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Abstract. We investigate the holographic bound utilizing a homogeneous, isotropic,

and non-relativistic neutral hydrogen gas present in the de Sitter space. Concretely,

we propose to employ de Sitter holography intertwined with quantum deformation

of the hydrogen atom using the framework of quantum groups. Particularly, the

Uq(so(4)) quantum algebra is used to construct a finite-dimensional Hilbert space of

the hydrogen atom. As a consequence of the quantum deformation of the hydrogen

atom, we demonstrate that the Rydberg constant is dependent on the de Sitter radius,

LΛ. This feature is then extended to obtain a finite-dimensional Hilbert space for

the full set of all hydrogen atoms in the de Sitter universe. We then show that the

dimension of the latter Hilbert space satisfies the holographic bound. We further show

that the mass of a hydrogen atom matom, the total number of hydrogen atoms at the

universe, N , and the retrieved dimension of the Hilbert space of neutral hydrogen gas,

DimHbulk, are related to the de Sitter entropy, SdS, the Planck mass, mPlanck, the

electron mass, me, and the proton mass mp, by matom ≃ mPlanckS
−

1
6

dS , N ≃ S
2
3

dS and

DimHbulk = 2
me
mp

α2SdS , respectively.
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1. Introduction

The seminal result establishing a distinctive bound on the entropy of a spacelike

region of spacetime was formulated initially by Bekenstein [1], and subsequently, it was

gradually advanced upon fundamental research on the thermodynamic properties of

massive black holes and other gravitational settings alike [2, 3, 4]. More recently, it was

broadly extended into what is known as Bousso’s covariant entropy conjecture [5], which

conveys a well-defined holographic bound. In essence, it claims to be to be a feature of

any physical theory in that S ≤ A
4G

, where G is the Newton’s gravitational constant and

A is the area bounding any region, which satisfies the spacelike projection theorem‡ [5].
These ideas were build from ’t Hooft [8], Fischler [9] and Susskind [10] proposal of the

holographic principle.

Let us be more concrete and start by summarizing the textbook thermodynamic

Bekenstein bound for black holes plus its weak and strong forms, respectively, adopting

from Smolin [11] as follows:

• The thermodynamic black hole entropy is Sbh = Abh/4G, where Abh is the area

of the black hole horizon, constituting a crucial feature of the laws of black hole

mechanics.

• The weak black hole entropy a measure of how much information can be gathered

by an external observer about the interior of the black hole from measurements

made outside the horizon. Besides the mass, angular momentum, and charge of the

black hole, the aforementioned includes measurements of the radiation emitted by

the black hole.

• The strong black hole entropy is a measure of how much information or number of

degrees of freedom are encompassed in the interior region of the black hole.

These can be generalized for a bulk space Vbulk with a fixed boundary Σ = ∂Vbulk

[11], namely:

(i) Weak holographic bound: Let HΣ be the Hilbert space of observables on the

boundary Σ. Then

Dim HΣ ≤ e
AΣ
4G , (1)

where AΣ is the area of Σ and Dim HΣ is the smallest appropriate Hilbert space

HΣ.

(ii) Holographic bound: Let Hbulk be the smallest Hilbert space of local observables

measurable in the interior of a volume with boundary A in the bulk space. Then

Dim Hbulk ≤ exp

(

A

4G

)

, (2)

‡ It may be worthy of stressing the difference between the “holographic bound” and what is more

appropriately known as “Bekenstein bound,” i.e., S < ER, where E is the energy contained in a region

of size R). Generally, S < ER < A/4G [6, 7].
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where Dim Hbulk denotes the dimension of the Hilbert space. This latter

pronouncement constitutes the core and essence of Bousso’s covariant entropy

conjecture [5], establishing a precise holographic bound for physical theories. It

will be about this one that we will elaborate our paper.

In addition, the above described holographic bound was widely applied on

cosmological solutions and other gravitational collapsing systems. It has been studied

employing several spacetimes, enlarging the diversity of its appraisal, by means of a

significant set of contributions to the literature [12, 13, 14, 15, 16, 17], all confirming

it. As remarked herewith, it was further advanced by Bousso in that it may be

a universal law of nature [5, 18], within a background-independent formulation and

bearing a holographic description of nature at its inception. Notwithstanding its allure,

the conjecture presented in [5, 18], albeit quite successful, has not yet been proven.

