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Mass formulas are obtained for stationary axisymmetric solutions of the Einstein-
Maxwell dilaton-axion theory, which have a regular rod structure on the axis of symmetry.
Asymptotic mass, angular momentum and charge are expressed as the sums of masses,
angular momenta and charges of rods dressed with field contributions. The calculation
is based on a three-dimensional sigma model representation of the stationary EMDA
system and the Tomimatsu approach proposed for the Einstein-Maxwell system. Our
results provide an alternative interpretation of mass formulas and thermodynamics for
black holes with Dirac and Misner strings. It is also applicable to aligned multiple black
holes with struts.
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1. Introduction

Mass formulas for black holes and the concept of irreversible mass were proposed by

Christodoulou1, Hawking2, Christodoulou and Ruffini3, and Smarr4 in the early

1970s, shortly before Hawking discovered the evaporation of a black hole5. They

have played an important role in understanding the energy extraction from rotating

black holes and the energy balance of merging black holes, which was brilliantly

confirmed in the recent experiments of Ligo. The thermodynamics of black holes6–9

then gave them a deep quantum interpretation. The mathematical foundations and

detailed derivation of mass formulas in the Einstein-Maxwell theory were given by

Carter10.

The original integral Smarr’s mass formula4 relates the total values of mass,

angular momentum and electric charge of black holes in Einstein-Maxwell theory

with the horizon area. The area term in this formula was originally interpreted

mechanically as the work of stresses of the horizon. Further, this interpretation was

forgotten in favor of the thermodynamic one. When interest turned to solutions

with NUT, it was immediately found11–14, that the Misner string also contributes

to the Smarr mass formula, and this contribution was included in the entropy term.

This interpretation was revived recently in slightly different terms in a series of pa-

pers15–19, based on the Bonnor interpretation of the Misner strings as mild physical

singularities20.

In our opinion, the most natural description of solutions with Misner and Dirac

strings as well as aligned multicenter solutions with struts can be given in terms of

http://arxiv.org/abs/2111.06111v1
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the rod structure, introduced by Harmark21, developing earlier ideas of Emparan

and Reall22. The main novelty of this approach is the derivation of separate for-

mulas for the partial masses for each component of the entire system, represented

by a set of rods. In this interpretation, Misner’s strings appear as independent

components on the same base and as black holes.

Using the representation of vacuum stationary axisymmetric solutions in Weyl

coordinates, we consider the solutions as generated by data on the polar axis, which

look like distributional matter objects that are sources of the Poisson equation

for the gravitational potential23. Accordingly, the total gravitational field can be

viewed as a nonlinear superposition of the components such as black holes, struts,

Misner and Dirac strings. Despite the nonlinearity of Einstein’s equations, the total

mass, angular momentum (and electric charge in the case of an electrovacuum) can

be represented as the sum of the individual contributions of the constituents. This

simple additivity is associated with conservation laws for the Komar and Gauss

integrals. The magnetic charge and magnetic mass (NUT) in this description are

due to the Misner and Dirac strings, which correspond to the individual elements

in the rod system, so these charges do not enter the black hole horizon mass. Their

contribution enters the asymptotic Komar mass as the proper masses of the Dirac

and Misner strings along with the black hole contribution.

The difference between the horizon and the string rods is that the directions of

the former are timelike, and the directions of the latter are spacelike. Both rods

are Killing horizons and have an associated surface gravity. But the entropic inter-

pretation of the surface contribution of spacelike rods (often encountered) does not

seem convincing. An alternative interpretation may be similar to Smarr’s original

point of view.

This programme was previously performed for the Einstein-Maxwell system24,25,

and here it is extended to Einstein-Maxwell-dilaton-axion gravity (EMDA). We

show that Tomimatsu’s proposal within the context of electrovacuum26,27 on cal-

culating Komar integrals over rods in terms of the boundary values of Ernst’s po-

tentials can be generalized to the sigma model representation of stationary dilaton-

axion gravity. Surprisingly, the obtained mass formulas are very similar to the

formulas obtained in the case of Einstein-Maxwell.

