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The connection between tree-level scattering amplitudes and the Seiberg-Witten (SW) map in the
Moyal deformed U(1) noncommutataive quantum electrodynamics (NCQED) is studied. We show
that in the minimal U(1) NCQED based on a reversible Seiberg-Witten (SW) map, SW map induced
interactions cancel each other in all tree-level scattering amplitudes and leave them identical to the
Moyal NCQED without SW map. On the other hand, the two-by-two Compton and light-by-light
scattering amplitudes deviate from minimal model when irreversible SW map is used. Therefore
the reversibility of SW map and equivalence between NCQED before and after SW map manifest
as an identity between the tree-level scattering amplitudes.

I. INTRODUCTION

It is long known that a noncommutative (NC) U?(N) gauge theories can be converted into a U(N) gauge theories
by Seiberg-Witten (SW) map, as required by the symmetry of the underline D-brane systems [1]. Originally the SW
map was constructed as a reversible map between the noncommutative U?(N) and commutative U(N) gauge fields.
Soon after it was realized that an irreversible SW map from commutative gauge fields valued in any Lie algebra to
deformed/NC gauge fields valued in the universal enveloping algebra of the Lie algebra can also be realized, resulting
in many more Moyal-deformed classical gauge theories [2–18]. SW maps have also been used for constructing gauge
theories on other noncommutative spaces [19–21].

Since 1999 till today the noncommutative gauge field theories have been studied intensively as perturbative quantum
field theories [22–33]. Nowadays, a number of open questions still remain. One frequently raised issue is how the
theories based on a SW map, either reversible or irreversible, could be connected to the Moyal NC U?(N) gauge
theories without SW map. In two prior works, we addressed this issue by showing that the on shell effective actions of
noncommutative U(1) gauge theories before and after a reversible SW map, obtained by the background field method,
are formally equivalent/dual to each other [34, 35]. The equivalence relation is verified by computing directly the
one-loop two-point function before and after SW map.

Recently we have shown that the scattering amplitudes of all tree-level two-by-two scattering processes in a minimal
U(1) noncommutative quantum electrodynamics (NCQED) model based on a reversible SW map are identical to the
same theory without SW map [36]. We view this result as a strong suggestion that the aforementioned equivalence
relation would be realized in tree-level scattering amplitudes as an identity. It then becomes, apparently, interesting
to investigate whether this identity can be generalized to all tree-level scattering amplitudes of the same model and
thus manifest the desired equivalence relation. Another, related question, is what kind of changes one would expect
from a NCQED model based on irreversible SW map, in which the formal equivalence relation no longer holds.

In this article we address both issues with explicit results. We first demonstrate that all tree-level scattering
amplitudes of the U(1) noncommutative QED minimal/first model based on a reversible SW map are identical to the
corresponding scattering amplitudes of the NC U?(1) model without a SW map by a constructive method. Using the
relations obtained when proving the general identity, we proceed to show that the same identity is lost already in
the two-by-two fermion-photon and photon-photon scattering processes in the NCQED second model containing two
differently charged fermions which is based on an irreversible SW map. Therefore, the identical tree-level scattering
amplitudes in the U(1) NCQED model(s) are indeed the consequence of the reversibility of the SW map, as we have
expected from the general formal equivalence.

This article is organized as follows:
In Sec. II we defined the minimal/first model, as the noncommutative Moyal deformed QED action induced by means
of a θ-exact reversible Seiberg-Witten map for a single gauge field (photon) and single charged fermion. In Sec. III
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FIG. 1. The backbone of interacting structures

we deal with amplitudes in the gauge sectors of NCQED, i.e., with a diagrammatic approach to the photon scattering
amplitudes in the U(1) SW mapped gauge theory. In particular in Secs. IIIA and IIIB we consider the γγ → γγ
scattering amplitude and their generalization to the to n-photon scattering amplitudes, respectively. Section IIIC is
devoted to the scattering amplitudes including fermions. In Sec. IV we consider and analyse the second model of the
deformed QED built by a θ-exact irreversible Seiberg-Witten map, with two gauge sectors and with fermion sector
containing two fermions ψ1 and ψ2, with two different charges [12, 14], and compared it with the minimal/first model.
Finally, in Sec. V we present a discussion and the conclusion.

