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Abstract

The spectral form factor is a powerful probe of quantum chaos that diagnoses the

statistics of energy levels, but is blind to other features of a theory such as matrix elements

of operators or OPE coefficients in conformal field theories. In this paper, we introduce

generalized spectral form factors: new probes of quantum chaos sensitive to the dynamical

data of a theory. These quantities can be studied using an effective theory of quantum

chaos. We focus our attention on a particular combination of heavy-heavy-heavy OPE

coefficients that generalizes the genus-2 partition function of two-dimensional CFTs, for

which we define a spectral form factor. We probe heavy-heavy-heavy OPE coefficients

and find statistical correlations that agree with the OPE Randomness Hypothesis: these

coefficients have a random matrix component in the ergodic regime. The EFT of quantum

chaos predicts that the genus-2 spectral form factor displays a ramp and a plateau. Our

results suggest that this is a common property of generalized spectral form factors.
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1 Introduction

The chaotic nature of generic quantum many-body systems has triggered interest across

many fields of physics, ranging from nuclear physics [1] and condensed matter theory (see

e.g. [2]) to quantum gravity [3]. This converging interest can be explained by one of the

most fascinating concepts in physics: universality. It is perhaps in quantum chaos that

lies the strongest form of universality: the hamiltonian of any generic (i.e. non-integrable)

quantum system behaves approximately like a random matrix [4]. To be precise, it is the

statistics of nearby energy levels that obey universal distributions. The most common

probe of energy level statistics is the spectral form factor

Z(β + it)Z(β − it) =
∑

n,m

e−β(En+Em)eit(En−Em) . (1.1)

The behaviour of the spectral form factor is universal in chaotic systems (see for example

[5, 6] for a recent discussion). It decreases at early times due to the destructive nature
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of the interference caused by the phases. At sufficiently late times, which depends on the

system under investigation, this decay gives way to erratic oscillations. However, the mean

signal of this erratic curve still follows a universal pattern: it rises linearly (this is known

as the ramp) before saturating on a plateau. This behaviour has a physical meaning: it is

related to the repulsion of nearby eigenvalues, and ultimately comes from the fact that the

spectrum of the Hamiltonian is discrete [5, 7].

Another useful probe of chaos is the auto-correlation function

〈O(t)O(0)〉β =
∑

n,m

|Onm|2e−βEneit(En−Em) , (1.2)

where Omn are the matrix elements of the operator O in energy eigenstates. The behaviour

of this quantity is also universal, at least for an appropriate choice of operator O [8]. The

time-scales can, however, be different than for the spectral form factor. Both the spectral

form factor and the auto-correlation function are universal probes of chaos that can be

defined in arbitrary quantum systems. There may also exist other probes of chaos that are

special to certain classes of quantum systems. The goal of this paper is to explore such

probes in the context of conformal fields theories (CFTs).

Conformal symmetry organizes the dynamics of the theory in a convenient manner.

The spectrum of the Hamiltonian is given by the spectrum of local operators ∆i, and the

rest of the dynamical data is encoded in the OPE coefficients cijk. At the local level, a

CFT is fully specified by this data, and quantum chaos must therefore be reformulated

in terms of the data {∆i, cijk}. There are various quantities that can be built from this

dynamical data and that would encode properties of quantum chaos. Many quantities of

this type have not been studied from the point of view of RMT universality and in this

work, we initiate a program to do so. Consider the quantity1

Z(β1, · · · , βn) ≡
∑

∆i

f [c] e−
∑

i βi∆i , (1.3)

where f [c] is a function that depends on at least 2n/3 OPE coefficients. An example with

n = 6 would be cijkc
∗
ijlcmnlc

∗
mnk. We can now build a generalized spectral form factor

F (t1, · · · , t2) ≡ |Z(β1 + it1, · · · , βn + itn)|2 . (1.4)

In this paper, we present a general framework to embed the dynamical data of the CFT in

a quantum mechanical setting, where we can apply random matrix theory.

While we expect that this framework will work in full generality, on practical grounds,

we focus on a simple probe of heavy OPE coefficients that is inspired by the genus-2

partition function in two-dimensional CFTs. This is defined as

Z(τ1, τ2, τ3) =
∑

O1,O2,O3

|c123|2q∆1
1 q∆1

2 q∆3
3 , qi = e2πiτi . (1.5)

1In d = 2, quantities like this can have a nice path integral interpretation on a higher genus surface. In

d > 2, this may no longer be the case, but they can be defined nonetheless.
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τ3

τ2

τ1

Figure 1. Genus-2 surface with three different cycles related to the three moduli τi.

The sum over triplets of operators is a sum over all operators of the CFT. One could

naturally reduce the sums to be only over primaries by defining appropriate conformal

blocks. For simplicity, we will not do so in this paper as we work in a toy-model which

neglects the contribution of descendants. We comment on this further below.