2. Stationary EMDA gravity

The EMDA gravity can be viewed as a consistent truncation of a toroidal reduction

of the heterotic string28, or as a truncation of N = 4 four-dimensional supergrav-

ity29 30. Rotating electrically charged black hole solution of EMDA theory was

obtained by Sen28 within the first approach and independently, with the inclusion

of NUT and magnetic charge, by Gal’tsov and Kechkin31 in the second context. Re-

cently, these solutions have attracted attention as an alternative to the Kerr metric

in an effort to find astrophysical evidence for new physics32–34.

The mass formulas and thermodynamics of EMDA black holes have been dis-
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cussed frequently in the past, though not in full generality, see, for example35,36 (a

more complete list of references prior to 2008 can be found in36). Our discussion

here, based on generalization of 25, covers solutions with Misner and Dirac strings,

and is also applicable to hitherto unknown solutions for double black holes with

struts that are expected to exist.

The EMDA action in our conventions reads:

S =
1

16π

∫
{

R− 2∂µφ∂
µφ− 1

2
e4φ∂µκ∂

µκ− e−2φFµνF
µν − κFµν F̃

µν

}√−gd4x,

(1)

where F̃µν = 1
2E

µνλτFλτ . Dilaton φ and axion κ parameterize a coset

SL(2, R)/SO(2), and the SL(2, R) group is the symmetry of the full action. To

see this, one can introduce the complex scalar

ζ = κ+ ie−2φ (2)

and the self-dual Maxwell field F =
(

F + iF̃
)

/2. Then the action takes the form

S =
1

16π

∫

{

R− 2
∣

∣∂ζ(ζ − ζ̄)−1
∣

∣

2
+ (iζFµνFµν + c.c.)

}√−gd4x, (3)

which is invariant under the SL(2, R) transformations

ζ → αζ + β

γζ + δ
, αβ − γδ = 1,

F → (γκ+ δ)F + γe−2φF̃ , (4)

which interchange the modified Maxwell equations and the Bianchi identity

∇νG
µν = 0, ∇νF̃

µν = 0, (5)

Gµν = e−2φFµν + κF̃µν . (6)

The Einstein equations are

Rµν = 2φ,µφ,ν +
1

2
e4φκ,µκ,ν − e−2φ

(

2FµλF
λ
ν +

1

2
F 2gµν

)

. (7)

For stationary and axisymmetric configurations the axion and dilaton kinetic term

disappear from the Einstein equations in the t − ϕ sector, and the dilaton enters

only through the scale factor e−2φ in front of the Maxwell energy-momentum tensor.

This is crucial for our derivation.

Assuming the existence of the Killing vector k = ∂t, the metric can be repre-

sented as

ds2 = gµνdx
µdxν = −f(dt− ωidx

i)2 +
1

f
hijdx

idxj , (8)

where three-dimensional metric hij , three-dimensional rotation vector ωi, (i, j =

1, 2, 3) and the scale factor f depend only on the space coordinates xi. The spatial
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parts of the Bianchi identities and the modified Maxwell equations can be solved

by introducing electric v and magnetic u potentials

Fi0 =
1√
2
∂iv, (9)

Gij = − f√
2h

ǫijk∂ku. (10)

The mixed Ri
0 Einstein equations are solved by introducing the twist potential χ

obtained by dualizing the rotation two-form:

f2hil
ǫljk√
h
∂jωk,= ∂iχ+ v∂iu− u∂iv. (11)

The remaining equations reduce to those of three-dimensional gravitating sigma-

model equations for six scalars XA = f, χ, v, u, φ, κ, A = 1, . . . , 6, and the three-

dimensional metric hij :

S =

∫

[

R(h)− GAB(X) ∂iX
A ∂jX

B hij
]
√
h d3x, (12)

where the target space metric GAB can be presented as

dl2 =
1

2
f−2[df2 + (dχ+ vdu − udv)2]− f−1[e2φ(du − κdv)2 + e−2φdv2]

+ 2dφ2 +
1

2
e4φdκ2. (13)

The isometry group of this metric is SO(3, 2), as was identified in37. Based on the

isomorphism SO(3, 2) ∼ Sp(4, R), a convenient 4 × 4 matrix representation of the

coset Sp(4, R)/SO(1, 2) was suggested38, suitable for the generation technique. In

terms of complex coordinates, one of which is (2) and two other are the following

generalization of the Ernst potentials39

Ψ = u− ζv, E = if − χ+ vΨ, (14)

the target space is a three-dimensional Kähler space.