II. THE MINIMAL MOYAL DEFORMED NCQED MODEL BASED ON REVERSIBLE SW MAP

We consider the minimal/first NCQED model in terms of one noncommutative U(1) gauge field and one left-charged
fermion field, Aµ and Ψ, respectively [2],

1Smin =

∫
− 1

4e2
Fµν [Aµ(eaµ)] ? Fµν [Aµ(eaµ)] + Ψ̄(ψ, eaµ) ? (i /D −m)Ψ(ψ, eaµ), (1)

Fµν = ∂µAν − ∂νAµ − i[Aµ ?, Aν ], DµΨ = ∂µΨ− iAµ ?Ψ.

The connection between the NC and commutative quantities is given by the reversible SW map [1], which is expressed
exactly with respect to the NC deformation parameter θµν as an expansion over coupling constant e/formal power of
fields [13, 18, 30].

III. SCATTERING AMPLITUDES OF THE MINIMAL MODEL

We start scattering amplitude analysis in minimal/first model with pure gauge sector (and deal with the inclusion
of fermions later on) by recording property of the θ-exact SW mapped U(1) gauge theory, all photon self-interaction
vertices (V ) satisfy the following identity,

kµi

i · Vµ1...µi...µn
(k1, ..., ki, ..., kn) = 0, i = 1...n. (2)

Now we consider the n ≥ 3-photon self-interaction terms. There are two origins of them:
a. First, we have the three-photon and the four-photon vertices from the U?(1) NCYM without SW map, which
generate the γγ → γγ scattering amplitude [36–38].
b. Second, the SW mapped terms originated from the quadratic (denoted as a box with two free lines attached),
cubic (black dot with three free lines attached) and quartic terms (black dot with four free lines attached) from the
SW unmapped actions, shown schematically in Fig. 1.

Relevant terms for each n can then be categorized into three types according to their origins in the SW unmapped
theory:

1. Those by attaching the ith order SW map and the jth order SW map to a quadratic structure and having
i+ j = n− 2 (Fig. 2);

2. those by lifting the three-photon vertex with the 3-SW maps satisfying i1 + i2 + i3 = n− 3 (Fig. 3);

3. and those by lifting the four-photon vertex with the 4-SW maps satisfying i1 + i2 + i3 + i4 = n− 4 (Fig. 4).
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FIG. 2. The (2, 0, i) and (2; i, j) type interactions. Here full lines denote photon legs which are at the zeroth order of SW
map/directly from the unmapped backbone schematic diagrams in Fig. 1, while dashed lines represents photon legs generated
by the SW map. Crosses denote legs of the backbone interaction which are replaced by SW-mapped composite field operators.
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FIG. 3. The (3; i1, i2, i3) type interaction, with the same notations as in Fig.2.

We may denote the first type as (2; i, j), second (3; i1, i2, i3) and third as (4; i1, i2, i3, i4). We also require j > i in
(2; i, j), which can be achieved via integration by part without ambiguity thanking to the quadratic backbone. We
introduce a set of fully ordered Feynman diagrams equivalent/schematic diagrams as diagramatic illustration of these
vertex terms. The full Feynman diagram vertices can be expressed by summing over all external leg permuations of
all relevant schematic diagrams.

Next, let us consider the (2; 0, n− 2) type:

(2; 0, n− 2) = (∂µ∂
µaν − ∂µ∂νaµ) ·A(n−2)

ν . (3)

We notice that this term bears the form of a free field equation multiplying an (n−2)th-order SW map of the NC gauge
field Aν . One can immediately recognize that such vertex does not contribute to the n-photon scattering amplitude
because of the field equation. There are still more intriguing consequences of such terms as we are going to see next.

