
Chirality production during axion inflation

E.V. Gorbar,1, 2 A.I. Momot,1 I.V. Rudenok,1 O.O. Sobol,3, 1, ∗ and S.I. Vilchinskii1, 4

1Physics Faculty, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., 01601 Kyiv, Ukraine
2Bogolyubov Institute for Theoretical Physics, 14-b, Metrologichna Str., 03143 Kyiv, Ukraine

3Institute of Physics, Laboratory of Particle Physics and Cosmology,
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We study the generation of the chiral charge during axion inflation where the pseudoscalar inflaton
field φ couples axially to the electromagnetic field through the term (β/Mp)φE·B with dimensionless
coupling constant β. To describe the evolution of electromagnetic field and determine 〈E · B〉
sourcing the chiral asymmetry during inflation due to the chiral anomaly, we employ the gradient
expansion formalism. It operates with a set of vacuum expectation values of bilinear electromagnetic
functions and allows us to take into account the backreaction of generated fields on the inflaton
evolution as well as the Schwinger production of charged fermions. In addition, we include the
chiral magnetic effect contribution to the electric current jCME = e2/(2π2)µ5B, where µ5 is the
chiral chemical potential which quantifies the chiral charge production. Solving a set of equations
for the inflaton field, scale factor, quadratic functions of the electromagnetic field, and the chiral
charge density (chiral chemical potential), we find that the chirality production is quite efficient
leading to the generation of a large chemical potential at the end of axion inflation.
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I. INTRODUCTION

The inflation paradigm is a very successful idea which solves a large number of cosmological problems. In particular,
it provides the mechanism for the generation of primordial scalar and tensor perturbations which then imprint in the
cosmic microwave background spectrum and lead to the large-scale structure formation [1–3] (see Refs. [4, 5] for a
review). Moreover, it is often assumed that the primordial magnetic field originates from inflation as well (see the
seminal papers in Refs. [6–9]). This field then may serve as a “seed” for magnetic fields observed in astrophysical
objects such as galaxies and galaxy clusters [10–18]. On the other hand, in cosmic voids containing vanishingly small
amounts of matter, it may still remain in the form unchanged by astrophysical processes and, thus, contain very
important information about earlier stages of the Universe’s history. Indeed, there are evidences for the presence of
magnetic fields in voids following from the gamma-ray observations of distant blazars [19–28] (for a recent review, see
Ref. [29]).

One of the simplest and widely accepted inflation models involves a real scalar field φ, dubbed inflaton, which slowly
rolls along the slope of its effective potential and exhibits the vacuumlike equation of state p = −ρ. However, for this
regime to occur one needs a sufficiently flat inflaton potential. On the other hand, coupling of the inflaton to matter
fields (which is needed for successful reheating of the Universe after inflation) may lead to quantum corrections to the
inflaton potential which can spoil its flatness and disable inflation. Therefore, one needs a mechanism to preserve the
form of the inflaton potential at least in the range of the inflaton values relevant for inflation. One example of such a
mechanism is realized in axion inflation where the role of the inflaton is played by the pseudo-Nambu-Goldstone boson
of the shift symmetry – the axion field. In application to magnetogenesis, the axion inflation is also very advantageous
because it produces helical magnetic fields in the early Universe [30–50]. This property greatly increases the chances
for survival for these magnetic fields compared to the case of nonhelical magnetic fields due to the inverse cascade of
magnetic helicity [51–59].

In axion inflation, the inflaton field φ couples to the abelian gauge field (which we call the electromagnetic field
in the following) by means of the ∝ I(φ)FµνFαβε

µναβ interaction term. Here Fµν is the gauge-filed stress tensor
and I(φ) is the axial coupling function which has to be a pseudoscalar in order to preserve the parity symmetry.
The simplest and most popular choice for this function is the linear dependence on the pseudoscalar inflaton field,
I(φ) ∝ φ. The presence of nontrivial coupling to the inflaton breaks the conformal invariance of the Maxwell action
which is the necessary condition for the generation of electromagnetic fields from quantum fluctuations [60]. In axion
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inflation model, electromagnetic modes of only one circular polarization get enhanced due to interaction with the
inflaton, which results in nonzero helicity of the produced field.