3. Rod suructure

Consider the spacetime metric, admitting two commuting Killing vectors k, m

corresponding to stationarity and axial symmetry. Let t, ϕ be chosen so that

k = ∂t, m = ∂φ with t ∈ R and ϕ ∈ [0, π]. The remaining coordinates will be

primarily assumed of the Boyer-Lindquist type, r, θ with 0 < r < ∞ and θ ∈ [0, π].

We assume that the spacetime manifold has no strong naked curvature singularities,

but can have visible line singularities along (a part of) the polar axis in the sense

of Israel23. These include cosmic strings (conical singularities), struts in aligned

multiple black hole solutions (conical singularities of both positive or negative ten-

sion) and Misner strings in spacetimes with NUTs, without time periodicity being
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imposed. We also assume that spacetime is asymtotically flat, or asymptotically lo-

cally flat. To such a spacetime one can ascribe a rod structure following Harmark21.

Let γab, xa = t, ϕ is the two-dimensional Lorentzian metric of the subspace

spanned by the Killing vectors. Introduce the Weyl cordinates ρ, z such that ρ is

ρ =
√

| det γ| , (15)

and z to ensure the metric form:

ds2 = γab(ρ, z)dx
adxb + e2ν(dρ2 + dz2) , (16)

where ν is a function of (ρ, z). To find the rod structure, one has to solve the

equation

ρ(r, θ) = 0. (17)

Generically, the solution splits the polar axis into a certain number of finite or

semi-infinite intervals (−∞, z1], [z1, z2], . . . , [zN ,+∞) called rods (we will label two

semi-infinite rods by n = ±, and the remaining finite ones by an index n cor-

responding to the left bound of the interval). Each rod can be equipped with a

two-dimensional vector, called rod direction, via the following reasoning. At ρ = 0

the matrix γab(0, z) is degenerate by virtue of the definition (15), so it must have

zero eigenvalues. For quasiregular spacetimes, such that on the symmetry axis there

are no strong curvature singularities, these eigenvalues must be non-degenerate ex-

cept, perhaps, for a discrete set of “turning” points zn which mark the ends of rods.

The eigenvector van, satisfying the equation

γab(0, z)v
b
n = 0 (18)

on any segment z ∈ [zn, zn+1], is called the n-th rod direction. By continuity, this

vector can be extended to small ρ 6= 0, and a more accurate analysis shows that, in

the leading order in ρ, its 2D norm behaves as

v2n = γabv
a
nv

b
n ∼ ±a(z)ρ2, e2ν ∼ c2a(z), (19)

where c is some constant and the sign ± corresponds to spacelike and timelike rod

respectively.

Normalization of directional vectors can be chosen in different ways. One possi-

bility, Killing normalization, relates to preferred normalisation an associated Killing

vector in spacetime: V = v0k+v1m, namely, v0 = 1 in the timelike case, and v1 = 1

in spacelike. In view of behavior near the axis (19), in both cases the rod itself (i.e.

the submanifold ρ = 0) will be the Killing horizon for so defined Killing vector.

Another possibility is to choose the scale factor in such a way as to ensure the

finiteness of its norm at ρ → 0:

lan = lim
ρ→0

ρ−1e−νvan, (20)

again with an option of further constant rescaling. An important property of so

defined rod direction is its constancy (in view of (19)) along the rod, i.e.,

∂zl
a
n = 0. (21)
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Timelike rods of finite length correspond to black hole horizons, infinite timelike

rods describe acceleration horizons. The constant components of such a horizon

rod are connected with its angular velocity ΩH and the surface gravity κH of the

Killing vector

ξ = k +ΩH m. (22)

The surface gravity

κH = (−ξµ;νξ
µ;ν/2)

1/2
(23)

can be expressed in the Weyl coordinates as

κH = lim
ρ→0

(

−ρ−2e−2νγabv
avb

)1/2
, (24)

with v0 = 1, v1 = ΩH . It may be convenient to choose a canonical normalization

of the directional vectors that corresponds to the unit surface gravity:

lH = (1/κH , ΩH/κH) . (25)