A. The γγ → γγ scattering amplitude

As starting example, let us reexamine the SW map invariance of γγ → γγ scattering amplitude found in [36]. Only
the three- and four-photon vertices – (1Va3) and (1Va4) – from minimal/first model defined in Eq.(1) are relevant to
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FIG. 4. The (4; i1, i2, i3, i4) type interaction, with the same notations as in Fig.2.
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FIG. 5. Generic diagram contributions, containing the three- and four-field vertices, to the two-by-two (2 → 2) scatterings.
Full lines denote arbitrary quantum fields.

this process described in Fig. 5. They can be expressed by the following terms

1Va3 ≡ (2; 0, 1) + (3; 0, 0, 0), (4)
1Va4 ≡ (2; 0, 2) + (2; 1, 1) + (3; 1, 0, 0) + (3; 0, 1, 0) + (3; 0, 0, 1) + (4; 0, 0, 0, 0), (5)

and be illustrated by the schematic diagrams listed in Figs. 6 and 7. Notice that we have fixed the order of photon
lines completely and neglected all the permutations; they can be reintroduced later without affecting the cancellation
of SW map contributions we would like to prove.

We then consider the Feynman diagrams for scattering amplitudes and expand them into schematic diagrams.
These include the four-point vertices in Fig. 7 and nonvertex diagrams in Fig. 8.

We can first eliminate (2; 0, 2) as it vanishes on shell. Next we realize that the vertex (2; 0, 1) must have the leg
from zeroth order SW map, i.e. with a field equation attached, connected to an internal line in any term/diagram
including this vertex, otherwise the resulting term vanishes on shell too. The schematic diagrams which are vanishing
on shell because of the field equation in (2; 0, 1) are illustrated in Fig. 9. Once (2; 0, 1) is connected to another (full)

=⇒

(2; 0, 1) (3; 0, 0, 0)
1

2

3

FIG. 6. The three-photon schematic vertices in SW mapped NCQED
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FIG. 7. The four-photon schematic vertices in SW mapped NCQED
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FIG. 8. The four-photon schematic diagrams which we call the nonvertex type. Solid double lines are used to mark the zero-zero
type propagator connections here.

vertex V via the the leg from the zeroth- order SW map, the the second term in the right-hand parenthesis of (3)
does not contribute because of the property (2), i.e.,

(2; 0, 1) ≡ ∂µ∂µaν ·A(1)
ν . (6)

Now we consider attaching the simplified (2; 0, 1), i.e. (6), to another vertex for four photon scattering. The zeroth
leg, i.e., the field equation part must be attached to the internal propagator. There are two possibilities: One is to
have two (2; 0, 1) terms connected together via their zeroth legs, the other is to connect it to a (3; 0, 0, 0) term. In
both cases, the zeroth leg is connected to another zeroth leg. We mark such connections by a contraction line between
terms, and by a double solid line in the schematic diagram. We then notice the following important relations,

(2; 0, 1)(2; 0, 1) = −(2; 1, 1), (7)

(2; 0, 1)(3; 0, 0, 0) = −(3; 0, 0, 1), (8)

given in the language of Wick contractions. This enables the cancellation of all SW map induced contributions, whose
procedures are given diagrammatically in the Fig. 10.

It is also plain that (3; 1, 0, 0) and (3; 0, 1, 0) are canceled by (2; 0, 1)(3; 0, 0, 0) and (2; 0, 1)(3; 0, 0, 0), respectively.
These cancellations then leave the diagrams which are not induced by SW map the only nonvanishing contribution
to four-photon scattering amplitude.
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FIG. 9. Vanishing parts of the SW map induced contributions to the 2 → 2 (γγ → γγ) scattering amplitudes in the SW
mapped NCQED.
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FIG. 10. Cancellation of the SW map induced contributions to 2 → 2 scattering amplitude in SW mapped NCQED.