Apart from the magnetic field, the electric one is also generated during inflation leading to two main consequences:
(i) it produces pairs of charged particles due to the Schwinger effect [61–63] and (ii) nonzero scalar product E ·B
gives rise to the chiral asymmetry in fermionic sector because of the chiral anomaly [64, 65]. The Schwinger pair
production during inflation was studied in Refs. [42, 46, 48, 66–89]. In particular, it was shown that this phenomenon
may significantly affect the generation of gauge fields and make a sizeable contribution to the Universe reheating.
However, relatively little attention was payed to the chiral anomaly during axion inflation [42, 48]. To the best of
our knowledge, the quantitative analysis of the chiral charge generation is still missing in the literature. Also, the
backreaction of this chiral asymmetry on the gauge-field evolution due to the chiral magnetic effect has not been
investigated yet. This provides the main motivation for the study in this paper.

An efficient approach to study the magnetogenesis during axion inflation which was proposed and applied quite
recently [46, 50] is the gradient expansion formalism. It deals with a set of bilinear electromagnetic functions in
position space which are the vacuum expectation values of scalar products of the electric and magnetic field vectors
with an arbitrary number of spatial curls. Its advantage compared to the conventional approach handling separate
Fourier modes of the electromagnetic fields is that it automatically takes into account all relevant modes simultaneously
and thus can be applied even in the presence of such complicated nonlinear phenomena as the backreaction and the
Schwinger effect which couple all electromagnetic modes to each other. In this work we extend the gradient expansion
formalism by taking into account the presence of chiral asymmetry in the fermionic sector (characterized by the chiral
chemical potential µ5) and the additional term in the electric current induced by this chiral asymmetry – the chiral
magnetic effect current jCME = e2/(2π2)µ5B (for review see Ref. [90] and references therein).

The paper is organized as follows. The axion inflation model and the gradient expansion formalism for its description
are discussed in Sec.II. The chiral magnetic effect is introduced and incorporated into the gradient expansion formalism
in Sec.III. Numerical results for the chirality production in axion inflation are presented in Sec.IV and summarized
in Sec.V.

II. MAGNETOGENESIS IN AXIAL-COUPLING MODEL

In axion inflation, the coupling of the electromagnetic field Aµ to the pseudoscalar inflaton field φ breaks the
conformal invariance of the Maxwell action and, thus, is crucial for the electromagnetic field generation. The action
of the axion inflation model is given by

S =

∫
d4x
√
−g
[

1

2
gµν∂µφ∂νφ− V (φ)− 1

4
FµνF

µν − 1

4
I(φ)Fµν F̃

µν + Lf(ψ, Aµ)

]
, (1)

where g = det gµν is the determinant of the spacetime metric, V (φ) is the inflaton potential, I(φ) is the axial-coupling
function, Fµν = ∂µAν − ∂νAµ is the gauge-field strength tensor, and its dual tensor is defined by

F̃µν =
1

2
√
−g

εµνλρFλρ, (2)

where εµνλρ is the absolutely antisymmetric Levi-Civita symbol with ε0123 = +1. The last term in Eq. (1) describes
the matter fields charged under the U(1) gauge group and, therefore, coupled to the electromagnetic four-potential
Aµ. In this work, we consider a toy model in which only one massless charged fermionic field ψ is present. Moreover,
we will not consider the dynamics of this matter field in detail and only describe its observable quantities such as the
electric current, energy density etc.

The following Euler–Lagrange equations for the inflaton and electromagnetic fields are easily obtained from action
(1):

1√
−g

∂µ
[√
−g gµν ∂νφ

]
+
dV

dφ
+

1

4

dI

dφ
Fµν F̃

µν = 0, (3)

1√
−g

∂µ
[√
−g Fµν

]
+
dI

dφ
F̃µν∂µφ = jν , (4)

where jν = −∂Lf(ψ, Aµ)/∂Aν is the electric four-current of fermions induced by the electromagnetic field.
In addition, the dual gauge field strength tensor satisfies the Bianchi identity

1√
−g

∂µ

[√
−g F̃µν

]
= 0. (5)



3

The energy–momentum tensor in our model is given by

Tµν = ∂µφ∂νφ− gλρFµλFνρ − gµν
[

1

2
∂αφ∂

αφ− V (φ)− 1

4
FαβF

αβ

]
+ T f

µν , (6)

where the last term defines the contribution of the charged fermionic field. The zero-zero component of Tµν gives the
energy density of the Universe.