For concreteness, it is useful to view (1.5) in the context of two-dimensional CFTs, but

the calculations we perform are more general. For d = 2, the τi are moduli of the genus-2

surface and are related to its period matrix, see Fig. 1. This quantity is then given by a

tripled sum over energy eigenstates, weighted by the OPE coefficients squared (see [9–12]

for various studies of the genus-2 partition function). In CFTs, Omn = cOnm, such that

one might think that this quantity is similar to the auto-correlation function: a Boltzmann

sum weighted by OPE coefficients. However, there is a crucial difference. The expression

(1.5) does not correspond to the expectation value of a fixed operator; instead, it is like a

correlation function where the probe operators are summed over. Moreover, in the small

τi limit, the sum is dominated by OPE coefficients with three heavy operators, such that

it probes different physics than (1.2).

We now introduce the associated genus-2 spectral form factor as a new probe of quan-

tum chaos. It is defined as

F (t1, t2, t3) = Z(τ1 + it1, τ2 + it2, τ3 + it3)Z(τ1 + it1, τ2 + it2, τ3 + it3)
∗ . (1.6)

This quantity is sensitive to both the spectral statistics (it involves six densities of states)

and the statistics of OPE coefficients. One would like to study the behaviour of this quan-

tity in chaotic (i.e. non-integrable) CFTs. Unfortunately, an explicit computation of this

quantity appears to be difficult. It is not known how to solve non-integrable CFTs analyt-

ically and the conformal bootstrap is not presently powerful enough to efficiently probe a

quantity like (1.6) numerically. Instead, we investigate the implications of random matrix

universality on the genus-2 spectral form factor. We propose an alternative description of

the genus-2 spectral form factor that we expect to be valid at sufficiently late times and

proceed to study it using insights from random matrix theory. Therefore, we can regard

our random-matrix analysis as a toy-model that closely captures the relevant late time

physics.

1.1 A probe for the genus-2 partition function

In this paper, we define an operator,

〈i j k|O|i′ j′ k′〉 = c∗ijkci′j′k′ , (1.7)
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ln |Z|2

ln t

Figure 2. The genus-2 spectral form factor as a function of time. After an initial decay, the signal

displays a ramp and plateau at sufficiently late times. The ramp and the plateau are the average

of the noisy signal. The σ-model captures the moments of this noisy signal.

whose matrix elements encapsulate the OPE coefficients of the theory under investigation.

|i〉 , |j〉 , |k〉 are energy eigenstates such that this operator can be thought of as a linear

operator acting on a tripled Hilbert space. The genus-two partition function is then defined

as2

Z(τ1 = τ2 = τ3 = iβ) = Tr
[

Oe−β(H1+H2+H3)
]

, (1.8)

which is a “thermal” one-point function on this tripled Hilbert space. Having turned the

problem into an effective quantum-mechanical one, we use insights from operator statistics

and random matrix universality to probe the genus-2 spectral form factor.

In chaotic quantum systems, aspects of operator statistics are captured by the Eigen-

state Thermalization Hypothesis (ETH) [13, 14]. For simple operators O, the matrix

elements have the general structure

〈n|O|m〉 = δmnf(Ē) + g(Ē, δE)e−S(Ē)/2Rmn , (1.9)

where Ē and δE are the mean energy and energy difference, and f and g are two smooth

functions related to the microcanonical one- and two-point functions. The coefficients Rmn

are fixed in any given theory, but their statistical distribution is approximately gaussian

random. For this reason, we call them pseudo-random variables. The ETH ansatz has not

been proven, even though it can be verified numerically, for example in the holographically

relevant case of the SYK model [15]. Analytical results pointing to the validity of ETH in

this model have furthermore been established in [16, 17]. ETH has also been studied in

higher dimensions, [18–20], in particular in 2-dimensional CFTs where Virasoro symmetry

introduces additional subtleties [21–31].

More generally, there is a symmetry-breaking argument (causal symmetry breaking)

that describes the fine-grained structure of the energy spectrum as well as the associated

eigenstates of a chaotic many-body system [6]. The resulting effective field theory dictates

2Here, we take a particular slice of the genus-2 moduli space where the three moduli are the same.
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both spectral and operator correlations (see Section 2). For the statistics of operator

correlations in chaotic systems, in addition to random-matrix like correlations of energy

eigenvalues, Haar unitary averages over the eigenstates contribute equally importantly [8].

This lends credibility to a typicality argument in favor of the ETH [13, 14]: if we replace

an energy eigenstate with a Haar-random state in a microcanonical window, a version of

ETH follows. The jump to ETH is to assume that the energy eigenstates are as good as

Haar-random states in a chaotic system since the Hamiltonian is close to a random matrix.3

For chaotic CFTs, a generalization of ETH called the OPE Randomness Hypothesis

(ORH) was proposed in [32]. It proposes to treat the OPE coefficients involving heavy

(i.e. ∆ → ∞) operators as pseudo-random variables. This includes the ETH type OPE

coefficients Omn = cOmn for some light operator O, but also makes a prediction for the

structure of other types of OPE coefficients, in particular the OPE coefficients of three

heavy operators. One of the aims of this paper is to provide evidence for the ORH using

Haar-typicality and random matrix universality.