B. Generalization to n-photon scattering amplitudes

To generalize our cancellation results to all tree-level photon scattering amplitudes, we first notice that all (2; i >
0, j > i > 0), (3; i1, i2, i3) with i1 + i2 + i3 > 0, and (4; i1, i2, i3, i4) with i1 + i2 + i3 + i4 > 0 vertices can be canceled
by summing with schematic diagrams which have crossed legs replaced by double-line-box-cross propagators one by
one until all of them. These relations can be written in terms of zero-zero contractions as follows: First, we define
the vanishing sum

0 ≡ [2; i > 0, j > i > 0] = (2; i > 0, j > i > 0) + (2; 0, i)(2; 0, j), (9)

then

0 ≡[3; i1, i2, i3] = (3; i1, i2, i3) + (2; 0, i1)(3; 0, i2, i3)

+ (2; 0, i2)(3; i1, 0, i3) + (2; 0, i3)(3; i1, i2, 0)

+ (2; 0, i2)(2; 0, i3)(3; i1, 0, 0) + (2; 0, i1)(2; 0, i3)(3; 0, i2, 0)

+ (2; 0, i1)(2; 0, i2)(3; 0, 0, i3) + (2; 0, i1)(2; 0, i2)(2; 0, i3)(3; 0, 0, 0),

(10)
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and finally

0 ≡[4; i1, i2, i3, i4] = (4; i1, i2, i3, i4) + (2; 0, i1)(4; 0, i2, i3, i4)

+ (2; 0, i2)(4; i1, 0, i3, i4) + (2; 0, i3)(4; i1, i2, 0, i4) + (2; 0, i4)(4; i1, i2, i3, 0)

+ (2; 0, i1)(2; 0, i2)(4; 0, 0, i3, i4) + (2; 0, i1)(2; 0, i3)(4; 0, i2, 0, i4)

+ (2; 0, i1)(2; 0, i4)(4; 0, i2, i3, 0) + (2; 0, i2)(2; 0, i3)(4; i1, 0, 0, i4)

+ (2; 0, i2)(2; 0, i4)(4; i1, 0, i3, 0) + (2; 0, i3)(2; 0, i4)(4; i1, i2, 0, 0)

+ (2; 0, i1)(2; 0, i2)(2; 0, i3)(4; 0, 0, 0, i4) + (2; 0, i1)(2; 0, i2)(2; 0, i4)(4; 0, 0, i3, 0)

+ (2; 0, i1)(2; 0, i3)(2; 0, i4)(4; 0, i2, 0, 0) + (2; 0, i2)(2; 0, i3)(2; 0, i4)(4; i1, 0, 0, 0)

+ (2; 0, i1)(2; 0, i2)(2; 0, i3)(2; 0, i4)(4; 0, 0, 0, 0).

(11)

Above we have introduced square brackets [2; i > 0, j > i > 0], [3; i1, i2, i3] and [4; i1, i2, i3, i4] to denote these vanishing
sums. We realize that we can treat these vanishing sums as effective vertices. All double-solid internal lines are then
absorbed into these effective vertices. Introducing also the compatible notation

[2; 0, i] ≡ (2; 0, i), [3; 0, 0, 0] ≡ (3; 0, 0, 0), [4; 0, 0, 0, 0] ≡ (4; 0, 0, 0, 0), (12)

we can define a modified type of schematic diagrams by demanding that the new, box-bracket, vertices can only be
connected by internal propagators which are not the double solid line type. Usual n-photon correlation functions can
still be expressed in terms of these new schematic diagrams since all terms in the definition of box-bracket vertices
are equivalent to each other if we restrict the internal propagator connections as stated.

It is then straightforward to see that one new schematic diagram vanishes if it contains any of the [2; i > 0, j > i > 0],
[3; i1, i2, i3] with i1 + i2 + i3 > 0, and [4; i1, i2, i3, i4] with i1 + i2 + i3 + i4 > 0 vertices. So the nonvanishing new
schematic diagrams can only be built up by [2; 0, i], [3; 0, 0, 0], and [4; 0, 0, 0, 0] vertices and internal propagators which
are not the double solid line type. Now assume that one schematic diagram is from the SW map. Then it must
contain at least one [2; 0, i] vertex. The leg of this [2; 0, i] vertex with a field equation attached must then not be
external, as otherwise that diagram vanishes on shell. This leg can not connect to a [3; 0, 0, 0] or [4; 0, 0, 0, 0] vertex
either because of the modified Feynman rule we just imposed. Thus the only choice is to connect this leg with one
dashed line of another [2; 0, j] vertex. Then the next vertex’s zeroth leg must find one more dashed line of one more
vertex to connect. Now this chain of vertices must end somewhere for any scattering amplitude with a finite number
of photons. Then the zeroth leg of the last vertex on this chain has to stay external, which forces the whole diagram
to vanish onshell. Therefore all SW map-induced contributions must vanish on shell in the very end.