Now, we restrict ourselves to the case of the spatially-flat FLRW metric and assume that the inflaton field φ is
spatially homogeneous, i.e., only depends on time. It is convenient to use the Coulomb gauge for the electromagnetic
four-potential Aµ = (0, −A). Then, the three-vectors of electric E and magnetic B fields, as measured by the
comoving observer, are defined in the conventional way

E = −1

a
∂0A, B =

1

a2
rotA. (7)

The gauge-field stress tensor and its dual tensor are expressed in terms of the electric and magnetic fields as follows:

F0i = aEi, Fij = −a2εijkB
k, F̃0i = aBi, F̃ij = a2εijkE

k. (8)

Finally, we assume that the plasma of charged fermions is spatially homogeneous and quasineutral, i.e., j0 = 0, while
the electric current density is described by the Ohm’s law

ji =
1

a
σfE

i. (9)

It was shown in the literature that this is indeed the case for fermions produced by the Schwinger effect during
inflation if the electromagnetic field is constant [48, 71]. In such a case the generalized conductivity σf depends only
on the absolute values of the electric and magnetic fields. We will use the same form of the electric current assuming
that the electromagnetic field changes adiabatically slowly. The applicability of this approximation was discussed in
detail in Ref.[50].

Then, the full system of equations in our model consists of the Friedmann equation for the Hubble parameter
H = ȧ/a determining the expansion rate of the Universe

H2 =
ρ

3M2
p

=
1

3M2
p

[
1

2
φ̇2 + V (φ) +

1

2

〈
E2 + B2

〉
+ ρf

]
, (10)

the Klein-Gordon equation for the inflaton field

φ̈+ 3Hφ̇+ V ′(φ) = I ′(φ) 〈E ·B〉 , (11)

and Maxwell’s equations for the electromagnetic field

Ė + 2HE − 1

a
rotB + I ′(φ) φ̇B + σfE = 0, (12)

Ḃ + 2HB +
1

a
rotE = 0, (13)

divE = 0, divB = 0. (14)

In Eq. (10), Mp = (8πG)−1/2 = 2.43 × 1018 GeV is the reduced Planck mass. Since we consider the electromagnetic
field as a quantum field, the vacuum expectation value is taken when it appears in the classical equations of motion
(10) and (11). They are denoted by the angle brackets.

In order to close the system of equations, we need to specify the conductivity. In the case of one massless Dirac
fermion species with charge e, the conductivity induced by the Schwinger effect is constant and collinear electric and
magnetic fields in de Sitter spacetime has the form [48]

σf =
e3

6π2

|B|
H

coth
(π|B|
|E|

)
, (15)

where |E| ≡
√
〈E2〉 and |B| ≡

√
〈B2〉. During axion inflation the generated gauge fields are helical and the vectors

E and B are indeed nearly collinear. Expression (15) was derived in the strong-field regime, |eE| � H2, which is the
most important one for physical applications.
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The energy of the electric field which is dissipated due to finite conductivity is transferred into charged fermions
produced by the Schwinger effect. Then, the energy density of fermions satisfies the following equation which can be
derived using the energy balance in the system:

ρ̇f + 4Hρf = σf〈E2〉. (16)

For massless fermions, apart from the ordinary U(1) gauge symmetry, at classical level there is also the global U(1)
chiral symmetry which “rotates” phases of right- and left-handed components of the spinor ψ with opposite signs.
According to Noether’s theorem, it should correspond to a conserved current jµ5 which is the difference of currents
of right- and left-handed particles. However, in quantum field theory this symmetry is violated by renormalization
of ultraviolet divergences. As a result, the corresponding Noether current is not conserved (the chiral anomaly, see
Refs. [64, 65]). In the expanding Universe, the chiral anomaly equation reads as

1√
−g

∂µ(
√
−gjµ5 ) = − e2

8π2
Fµν F̃

µν . (17)

Assuming again the homogeneous fermion distribution, we rewrite this equation in the form

ṅ5 + 3Hn5 =
e2

2π2
〈E ·B〉, (18)

where n5 = j0
5 is the chiral charge density of fermions.1 Since in the axion inflation the nonzero value of 〈E ·B〉 is

generated, the fermion chirality is not conserved. At the beginning of inflation there were no gauge fields and fermions
(thus, the initial value of chiral asymmetry was equal to zero). Then, the nonconservation of chiral charge implies
that the nonzero n5 will be generated during axion inflation.