An important motivation behind the present work is also to illuminate our understand-

ing of the AdS/CFT correspondence. In the dual gravitational theory, the semi-classical

limit was long thought to only capture the early time decaying behaviour of physical ob-

servables like the auto-correlation, which ultimately leads to information loss [33]. Recent

work for the nAdS2/nCFT1 correspondence between JT gravity and its matrix model dual

demonstrated that the contribution of certain gravitational configurations known as Eu-

clidean wormholes are capable of reproducing the linearly growing ramp-like behaviour

[34, 35]. A universal description in [6] shows that the Euclidean wormholes capture the

moments of the signals at sufficiently late times and hence reproduce the ramp-plateau

behaviour. In higher dimensions, a detailed understanding of this picture is still being de-

veloped (see [32, 36] for gravity in AdS3). In particular, it is not known what gravitational

configurations reproduce the plateau behaviour. From [8], we have strong indications that

the spacetime topology of these configurations should be the same as that of the wormhole

solutions that explain the ramp.

From a wormhole perspective, the 2d genus-2 spectral form factor is an ideal observable

to sharpen our understanding of holography. On the gravitational side, the relevant worm-

hole is called the genus-2 wormhole, stretching between two asymptotic genus-2 surfaces.

Unlike the geometries relevant to compute the standard spectral form factor, the genus-2

wormhole is a true saddle of the gravitational equations of motion, and it can be pertur-

batively stable when embedded in certain top-down theories [37]. Precisely matching the

expressions that we derive in this paper with the gravitational contribution of the genus-2

wormhole requires explicit knowledge of the statistical distribution of heavy-heavy-heavy

OPE coefficients. Asymptotic formulas for these OPE coefficients are known, either for

the Gaussian part [10, 12] or for the non-gaussian corrections [38]. However, one can only

trust that these asymptotic formulas correctly encode the statistical distribution of the

OPE coefficients if one can argue that they are pseudo-random variables. The asymptotic

3It is worthwhile to note that ETH also describes the physics of thermalization, which occurs at much

earlier time scales than the random matrix phase.
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formulas are blind to his fact, and one of the main goals of this paper is to explain to what

extent the OPE coefficients have a random nature to them.

1.2 Summary of Results

The two main results we present in this paper are as follows. First, we provide evidence

for the ORH based on random matrix theory. We show that the operator (1.7) satisfies

the following statistics. Its mean is given by4

〈iii2i3|O|i′1i′2i′3〉 = TrO
1

D1D2D3
δi1,i′1δi2,i′2δi3,i′3 , (1.10)

and its variance is

〈iii2i3|O|i′1i′2i′3〉2 − 〈iii2i3|O|i′1i′2i′3〉
2 ≈

(
1

D1D2D3

)2 [

TrO TrO (1.11)

+TrsunsetO
2
(

δi1i′1δi2i′2 + δi1i′1δi3i′3 + δi3i′3δi2i′2 + δi1i′1 + δi2i′2 + δi3i′3

)]

.

Here, Di are the dimensions of the three (microcanonical) Hilbert spaces which we have

taken to be distinct for the three energy windows i1, i2, i3,
5 and TrO and TrsunsetO

2

represent microcanonical traces. The sunset trace is a particular contraction given by

cijkc
∗
ijlcmnlc

∗
mnk.

The mean and variance of the matrix elements of O are compatible with the OPE

coefficients cijk being random and approximately Gaussian random variables, as advocated

by the OPE Randomness Hypothesis. For the distribution to be approximately Gaussian,

TrsunsetO
2 must be exponentially suppressed compared to (TrO)2. Here, this suppression

is not built-in and must be taken as an additional assumption.6 Note however that in

two-dimensional CFTs, the sunset contraction has indeed be shown to be exponentially

suppressed [38].

It is tempting to assemble the mean and variance of O into a statistical formula with

random variables as in ETH, which we do in (3.10). There are however crucial points to be

kept in mind. The most important caveat is that the diagonal and random components of

cijkc
∗
lmn are the same size. This is in fact expected from writing down a statistical ansatz

for a composite structure such as cijkc
∗
lmn. The composite nature of this object gives its

variance a size comparable to its mean, which is expected from cross-Wick contractions

that appear in the calculation of the variance. This is very similar to correlation functions

of multi-trace operators in a generalized free theory, which contain connected components

even though the underlying theory is Gaussian.