C. Scattering amplitudes including fermions

To extend the above procedure to fermions it is necessary to use a general result in QED, that is: “Eq. (2) type of
off shell contraction vanish for a general QED amplitude if and only if all charged particles are on shell” (Weinberg,
Vol. 1, § 10.5 [39]). SW map-generated vertices can now come from the quadratic Ψ̄Ψ and cubic Ψ̄ /AΨ backbone
terms. We can introduce the notation (Ψ̄Ψ; ī, i) and (Ψ̄ /AΨ; ī, j, i) to denote the SW mapped terms. Here in the first
term ī denotes the order of SW map for Ψ̄ and i for Ψ, while in the second ī for Ψ̄, j for Aµ and i for Ψ, respectively.

Vanishing effective vertices [Ψ̄Ψ; ī, i] and [Ψ̄ /AΨ; ī, j, i] can then be built using (Ψ̄Ψ; 0̄, i), (Ψ̄Ψ; ī, 0), and (2; 0, i)
elements. We have

0 ≡ [Ψ̄Ψ; ī, i] = (Ψ̄Ψ; ī, i) + (Ψ̄Ψ; ī, 0)(Ψ̄Ψ; 0̄, i), (13)
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and

0 ≡[Ψ̄ /AΨ; ī, j, i] = (Ψ̄ /AΨ; ī, j, i) + (Ψ̄Ψ; ī, 0)(Ψ̄ /AΨ; 0̄, j, i) + (2; 0, j)(Ψ̄ /AΨ; ī, 0, i)

+ (Ψ̄ /AΨ; ī, j, 0)(Ψ̄Ψ; 0̄, i) + (Ψ̄Ψ; ī, 0)(2; 0, j)(Ψ̄ /AΨ; 0̄, 0, i)

+ (2; 0, j)(Ψ̄ /AΨ; ī, 0, 0)(Ψ̄Ψ; 0̄, i) + (Ψ̄Ψ; ī, 0)(Ψ̄ /AΨ; 0̄, j, 0)(Ψ̄Ψ; 0̄, i)

+ (Ψ̄Ψ; ī, 0)(2; 0, j)(Ψ̄ /AΨ; 0̄, 0, 0)(Ψ̄Ψ; 0̄, i).

(14)

Remaining arguments then follow the photon only case, except that we need all external fermions to be on shell.

IV. MOYAL DEFORMED QED BUILT BY IRREVERSIBLE SW MAP: SECOND NCQED MODEL

In previous sections we have proven that all tree-level scattering amplitudes of the Moyal U(1) NCQED model
(1) satisfy the Seiberg-Witten map invariance, i.e. that all tree-level scattering amplitudes are the same before and
after performing SW map. On the other hand, it is long known that Moyal deformed NCQED can bear a more
general definition than minimal/first model (1), if irreversible SW map is used. This more general definition allows
commutative matter fields with different charges to couple to the same commutative U(1) gauge field by building
multiple NC gauge fields required from the same commutative gauge field [12]. Such constructions were relevant for
proper NC deformations of commutative theories with comprhenstive U(1) charge assignments [8, 9, 11, 12]. This
procedure yields a commutative U(1) gauge invariant classical theory, yet breaks the formal equivalence relation
between the theories before and after SW map [34, 35], as they have different degrees of freedom now. In this section
we discuss how the tree-level scattering amplitudes in such theories can, in turn, differ from the Moyal NCQED
without SW map and/or with reversible SW map.

