r) = Ã(r2 + α2)−λ/2
2F1

(
a, b, 1;

r2

r2 + α2

)
(16)

where Ã is a constant amplitude, λ is related to the mass squared of the scalar by Eq. (11),

and 2F1 is the hypergeometric function with

a =
1

2

(
λ+

iq

α

)
, b =

1

2

(
λ− iq

α

)
. (17)
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As before, we focus on the case λ = 1 (M2 = −1), when the asymptotic of 2F1 is logarithmic

[14]:

F (a, b, a+ b; z) =
Γ(a+ b)

Γ(a)Γ(b)
[2ψ(1)− ψ(a)− ψ(b)− ln(1− z)] +O[(1− z) ln(1− z)] , (18)

where Γ(·) and ψ(·) are the gamma and digamma functions, respectively. The asymptotic

form of the solution then agrees with Eq. (9), with

A =
2Ã

π
cosh

πq

2α
, (19)

ln ξ = − lnα + ψ(1)− Re ψ
(
1

2
+
iq

2α

)
. (20)

The real part of the digamma function in (20) is a monotonically increasing function of

q2, approaching ln(q/α) in the limit of large q/α. Note, then, that in this limit ξ becomes

independent of the temperature, and to logarithmic accuracy ln ξ = − ln q.

The small-amplitude condition for the scalar, under which the metric deformation is small

and Eq. (16) is applicable, is

κA≪ ξ−1 , (21)

where κ2 = 8πGN , and GN is Newton’s constant. Written in terms of the fermion mass in

the dual CFT, this becomes

m≪ ξ−1 , (22)

where we have used the relation GN = 3/(2N) [15] and Eq. (15). Since ξ is determined by

the larger of α = 2πT and q, the condition (22) is automatically satisfied if m≪ 2πT . This

is analogous to the Ginzburg-Landau limit in a superconductor.

In accordance with the GH formula, the action (13) with the τ integral removed is

interpreted as a correction to the free energy of the black hole:

δΩgrav = −Lx|A|2 ln(µξ) , (23)

where we now have an explicit expression for ln ξ, Eq. (20). In view of Eq. (15), this can

also be written as
∂Ωgrav

∂m2

∣∣∣∣∣
m=0

=
NLx

2π
ln(µξ) . (24)

The corresponding correction to the entropy then follows from the thermodynamics formula

Sgrav = −∂Ωgrav/∂T . Note that dependence on the normalization point µ disappears upon

taking the derivative with respect to T .

We now compare this result to the free energy of a multiplet of N free Dirac fermions in

two spacetime dimensions. The mass Lagrangian density (in the Lorentzian signature) is

Lm = −m
(
e−iqxΨ̄LΨR + eiqxΨ̄RΨL

)
, (25)
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where ΨL,R are the left- and right-moving component of the multiplets and m is a positive

constant. A chiral transformation will remove the factor eiqx in Eq. (25), at the price of an

additional term appearing in the full Lagrangian:

L = L′ − q

2

(
Ψ†

RΨR +Ψ†
LΨL

)
, (26)

where L′ is the Dirac Lagrangian density with a constant mass m. In a superconductor, the

quantity in the brackets in (26) represents the electric current: recall that we identify the

electric charge with the chiral charge of the Dirac fermion and set vF = 1.

The latter form of the Lagrangian is convenient for finding the spectrum of elementary

excitations. There are two branches, with energies

ǫ±(k) =
√
k2 +m2 ± 1

2
q ≡ ǫ0(k)±

1

2
q . (27)

The free energy ΩF of these fermions is that of the grand canonical ensemble with the

chemical potential set to zero. Corrections to ΩF due to the fermion mass are contained in

∂ΩF

∂m2
= N

∑

k

1

2ǫ0(k)
[nF (ǫ+) + nF (ǫ−)] , (28)

where nF (ǫ) = (eβǫ+1)−1 is the Fermi distribution. Our use of the grand canonical ensemble

for an isolated system implies that we are working in the thermodynamic limit, when the

sum over k can be replaced with an integral. A convenient way to compare the result to the

one obtained on the gravity side is to expand both expressions in powers of q2 and compare

them term by term. The constant, power zero, term in (28) is obtained by replacing ǫ± with

ǫ0 and is logarithmic:

NLx

2π

∫
dk

ǫ0(k)
nF (ǫ0) =

NLx

2π

(
ln
T

m
+ const

)
. (29)

This differs from the corresponding term in (24) by a T -independent constant. So, the results

for the entropy match. Nonzero powers of q2, obtained by expanding Eq. (28) in q, have

finite limits at m = 0. These limits are seen to coincide, term by term, with powers of q2

obtained by expanding ln ξ in Eq. (24).