4The overline notation · means that we have effectively evaluated the matrix elements in random

matrix theory. Thus, the mean and average we obtain are valid in the ergodic limit, so these results

should hold for nearby matrix elements (defined by the Thouless time). Whether or not this extends to

the full microcanonical window is a more difficult question that cannot be probed from ergodicity. Similar

statements apply to the ETH (see for example [19, 39]).
5More complicated expressions where all three windows are the same can be found in Section 3.2.
6A similar assumption enters in ETH, where the microcanonical one- and two-point functions are assumed

to be of the same order.
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Our second result is the late-time behaviour of the genus-2 spectral form factor. It is

most easily written in energy space, in terms of the resolvent (see (2.12)). We find that

the genus-2 spectral form factor resolvent is given by

R(s) =
2π2ρ2(E)

D6

(

πδ(s) + 1− sin2(s)

s2

)

Tr(O)2 , (1.12)

where s is the energy difference in units of mean level spacing of the tripled Hilbert space.

This is the genus-2 version of the standard sine-kernel. The sin kernel is well-known

for the standard spectral form factor, and predicts both a ramp and a plateau. We see

that the behaviour is similar for the genus-2 spectral form factor. Here, it appears that

spectral correlations are the dominant effect and the operator statistics do not really play

a prominent role (this is why no sunset trace appears). Note however that the Thouless

time, i.e. the time at which we can trust the random matrix behaviour may depend on

the observable, and thus the correlations of the OPE coefficients can be important in

determining the Thouless time for the genus-2 spectral form factor. Note that in any case,

the ramp time which is of the order of inverse mean level spacing, is much larger here

because of the enlarged dimensionality of the tripled Hilbert space.

The main assumption that we make in this paper is that random matrix universality

applies to conformal field theories, i.e. that CFTs have a finite Thouless time. While

this statement is expected to hold in arbitrary quantum systems (in fact at the Thouless

time, even the locality of the quantum field theory has been washed away), it has not been

proven and the Thouless time needs to be calculated theory by theory. It remains one of

the big open problems to understand quantum chaos in QFTs and CFTs, and goes beyond

the scope of this work.

This paper is organized as follows. In section 2, we review the EFT of quantum chaos

and introduce the quantum mechanical model for the OPE coefficients in terms of a linear

operator on a tripled Hilbert space. In section 3, we study Haar-averages over unitaries

and determine the statistics of OPE coefficients making use of the linear operator O. In

section 4, we use the EFT of quantum chaos to study the genus-2 spectral form factor. We

end with a conclusion and a discussion of open questions in section 5.

2 Our Setup and the EFT of Quantum Chaos

In this section, we start with a review of the effective field theory that describes the ergodic

regime of chaotic quantum systems [6]. The quantum ergodic regime of a physical theory

is defined as the one in which the behaviour of physical observables is indistinguishable

from that in a random matrix theory (RMT).7 More accurately, one should say that the

behaviour is indistinguishable from a typical representative of the random matrix ensemble.

Hence, it is possible to model a physical system using a random matrix ensemble in this

limit. We then introduce a new formalism that is well suited to study the behaviour of

7The exact nature of which RMT itself depends on the time-reversal symmetry and the fermionic sym-

metries of the physical theory. This is classified in a 10-fold way by Altland and Zirnbauer, [40], building

on the pioneering work of Wigner, Dyson and Mehta [1, 41, 42].
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OPE coefficients and the genus-2 partition function in the quantum ergodic limit. We

will describe how to translate heavy-heavy-heavy OPE coefficients in terms of a standard

quantum mechanical system. In subsequent sections, we use this formalism to probe the

statistical behaviour of OPE coefficients and the genus-2 spectral form factor.

2.1 The effective field theory of quantum chaos

Here, we give a brief overview of our main tool for studying the spectral probes in quantum

theories: a symmetry-based effective field theory of quantum chaos described in [6]. We

refer the reader to [8] for a more detailed exposition.

As we have emphasized a few times by now, chaos manifests itself in the fine structure

of energy levels, and does so in a remarkably universal fashion [1, 41, 43]. One natural way

to understand this universality is by identifying a symmetry and its associated breaking

pattern, which gives rise to chaotic spectral correlations. Furthermore, in order to fully

resolve the fine-grained structure of the energy spectrum and associated eigenfunctions,

it turns out to be essential to work in a framework that is capable of controlling both

perturbative (in eS) and non-perturbative (in eS) contributions to our quantities of interest.

It is thus fortuitous that both these aims can be achieved by considering ratios of so-called

spectral determinants, the first one of interest to the present discussion being

Z(4) (z1 . . . , z4) =
Det (z1 −H) Det (z2 −H)

Det (z3 −H) Det (z4 −H)
(2.1)

where H is the Hamiltonian of the chaotic quantum system in question, and zi are four

different energies. As we will see in more detail below, the framework we are about to lay

out here allows us to evaluate the spectral determinants above in terms of an effective field

theory that becomes semi-classical for large D = eS . Within this EFT we can then under-

stand non-perturbative (in eS) physics via the sum over saddle points, while perturbative

(in eS) physics comes from the perturbation theory around each individual saddle.

