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Whether the 3−space where we live is a globally orientable manifold M3 , and whether the local laws

of physics require that M3 be equipped with a canonical orientation, are among the important un-

settled questions in cosmology and quantum field theory. It is often assumed that a test for spatial

orientability requires a global journey across the whole 3−space to check for orientation-reversing

closed paths. Since such a global expedition is not feasible, physically motivated theoretical argu-

ments are usually offered to support the choice of canonical time orientation for the 4−dimensional

spacetime manifold, and space orientation for 3−space. One can certainly take advantage of such

theoretical arguments to support these assumptions on orientability, but the ultimate answer should

rely on cosmological observations or local experiments, or can come from a topological fundamental

theory of physics. In a recent paper we have argued that it is potentially possible to locally access the

the 3−space orientability of Minkowski empty spacetime through physical effects involving point-like

’charged’ objects under vacuum quantum electromagnetic fluctuations. More specifically, we have

studied the stochastic motions of a charged particle and an electric dipole subjected to these fluctu-

ations in Minkowski spacetime, with either an orientable or a non-orientable 3−space topology, and

derived analytical expressions for a statistical orientability indicator in these two flat topologically in-

equivalent manifolds. For the charged particle, we have shown that it is possible to distinguish the two

topologies by contrasting the evolution of their respective indicators. For the point electric dipole we

have found that a characteristic inversion pattern exhibited by the curves of the orientability indicator

is a signature of non-orientability, making it possible to locally probe the orientability of Minkowski

3−space in itself. Here, to shed some additional light on the spatial orientability, we briefly review

these results, and also discuss some of its features and consequences. The results might be seen as

opening the way to a conceivable experiment involving quantum vacuum electromagnetic fluctuations

to look into the spatial orientability of Minkowski empty spacetime.

Keywords: Spatial topology of Minkowski spacetime; Orientability of Minkowsk space; Quantum fluc-

tuations of electromagnetic field; Motion of changed particle and electric dipole under electromagnetic

fluctuations

1. Introduction

In the framework of general relativity the Universe is described as a four-dimensional

differentiable manifold locally endowed with a spatially homogeneous and isotropic

Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) metric. Geometry is a local attribute that

brings about intrinsic curvature, whereas topology is a global feature of a manifold related,

for example, to compactness and orientability. The FLRW spatial geometry constrains but

does not specify the topology of the spatial sections, M3, of the space-time manifold, which

we assume to be of the form M4 = R×M3. In the FLRW description of the Universe, two

http://arxiv.org/abs/2111.04161v1
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diverse sets of fundamental questions are related to, first, the 3−geometry; second, to the

topology of spatial sections M3. Regarding the latter, at the cosmological level it is ex-

pected that one should be able to detect the spatial topology through cosmic microwave

background radiation (CMB) or (and) stochastic primordial gravitational waves1,2. How-

ever, so far, direct searches for a nontrivial topology of M3, using CMB data from Wilkinson

Microwave Anisotropy Probe (WMAP) and Planck collaborations, have found no convinc-

ing evidence of nontrivial topology below the radius of the last scattering surface3–9. This

absence of evidences does not exclude the possibility of a FLRW universe with a detectable

nontrivial spatial topology10–12.

It is well-known that the topological properties of a manifold antecede its geometrical

features and the differential tensor structure with which the physical theories are formu-

lated. Thus, it is relevant to determine whether, how and to what extent physical results

depend upon or are somehow affected by a nontrivial topology. Since the net role played by

the spatial topology is more properly examined in static space-times, the dynamical degrees

of freedom of which are frozen, here we focus on the static Minkowski space-time, whose

spatial geometry is Euclidean. However, rather than the general topology of the spatial

sections M3 of Minkowski space-time, in this work we investigate its topological property

called orientability, which is related to the existence of orientation-reversing closed paths

on the spatial section M3. Questions as to whether the 3−space of Minkowski space-time,

which is the standard arena of quantum field theory, is necessarily an orientable manifold,

or to what extent the known laws of physics require a canonical spatial orientation are

among the underlying primary concerns of this work.