We consider a second model built by irreversible θ-exact SW map, in order to compare with the minimal model
(1). This model has a fermion sector with two NC fermion fields Ψ1 and Ψ2, with charges e and κe respectively, for
simplicity [12, 14]. The gauge sector contains, in turn, two terms generated by two different NC gauge fields. The
formal NC action of such a model can be constructed as follows:

2S
[
Ψ1(ψ1, eaµ),Ψ2(ψ2, κeaµ), A1µ(eaµ), A2µ(κeaµ)

]
=

2∑
i=1

∫
Ψ̄i ? (i /D

(i) −m)Ψi −
1

4G2

∫ (
Fµν [A1µ(eaµ)] ? Fµν [A1µ(eaµ)] + λFµν [A2µ(κeaµ)] ? Fµν [A2µ(κeaµ)]

)
,

(15)

where

D(i)
µ Ψi = ∂µΨi − iAiµ ?Ψi. (16)

The normalization constant G2 is set to be

G2 = e2(1 + λκ2), (17)

which ensures that (15) has the regular commutative limit when θ → 0. And the weight factor λ between two different
parts of the gauge sector is free. One can then notice that the deviation from the minimal model (1) comes from
the fact that one can only build up vertices based purely on A1µ or A2µ. On the other hand, diagrams can freely
connect vertices from both Aiµ parts, since in the end they are expressed in terms of the same commutative gauge
field aµ. We then expect modification to the fermion-photon scattering and photon-photon scattering amplitudes of
the two-by-two scattering processes.

Since the photon interaction vertices are now linear combination of two separated parts, we can generalize the
notation in previous sections by marking the origin of each term. We can write the three- and four-field vertices from
the second model (15) as follows:

2Va3 = (A1|2; 0, 1) + (A1|3; 0, 0, 0) + (A2|2; 0, 1) + (A2|3; 0, 0, 0), (18)
2Va4 =(A1|2; 0, 2) + (A1|2; 1, 1) + (A1|3; 0, 0, 1) + (A1|4; 0, 0, 0, 0)

+ (A2|2; 0, 2) + (A2|2; 1, 1) + (A2|3; 0, 0, 1) + (A2|4; 0, 0, 0, 0),
(19)
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and

2Vψ̄iaψi
= (Ψ̄iΨi; 0̄, 1) + (Ψ̄iΨi; 1̄, 0) + (Ψ̄i /AiΨi; 0̄, 0, 0), (20)

2Vψ̄ia2ψi
=(Ψ̄iΨi; 0̄, 2) + (Ψ̄iΨi; 2̄, 0) + (Ψ̄iΨi; 1̄, 1)

+ (Ψ̄i /AiΨi; 1̄, 0, 0) + (Ψ̄i /AiΨi; 0̄, 1, 0) + (Ψ̄i /AiΨi; 0̄, 0, 1).
(21)

It is not difficult to notice that the SW map used for the second model is the same as for the first model, except for
different charge prefactors in front of aµ when defining A1µ(eaµ) and A2µ(κeaµ). For this reason, each parenthesis
term in the vertices (18) to (21) of the second model is equal to its counterpart in the first model up to a prefactor.
These relations can be expressed explicitly for the gauge sector as follows:

(A2|2; i, j) = λκi+j(A1|2; i, j) =
λκi+j

1 + λκ2
(2; i, j), (22)

(A2|3; i, j, k) = λκi+j+k(A1|3; i, j, k) =
λκi+j+k

1 + λκ2
(3; i, j, k), (23)

(A2|4; i, j, k, l) = λκi+j+k+l(A1|4; i, j, k, l) =
λκi+j+k+l

1 + λκ2
(4; i, j, k, l), (24)

where (2; i, j), (3; i, j, k), and (4; i, j, k, l) are vertex terms of the first model.
Similarly, the matter sector vertices of both models are related as follows:

2Vψ̄2anψ2
= κn · 2Vψ̄1anψ1

= κn · 1Vψ̄anψ, (25)

where 1Vψ̄anψ denote the vertex terms with n photon field legs and two fermions legs of the minimal/first model (1),
after the SW map was performed, (with the fermions relabeled).