Approaches and surveys to find a route to do so, have so far involved general relativity

or standard field theory [5, 18, 12, 13, 14, 15].

Within the context conveyed by the above paragraphs, the unpretentious purpose

in our manuscript is to introduce a discussion on the holographic bound from another

angle. We are not saying the conjecture cannot be proven strictly in the terms advocated

throughout the herewith mentioned references [12, 13, 14, 15]; we are merely proposing

to bring to the discussion a different (hopefully complementary) perspective, broadening

the scope of discussion by means of another framework and tools.

Being more specific, our work will look at it but within a more basic and less

complicated way. Concretely, employing a twofold research that constitutes the main

contribution of this paper. On the one hand, it is argued that the existence of the

de Sitter (DeS) horizon, which satisfies the spacelike projection theorem, suggests

a holographic realization for the hydrogen atom gas. In particular, the infinite-

dimensional Hilbert space of the bound states of an atom is inconsistent with the

holographic principle. This motivates us to introduce and explore the features of

quantum deformation (within quantum groups) as a tool to bring more evidence

supporting the universality of the holographic principle and the corresponding bound.

A concrete quantum algebra is used to construct a finite dimensional Hilbert space of

the hydrogen atom whose Rydberg constant is then shown to be dependent on the DeS

radius. On the other hand, we subsequently take a (3 + 1)-dimensional spacetime filled

with non-relativistic matter. A finite-dimensional Hilbert space for the set of hydrogen

atoms in the DeS universe is estimated. We then show that the dimension of the

corresponding Hilbert space satisfies the holographic bound plus that several quantities

become consequently intertwined within the dimensions of the Hilbert space and the

DeS entropy.

2. Quantum deformation of the hydrogen atom

The current observational paradigm presents our universe as accelerating and the

cosmic event horizon increases monotonically, asymptotic to a specific radius. Hence,
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it is reasonable to employ the working assumption where the late time universe is

a DeS space, with a cosmic event horizon equal to the DeS radius LΛ :=
√

3
Λ

=

16.4± 0.4 Glyr = (1.55± 0.04)× 1026 m. So, let us assume a non-relativistic hydrogen

atom located at the origin of a DeS space with local coordinates (t, r, θ, φ).

The cosmological constant is very small and that implies the observable universe

to be large and nearly flat, so we will consider a usual non-relativistic Hamiltonian

operator of the hydrogen atom in which the fine structure, all quantum field corrections

are considered as a perturbation to it. In addition, we assume that the gravitational

correction of the spacetime curvature to the Schrödinger equation [19, 20, 21]

Vg =
me

2
Roiojx

ixj , (3)

constitutes a small perturbation potential, with R0i0j being the Riemann tensor in Fermi

normal coordinates (where the metric is rectangular and has vanishing first derivatives

at each point of a curve), xi is the position of the electron in the nucleus-centered andme

is the electron mass. The subsequent spectrum of the hydrogen atom at such spacetime

is

En = − α2

2men2
+

An,j

4α2meL
2
Λ

+O
(

1

n3

)

, (4)

where the second term in the above expression of the energy is the energy shift of the

non-relativistic correction regarding the presence of the cosmological constant [19], Anj

are constants dependent to the quantum numbers of the state andO(1/n3) represents the

fine structure, the hyperfine structure and other corrections from quantum field theory

such as the Lamb shift and the anomalous magnetic dipole moment of the electron.

Hence, the wavelength of an emitted photon by a hydrogen atom, λ, is given by the

modified Rydberg formula

1

λ
=

meα
2

4π

(

1

n2
f

− 1

n2
i

)

+
1

4meα2L2
Λ

(Ani,ji − Anf ,jf ) +O(
1

n3
), (5)

where α is the fine structure constant and ni, nf are the principal quantum numbers

of initial and final states involved in the transition, respectively. According to the

Rydberg expression for the hydrogen atom spectra (5), the wavelength of an emitted

photon between two successive states ni = n and nf = n − 1, and n ≫ 1 is given by

λ ≃ 2π
meα2n

3 for arbitrarily large values of n. Note that in obtaining this relation, by

assuming n ≫ 1 and 1/L2
Λ ≪ 1, we kept only the first term of the modified Rydberg

formula.