To be more precise regarding the setting of the present work, let us first briefly provide

some mathematical results. The spatial section M3 of the Minkowski spacetime mani-

fold M4 = R×M3 is usually taken to be the simply-connected Euclidean space E
3, but

it is known mathematical result that it can also be any one of the possible 17 topologi-

cally distinct quotient manifolds M3 = E
3/Γ, where Γ is a discrete group of isometries or

holonomies acting freely on the covering space E
3.a The action of Γ tiles the covering

manifold E
3 into identical cells which are copies of what is known as fundamental domain

(FD) fundamental cell or polyhedron (FC or FP). So, the multiple-connectedness gives rise

to periodic conditions (repeated cells) in the simply-connected covering manifold E
3 that

are defined by the action of the group Γ on E
3. Different groups Γ give rise to different

periodicities on the covering manifold E
3, which in turn define different Euclidean spatial

topologies M3 for Minkowski spacetime. These mathematical results make it explicit that

besides the simply-connected E
3 there is a variety of topological possibilities (17 classes)

for the spatial section of Minkowski spacetime. The potential consequences of multiple-

connectedness for physics come about when, for example, one takes into account that in

a manifold with periodic boundary conditions only certain modes of fields can exist. In

this way, a nontrivial topology may leave its signature on the expectation values of local

aFor recent accounts on the classification of three-dimensional Euclidean spaces the reader is referred to Refs. 13 –

18.
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physical quantities19. So, for example, the energy density for a scalar field in Minkowski

space-time with nontrivial spatial section is shifted from the corresponding result for the

Minkowski space-time with trivial spatial topology. This is the Casimir effect of topologi-

cal origin20–25.

Regarding orientability, the central issue of this work, three important points should

be emphasized. First, we mention that it is widely assumed, implicitly or explicitly, that

a four-dimensional manifold M4 = R×M3 that models the physical world is spacetime

orientable and, additionally, that it is separately time and space orientable. Second, eight

out of the above-mentioned 17 quotient flat 3−manifolds are non-orientable13–18. A non-

orientable 3−space is then a concrete mathematical possibility among the quotient mani-

folds M3 =E
3/Γ, and it comes about when the holonomy group Γ contains at least a flip or

reflexion as one of its elements. Finally, it is generally assumed that, being a global prop-

erty, the 3−space orientability cannot be tested locally. In this way, to disclose the spatial

orientability of our physical world one would have to make trips along some specific closed

paths around 3−space to check, for example, whether one returns with left- and right-hand

sides exchanged.

Since such a global journey across the whole 3−space is not feasible one might think

that spatial orientability cannot be probed. In this way, one would have either to answer

the orientability question through cosmological observations or local experiments. Hence,

assuming that spatial orientability is a falsifiable property of 3−space, a question that arises

is whether spatial orientability can be subjected to local tests. Our main goal in this work

is to present a way to tackle this question. To this end, we have investigated26 stochastic

motions of a charge particle and an electric dipole under vacuum quantum fluctuations of

the electromagnetic field in Minkowski spacetime with two inequivalent spatial topologies,

namely the non-orientable slab with flip and the orientable slab, which are often denoted

by the symbols E17 and E16, respectively17,18. Manifolds endowed with these topologies

turned out to be appropriate to identify orientability or non-orientability signatures through

the stochastic motions of point-like particles in Minkowski spacetime. In the next section,

to shed some additional light on spatial orientability, we briefly review the most significant

results of our article, Ref. 26, and discuss some of their consequences.

2. Main results and their interpretation

The general idea underlying our work is to perform a comparative study of the time evolu-

tion of physical systems in Minkowski spacetime with orientable and non-orientable spatial

sections. To this end, the physical systems chosen are a point charged particle and a point

electric dipole under vacuum quantum electromagnetic fluctuations. We shall describe the

results for the dipole only because they are more significant — see Ref. 26 for the point

charge case.
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2.1. The setting and the physical system

We begin by recalling that simply-connected spacetime manifolds are necessarily ori-

entable. On the other hand, the product of two manifolds is simply-connected if and

only if the factors are. Thus, the space-orientability of Minkowski spacetime manifold

M4 = R×M3 reduces to orientability of the 3−space M3. In this paper, we shall consider

the topologically nontrivial spaces E16 and E17. The slab space E16 is constructed by tes-

sellating E
3 by equidistant parallel planes, so it has only one compact dimension associated

with a direction perpendicular to those planes. Taking the x-direction as compact, one has

that, with nx ∈ Z and a > 0, points (x,y,z) and (x+ nxa,y,z) are identified in the case of

the slab space E16. The slab space with flip E17 involves an additional inversion of a direc-

tion orthogonal to the compact direction, that is, one direction in the tessellating planes is

flipped as one moves from one plane to the next. Letting the flip be in the y-direction, the

identification of points (x,y,z) and (x+ nxa,(−1)nxy,z) defines the E17 topology. The slab

space E16 is orientable whereas the slab space with flip E17 is non-orientable.