4 Entanglement entropy

The Ryu-Takayanagi (RT) formula [6] for the EE has been argued [7] to follow from a

generalized GH formula, combined with a holographic interpretation of the gravitational

partition function. In general, one should not expect the RT formula to apply to higher-

spin gravity; for the case without matter, alternative expressions have been proposed in

7



Refs. [16, 17, 18]. Given, however, that to the leading order in the mass parameter the

higher-spin fields do not affect the action, one may wonder if to this order the RT formula

remains applicable as well. Here, we compare results obtained from that formula to those

from a direct lattice computation in field theory.

For a single interval, application of the RT formula amounts to computing the length of

the geodesic, x(r), connecting two given points x = ±xm on the boundary. As before, the

boundary is at a large r = rm. The length of the interval is

l = 2xm . (30)

The geodesic has two symmetric branches: one, with x < 0, going from r = rm to the tip at

r = rtip, and the other, with x > 0, from rtip back to rm. The length of the geodesic in the

metric (1) is given by

A[x(r), F (r), G(r)] = 2
∫ rm

rtip
[G(r) + F (r)(x′)2]1/2dr , (31)

where x′ ≡ dx/dr. The geodesic equation for x(r) is obtained by extremizing this at fixed rm
and xm, with rtip obtained as a function of these parameters in the course of the procedure.

The RT formula for the EE [6], Sent = A/(4GN), combined with the relation [15] GN =

3/(2N), then gives

Sent =
1

6
NA . (32)

A simplification specific to d = 2 is that the integrand in Eq. (31) is independent of x,

so the corresponding canonical “momentum” is conserved along the geodesic:

F (r)x′

[G(r) + F (r)(x′)2]1/2
= const = [F (rtip)]

1/2 . (33)

The value of the constant has been found by noting that x′ → ∞ at the tip. Moreover,

the Hamilton-Jacobi theory applied to the functional (31) tells us that the same constant

appears as the derivative of A with respect to the endpoint:

∂A
∂xm

= 2[F (rtip)]
1/2 . (34)

With the help of Eqs. (30) and (32), this can be expressed as the derivative of the EE with

respect to the length of the interval:

∂Sent

∂l
=
N

6
[F (rtip)]

1/2 . (35)

Expression (35) is curious in its own right, but is not the most convenient one if we are

looking specifically at the case of small deformations (by a scalar of small amplitude A): it
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rtip/α 0.5 1 2

lα 2.887 1.763 0.962

Table 1: The length l of the entangling interval (in units of the thermal wavelength α−1, where

α = 2πT ) as given by the undeformed geodesic (36) for cutoff radius rm/α = 103 and various values

of rtip.

requires us to consider variations of both F (r) and rtip, i.e., of the geodesic itself. In this

case, we have found it more convenient to proceed directly from Eq. (31). Then, to the

leading order in the scalar amplitude, we can use the geodesic that was the extremum of A
for the undeformed BTZ background (4):

x0(r) =
1

α
ln
cr + α(r2 − r2tip)

1/2

rtip(r2 + α2)1/2
, (36)

where c ≡ (α2 + r2tip)
1/2 is the value of the constant (33) for the undeformed case. Note

that, here, rtip is the value of r at the tip of the undeformed geodesic (36). As such, it is

different (by terms of order A2) from rtip we would have to use in Eq. (35). On the other

hand, in the method employed in what follows, to the required accuracy the two values are

interchangeable, so we do not use separate notation for each.

For numerical work, it is convenient to choose rtip at will and map it by Eq. (36) to a

value of l = 2xm. For future use, we present here a table of (rtip, l) pairs obtained in this

way (Table 1).

The metric corrections are found from the xx and rr components of the Einstein equa-

tions,

G′

G
+ 2Gr = 2κ2r

[
−q

2G

F
φ2 + (φ′)2 +M2Gφ2

]
, (37)

F ′

F
− 2Gr = 2κ2r

[
−q

2G

F
φ2 + (φ′)2 −M2Gφ2

]
. (38)

We now use φ to denote the radial dependence of the scalar and assume it real. The original

scalar field is now eiqxφ(r). Primes denote derivatives with respect to r. These equations

have to be solved with the boundary conditions

G(0) = 1/α2 , F (rm) = r2m , (39)

which correspond to varying the metric with the temperature and length of the x circle fixed.