The utility of quantities like Z(4)(ẑ) is that they allow us to generate insertions of the

spectral density ρ(z), via the relation ∓iπρ(z) = ImTr 1
z−H , where

Tr
1

z −H
=

∂zDet(z −H)

Det(z′ −H)

∣
∣
∣
∣
∣
z=z′

. (2.2)

This opens the door to study chaotic correlations of the spectral density. The main idea

of the EFT of quantum chaos is to develop a field theory of this ratio of spectral de-

terminants. It may be useful to note that this is a field theory that lives on the space

of Hamiltonians, and its modes parametrize how close a given Hamiltonian is to being

an RMT Hamiltonian. The crucial point, however, is the realization that such a theory

necessarily possesses a continuous symmetry that reflects the fact that the four copies of

the system Hamiltonian that enter (2.1) are by design identical. In order to make this

symmetry apparent, as is described in detail in [6] it is convenient to exponentiate the

determinants via Gaussian integrals over bosonic/fermionic auxiliary variables (for deter-

minants in denominator/numerator, respectively). The exact symmetry breaking pattern
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differs from one Altland-Zirnbauer symmetry class to another, but in the simplest case (the

unitary class), it corresponds to a breaking of

G = U(2, 2|2) −→ K = U(1|1) ×U(1|1) , (2.3)

and the EFT of quantum chaos takes the form of a non-linear sigma model with target

space G/K. The precise sense in which one should understand this symmetry breaking

is via a mean-field solution of the field theory obtained by exponentiating our ratio of

determinants
∫

[dQ]e−S[Q] :=

〈
Det (z1 −H)Det (z2 −H)

Det (z3 −H)Det (z4 −H)

〉

∆E or P (H),...

, (2.4)

where Q is a collective degree of freedom parametrizing the Goldstone manifold (2.3) and

which is defined in detail in [6]. We indicated with angle brackets that the determinants

are to be averaged over small (microcanonical) energy windows, or alternatively over a

probability distribution of the Hamiltonian, or any other generic averaging procedures.

The main point here is that the resulting physics is dictated by our symmetry breaking

principle and does therefore not depend on the averaging procedure. It is then interesting

to note that such a (slightly averaged) version of a spectral determinant can be defined for

an individual quantum system, for example via averaging over some small microcanonical

energy window. In other words, from the EFT point of view, an individual quantum system

gives rise to exactly the same IR EFT of quantum chaos as a full random-matrix ensemble.

This is, of course, nothing but a technical way of restating random-matrix universality:

an individual quantum chaotic system has spectral correlations that are well described by

random matrix theory.8 This fundamental fact leaves its imprint on a variety of physical

quantities. Admittedly, the EFT has its limitations and doesn’t provide a description of

arbitrary fine-grained observables. For this reason, while at late times, the EFT captures

the moments of the noisy signal, it remains an open question to understand how far one

can push this description to capture the entire signal. Moreover, the EFT also breaks down

at low temperatures when the thermal sum is dominated by the contribution of the low

energy states (those near the ground state).

In this paper, we are primarily concerned with chaotic conformal field theories, and

in particular, the statistical distribution of their OPE coefficients. We are thus interested

in applying the EFT approach outlined above to the operator (2.10). The main novelty is

that we find it convenient to consider not just the energy density itself, but an “operator-

weighted” energy density, that is

ρO(E) := ImTr

[
1

E −H
O

]

. (2.5)

It may already be obvious to the reader at this point that such a quantity gives us a

way to define spectral sums weighted by operator matrix elements. In particular, with our

purpose-built operator O, the spectral sums are weighted by OPE coefficients: we precisely

8Some work where the emergence of the ensembles has been discussed are: [44–47].
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get the kind of quantities introduced in (1.8). Furthermore, this is but a small extension

of the ideas we just reviewed, and proceeds as follows. We start again by noting that

Tr

(
1

z −H
O

)

=
∂

∂h

Det(z −H + hO)

Det(z −H + h′O)

∣
∣
∣
∣
∣
h=h′=0

. (2.6)

From this we can then proceed as above and define a field theory of sourced spectral

determinants, starting from

∫

[dQ]e−S[Q,h] =

〈
Det (z1 −H + h1O)Det (z2 −H + h2O)

Det (z3 −H + h3O)Det (z4 −H + h4O)

〉

∆E or P (H),

(2.7)

where we have denoted all four possible sources by adding the parameter h to the effec-

tive action. An important difference between the effective actions (2.4) and (2.7) is the

contribution of Haar average over unitary matrices. The equation (2.4) is invariant under

unitary transformations of the Hamiltonian, H → UHU−1, and therefore only depends

on the eigenvalues of the Hamiltonian. However, the insertion of the sources O can break

the unitary invariance giving rise to non-trivial contributions due to the Haar integrations.