Spacelike rods correspond to line defects, such as cosmic strings, struts, Misner

strings, which can be also Dirac strings associated with the corresponding vector

potentials. These rods are Killing horizons for some spacelike Killing vectors. For

them one also has constant angular velocities Ωn and spacelike surface gravities

κn = lim
ρ→0

(

ρ−2e−2νγabv
a
nv

b
n

)1/2
, (26)

so that the normalized directional vectors will be

ln = (1/κn, Ωn/κn) . (27)

Here v1n = 1. With the normalized spacelike directional vector, the period (28) will

be 2π. If the coordinate η associated with the spacelike rod Killing vector l = ∂η,

conical singularity is absent with perdiocity of η with

∆η = 2π lim
ρ→0

(

ρ2e2ν
(

γabl
a
nl

b
n

)−1
)1/2

. (28)

This is important in the situation when two spacelike rods meet at the turning point,

where potentially a mismatch of periodicities may lead to orbifold singularities. This

may happen for instantons41.

4. Komar charges

Following25, we start with the Komar definition40 of the asymptotic mass and

angular momentum:

M∞ =
1

4π

∮

Σ∞

DνkµdΣµν , J∞ = − 1

8π

∮

Σ∞

DνmµdΣµν . (29)
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We also need a conserved electric charge as the surface integral. The definition of

a conserved electric charge in EMDA follows from the modified Maxwell equations:

Q∞ =
1

4π

∮

Σ∞

GµνdΣµν . (30)

Consider some stationary axisymmetric solution with an arbitrary rod structure

zn, ln. Each rod must be surrounded by a thin cylinder Σn. Using Ostrogradski

formula one can transform the asymptotic total mass to the sum of the local Komar

masses Md
n of rods (“direct” masses) and the bulk contribution coming from the

fields: M =
∑

n M
d
n +MF , where

Md
n =

1

4π

∮

Σn

DνkµdΣµν , MF =
1

4π

∫

DνD
νkµdSµ, (31)

where Σn are the spacelike surfaces bounding the various sourcesa, and the second

integral is over the bulk. Similarly, the asymptotic angular momentum will read

J =
∑

n J
d
n + JF , where

Jd
n = − 1

8π

∮

Σn

DνmµdΣµν , JF = − 1

8π

∫

DνD
νmµdSµ. (32)

Using the well-known Killing lemma for k,

DνD
νkµ = −[Dν , D

µ]kν = −Rµ
νk

ν , (33)

and similarly for m, and an explicit form for the Ricci tensor in EMDA theory (7),

one can express the bulk integrals as

MF = − 1

4π

∫

e−2φ
(

FitF
it − FiϕF

iϕ
)
√

|g|d3x, (34)

JF =
1

4π

∫

e−2φFiϕF
it
√

|g| d3x. (35)

Using the identities

FitF̃
it − FiϕF̃

iϕ = 0, FiϕF̃
it = 0 (36)

one can rewrite (34) and (35) as

MF = − 1

4π

∫

(

FitG
it − FiϕG

iϕ
)
√

|g|d3x, (37)

JF =
1

4π

∫

FiϕG
it
√

|g| d3x. (38)

aWe use the metric signature (-+++) and the convention dΣµν = 1/2
√

|g| ǫµνλτdx
λdxτ with

ǫtρzϕ = 1 in Weyl coordinates. We will label t, ϕ by an index a, and the remaining coordinates
ρ, z by i, j. The two-dimensional Levi-Civita symbol ǫij is defined with ǫρz = 1 and ǫxy = 1
respectively.
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In view of the modified Maxwell equations, these expressions can be presented in

the full divergence form

MF = − 1

4π

∫

∂i
[√

−g
(

AtG
it −AϕG

iϕ
)]

d3x, (39)

JF =
1

4π

∫

∂i

(

√

|g|AϕG
it
)

d3x, (40)

suggesting the representation of the asymptotic mass and angular momentum as

the surface integrals over the rods b:

M∞ =
∑

n

Mn, Mn =
1

8π

∮

Σn

(

gijgta∂jgta + 2
(

AtG
it −AϕG

iϕ
))

dΣi (41)

J∞ =
∑

n

Jn, Jn = − 1

16π

∮

Σn

(

gijgta∂jgϕa + 4AϕG
it
)

dΣi, (42)

where we have also rewritten the direct Komar integrals in an explicit form. Thus

we have succeeded in presenting the EMDA bulk contributions in the form of the

integrals over the rods in the same way as it was done in25 for the Einstein-Maxwell

system. This procedure can be regarded as rod’s dressing by the bulk field. So the

resulting Smarr formulas for the asymptotic mass and angular momentum were

written as sums of the dressed rod’s contributions. Note, that in the general case,

this is the only representation for the global M, J that can be found, since different

forms of rod’s contribution do not allow one to write asymptotic quantities directly

in terms of physical charges as was possible for a single black hole.