Additionally, allow us to mention that an infinite-dimensional Hilbert space for an

atom conveys an inconsistency with the holographic bound (2). This argument can be

further elaborated as follows. In the presence of a cosmological constant Λ, any local

observer eventually perceives the space as a box of size LΛ. Therefore, in the presence

of a cosmological horizon, as far as bound states are concerned, all adjacent transitions

with ni ≥
(

α2LΛme

2π

)
1
3

are forbidden. To clarify, let us consider a generic transition

between two states nf and ni in which ni = nf +k (in order to include adjacent (k = 1)
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as well as others); the wavelength of the emitted photon, λ, must be less than the

radius of the horizon LΛ. Using the Rydberg formula, for large values of ni and for

a given k, ni must satisfy the following inequality: 2π
α2me

n3
i

k
≤ LΛ. For example, with

k = 10 all transitions ni ≥
(

5α2LΛme

π

)
1
3

are forbidden. Moreover, for transitions with

larger k, subsequent larger values of ni will be forbidden. Thus, there is a restriction

on the maximal wavelength of the emitted photon, namely λ ≤ LΛ. Saturation of this

inequality gives the highest allowed principal quantum number, namely

n3
max =

α2me

2π
LΛ (6)

in DeS space. Hence, the existence of the DeS horizon, which satisfies the spacelike

projection theorem, suggests a holographic realization for the hydrogen atom, whose

Hilbert space ought to be finite-dimensional.

In the context conveyed throughout the previous paragraph, the purpose of the

herein paper is to analyse whether a degree of holography can be suitably brought to

discuss other features, namely the holographic entropy bound. Standard quantization

methods, adopting (6), would merely constrain nmax. This obvious result, its interest

notwithstanding, can be surpassed if we instead employ the features of quantum

deformations (within quantum groups) as a tool.

There are a number of ways to construct a finite-dimensional Hilbert space.

One method to retrieve the dimension of an Hilbert space into a finite value is

through quantum deformation (by means of quantum groups) of the model, when the

deformation parameter is a root of unity [22]. Deformed Hydrogen atom models

are studied in different ways, such as using moyal-like noncommutative product as

[23] and [24], or Kustaanheimo Stiefel transformation [25, 26]. Here, we study a q-

deformatrion of dynamical symmetry of Hydrogen atom by using the quantum group

soq(4). This is done (as in the case of a real deformation parameter, q ∈ R, used in

Refs. [26, 27, 28, 29, 30, 31]) by enlarging the corresponding symmetry group, using the

Laplace-Runge-Lenz vector, and the separation of soq(4) = suq(2)⊗ suq(2).

Historically, quantum groups have emerged from studies on quantum integrable

models, using quantum inverse scattering methods, which led to deformation of classical

matrix groups and their corresponding Lie algebras [32, 33, 34]. Recently, quantum

groups were found to play a major role in quantum integrable systems [35], conformal

field theory [36], knot theory [37], solvable lattice models [38], topological quantum

computations [39], molecular spectroscopy [40] and quantum gravity [41, 42, 43, 44, 45].

2.1. Standard tools

In our paper, we shall deal with the quantum deformation of the universal enveloping

algebra, so(4) ∼= su(2) ⊗ su(2), of the hydrogen atom. Since we are interested

in Uq(su(2) ⊗ su(2)), let us review first some basic facts about the quantum group

Uq(su(2)). Explicitely, Uq(su(2)) is a Hopf algebra over C generated by set of operators
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{qJ0, q−J0, J±} satisfying relations [46]

qJ0J±q
−J0 = q±J±, [J+, J−] = [2J0]q (7)

where q := exp
(

2πi
D

)

, is the deformation parameter with D := nmax ∈ N, D ≥ 2, and

[x]q :=
qx − q−x

q − q−1
=

sin
(

2πx
D

)

sin
(

2π
D

) . (8)