Haar averages are also central to the study of correlation functions in ensembles of typical

states [48, 49].

In the following section, we represent the operator O in a fixed basis, and relative

unitary rotations between this fixed basis (in which O is represented) and the eigenbasis of

the Hamiltonian are averaged over using the Haar measure. However, not all observables

depend on the Haar average over the unitaries. In section 3, we study specific matrix

elements of these operators, akin to ETH. In this case the Haar average over the unitary

matrices are crucial and play a dominant role in the behaviour of the operators under

investigation. In section 4, we study the genus-2 spectral form factor. This observable is

defined as a trace over the states of the Hilbert space and is insensitive to the Haar average

over the unitaries. Both of these observables are important in their own way. The results

of section 3 show that the ORH should be interpreted in a way similar to ETH as discussed

in [50]. The results of section 4 highlight that the underlying mechanism that determines

the genus-2 spectral form factor is the same as the one giving rise to the ORH.

We now note that as before the limit of large Hilbert space dimension D ≫ 1 allows

us to evaluate the integral (2.7) by saddle point, each saddle giving rise to a perturbative

expansion controlled by D−1 = e−S . Furthermore, the physics of the relevant saddle points

is once more controlled by the same causal symmetry breaking structure, so that we are

again able to capture the universal chaotic EFT in each sector by a non-linear sigma model

with target space G/K, as in (2.3) above. Note again that this is true for the simplest of

the ten RMT ensembles, namely the unitary class, while the symmetry breaking and thus

the sigma-model manifold for the remaining nine take a slightly different form.

2.2 A tripled Hilbert space

Having provided a pedagogical overview of the tools that we use for our purpose of probing

quantum chaos, we move on to develop the formalism that is most useful to the study of

– 10 –



CFTs. We start with defining a Hilbert space formed by taking three copies of our original

CFT Hilbert space and considering the tensor-product Hilbert space. The advantage of

this will become clear in a moment. We refer to it as the tripled Hilbert space,

H⊗3 = H⊗H⊗H . (2.8)

The Hamiltonian defined on the tripled Hilbert space is,

Hfull = H ⊗ 1⊗ 1+ κ11⊗H ⊗ 1+ κ21⊗ 1⊗H , (2.9)

where, H is the original CFT Hamiltonian. The parameters κi are introduced to be able

to probe three different moduli in the genus-2 partition function (1.5). In this paper, we

are mostly interested in the slice of moduli space where all three moduli are equal and thus

often consider κi = 1. In appendix A, we discuss the spectrum of Hfull and its relationship

with the Hamiltonian of the original theory, H. We now consider a linear operator acting

on this Hilbert space that has the property that one obtains the product of two CFT OPE

coefficients when projected onto the energy eigenbasis,

〈l mn|O|i j k〉 = c∗lmncijk . (2.10)

This should be viewed as a formal definition of the operator, which we can do even without

knowing the exact value of the heavy-heavy-heavy OPE coefficients. Nevertheless as we

will see, ergodicity and RMT dictates the statistics of the coefficients of this operator O.

This parallels nicely the situation for ETH, where the microscopic matrix elements are

not known but one can derive their statistics from ergodicity, which essentially renders the

simple operators Haar-random operators.

Here, and in all subsequent discussions in this paper, we are using the bold notation for

traces in the tripled Hilbert space to distinguish it from the trace in the standard Hilbert

space.

In fact, we have now translated our CFT question into a usual quantum mechan-

ics setup, so there is no longer really any reason to distinguish our setup with standard

questions related to ETH, up to some small differences that we now mention.

The two main differences are related to the structure of the Hilbert space and of the

Hamiltonian. Let us focus on a microcanonical window centered at energy E. The first

point to note is that the size of the Hilbert space is given by

D3 , D = eS(E) = e2π
√

c
3
E . (2.11)

We have used the Cardy formula for the entropy [51]. It is important not to take the energy

on the tripled Hilbert space which is 3E, and think that the dimension of the Hilbert space

is then eS(3E). In other words, one should be careful to use the Cardy formula on the

original CFT Hilbert space and not on the tripled one.

The next difference is that in usual RMT, we would average over the Hamiltonian on

the full Hilbert space. This is a random matrix of dimension D3. Here, we see that in

order to connect to a CFT calculation the relevant averaging should be done on a matrix

of size D, which is then assembled into a bigger matrix following (2.9).
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Finally, we would like to emphasize again that we have dropped the contribution of

descendants, and are only keeping primary operators. One should thus view our setup as

a toy-model for CFTs, which captures some but not all of the dynamics. Based on the

sparseness of descendants with respect to primaries in CFTs with d > 2, one expects our

toy-model to accurately reflect the behaviour in those CFTs. In d = 2, the presence of

Virasoro symmetry induces extra subtleties, which deserve to be studied in more detail,

but at large c, primaries should again dominate the dynamics. Moreover, we have not

carefully imposed crossing symmetry of all heavy operators.