From now on we assume the standard Weyl-Papaperou parametrization of the

metric

ds2 = −f(dt− ωdϕ)2 + f−1[e2k(dρ2 + dz2) + ρ2dϕ2], (43)

and represent the four-potential as
√
2Aµdx

µ = vdt+Adϕ (44)

(note that v, u,A in this paper differs from these in25 by
√
2 to be consistent with

the EMDA literature). Computation of the direct rod Komar integrals was given

in4. It amounts to dualizing the rotation three-form

∂iχ = −f2ρ−1ǫij∂jω + (u∂iv − v∂iu) , (45)

and leads to

Md
n =

1

8π

∫

n

ω [∂zχ+ (v∂zu− u∂zv)] dzdϕ (46)

bWe assume that the integrals over in infinite sphere vanish, otherwise they must be added too.
This happens if the North and South Misner and Dirac strings are arranged non-symmetrically, by
adding suitable constants to the asymptotic values of the rotation function ω and the azimuthal
component of the four-potential Aϕ.
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Similarly for the angular momentum

Jd
n = − 1

16π

∫

n

ω {2− ω [∂zχ+ (v∂zu− u∂zv)]} dzdϕ. (47)

Note the appearance of the electromagnetic potentials in the expressions for direct

rod mass and angular momentum due to use of the dualized twist potential, i.e.,

implicit use of Einstein equations. These terms will be exactly canceled by the field

contributions to the same quantities.

To continue, we show that, apart from constancy (i.e. z-independence) of the

rod angular velocity Ω = 1/ω and the generalized surface gravity κ, one can prove

for any rod the following relations:

lim
ρ→0

(

Gρt − ωGρϕ
)
√

|g| = 0, (48)

lim
ρ→0

(v + A/ω) ≡ −
√
2Φ = const, (49)

where Φ can be interpreted as an electric potential of the rod. Together with

constancy of ω, the last relation gives also

∂zA = −ω∂zv, (50)

as ρ → 0.

Using (48-50), and the EMDA dualization equation (10) one can rewrite the

field contribution to the dressed rod mass (34) as

MF
n = − 1

8π

∮

Σn

[ω (v∂zu− u∂zv)− ∂z(uA)] dzdϕ. (51)

Combining this with the direct Komar mass (46) we obtain the dressed rod’s mass

Mn =
1

8π

∫

Σn

[ω∂zχ+ ∂z(Au)] dzdϕ. (52)

It may seem surprising that this formula does not differ from that for Einstein-

Maxwell system. No explicit scalar terms are seen.

For the bulk contribution to the angular momentum, one also applies the Eq.

(48) and then magnetic dualization equation (10). The subsequent transformations

are the same as in25 and lead to the same result

JF
n =

1

8π

∫

H

[

ω2u∂zv + ω∂z(Au)
]

dzdϕ. (53)

Combining with the direct Komar momentum, we obtain for the dressed rod:

Jn =
1

16π

∫

H

ω
[

−2 + ω∂zχ+ ∂z(Au)−
√
2ωΦn∂zu

]

dzdϕ, (54)

this expression also does not contain the dilaton and axion. Now consider Komar

electric charge of a rod (30). Explicitly, it is given by the flux

Qn =
1

4π

∫

Σn

√

|g|Gtρdzdϕ. (55)
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Manipulating with indices and using dualization equation (10)

Gtρ =
gρρ

gtt
Gtρ −

gtϕ
gtt

Gϕi = e−2k

[

Gtρ +
fω

ρ
∂zu

]

, (56)

one finds that in the limit ρ → 0 only the second term contributes, so

Qn =
1

4
√
2π

∫

Σn

ω∂zu dzdϕ. (57)

After integration over ϕ

Mn =
ωn

4
χ
∣

∣

∣

zn+1

zn
+

1

4
(Au)

∣

∣

∣

zn+1

zn
. (58)