The boundary conditions for φ can be found from Eq. (8) (with λ = 1), which is applicable

since we are working in the linearized theory. We have

φ(0) = Ã/α , φ′(0) = 0 , (40)
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Figure 1: Entanglement entropy change per fermion due to a mass deformation for intervals of

different lengths, as a function of the superflow momentum q (in units of α = 2πT ). Curves:

results of a holographic calculation using general relativity as the dual. Points: results of a direct

calculation in lattice field theory. The interval lengths are the same as in Table 1.

where Ã is related to A by Eq. (19). The system consisting of Eqs. (37) and (38) and the

equation for the scalar can now be solved numerically, and the solution can be used together

with the geodesic (36) in Eq. (31).

In Fig. 1, we plot results obtained by this method for m/α = 10−2, rm/α = 103, and the

values of rtip shown in Table 1. The length of the geodesic (36) in the undeformed geometry

is

A0 = 2 ln
(
y +

√
y2 − 1

)
, (41)

where y ≡ rm/rtip, and we plot the quantity

δSent

N
=

1

6
(A−A0) , (42)

which is the entropy change per fermion, due to a finite mass. This quantity goes to a finite

limit at large rm.

For comparison, in the same figure, we show results of a direct lattice computation of the

EE for the corresponding values of the interval length l (Table 1). The method is described

(for q = 0) in Ref. [11]. We use staggered fermions [19] with antiperiodic boundary conditions

on a uniform lattice with an even number N of lattice sites. The Hamiltonian corresponding
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to the additional Lagrangian of Eq. (26) is discretized as

Hadd =
q

2

N−1∑

n=0

Ψ†
nΨn , (43)

where Ψn is a one-component Fermi operator. The results in Fig. 1 are for N = 5×104. The

good agreement seen in the figure confirms applicability of general relativity to computation

of O(m2) terms in the EE.

Let us comment on short-distance cutoffs required in both calculations. On the gravity

side, the cutoff is represented by the maximum radius rm [20]; on the lattice, by the lattice

spacing h. Because the difference (42) is finite in the limit rm → ∞, the precise relation

between rm and h does not matter, as long as h remains much smaller than all the physical

length scales. For definiteness, we have set h = 1/rm. Then, for instance, for rm/α = 103

(the value used for compiling Table 1), 1/(hα) = 103, so l in units of the lattice spacing is

obtained by multiplying an entry for lα in Table 1 by 1000.

5 Limit of a short interval

In the limit of a short interval, l ≪ ξ, the leading terms in δSent can be computed analytically.

Indeed, in this case, the entire geodesic lies near the boundary, and we can use the asymptotic

expression (9) for φ and linearized Einstein equations to find the leading logarithms in the

metric functions there. The computation is similar to those done in Refs. [21, 22, 23] for the

vacuum AdS deformed by scalars of different masses. In our case, we need to keep track of

deformations of both G and F , since both contribute to the geodesic length (31). Define the

deformations G1 and F1 by

G(r) = G0(r) +G1(r) , F (r) = F0(r) + F1(r) . (44)

In the asymptotic region, linearized Eqs. (37) and (38) become

G′
1

G0

+ 4rG1 =
2κ2A2

r3
[−2 ln(rξ) + 1 + . . .] , (45)

F ′
1

F0

− 2rF1

F 2
0

= 2rG1 +
2κ2A2

r3

[
2 ln2(rξ)− 2 ln(rξ) + 1 + . . .

]
. (46)

Here and in the next equation dots denote terms suppressed by inverse powers of r. The

solution to the first of these is

G1(r) =
2κ2A2

r4

[
− ln2(rξ) + ln r + const + . . .

]
(47)

Substituting this into the equation for F1, we find that logarithmic terms on the right-hand

side all cancel, and the leading behavior of F1 at large r is a constant.
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To the linear order in F1 and G1, the change in the length (31) is

δA[x(r), F (r), G(r)] =
∫ rm

rtip

G1(r) + F1(r)(x
′)2

[G0(r) + F0(r)(x′)2]1/2
dr . (48)

As before, we can use here the undeformed geodesic (36) since it was extremal to the zeroth

order. The term with F1 does not produce any logarithms of rtip, so as far as those are

concerned

δA[x(r), F (r), G(r)] ≈
∫ rm

rtip
(r2 − r2tip)

1/2G1(r)dr . (49)

The integral is convergent in the limit rm → ∞, and we assume this limit in what follows.