Keeping these issues in mind, we are now ready to proceed and analyze the conse-

quences of ergodicity for the statistics of heavy operators in a CFT. This can be done

thanks to an effective theory that we have reviewed in section 2.1.

2.3 The EFT description of random OPE coefficients

Let us now apply the ideas we have reviewed in section 2.1 to the formalism of section 2.2.

For the operator that encapsulates the OPE coefficients, (2.10), we study an observable

that we call operator resolvent,

R(ω) =
∑

i,j

〈i|O|i〉〈j|O|j〉δ(Ei −Ej − ω)

=

∫

dE1dE2 ρO(E1)ρO(E2)δ(E1 − E2 − ω) , (2.12)

Tr[O]Tr[O] =

∫

dωR(ω) . (2.13)

This is a variation of the observable that was studied in [8]. Rewriting the terms containing

ρO(E) that appear in the integrand more carefully, we have,

Tr[O]Tr[O] =

∫

dE1 dE2 ρO(E1)ρO(E2)

=
1

2π2
Re

∫

dE1dE2

(

Tr
[
G+(E1)O

]
Tr
[
G−(E2)O

]

− Tr
[
G+(E1)O

]
Tr
[
G+(E2)O

] )

=:
1

2π2

∫

dEdω
(

R±(E,ω)−R
+
+(E,ω)

)

. (2.14)

The retarded/advanced Green’s functions appearing above are defined by the identity,

G±(E) =
1

E ± iε−Hfull
. (2.15)

The resolvents that are labeled by the causality superscripts are defined by the equivalence

of the second and the third line on the RHS of (2.14). These are distinguished from the

resolvent refined in (2.12) by the presence of superscripts as well as different number of

arguments. The interesting physics9 arises from the first term, R±, in (2.14) above and we

9More specifically, the σ-model that governs that late time effective field theory of quantum chaos arises

solely from this term. In order to get the full correct answer, including disconnected pieces the other

contribution needs of course to be added as well.
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focus our interest on this object from now on. The above quantity is useful to compute

a variety of physical observables. The static expression, as it appears in (2.14), computes

the variance of the expectation value of the OPE operator. When the integral over the

mean energy, E, is restricted to a smaller microcanonical energy window, it reproduces the

statistics of certain specific OPE coefficients instead. Furthermore, appropriate integral

transforms with respect to the energy arguments of the expression gives rise to the genus-2

spectral form factor,

|Z[τ1, τ2, τ3]|2 =
1

2π2

∫

dE dω e−2βE+itω
(

R±(E,ω)−R
+
+(E,ω)

)

(2.16)

where, τ1 = τ2 = τ3 = t+ iβ .

It now becomes apparent that the parameters, κi, are related to the different cycles, τi,

of the genus-2 surface, see Figure 1. The observables we are studying here are simply the

ratio of determinants as described above (2.7),

R± = −Re ∂h+∂h−

〈

Det
(
z+1 −Hfull

)
Det

(
z−2 −Hfull

)

Det
(
z+3 −Hfull + h+O

)
Det

(
z−4 −Hfull + h−O

)

〉

avg.

∣
∣
∣
∣
∣
∣
h±=0

(2.17)

In principle, we have not used any averaging prescription at this point and all the expres-

sions are simply an exact rewriting. It is at this stage, once we represent the observables

as determinant operators that we perform some averaging prescription as relevant to the

problem. This ratio of determinants can be expressed in a path integral representation

over certain graded fields, Ψ, Ψ̄,
〈

Det
(
z+1 −Hfull

)
Det

(
z−2 −Hfull

)

Det
(
z+3 −Hfull + h+O

)
Det

(
z−4 −Hfull + h−O

)

〉

avg.

=

〈∫

DΨ̄DΨ exp
[

iΨ̄
(

ẑ −Hfull− ĥ
)

Ψ
]〉

avg.

.

(2.18)

In the above path integral, we have introduced a component of Ψ fields for each deter-

minant insertion. The determinant insertions in the numerator correspond to fermionic

variables while those in the denominator correspond to bosonic variables. Hence the Ψ

field has a graded U(1, 1|2) structure.10 Thereby, we have a further enlarged Hilbert space

corresponding to the direct product of retarded/advanced (RA), graded boson/fermion

(bf) and the tripled Hilbert space. The matrix, ẑ, corresponds to energies at which the

observables are being probed and ĥ are the source terms,

ẑ =

(

E 1+
(ω

2
+ iε

)

σ3

)RA

︸ ︷︷ ︸

advanced/retarded

⊗ 1
bf

︸ ︷︷ ︸

boson/fermion

⊗ 1
⊗3

︸ ︷︷ ︸

tripled Hilbert space

, (2.19)

ĥ =

(

h+ 0

0 0

)

⊗ Pb ⊗O+

(

0 0

0 h−

)

⊗ Pb ⊗O
† . (2.20)

10Understanding the pseudo-Riemannian structure is slightly subtle and arises from having convergent

bosonic integrals. See [8] for detailed discussion.
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In the first line we have made the tensor product and graded structure of our theory

completely explicit. The source terms in the second line are written with this structure

in mind. The projector, Pb, projects onto the bosonic sector in which the sources are

introduced in (2.17).