Similarly, for the angular momentum (54) one finds

Jn =
ωn

8

{

−2(zn+1 − zn) +
[

ωn

(

χ−
√
2Φnu

)

+Au
]
∣

∣

∣

zn+1

zn

}

. (59)

Finally, the electric charge will be

Qn =
ωn

2
√
2
u
∣

∣

∣

zn+1

zn
. (60)

The angular velocity of a rod is defined as a limit

Ωn = lim
ρ→0

ω−1(ρ, z), zn < z < zn+1. (61)

Combining the above formulas we obtain rod Smarr mass

Mn =
Ln

2
+ 2ΩnJn +ΦnQn, (62)

where Ln = zn+1 − zn is the n-s rod length (for infinite rods some length regular-

ization is needed). Please note that this formula is identical; it is valid for any rod,

regardless of the specific parameter values.

5. Length versus entropy

Although it looks like a one-dimensional object, any rod with finite surface gravity

has a finite surrounding cylindrical area:

An =

∮

dϕ

∫ zn+1

zn

√

|gzzgϕϕ|dz = 2π

∫ zn+1

zn

√

|e2k||ω|dz. (63)

The surface gravity (by definition, positive) in Weyl coordinates reads

κn = |Ωn|
√

|e−2k|. (64)

Thus the integral (63) is simply proportional to the rod’s length:

κn

2π
An = zn+1 − zn = Ln. (65)
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This is true for both timelike rods (horizons) and spacelike ones (defects). In the

first case, the surface gravity is proportional to the Hawking temperature, and the

area of the horizon is proportional to the entropy

TH = κH/2π, SH = AH/4, (66)

therefore

THSH =
κH

8π
AH =

LH

4
, (67)

and the Smarr formula can be rewritten as4

MH = 2ΩHJH + 2THSH +ΦHQH . (68)

For spacelike rods such an identification does not seem justified, so we prefer to

leave Smarr formula in its “length” form (62).

For multicenter solutions this mass relation holds separately for each black hole

constituent. As stated in24,25, this is also true when black holes have magnetic

and/or NUT charges. In our interpretation, the contribution of these parameters to

the total asymptotic mass comes from individual rods representing the Dirac and

Misner strings.

6. EMDA rotating dyon with NUT

The metric of the EMDA dyon with the NUT parameter constructed in 199431 can

be represented in the Kerr form:

ds2 = −∆− a2 sin2 θ

Σ
(dt− ωdϕ)

2
+Σ

(

dr2

∆
+ dθ2 +

∆sin2 θ

∆− a2 sin2 θ
dϕ2

)

, (69)

with the modified coefficient functions:

∆ = (r − r−)(r − 2M) + a2 − (N −N−)
2,

Σ = r(r − r−) + (a cos θ +N)2 −N2
−,

ω =
−2w

∆− a2 sin2 θ
, w = N∆cos θ + a sin2 θ (M(r − r−) +N(N −N−)) .

Two new parameters r−, N− depend on mass M , NUT parameter N , electric and

magnetic charges Q,P as follows:

r− =
M(Q2 + P 2)

M2 +N2
, N− =

N(Q2 + P 2)

2(M2 +N2)
, (70)

and a is the rotation parameter. The electric and magnetic potentials and the

complex axidilaton scalar (2) depend also on the asymptotic values of dilaton and

axion ζ∞ = κ∞ + ie−2φ∞ :

v = −
√
2eφ∞

Σ
Re [Q(r − r− + iδ)] , u = −

√
2eφ∞

Σ
Re [Qζ∞(r − r− + iδ)]

ζ =
ζ∞R +Dζ∗∞

R +D , R = r − M∗r−
2M

+ iδ, δ = a cos θ +N −N−,
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where the complex mass, electromagnetic and axidilaton charges are introduced

M = M + iN, Q = Q+ iP, D ≡ D + iA = −Q∗2

2M . (71)

The explicit expressions for the axion and dilaton fields are

κ = κ∞ − e−2φ∞

2Im(RD∗)

|R +D|2 , e−2(φ−φ∞) =
Σ

|R+D|2 , (72)

where |R|2 − |D|2 = Σ. The dilaton asymptotics renormalizes the electric and

magnetic charges, and the axion determines their mixing. Indeed, for r → ∞, the

electric and magnetic potentials are read as follows:

v ∼ −
√
2Q eφ∞

r
, u ∼

√
2
(

P e−φ∞ − κ∞Qeφ∞

)

r
. (73)