For D → ∞ (or equivalently using the definition of D = nmax ≃ L
1
3

Λ ∼ Λ−
1
6 , Λ → 0),

q → 1 and we recover the Lie algebra of SU(2). The Casimir operator is given by

J2 :=
1

2
(J+J− + J−J+) +

[2]q
2

[J0]
2
q. (9)

Let Vj = {|jm〉, m = −j(1)j} be the Hilbert space of the representation theory of the

Uq(su(2)). Then

J±|jm〉 =
√

[j ±m+ 1]q[j ∓m]q|j,m± 1〉,
J0|jm〉 = m|jm〉,
J2|jm〉 = [j]q[j + 1]q|jm〉. (10)

The invariants of Uq(su(2)) at the root of unity are {J2, JD′

±
, q±D′J0} where

D
′ :=

{

D/2, for even values of D,

(D− 1)/2, for odd values of D.
(11)

At the nilpotent representation, which we are interested, JD
′

+ and JD
′

−
have the zero

eigenvalue for all eigenvectors, JD
′

±
|jm〉 = 0.

Let us return to the bound states of a hydrogen atom. It is well known that the

Hamiltonian of the hydrogen atom

H =
p2

2me

− α

r
, (12)

commutes with the orbital angular momentum L and the Laplace-Runge-Lenz vector

M. Namely, M = 1
2me

(P× L− L×P)− (αr
r
) . Furthermore, H , L and M satisfy the

following relations [47]

L.M = 0, M2 = α2 +
2

me

(L2 + 1)H, (13)

including following algebra,

[Li, H ] = [Mi, H ] = 0, [Li, Lj] = iǫijkLk,

[Li,Mj ] = iǫijkMk, [Mi,Mj ] = − 2i

me

ǫijkLkH. (14)

If we restrict ourselves to the bound states with energy E and replace H by E, then the

vector operators L and M̃ := M
√

−me

2E
satisfy the so(4) commutation relations [47]. If

we define the two vector operators

J(1) :=
1

2
(L+ M̃), J(2) :=

1

2
(L− M̃), (15)
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then the components of J(1) and J(2) satisfy the commutation relations of two commuting

sets of su(2) Lie algebras

[J
(i)
0 , J

(i)
± ] = ±J

(i)
± , [J

(i)
+ , J

(i)
− ] = 2J

(i)
0 . (16)

Note that these two sets of generators are not independents and we have the following

two identities between Casimirs of (su(2))(1) and (su(2))(2) [48]

C1 := J2
(1) − J2

(2) = 0,

C2 := J2
(1) + J2

(2) = −meα
2

4E
− 1

2
. (17)

In fact, C1 and C2 are two independent Casimir operators of the original SO(4) Lie

group, in which C1 represents the orthogonality of the orbital angular momentum L and

the Laplace-Runge-Lenz vector M, and C2 is the Hamiltonian of the atom. If we let

|j1m1j2m2〉 denote the basis vectors for the (su(2))(1) ⊗ (su(2))(2) the first Casimir in

(17) implies j1 = j2 and the second Casimir gives us the Bohr formula

En = −meα
2

2n2
, (18)

where we identify 2j1 + 1 := n as the principal quantum number.

2.2. Quantum deformation and Hilbert space

One feasible way to define a q−deformed hydrogen atom is to quantum deform the Lie

groups (SU(2))(1) and (SU(2))(2) each of them defined by (7). Also, the Pauli equations

(17) have to be extended to the quantum algebra Uq(su(2))(1)⊗Uq(su(2))(2). Then, this

deformation via Eqs.(9), (10) and (17) produces a quantum deformed hydrogen atom

with modified Bohr formula given by

En =
E0

4[j1]q[j1 + 1]q + 1
=

E0

1 + 2

sin2( 2π
D
)

(

cos
(

2π
D

)

− cos
(

2πn
D

)) , (19)

where E0 := −meα
2

2
is the energy of the ground state and as the undeformed case,

n := 2j1 + 1 is the principal quantum number. Furthermore, the discrete spectrum

exhibits the same degeneracy as that of the hydrogen atom in flat space. It is clear that

the q−deformed spectrum reduces to that of the ordinary hydrogen atom when Λ goes

to zero. For large values of D and n ≪ D, the expression of the q−deformed energy

levels (19) allow us to compute the energy of emitted photons. The approximate value

of the energy for D ≫ 1 and n ≪ D in the spectrum (19) is

En ≃ RE

{

− 1

n2
−
(

1

RELΛ

)
2
3

fn

}

, fn := 4π
8
3

(

1

4n4
− 1

3n2
+

1

12

)