In order to study this process numerically, one needs to solve the coupled system of Friedmann (10), Klein-Gordon
(11), and Maxwell equations (12)–(14) together with the anomaly equation (18). However, the Maxwell equations
(12)–(14) describe the evolution of quantum electric and magnetic fields; therefore, one has to deal with mode functions
of these fields in Fourier space. In the presence of backreaction or the Schwinger effect all modes become coupled
to each other that makes numerical calculations very demanding. To overcome this problem, we utilize the gradient
expansion formalism developed in Ref. [50]. It operates with vacuum expectation values of bilinear electromagnetic
functions in coordinate space that include all physically relevant modes at once. These functions are defined as follows:

E(n) =
1

an
〈E · rotnE〉 , (19)

G(n) = − 1

an
〈E · rotnB〉 , (20)

B(n) =
1

an
〈B · rotnB〉 . (21)

Equations of motion for these quantities can be derived from the Maxwell’s equations (12) and (13) and have the
form [46, 50]:

Ė(n) + [(n+ 4)H + 2σf ] E(n) − 2I ′(φ)φ̇G(n) + 2G(n+1) = [Ė(n)]b, (22)

Ġ(n) + [(n+ 4)H + σf ]G(n) − E(n+1) + B(n+1) − I ′(φ)φ̇B(n) = [Ġ(n)]b, (23)

Ḃ(n) + (n+ 4)H B(n) − 2G(n+1) = [Ḃ(n)]b. (24)

where [Ė(n)]b, [Ġ(n)]b, and [Ḃ(n)]b are the boundary terms.
The origin of these terms is explained by the following. All possible modes of quantum gauge field fluctuations

are always present in physical vacuum. Due to a quasiexponential expansion of the Universe during inflation the
wavelength of some modes of electromagnetic field become larger than the Hubble horizon (more precisely, they

1 We do not take into account perturbative chirality-flipping processes which equilibrate the chiral asymmetry, since they are negligible
at temperatures above 80 TeV [91, 92] which is true in our model, see Sec. IV.
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become at some point tachyonically unstable and stop oscillating). Such long-wavelength modes can be treated as
the Fourier modes of a classical electromagnetic field [93]. Modes deep inside the horizon oscillate in time without
significant change of their amplitude. Their total energy is infinite and its contribution to the electromagnetic energy
density should be excluded. The number of modes that cross the horizon and become physically relevant constantly
grows during inflation. This leads to an additional time dependence of electromagnetic quantities which can be
described by means of boundary terms in the equations of motion.

The boundary terms for the system of equations (22)–(24) were derived for the first time in Ref. [46] and were
calculated more accurately in Ref. [50], including the impact of the Schwinger conductivity σf . Considering the
electromagnetic modes with circular polarization λ = ± one could obtain

[Ė(n)]b =
d ln kh(t)

dt

∆(t)

4π2

(
kh(t)

a(t)

)n+4 ∑
λ=±1

λnEλ(ξ(t), s(t)), (25)

[Ġ(n)]b =
d ln kh(t)

dt

∆(t)

4π2

(
kh(t)

a(t)

)n+4 ∑
λ=±1

λn+1Gλ(ξ(t), s(t)), (26)

[Ḃ(n)]b =
d ln kh(t)

dt

∆(t)

4π2

(
kh(t)

a(t)

)n+4 ∑
λ=±1

λnBλ(ξ(t), s(t)), (27)

where kh(t) is the momentum of the mode that crosses the horizon at time t

kh(t) = max
t′≤t

{
a(t′)H(t′)

[
|ξ(t′)|+

√
ξ2(t′) + s2(t′) + s(t′)

]}
, (28)

ξ(t) =
dI

dφ

φ̇

2H
, s(t) =

σf(t)

2H
, (29)

the parameter ∆ is the exponential of the integrated conductivity,

∆(t) ≡ exp

(
−

t∫
−∞

σf(t
′)dt′

)
, (30)

and

Eλ(ξ, s) =
eπλξ

r2(ξ, s)

∣∣∣(ir(ξ, s)− iλξ − s)W−iλξ, 12 +s(−2ir(ξ, s)) +W1−iλξ, 12 +s(−2ir(ξ, s))
∣∣∣2 , (31)

Gλ(ξ, s) =
eπλξ

r(ξ, s)

{
<e
[
Wiλξ, 12 +s(2ir(ξ, s))W1−iλξ, 12 +s(−2ir(ξ, s))

]
− s

∣∣∣W−iλξ, 12 +s(−2ir(ξ, s))
∣∣∣2} , (32)

Bλ(ξ, s) = eπλξ
∣∣∣W−iλξ, 12 +s(−2ir(ξ, s))