The axion and dilaton asymptotics r → ∞ read as follows:

ζ ∼ ζ∞ − 2ie−2φ∞

D
r
, κ ∼ κ∞ + 2e−2φ∞

A

r
, φ ∼ φ∞ +

D

r
. (74)

Combining electric and magnetic potentials, the complex potential Ψ reads

Ψ =

√
2eφ∞

Σ

[

(ζ − κ∞)Re [Q(r − r− + iδ)] + e−2φ∞Im [Q(r − r− + iδ)]
]

. (75)

Applying the inverse dualization equations (10), we find the azimuthal compo-

nent of the Maxwell four-potential. For the four-potential one-form A = Aµdx
µ we

obtain:

Aµdx
µ =

eφ∞

Σ
(−Q(r − r−) + Pδ)

(

dt+
(

2Ny − a(1− y2)
)

dϕ
)

− eφ∞Pydϕ. (76)

Its norm diverges on the Misner strings cos θ = ±1:

AµA
µ
∣

∣

cos θ→±1
∼ −e2φ∞P 2

Σ sin2 θ
, (77)

thus, Misner rods are also Dirac string loci. Gravitational dualization equation (11)

gives the metric twist potential

χ = 2
Mδ −N(r − r−)

Σ
. (78)

The ergosphere boundary is given by

rE = M + r−/2 +

√

|M|2 (1− r−/2M)
2 − a2 cos2 θ, (79)

and the event horizon radius (the outermost root of ∆ = 0) is equal to

rH = M + r−/2 +

√

|M|2 (1− r−/2M)
2 − a2, (80)

so that the horizon two-surface touches the ergosphere at the polar axis.

The transformation to the Weyl coordinates ρ, z is given by

ρ2 = ∆sin2 θ,

z = (∆′/2) cos θ = (r −M − r−/2) cos θ, .

Solving the equation ρ = 0, we find that the rod system consists of three rods:
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• l+ : northern Misner string r ∈ (rH ,∞), cos θ = 1;

• lH the horizon rod r = rH , θ ∈ [0, π];

• l+ southern Misner string r ∈ (rH ,∞), cos θ = −1.

The normalized directional vectors are given by the formulas (25), (27) in terms of

the corresponding surface gravities and angular velocities.

It is also useful to represent the solution in terms of prolate spheroidal coordi-

nates x, y definied as

r = σx+M + r−/2, cos θ = y, (81)

σ2 = |M|2 − |D|2 − |Q|2 − a2. (82)

One obtains:

ds2 = −f (dt− ωdϕ)
2
+ f−1

[

σ2e2k(x2 − y2)

(

dx2

x2 − 1
+

dy2

1− y2

)

+ ρ2dϕ2

]

, (83)

where the metric functions now read

Σ = (σx +M)2 − |D|2 + (ay +N)2,

Σf = σ2(x2 − 1)− a2(1− y2), e2k =
fΣ

σ2(x2 − y2)
,

fΣω = −2
[

Nσ2(x2 − 1)y + a(1− y2)
(

Mσx+ |M|2 − |Q|2/2
)]

.

The South segment of the Misner string is x > 1, y = −1, the horizon rod is

x = 1,−1 ≤ y ≤ 1 and the North Misner string is x > 1, y = 1. As expected,

the inverse rotation function on the rods is constant on them and represents their

angular velocities. It is easy to find

ΩH =
2a

ν2
, Ω± = ∓ 1

2N
, (84)

where a new parameter is introduced

ν2 = 2Mσ + 2|M|2 − |Q|2, (85)

such that the boundary values of Σ(x, y) are

Σ± ≡ Σ(1,±1) = ν2 ± 2aN. (86)

The other ingredients of the mass formulas depend on the values of electric and

magnetic potentials v± and u± of the defect rods l±. The magnetic potential in

spheroidal coordinates is

u =

√
2

Σ

{

eφ∞κ∞[−Q(σx+M−r−/2)+Pδ]+e−φ∞[P (σx+M−r−/2)+Qδ]
}

. (87)

Using it, we obtain:

v± = −
√
2eφ∞

ν2 ± 2aN
Re

[

Q(σ ± ia+M(1− |Q|2/2|M|2))
]

, (88)

u± = −
√
2eφ∞

ν2 ± 2aN
Re

[

Qζ(σ ± ia+M(1− |Q|2/2|M|2))
]

. (89)
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For surface gravities it is convenient to use Eq. (64):

κH =
σ

ν2
, κ± = ∓ 1

2N
. (90)

angular velocities and surface gravities of Misner strings coincide similarly to the

case of Kerr-Newman-NUT25. But they enter into the mass formula in a different

way, so one should not consider this coincidence as a matter of interpretation.