The physical system we consider consists of a point electric dipole with moment p

and mass m that is locally subject to vacuum fluctuations of the electric field E(x, t) in

Minkowski spacetime M4 with the metric ηµν = diag(+1,−1,−1,−1). The topology of

the spatial section M3 is taken to be either E16 (orientable) or E17 (non-orientable) instead

of E3.

The nonrelativistic motion of the dipole is locally determined by

m
dv

dt
= p ·∇E(x, t) , (1)

where v is the dipole’s velocity and x its position at time t. We assume that the dipole

practically does not move on the time scales of interest. Thus the dipole has a negligible

displacement, and we can ignore the time dependence of x. So, x is taken to be constant in

what follows27,28.

Assuming the dipole is initially at rest, integration of Eq. (1) yields

v(x, t) =
1

m
p j

∫ t

0
∂ jE(x, t

′)dt ′ (2)

with ∂ j = ∂/∂x j and summation over repeated indices implied.

The mean squared speed in each of the three independent directions i = x,y,z is given

by

〈

∆v2
i

〉

=
p j pk

m2

∫ t

0

∫ t

0

〈

(

∂ jEi(x, t
′)
)(

∂kEi(x, t
′′)
)

〉

dt ′dt ′′ , (3)

which can be conveniently rewritten as

〈

∆v2
i

〉

= lim
x′→x

p j pk

m2

∫ t

0

∫ t

0
∂ j∂

′
k

〈

Ei(x, t
′)Ei(x

′, t ′′)
〉

dt ′dt ′′ (4)

where ∂ ′
k = ∂/∂x′k and there is no summation over i. Following Ref. 27, we assume that

the electric field is a sum of quantum Eq and classical Ec parts. Since Ec is not subject to
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quantum fluctuations and 〈Eq〉= 0, the two-point function 〈Ei(x, t)Ei(x
′, t ′)〉 in equation (4)

involves only the quantum part Eq of the electric field.

In Minkowski spacetime with a topologically nontrivial spatial section, the spatial sep-

aration r2 that enters the electric field correlation functions takes a form that captures the

periodic boundary conditions imposed on the covering space E
3 by the covering group Γ,

which characterize the spatial topology. In consonance with Ref. 22, the spatial separations

for E16 and E17 are

E16 : r2 = (x− x′− nxa)2 +(y− y′)2 +(z− z′)2, (5)

E17 : r2 = (x− x′− nxa)2 +(y− (−1)nxy′)2 +(z− z′)2. (6)

2.2. Orientability indicator

The orientability indicator that we will consider is defined by replacing the electric field

correlation functions in Eq. (4) by their renormalized counterparts26. For a dipole oriented

along the y-axis the dipole moment is p = (0, p,0) and we have

(y)
IE17

v2
i

(x, t) = lim
x′→x

p2

m2

∫ t

0

∫ t

0
∂y∂y′

〈

Ei(x, t
′)Ei(x

′, t ′′)
〉E17

ren
dt ′dt ′′ , (7)

where the left superscript within parentheses indicates the dipole’s orientation.

The renormalized correlation functions are given by26

〈

Ei(x, t)Ei(x
′, t ′)

〉

ren
=

∂

∂xi

∂

∂x′i
Dren(x, t;x′, t ′)−

∂

∂ t

∂

∂ t ′
Dren(x, t;x′, t ′) (8)

where

Dren(x, t;x′, t ′) =
∞ ′

∑
nx=−∞

1

4π2(∆t2 − r2)
(9)

and where ∆t = t−t ′, ∑
′
indicates that the Minkowski contribution term nx = 0 is excluded

from the summation, and the spatial separation for E17 is given by Eq. (6).

The Hadamard function D(x, t;x′, t ′) for the multiply-connected space is defined by

including the term with nx = 0 in the summation (9). Thus, Dren = D−D0, where D0 is the

Hadamard function for the simply-connected space.