,(20)

where RE = meα
2/2 is the Rydberg energy. For values D ≫ 1 we can use the non-

deformed wave function of the non-perturbed hydrogen atom to calculate the energy

shifts of the non-relativistic corrections regarding the presence of the cosmological

constant and the corrections of the fine structure, the hyperfine structure and other
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corrections from quantum field theory such as the Lamb shift and the anomalous

magnetic dipole moment of the electron. The result is

En ≃ RE

{

− 1

n2
− fn

(

1

RELΛ

)
2
3

+
Anj

8

(

1

RELΛ

)2
}

+O
(

1

n3

)

. (21)

The expression of the q−deformed energy levels (21) allow us to compute the energy of

emitted photons. Furthermore, we can write for the emitted photons a generic expression

1

λ
=

RE

2π

{

1

n2
f

− 1

n2
i

+ δfn

(

1

RELΛ

)
2
3

− 1

8
δAn,j

(

1

RELΛ

)2
}

+ O
(

1

n3

)

. (22)

where ni, nf are the principal quantum numbers of initial and final states involved

in the transition, respectively, δfn := fnf
− fni

and δAn,j := Anf ,jf − Ani,fi. Note

that RELΛ ≃ 1034 and consequently, we can see that the effect of the quantum

deformation, δfn

(

1
RELΛ

)
2
3 ≃ δfn × 10−22, is larger than the effect of curvature,

δAnj

8

(

1
RELΛ

)2

≃ δAnj × 10−66, but both of them are too small to be measurable with

current spectroscopic methods. As we will see in the next section, the real impact of the

cosmological constant is in the mass of the fundamental particles, number of particles

in the universe, and finally in the holographic description of the possible bound states

of the atoms.

If we neglect the third term in Eq.(22), which is not relevant to the q−deformation,

and if we assume large n, then we can rewrite it as

1

λ
= R′

∞

( 1

n2
f

− 1

n2
i

)

, (23)

where

R′

∞
:= meα

2c
4π~

{

1− 4π
8
3

3

(

2~
LΛα2mec

)
2
3

}

= R∞

{

1− 2
4
3 π2

3

(

1
R∞LΛ

)
2
3

}

. (24)

is the q−deformed Rydberg constant in the SI units. It is pertinent to emphasize herein

that Eqs.(24) and (28) (please see next paragraph) show that the q−deformed Rydberg

constant is a function of the number of degrees of freedom of electron in the hydrogen

atom. The Rydberg constant is one of the most precisely measured physical constants,

with a relative standard uncertainty of under two parts in 1012. The technological

(spectroscopic) challenge [49] emerges from the smallness of Λ or equally from a very

large value of the cosmic event horizon, LΛ, within our currently observed ranges of

reach.

In more realistic circumstances, the energy density of hydrogen gas could be a source

of cosmological dynamics, and we should consider the time of the apparent cosmological

horizon that is a boundary hypersurface of an anti-trapped region and has a topology

of S2. Then we should replace the DeS radius LΛ in Eq. (24) with the Hubble radius

c/H . Then, the Hubble parameter is a dynamical variable that satisfies the Friedmann

equation

H2 = H2
0

{

Ω0m(1 + z)3 + ΩΛ

}

, (25)
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where z, H0, Ω0m = 8πGρm(t0)/3H
2
o and ΩΛ = Λc2/3H2

0 are the redshift, the Hubble

parameter, the density parameter of the cold matter (dark matter and the hydrogen

gas) and the density parameter of the cosmological constant at the present epoch,

respectively. In this case, the q−deformed Rydberg constant will be a function of the

redshift

R′

∞
= R∞

{

1− 2
4
3π2

3

(

H0

cR∞

)
2
3
(

Ω0m(1 + z)3 + ΩΛ

)
1
3

}

. (26)

As we find, the order of the correction term of the Rydberg constant, R∞ =

10973731.568160(21)m−1 at the recombination time, z = 1089, is in order of O(10−9)

which is out of the range of current measurements. On the other hand, in the

radiation dominate area, where the contribution of radiation in the Friedmann equation

is given by Ω0r(1 + z)4, the order of correction is O(10−5), which is in the range of

current measurements. Hence, regarding the measurements’ current scale, the effects of

q−deformation are hidden behind the last scattering surface.