The electric charges of the rods are given by (57). One finds the Gauss charges

of the horizon and strings as:

QH =
ωH

2
√
2
(u+ − u−) =

e−φ∞ν2
(

2σN2 +Mν2
)

Im
[

ζ∞e2φ∞MQ
]

|M|2 (ν4 − 4a2N2)
, (91)

Q± =
Nu±√

2
. (92)

Combining them together, we obtain

QH +Q+ +Q− = Qe−φ∞ + Pκ∞eφ∞ . (93)

This coincides with the true asymptotic charge of the configuration, with account

of axion mixing and dilaton renormalization.

The electric potential on the horizon and on the strings are

ΦH = eφ∞
ν2(QM −NP ) + 2σN(QN +MP )

2ν2|M|2 , Φ± = −eφ∞

P

2N
. (94)

Rod masses can be expressed in the form (58), using the corresponding values

of the twist potential (78). One obtains

MH = ν2 · Mν2 + 2σN2

ν4 − 4a2N2
+

1

4
(2N(v+u+ + v−u−)−

√
2eφ∞P (u+ + u−)), (95)

M± = N
−Nσ ±Ma

ν2 ± 2aN
+

1

4
(2Nv± −

√
2P eφ∞)u±, (96)

where the boundary values of electric and magnetic potentials are given by (88),

(89). One can distinguish Dirac string contributions to the masses of defects as

the parts non-vanishing for N = 0. Other terms are due to Misner strings. Direct

substitution of (88-89) leads to long expressions, but one can show that the Maxwell

contributions to the total mass cancel out, while the remaining part non-trivially

leads to the identity

M∞ = MH +M+ +M− = M.

Now we turn to the angular momentum balance, using the rod’s momenta the

expression (59). The length of the horizon rod is LH = 2σ. Other rod lengths

diverge. As it was shown in Ref.25, to overcome this issue, one can regularize the

angular momentum as follows:

J̃± = J± +
ω±L±

4
. (97)
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We then obtain the angular momenta of the three rods as

JH =
ωH

2
(−σ +MH −QHΦH) , J̃± = N2

(±Nσ −Ma

ν2 ± 2aN
∓ v±u±

2

)

. (98)

We have explicitly checked that

J̃∞ = JH + J̃+ + J̃− = aM.

Therefore, we have constructed horizon mass, angular momentum and charge in

terms of the global parameters and checked their total balance.

7. Conclusion

We have shown that the derivation of mass formulas using the Tomimatsu approach

for calculating Komar integrals around rods in electrovacuum can be generalized

to the EMDA theory containing scalar fields coupled to the graviphoton. Using a

three-dimensional reduction of the EMDA equations, we construct magnetic and

twist potentials, which allow to express the integrals over the rods in the same

way as in the Einstein-Maxwell theory, where Tomimatsu used for this purpose the

Ernst potentials. It should be noted that the scalar dilaton and axion fields do

not contribute to the resulting mass formulas, and their asymptotics only rotates

electric and magnetic charges in the parameter space. For regular asymptotically

flat configurations, the dilaton and axion charges are secondary and their variations

do not enter the Smarr-type formulas.

In this approach, the magnetic and NUT charges do not affect the mass and an-

gular momentum of the black hole calculated as Komar’s integrals over the horizon.

They contribute to the asymptotic mass and angular momentum via the respective

individual rods representing the Dirac and Misner strings. As an illustration, we

considered the case of a rotating EMDA dyon equipped with NUT. In this case,

as in the case of dyonic Kerr-Neumann-NUT, the Dirac string contributes to the

asymptotic mass, but not to the asymptotic angular momentum, while the Misner

string contributes to both.
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