Before calculating the components of the orientability indicator in equation (7), we

point out that from equations (4) and (7) – (9) one can figure out a general definition of the

orientability indicator as

IMC
v2

i
=
〈

∆v2
i

〉MC

−
〈

∆v2
i

〉SC

, (10)

where
〈

∆v2
i

〉

is the mean square velocity dispersion, and the superscripts SC and MC stand

for simply- and multiply-connected manifold, respectively. The right-hand side of (10) is

defined by first taking the difference of the two terms with x′ 6= x and then setting x′ = x

(coincidence limit).
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The components of the orientability indicator for the dipole in E17 are26

(y)
IE17

v2
x
(x, t) =−

4p2

π2m2

∞ ′

∑
nx=−∞

(−1)nx

{

2I1 + 3(r2 − r2
x + 6r2

y)I2 + 24(r2 − r2
x)r

2
y I3

}

, (11)

(y)
IE17

v2
y
(x, t) = −

2p2

π2m2

∞ ′

∑
nx=−∞

(−1)nx

{

(5− 3(−1)nx)I1

+ 6[r2 +(7− 6(−1)nx)r2
y ]I2 + 48[r2− (−1)nxr2

y ]r
2
y I3

}

(12)

and

(y)
IE17

v2
z
(x, t) =−

4p2

π2m2

∞ ′

∑
nx=−∞

(−1)nx

{

2I1 + 3(r2 + 6r2
y)I2 + 24r2r2

y I3

}

. (13)

where, with ∆t = t ′− t ′′,

I1 =

∫ t

0

∫ t

0

dt ′dt ′′

(∆t2 − r2)3
=

t

16

[

4t

r4(t2 − r2)
+

3

r5
ln
(r− t)2

(r+ t)2

]

, (14)

I2 =

∫ t

0

∫ t

0

dt ′dt ′′

(∆t2 − r2)4
=

1

6r

∂ I1

∂ r
=

t

96

[

4t(9r2 − 7t2)

r6(t2 − r2)2
−

15

r7
ln

(r− t)2

(r+ t)2

]

, (15)

I3 =

∫ t

0

∫ t

0

dt ′dt ′′

(∆t2 − r2)5
=

1

8r

∂ I2

∂ r
=

t

768

[

4t(57t4− 136r2t2 + 87r4)

r8(t2 − r2)3
+

105

r9
ln

(r− t)2

(r+ t)2

]

.

(16)

In Eqs. (11) to (16) one must put

r =
√

n2
xa2 + 2(1− (−1)nx)y2,

r2
x = n2

xa2, r2
y = 2(1− (−1)nx)y2. (17)

The components of the dipole orientability indicator for the slab space E16 are obtained

from those for E17 by setting r2
x = r2,ry = 0, and replacing (−1)nx by 1 everywhere. There-

fore, we have

(y)
IE16

v2
x
(x, t) = −

8p2

π2m2

∞ ′

∑
nx=−∞

I1, (18)

(y)
IE16

v2
y
(x, t) = −

4p2

π2m2

∞ ′

∑
nx=−∞

(I1 + 3r2I2), (19)

(y)
IE16

v2
z
(x, t) = −

4p2

π2m2

∞ ′

∑
nx=−∞

(2I1 + 3r2I2), (20)

in which r = |nx|a.
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Fig. 1. Time evolution of the orientability indicator (11), in units of p2/m2, for a point electric dipole with mass

m and dipole moment p, oriented in the flip y−direction, in Minkowski spacetime with non-orientable E17 and

orientable E16 spatial topologies, with compact length a = 1. The solid and dashed lines stand for the indicator

curves for a dipole in 3−space with E16 and E17 topologies, respectively. For the inhomogeneous topology E17

the dipole is at P0 = (x,0,z) to freeze out the topological inhomogeneity degree of freedom 26 . Both orientability

indicator curves do present a periodicity pattern, but the curve for the non-orientable E17 exhibits a different kind

of periodicity characterized by a distinctive inversion pattern. Non-orientability is responsible for this pattern of

sequential inversions, which is absent in the indicator curve for the orientable E16.

2.3. Analysis of the results

Since equations (11)-(13) and (18)-(20) are too complicated to allow a straightforward

interpretation, we plot figures for the components of the orientability indicator. Figures 1

and 2 arise from Eqs. (11) – (13) as well as (18) – (20), with the topological length a = 1

and nx 6= 0 ranging from−50 to 50. In Fig. 1 and Fig. 2 the solid lines stand for the curves of

the orientability indicator for the dipole in Minkowski spacetime with E16 orientable spatial

topology, whereas the dashed lines correspond to the curves of the orientability indicator

curves for the dipole located at P0 =(x,0,z) in a 3−space with E17 non-orientable topology.