Substituting Eq. (47) for G1 and computing the integrals, we obtain

δA[x(r), F (r), G(r)] =
2κ2A2

3r2tip

[
− ln2(rtipξ) +

(
2 ln 2− 5

3

)
ln rtip +O(1)

]
, (50)

where O(1) refers to counting of powers of ln rtip. For a near-boundary geodesic, Eq. (36)

can be approximated by

x(r) =

(
1

r2tip
− 1

r2

)1/2

. (51)

In the limit rm → ∞, this gives l = 2xm = 2/rtip. Finally, using using Eq. (15) to relate A

to the fermion mass, we obtain

δSent =
1

6
Nm2l2

[
− ln2(l/ξ) +

5

3
ln l +O(1)

]
, (52)

where we now count powers of ln l. The leading dependence of Eq. (42) on q is due to ln ξ in

ln2(l/ξ) = ln2 l − 2 ln l ln ξ +O(1) (53)

with ln ξ given by Eq. (20). Note that, in the limit q ≫ T , expression (53) becomes inde-

pendent of the temperature.

Our results so far have been for the case m ≪ 1/ξ, where ξ is determined by the larger

of T and q. Let us comment on the counterpart of Eq. (52) for the opposite case, when m

is the largest mass scale in the problem. For example, let us consider deformations of the

global AdS3 by a scalar of the form (8) subject to the condition |q| ≪ m. This is appropriate

for the system at zero temperature and a low superflow speed. The metric is

ds2T=0 = F (r)dτ 2 + r2dx2 +G(r)dr2 . (54)

The undeformed AdS of unit radius corresponds to F (r) = [G(r)]−1 = 1 + r2. The dual

CFT now lives on a unit circle: Lx = 2π. As before, we focus on a scalar of mass M2 = −1

corresponding to the operator O = Ψ̄RΨL in the free-fermion CFT. The amplitude A is
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related to the mass m of the fermion by the same Eq. (15). The key difference from the

preceding case is that the correlation length in the CFT is now determined by the mass, and

the role of the thermodynamic limit is taken over by the condition

m≫ 2π/Lx = 1 . (55)

For this condition to apply, the amplitude of the scalar must be relatively large, and as result

the metric deformation cannot be small everywhere. Indeed, we can define the correlation

length holographically as the radius r of the region where the metric correction is comparable

to the unperturbed metric.

As the scalar decreases at large r, eventually, at r ≫ 1/ξ, the metric deformation becomes

small. We are back in the domain of linearized theory, where the asymptotic formula (9)

for the scalar applies. The correlation length ξ in it, however, is now determined primarily

by the mass, and the linearized theory provides no information on it beyond the estimate

ξ ∼ m−1. Working in parallel with the computation above, we obtain the same Eq. (52) for

short intervals; however, uncertainty in the estimate ξ ∼ m−1 prevents one from determining

the coefficient of the ln l term. The result is

δSent =
1

6
Nm2l2

[
− ln2(ml) +O(ln l)

]
, (56)

for ml ≪ 1. We note that the leading correction in this case coincides with that obtained in

Ref. [11] by a direct calculation in field theory. Agreement up to a numerical factor, between

the ln2 l terms in the holographic and field-theory calculations for ∆ = 1, has been noted in

Ref. [23]. Here, we show that the coefficients match as well.

6 Discussion

In this paper, we have aimed to understand conditions under which the entropies of the

d = 2 free-fermion CFT deformed by an x-dependent mass term meiqx can be computed

holographically using standard general relativity as the dual. We have considered both the

thermal entropy (of the entire space) and the entanglement entropy (EE) of an interval. In

both instances, we have found that one can use general relativity to compute the entropy to

order m2ξ2, where ξ is the correlation length set by the larger of the temperature and the

momentum q. For the thermal entropy, this can be seen as a consequence of the proposed

duality [8] between this CFT and the higher-spin theory of Ref. [9]: to order m2, the effective

actions in that theory and in general relativity are the same.

For the EE, the reasoning is less direct since in that case, before applying duality, one

makes transformations of the CFT coordinates and metric [5, 7]. One could argue, however,

that, while these transformations can make the coordinate dependence of the fermion mass

13



complicated, they do not affect counting of the powers of m, so to compute the entropy to

order m2 one may still be able to replace the higher-spin gravity dual with the standard one.

Our results lend support to this argument.

Finally, we remark that holographic formulas for the EE in higher-spin AdS3 gravity

without matter have been proposed (within the Chern-Simons formulation) in Refs. [16,

17, 18]. One may expect that, in the presence of a scalar necessary to describe a mass

deformation, these formulas will have to be modified. It would be interesting to find out

how.
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