∣∣∣2 (33)

with r(ξ, s) = |ξ|+
√
ξ2 + s+ s2 and the Whittaker function Wκ,µ(y). For large ξ, these expressions can be expanded

into series in inverse powers of r(ξ, s), which is convenient for numerical computations.
Equations (22)–(24) form an infinite chain because the equation of motion for the nth order function always contains

at least one function with the (n+ 1)th power of the curl. However, this chain can be truncated at some large order
nmax due to a simple observation. For a large power n � 1 of the spatial curl the main contribution to E(n), B(n),
G(n) is made by modes with the largest possible momentum which is the momentum of mode crossing the horizon at
the moment of time under consideration kh(t). Then, one can write

E(nmax+1) ≈
(kh(t)

a(t)

)2

E(nmax−1) (34)

and similar relations for B(nmax+1), G(nmax+1) which allow us to truncate the chain at some order nmax. We have
chosen to relate the quantities with orders differing by 2 because they have the same symmetry properties under the
spatial inversion. After the truncation we get a closed system of ordinary differential equations that describe the
self-consistent evolution of classical observables in the form of quadratic functions of the electric and magnetic fields
with an arbitrary power of the curl.
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III. CHIRAL MAGNETIC EFFECT

In the previous section, we obtained a coupled system describing the generation of electromagnetic fields and charged
fermions during axion inflation with a special attention to the production of chiral asymmetry in the fermionic sector.
However, the latter may also have an impact on electromagnetic fields due to the chiral magnetic effect phenomenon.
It leads to nonzero electric current proportional to the magnetic field with proportionality coefficient related to the
chiral asymmetry (for review see Ref. [90] and references therein):

jCME =
e2

2π2
µ5B. (35)

Here, µ5 is the chiral chemical potential which is a conjugated quantity to N5 =
∫
n5 d

3x in equilibrium thermody-
namics. In other words, it characterizes the average energy that one needs to spend in order to increase the chiral
charge of the system N5 by unity.

In order to determine µ5, we assume that fermions produced by the Schwinger effect rapidly thermalize and can
be characterized by the equilibrium Fermi-Dirac distribution function with some temperature T . Although such an
approximation is not well justified far from the end of inflation when the number of produced fermions is very low,
it seems to be reasonable during the final part of axion inflation where the generated electromagnetic field is strong
and the Schwinger pair creation effectively produces many fermions. In any case, such an equilibrium approximation
will allow us to estimate the impact of the chiral magnetic effect on the electromagnetic field generation.

Since at the beginning of inflation there were no fermions and the Schwinger effect can produce them only in
particle-antiparticle pairs, the plasma is quasineutral and the electric chemical potential µ = 0. Then, momentum
distribution functions for right- and left-handed particles have the form:

fR/L(p) =
1

exp
(
p∓µ5

T

)
+ 1

, (36)

i.e., the chemical potential for right-handed particles equals to µ5 while for left-handed ones −µ5. Distribution
functions for the corresponding antiparticles f̄R/L can be obtained from Eq. (36) by the replacement µ5 → −µ5.
Then, the chiral charge and the total energy density of fermions can be expressed in terms of T and µ5 as follows:

n5 =

∫
d3p

(2π)3

[
fR(p)− fL(p)− f̄R(p) + f̄L(p)

]
=

1

3
µ5T

2 +
1

3π2
µ3

5, (37)

ρf =

∫
d3p

(2π)3
p
[
fR(p) + fL(p) + f̄R(p) + f̄L(p)

]
=

7π2

60
T 4 +

1

2
µ2

5T
2 +

1

4π2
µ4

5. (38)

Here we used the fact that the antiparticle of a right-handed particle has left-handed chirality and vice versa. We
would like to note that Eqs. (37) and (38) give exact results of integration of the Fermi-Dirac functions without any
assumptions about the relative magnitude of µ5 and T . These nonlinear relations allow to use interchangeably two
sets of variables, either n5 and ρf or µ5 and T . In order to take into account the chiral magnetic effect, the latter set
of variables is more convenient since the current (35) depends on µ5.