In the case of the x-component, the time evolution curves of the orientability indicator

for E16 and E17, shown in Fig. 1, present a common periodicity but with distinguishable

patterns. The orientability indicator curve for E17 displays a distinctive sort of periodic-

ity characterized by an inversion pattern. Non-orientability gives rise to this pattern of

successive inversions, which does not occurs in the case of the orientable E16.

The differences become more conspicuous when one considers the y-component of the

orientability indicator, shown in Fig. 2. The non-orientability of E17 is disclosed by an

inversion pattern whose structure is more striking than the one for the x-component. The

orientability indicator curves for E17 form a pattern of alternating upward and downward

“horns”, making the non-orientability of E17 unmistakably identifiable. The z-component

of the indicator behaves the same way26.
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Fig. 2. Time evolution of the orientability indicator (12) under the same conditions as those of Fig. 1. The

orientability indicator curve for E17 again exhibits a characteristic inversion pattern but now different from the

one for the vx-component shown in Fig. 1. For the vy-component displayed here the non-orientability signature

can be recognized in the pattern of consecutive upward and downward horn-like figures formed by the dashed

curve.

The characteristic inversion pattern exhibited exhibited by the dipole indicator curves

makes it possible to identify the non-orientability of the manifold E17 in itself, with no need

of a comparison with the indicator curves for its orientable counterpart E16. However, this

sort of comparison is necessary in the point charge case, as discussed in detail in Ref. 26.

In brief, it may be possible to unveil a putative non-orientability of the spatial section of

Minkowski spacetime by local means, namely by the stochastic motions of charged point-

like particles caused by electromagnetic quantum vacuum fluctuations. If the motion of a

point electric dipole is taken as probe, non-orientability can be intrinsically detected by the

inversion pattern of the dipole curves of the orientability indicator (10).

3. Concluding remarks

In general relativity and quantum field theory spacetime is modeled as a differentiable

manifold, which is a topological space endowed with a differential structure. It is generally

assumed that the spacetime manifolds involved in these frameworks are entirely orientable,

meaning that they are separately space and time orientable. The theoretical arguments used

to adopt these assumptions on orientability combine the space-and-time universality of the

basic local rules of physics with physically well-defined (thermodynamically) local arrow

of time, CP violation and CPT invariance42–44. One can certainly use such reasonings in

support of the standard assumptions on the global orientability structure of spacetimes.b

Nevertheless, it is legitimate to expect that the ultimate answer to questions regarding the

bSee Ref. 45 and related Ref. 46 for a different point of view on this matter.
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orientability of spacetime manifolds should rely on astro-cosmological observations or lo-

cal experiments, or even might come from a fundamental topological theory in physics.

In the physics at daily and even astrophysical length and time scales, we do not en-

counter signs or hints of non-orientability. This being true, the open question that remains

is whether the physically well-defined local orientations can be extended to microscopic or

cosmological scales.

At the cosmological scale, one would think at first sight that to disclose spatial ori-

entability one would have to make a trip around the whole 3−space to check for orientation-

reversing paths. However, a determination of the spatial topology (detection and subse-

quent reconstruction of the topology) through the so-called circles in the sky47, for ex-

ample, would bring out as a bonus an answer to the 3−space orientability problem at the

cosmological scale. However, no convincing evidence of nontrivial spatial topology below

the radius of the last scattering surface has been found up to now3–9.

Parallel to these works, in this article we have addressed the question as to whether elec-

tromagnetic quantum vacuum fluctuations can be used to bring out the spatial orientability

of Minkowski spacetime, in which the possible effects of the dynamical degree of freedom

of FLRW spacetime is frozen in order to separate the topological and dynamical roles on

the orientability problem. We have found that there exists a characteristic inversion pattern

exhibited by the the curves of our orientability indicator (10) for a dipole in the case of E17,

signaling that the non-orientability of E17 can be detected by per se, that is, with no need for

comparisons. Thus, the inversion pattern of the orientability indicator curves for the dipole

is a signature of the reflection holonomy, which is expected to be present in the orientability

indicator curves for the dipole in all remaining seven non-orientable topologies that contain

a flip holonomy, namely the four Klein spaces (E7 to E10) and the chimney-with-flip class

(E13 to E15).

Observation of physical phenomena and controlled experiments are essential to our un-

derstanding of nature. Our results indicate the possibility of a local experiment to unveil

spatial non-orientability through stochastic motions of point-like particles under electro-

magnetic quantum vacuum fluctuations. The present paper may be seen as a hint of a

possible way to locally probe the spatial orientability of Minkowski spacetime.
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