Since the coefficients are different between parentheses, it is reasonable to expect the cancellation of SW map
contributions no longer holds in general in the second model. Indeed, a detailed inspection of two-by-two scattering
amplitudes of the the second model (15) resulted in that the ψ̄iψi → ψ̄jψj (and as well ψiψi → ψjψj ) scattering
amplitude is, up to an overall factor, the same as ψ̄ψ → ψ̄ψ (and ψψ → ψψ) of the first model (1), while for Compton
(γψi → γψi) and light-by-light (γγ → γγ) scatterings we have new terms because we linearly shifted the photon
self-interactions. With the help of relations (22) to (25), we can express the γψi → γψi, i = 1, 2 and γγ → γγ
scattering amplitudes (2Γ) of the second model (15) as their counterparts (1Γ) in the first model (1), in which all SW
map contributions vanish, plus the irreversible θ-exact SW map induced corrections ∆,

2Γ(γψ1 → γψ1) = 1Γ(γψ → γψ) + ∆(γψ1 → γψ1), (26)
2Γ(γψ2 → γψ2) = κ2 ·1 Γ(γψ → γψ) + ∆(γψ2 → γψ2), (27)

2Γ(γγ → γγ) = 1Γ(γγ → γγ) + ∆(γγ → γγ), (28)

where

∆(γψ1 → γψ1) = −λκ∆(γψ2 → γψ2) =
λκ2(1− κ)

1 + λκ2
(Ψ̄ /AΨ; 0̄, 1, 0)

∣∣∣
on−shell

, (29)

∆(γγ → γγ) =
λ2κ2(1− κ)2

(1 + λκ2)2

[
(2; 1, 1) + (3; 0, 0, 1) + (3; 0, 1, 0) + (3; 1, 0, 0)

]
on−shell

. (30)

As expected, the above irreversible SW map induced corrections vanish when κ equals to 1 and 0, since κ = 1 makes
A1µ equal A2µ and κ = 0 forces ψ2 to decouple from the gauge field. The fact that ∆(γψ2 → γψ2) does not depend
linearly on λ implies that it is not possible to remove the irreversible θ-exact SW map corrections by adjusting the
weight between two parts of the gauge sector.

The annihilation ψiψ̄i → γγ and pair production γγ → ψiψ̄i amplitudes can be derived from the Compton amplitude
by crossing symmetry, so they carry the same κ and λ dependences as the γψi → γψi does.

It is very important to note that ∆(γψi → γψi), i = 1, 2 and ∆(γγ → γγ) do not contain infrared divergences since
they can be expressed as vertices only, i.e. there are no Green functions generating additional singularities. Therefore
the leading IR singularities of the differential cross sections from the second model (15) remain the same as that of
the minimal/first model (1).
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V. DISCUSSION AND CONCLUSION

In this work we show in two parts the connection between reversibility of Seiberg-Witten maps and an identical
relation between the tree-level scettering amplitudes of the Moyal NCQED with and without a SW map. The first and
main part of the manuscript demonstrates that all tree-level scattering amplitudes of a minimal/first NCQED U(1)
model with gauge boson and one left-charge fermion before and after a reversible SW map are equal to each other.
The second part handles one of the opposite scenarios, in which an irreversible SW map is used to define the second
NCQED model with two, differently charged, fermions. We find that the aforementioned identity breaks down for
the two-by-two photon-fermion and photon-photon scattering amplitude. The difference between these amplitudes in
the latter model and the minimal model are expressed by terms from the minimal model in a fairly compact fashion.
The outcome confirms that these extra terms can not be suppressed by extra parameters in the second model except
at the trivial limits.

We consider the identity found for the minimal model before and after reversible SW map as the manifestation
of the formal equivalence between on shell effective actions of these two theories found in an earlier works [34, 35].
While we focus on left-charged fermions in this work, the method could be generalized in a straightforward manner
to right-charged and adjoint fermions in principle. We are therefore confident that the identity is a property of all
NCQED models based on reversible SW maps. Once the SW map becomes irreversible the formal equivalence breaks
down consequently. And as we have seen in Sec. IV the scattering amplitudes of the second model becomes different
from the first model exactly via the deviations of the cancellation of the SW map contributions. One particular part
of the two-by-two scattering amplitudes in second model, namely the collinear divergences, still follow those of the
minimal model. Taking into account the nontrivial nature of the collinear divergences of the two-by-two scattering
amplitudes of the minimal model itself [36], it could be worthy to study the IR behaviors of the scattering amplitudes
of both the first and the second models in the future.
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