We close this section mentioning that, as a result of nilpotent realization [46],

(J
(1,2)
± )D

′ |j1m1j2m2〉 = 0, the Hilbert space of q−deformed hydrogen atom is finite-

dimensional

H =

D′

⊕

n=1

Hn,

Hn =
{

|j1m1j2m2〉; j1 = j2 =
n− 1

2
;mi = −ji(1)ji

}

,

HD′ =
{

|jmaxm1jmaxm2〉;mi = −jmax(1)jmax

}

, (27)

where jmax =
D′−1
2

is the azimuthal quantum number of the highest exited state. Since

each j labels a distinct irreducible representation of Uq(su(2)) and the number of mi’s

(mi = 2ji+1) is the dimensionality of the representation the dimension of Hilbert space

for a q−deformed hydrogen atom is

Dim H = 2
∑

D
′

i=1 n
2
i ≃ 2

D
′3

3 = 2
RELΛ

4π = 2
meα

2LΛ
16π . (28)

2.3. The hydrogen gas in de Sitter space

To realize the relation of the dimension of that Hilbert space with the entropy of DeS

space, let us now consider a dilute gas of N hydrogen atoms (as the baryonic matter

in late time universe, where dark energy or the cosmological constant dominates) with

homogeneous and isotropic distribution on DeS space. The radial position, x, and the

radial velocity of an atom, v, then satisfy the Hubble law v = 1
LΛ

x. This suggests that the

fluctuations of position and velocity of the atom satisfy the same equation, ∆v = 1
LΛ

∆x.

The Kinetic energy fluctuations then will ∆K = mp

2
∆v2 = mp

2LΛ
∆x∆v = 1

4LΛ
, where

mp ≃ matom is the mass of proton and at the last equality we used the uncertainty

principle ∆p∆x > 1/2. In the thermodynamical limit ∆K/U ≃ 1/
√
N , where U is the

rest mass of the atom [50]. The above analysis gives

N ≃ (mpLΛ)
2 ≃ 5.4× 1083, (29)
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where we assumed matom ≃ mp.

Let us summarise some points:

• First of all, we know that the entropy of a non-relativistic gas of particles (or

dust) is proportional to the total number of particles, so for hydrogen atom gas, by

considering its components as point-like particles, we have [51]

Sgas ≃ N. (30)

• Furthermore, like the Bekenstein-Hawking entropy of a black hole, the DeS entropy,

SdS, can be written [52]

SdS =
πL2

Λ

G
= 2.88× 10122. (31)

One can interpret this entropy as the weak holographic principle in which the total

number of degrees of freedom living on the horizon is bounded by one-quarter of

the area in Planck units [53, 54].

• These two entropies (30) and (31) are not distinct. The total entropy of dilute gas

is interrelated to the entropy of DeS space via [51]

N ≃ Sgas ≃ S
2
3

dS = 2.02× 1081, (32)

where in the last equality we used the value of SdS from (31). The result obtained

in (32) is consistent [55] with the observed value Sgas = (9.5± 4.5)× 1080.

• Inserting relations (30) and (32) into (29) gives us

mp ≃
(

1

LΛG

)
1
3

≃ mPlanckS
−

1
6

dS ≃
(

~2H0

Gc

)
1
3

, (33)

where mPlanck = 1/
√
G is the Planck mass and H0 ≃ c/LΛ is the current observed

value of the Hubble parameter. The expression in the far right of Eq.(33) is the

Weinberg formula for the mass of the nucleon [56]. Weinberg’s relation may then

be understood, we speculate, as the operational requirement that the mass of the

hydrogen atom (or an elementary particle) be such that is not determined solely by

local microphysics, but in the part by the influence of the holographic screen. As a

consequence of Eqs.(32) and (33), the total mass of hydrogen dust, Mbulk, can be

rewritten as

Mbulk ≃ matomN = mPlanckS
1
2

dS, (34)

or equivalently

GM2
bulk ≃ SdS. (35)