Using Eqs. (16) and (18) together with relations (37) and (38), we derive the following equations of motion for T
and µ5:

Ṫ +HT =
1

π2T D(T, µ5)

[(
π2T 2 + 3µ2

5

)
σfE(0) + 3µ5

(
π2T 2 + µ2

5

) e2

2π2
G(0)

]
, (39)

µ̇5 +Hµ5 = − 1

D(T, µ5)

[
2µ5σfE(0) +

(7π2

5
T 2 + 3µ2

5

) e2

2π2
G(0)

]
, (40)

where

D(T, µ5) =
7π2

15
T 4 +

2

5
µ2

5T
2 +

1

π2
µ4

5 =
7π2

15

(
T 2 +

3

7π2
µ2

5

)2

+
32

35π2
µ4

5 > 0. (41)

In order to determine the impact of the chiral magnetic effect on the gauge-field production, we add current (35)
to the left-hand side of the Maxwell equation (12). This current is similar to the forth term in Eq. (12) since it is also
proportional to B. Therefore, effectively we have to replace

I ′(φ)φ̇ → I ′(φ)φ̇+
e2

2π2
µ5 (42)
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everywhere in the equations of motion for electromagnetic fields, in particular, in Eqs. (22)–(24) which then take the
form

Ė(n) + [(n+ 4)H + 2σf ] E(n) − 2
(
I ′(φ)φ̇+

e2

2π2
µ5

)
G(n) + 2G(n+1) = [Ė(n)]b, (43)

Ġ(n) + [(n+ 4)H + σf ]G(n) − E(n+1) + B(n+1) −
(
I ′(φ)φ̇+

e2

2π2
µ5

)
B(n) = [Ġ(n)]b, (44)

Ḃ(n) + (n+ 4)H B(n) − 2G(n+1) = [Ḃ(n)]b. (45)

Note that the parameter ξ in Eqs. (25)–(33) is replaced by

ξeff = ξ +
e2

4π2

µ5

H
(46)

and thus µ5 modifies also the boundary terms.

IV. NUMERICAL RESULTS

Let us now specify the inflationary model and consider chirality generation in it numerically. We use the simplest
quadratic inflaton potential

V (φ) =
m2φ2

2
, (47)

which well describes the behavior of a wide class of inflaton potentials close to their minima. This is important since
the most intensive generation of the electromagnetic fields and charged fermions occurs close to the end of inflation
when the inflaton indeed approaches the minimum of its potential. For definiteness, in numerical analysis we take
m = 6× 10−6Mp.

The axial coupling constant I(φ) is taken in a linear form

I(φ) = β
φ

Mp
(48)

with a dimensionless parameter β. This is the typical expression for the coupling function for the axion-like inflaton
field. For numerical analysis, we use the range of values of β = 10 − 25. For smaller values the generated fields are
very weak while larger values would lead to the generation of big non-Gaussianities in the primordial scalar power
spectrum [94].

Initial conditions for the inflaton field and its time derivative are chosen from the requirement that the inflation stage
lasts at least 60 e-foldings, i.e., φ(0) ≈ 15.5MP and φ̇(0) = −

√
2/3MMP. The latter expression was derived in the

slow-roll approximation for potential (47). Note that only the last 10–15 e-foldings are important for magnetogenesis
and fermions production; however, the initial conditions should be specified well before this moment. Zero initial
values for all electromagnetic quantities E(n), B(n), and G(n) as well as for the fermion energy density ρf and chiral
charge n5 were assumed.

One important comment on the introduction of the chiral chemical potential should be made. Nonlinear relations
(37) and (38), generally speaking, do not allow to determine µ5 and T for arbitrary values of ρf and n5. In fact,
assuming that Eqs. (37) and (38) are satisfied, the following relation is valid:

3
√
π n5

2
√

2 ρ
3/4
f

=
1 + π2T 2

µ2
5(

1 + 2π2T 2

µ2
5

+ 7π4T 4

15µ4
5

)3/4
. (49)

One can easily check that the right-hand side of this equation lies in the range (0, 1) for all possible values of µ5 and

T . Consequently, if for given values of ρf and n5, the combination 3
√
π n5

2
√

2 ρ
3/4
f

> 1, Eqs. (37), (38) cannot be inverted and

µ5 and T cannot be identified. In this situation we conclude that fermions cannot be characterized by the thermal
Fermi-Dirac distribution function. This indeed happens in our numerical analysis at very early times when the particle



8

production is very slow. It is quite natural since for low densities of particles their thermalization is very unlikely in
the exponentially expanding Universe.

In order to overcome this difficulty, at 60 e-foldings to the end of inflation we impose initial conditions for ρf and n5

rather than for µ5 and T . (Of course, in this case we are not able to take into account the chiral magnetic effect in the
Maxwell equations; however, for low fermion densities this effect can be neglected.) We numerically solve our system
of equations for the electromagnetic functions (22)–(24) together with Eqs. (16) and (18) for ρf and n5 until some

moment of time when the condition 3
√
π n5

2
√

2 ρ
3/4
f

< 1 is satisfied. At this moment of time we are able to invert Eqs. (37),

(38) and determine the corresponding values of µ5 and T . They are taken as initial conditions for the second stage
where we solve Eqs. (39) and (40) for µ5 and T together with Eqs. (43)–(45) for the electromagnetic bilinear function
which now take into account the chiral magnetic effect.

We present the results for µ5 and T generated in our model as functions of the number of e-foldings to the end of
inflation in Fig. 1. Panel (a) shows the chiral chemical potential in the Hubble units, panel (b) shows the temperature
in the Hubble units, while panel (c) represents their ratio. The lines of different color and style correspond to four
different values of the axial coupling constant: β = 10 (purple dotted lines), β = 15 (green dashed-dotted lines),
β = 20 (red dashed lines), and β = 25 (blue solid lines).
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Figure 1. The chiral chemical potential in Hubble units µ5/H [panel (a)], the effective temperature in Hubble units T/H
[panel (b)], and their ratio µ5/T [panel (c)] in dependence of the number of e-foldings counted from the end of inflation Ne for
four different values of the axial coupling parameter: β = 10 (purple dotted lines), β = 15 (green dashed-dotted lines), β = 20
(red dashed lines), and β = 25 (blue solid lines).

First of all, we would like to note that both temperature and chiral chemical potential grow in time which corresponds
to the fact that more fermions are produced by the Schwinger effect and more fermions change their chirality due to
the chiral anomaly. However, the ratio µ5/T decreases in time meaning that the relative fraction of chiral imbalance
n5 = nR −nL compared to the total fermion number ntot = nR +nL decreases in time. This can be explained by the
fact that close to the end of inflation the electromagnetic field becomes very strong and the Schwinger effect produces
a lot of fermions. Being initially equally distributed between the chiralities, they flip their chirality due to the chiral
anomaly which results in the chiral imbalance. However, the latter process is less intensive since it is proportional to
the second power of the electromagnetic field while the Schwinger pair production term in Eq. (16) is proportional to
the third power of the electromagnetic field. Thus, more particles are produced in total than particles which change
their chirality due to the chiral anomaly. Thus, we can conclude that the chiral imbalance n5/ntot becomes less as
time passes.

Figure 1(c) implies that the ratio of the final chiral chemical potential to temperature at the end of inflation weakly
depends on the axial coupling parameter β and equals approximately to µ5/T ∼ 0.27 − 0.3. This can be translated
into the chiral asymmetry by the following considerations. For µ5/T � 1, the total number density of right- and
left-handed fermions equals to

ntot = nR + nL =

∫
d3p

(2π)3

[
fR(p) + fL(p) + f̄R(p) + f̄L(p)

]
=

3ζ(3)

π2
T 3 + O(µ2

5T ), (50)

where ζ(3) is the Riemann zeta function. Then, taking into account that in the same approximation n5 = nR−nL ≈
µ5T

2/3, we obtain

η =
n5

ntot
=
nR − nL
nR + nL

≈ π2

9ζ(3)

µ5

T
≈ 0.91

µ5

T
. (51)

Thus we conclude that an excess of one chirality with respect to the other can reach 25%. Thus, the axion inflation
is indeed an efficient chirality generator.
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Now let us discuss the impact of the chiral magnetic effect on the evolution of the electromagnetic field. For this
purpose, we solved Eqs. (43)–(45) in the presence of the chiral magnetic effect and compared the results with the
solutions of Eqs. (22)–(24) where this effect is switched off. The relative deviation

εX =
X −Xref

Xref
× 100%, (52)

where X = {ρE , ρB , |〈E ·B〉|} and Xref is the solution without chiral magnetic effect. We show this relative deviations
in Fig. 2 again for four values of β considered above.
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Figure 2. The relative change of the magnetic energy density ρB [panel (a)], electric energy density ρE [panel (b)], and Chern-
Pontryagin density |〈E ·B|, caused by the presence of the chiral magnetic effect, in dependence of the number of e-foldings
counted from the end of inflation Ne for four different values of the axial coupling parameter: β = 10 (purple dotted lines),
β = 15 (green dashed-dotted lines), β = 20 (red dashed lines), and β = 25 (blue solid lines).