The left-hand side of this relation is the entropy of a black hole the size of the

Universe. This shows that the Universe can have no more states than a black hole

of the same size.
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Now, we define the total number of discrete states of all hydrogen atoms in the

Universe by

Dim Hbulk := (Dim H)N , (36)

which leads to

Dim Hbulk = 2
me
mp

α2SdS. (37)

Given the value α2 me

mp
≃ 2.9× 10−8, it is clear that (37) satisfies the holographic bound

(2). As it is shown in [53], the horizon of DeS is a 2-dimensional lattice where the

number of cells is equal to the DeS entropy (31). Hence, Eq.(37) shows that the number

of degrees of freedom of all hydrogen atoms in the universe is proportional to the number

of cells on the DeS boundary. This is congruent with the holographic principle and then

the holographic entropy bound, which asserts that all natural phenomena within the

bulk of a region of space is fully realised by the finite set of degrees of freedom which

reside on the boundary, and that this number should not be larger than one binary

degree of freedom per Planck area [5, 57].

3. Conclusions and outlook

We conclude by presenting a summary, plus adding a discussion and a brief outlook.

The context that guided our herewith research was that of the holographic entropy

bound, a broad conjecture to apply to all physical systems. In particular, it was proposed

[12] that the total observable entropy in the Universe would be bounded by the inverse

of the cosmological constant, including the case of cosmologies dominated by ordinary

matter. Such assertion would constitute a universal law of nature [5, 18]: universes

with a positive cosmological constant would be described by a fundamental theory with

only a finite number of degrees of freedom. This is yet to be fully proved and, so far, it

has been broadly tested on cosmological solutions and suitable gravitational collapsing

systems, within geometrical setups, for states which have energy eigenvalue below a

threshold and are localized at space region of specific width. All mentioned reports

have confirmed, albeit in restricted configurations, as remarked within a significant set

of contributions, namely [12, 13, 14, 15].

In more detail, the purpose of our paper was to introduce a discussion on the

holographic bound but from another angle. Concretely, we proposed to employ de

Sitter holography intertwined with a specific quantization of the hydrogen atom using

the framework of quantum groups.

Specifically, a concrete quantum algebra (namely, Uq(so(4))) was used to construct a

Hilbert space, whose retrieved dimension is proportional to 2
meα

2LΛ
16π . We then established

that a consequence of the quantum deformation of the hydrogen atom was that the

Rydberg constant becomes dependent on the de Sitter radius, LΛ. We obtained a

finite-dimensional Hilbert space for the full set of all hydrogen atoms in the de Sitter

universe. We then showed that the dimension of the latter Hilbert space is 2
me
mp

α2SdS
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and it satisfies the holographic entropy bound. It is well-known that to formulate

quantum electrodynamics, we just need two dimensionless constants: the first one is

the fine structure constant, α, and the second one is the ratio of the electron mass to

the proton mass β = me

mp
[58]. Apart from numerical factors like the atomic number, Z,

or integral quantum numbers, the whole physical properties of atoms, molecules, and

solids can be determined as functions of α and β [59]. Equation (37) shows that these

two parameters also play a crucial role in the holographic bound of the hydrogen atom

gas. Furthermore, we also expressed that the mass of a hydrogen atom matom and the

total number of atoms inside the cosmic event horizon, N , are related (through simple

expressions that the holography bound conjecture endorses) to the de Sitter entropy,

SdS and the Planck mass, mPlanck, by matom ≃ mPlanckS
−

1
6

dS , and N ≃ S
2
3

dS.

Although we used a simple model, we are confident it can be extended to the case of

radiation or even more elaborated, a spin-1 field theory description within the framework

we used, even if restricted to a de Sitter space. Perhaps bolder, gravitational degrees

of freedom could eventually be considered within quantum groups and constructing the

Hilbert space, hopefully finite. Thus, we trust the features of quantum deformation

(within quantum groups) may be considered as reliable complementary tool to explore

holography, herein brought in an interesting intertwined manner.
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