Analyzing this plot, we conclude that the impact of the chiral magnetic effect is rather weak since the deviation
is of order 1 − 5%. Qualitatively, it leads to the decrease of the electromagnetic field (note the negative values of
εX). This is natural since the electromagnetic field is the source of chiral asymmetry (due to the chiral anomaly)
while the chiral magnetic effect represents the backreaction of this asymmetry on the electromagnetic field. Unless
this backreaction works to decrease the electromagnetic field, one gets an instability in the system. As we discussed
above, the axial coupling with the inflaton field and the chiral magnetic effect have similar structure. However, during
inflation the latter is much less important than the former and a general tendency to increase the electromagnetic
field is observed.

V. CONCLUSION

In this work, we studied the generation of electromagnetic fields and charged fermions during axion inflation taking
into account the backreaction of generated fields on the inflaton evolution, the Schwinger effect, and the chirality
production due to the chiral anomaly. Moreover, we took into account the chiral magnetic effect and analyzed its
impact on the magnetogenesis. For this purpose, we employed the gradient expansion formalism previously proposed
by three of us in Refs. [46, 50]. Since it operates with bilinear electromagnetic functions in the position space, it takes
into account all physically relevant modes at once and thus allows us to treat the highly nonlinear phenomena listed
above.

Qualitatively, the picture of the chirality production is the following. Far from the end of inflation, the electromag-
netic field is weak and the Schwinger pair production is very slow (see, e.g., Ref. [50]). As a result, the number density
of produced particles is small, and we cannot assume that they are thermalized. Indeed, the estimates in Ref. [48] for
exact de Sitter spacetime and constant electromagnetic field confirm that thermalization does not occur. However,
close to the end of inflation, the inflaton rolls faster and, therefore, the electromagnetic field becomes very strong (for
sufficiently large β the electromagnetic energy density can be comparable with that of the inflaton, see Ref. [46, 50]).
It is natural to assume that the charged particles which are very intensively produced due to the Schwinger effect
quickly achieve the thermal distribution. In this assumption, we introduced the effective temperature T and chiral
chemical potential µ5 which characterizes the chiral asymmetry of fermions. Although both quantities grow in time
due to particle and chirality production, the ratio µ5/T is a decreasing function of time. Indeed, at earlier times,
there is a small number density of fermions and the chiral anomaly transfers most them into one chiral state resulting
in µ5 � T . At later times, however, more and more fermions are created by the Schwinger effect (which produces the
same amount of particles with both chiralities), and the chiral anomaly cannot transfer all of them into one chirality.
As a result, the ratio µ5/T decreases.
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We performed our numerical analysis in a simple inflationary model with quadratic potential V (φ) = m2φ2/2 and
for a linear axial coupling function I(φ) = βφ/MP with a dimensionless parameter β. We showed that despite the
fact that µ5/T rapidly decreases in time during the last few e-foldings of inflation, the final residual value of this
quantity at the end of inflation weakly depends on the coupling parameter β and is of order 0.27–0.3. Numerically,
this corresponds to 25–27% of chiral imbalance in the fermion number density. Thus, we conclude that axion inflation
is an efficient chirality generator.

Nonzero value of the chemical potential µ5 leads to a new contribution to the electric current – the chiral magnetic
effect j ∝ µ5B which backreacts on the electromagnetic field evolution. We analyzed numerically this impact and
concluded that such a backreaction leads to only a few percent change in the electric and magnetic energy densities.
Thus, the impact of the chiral magnetic effect on the gauge field evolution is less important than their interaction with
the inflaton. We would expect, however, that this phenomenon may be very important in the postiflationary evolution
of the magnetic field since at that time the interaction with the inflaton will not play any role. Since our gradient
expansion formalism is applicable only during inflation, some other methods are needed in order to investigate the
postinflationary evolution in this system. We keep this problem for further studies.

Let us note once more that the results obtained in this work are based on the assumption that starting from a
certain moment a few e-foldings prior to the end of inflation the fermions become thermalized and can be characterized
by the temperature and chemical potential. It was crucial to estimate the value of µ5 in order to analyze its impact on
the electromagnetic field, because the chiral magnetic effect depends on µ5. However, since this impact is very weak,
one can neglect the chiral magnetic effect during inflation and study the chirality production without any assumptions
about the fermion distribution. The most efficient tool to perform such an analysis is the kinetic approach. We plan
to address this issue in the further studies.
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