2.4 Validity of the EFT and Upshot of the Analysis

To summarize, the EFT provides a way to probe the ergodic limit of chaotic quantum

systems. This should also apply to chaotic CFTs: there exists a quantum ergodic regime

in which the physical Hamiltonian can be modelled by an ensemble over Hamiltonians, H,

chosen from the appropriate Altland-Zirnbauer symmetry class (unitary in the context of

the present work). A requirement for the EFT to hold is that it has a finite regime of

applicability. In terms of time scales, this is often captured by the Thouless time: the time

after which RMT universality kicks in. It is both theory and observable dependent. The

main assumption we are making in this paper is that the Thouless time for the thermal

trace of the linear operator O is finite (and parametrically smaller than the Heisenberg time

given by the inverse mean-level spacing). As long as this is true, we can apply our EFT and

the framework presented above holds. To really show that the Thouless time is finite, one

should carefully integrate out the massive modes as is akin to effective theories and show

that the EFT becomes a theory of random Hamiltonians which implements Haar averages.

This has been carried out in the SYK model [6–8], but a general derivation applicable to

arbitrary chaotic systems (including CFTs) is beyond the scope of this work.

We consider two main applications of this EFT. First, we saw that it implements Haar-

averages between operator bases and the eigenbases of the Hamiltonian. This procedure

should be done within some microcanonical window. In section 3, we explicitly preform

these Haar averages on O to study the statistics of OPE coefficients. Since we have a tripled

Hilbert space structure, we really have three microcanonical windows which can be taken

to be the same or different. Our analysis produces statistics that match the expectations of

the OPE Randomness Hypothesis in the ergodic regime. One should remember that while

the Haar averages act on the whole microcanonical window, one should only really trust

correlations of matrix elements that are close enough in energy space.11 As stated above,

as long as the Thouless time is finite, the results we present are on solid ground.

The second application is to calculate the genus-2 spectral form factor in the ergodic

limit. In section 4, we make direct use of the EFT to do so. We find a ramp and a plateau.

3 Statistics of OPE coefficients

As we saw above in section 2.1, the EFT of quantum chaos impacts matrix elements of

some operator O in a particular way: it essentially implements a Haar average over unitaries

between the eigenbasis of the Hamiltonian and that of O. Note that this is the logic behind

the ETH ansatz in the first place: simple operators are indistinguishable from a typical

11This does not constrain the three microcanonical windows to be close to one another, but simply says

that the indices i, i′ in CijkC
∗

i′j′k′ should be close in energy space. The indices i, j are allowed to lie in

different microcanonical windows that are very far away in energy space.
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operator chosen from a Gaussian distribution of operators in a microcanonical window. By

performing unitary averages, one can essentially derive the ETH ansatz (see for example

[52]). The role of the EFT is to derive that such unitary averages capture the right physics.

In this section, we study the implication of these statements for our linear operator O on

the tripled Hilbert space.

Recall, from (2.10), that we can rewrite the product of OPE coefficients as specific

elements of the operator O,12

c∗lmncijk = 〈l mn|O |i j k〉 , (3.1)

where we have lightened the notation a little, denoting energy eigenstates states |i j k〉. As
we see below, it is important to distinguish whether the triplet of states |i〉 , |j〉 , |k〉 are in

the same microcanonical window or not. We discuss both cases, and start with the simpler

case where all three states lie in different microcanonical windows.

3.1 Different microcanonical ensembles

To start, note that the EFT of quantum chaos states that the energy eigenstates have a

random, uncorrelated projection along some fixed vector(s) in the Hilbert space [42]. Let

us fix some basis for the tripled Hilbert space and the particular choice of basis we make

is not important since the energy eigenstates are randomized. We understand the states

|j1,2,3〉 to be vectors in this fixed basis, to distinguish with the eigenbasis of the Hamiltonian

which we label by |i1,2,3〉. In this basis, we can write the operator as

O =
∑

j1,j2,j3,j′1,j
′
2,j

′
3

Ωj1j2j3Ω
∗
j′1j

′
2j

′
3
|j1j2j3〉 〈j′1j′2j′3| , (3.2)

We now write the matrix elements of O in energy eigenstates as

〈iii2i3|O|i′1i′2i′3〉 =
∑

j1,j2,j3,j′1,j
′
2,j

′
3

Ωj1j2j3Ωj′1j
′
2j

′
3
〈iii2i3|j1j2j3〉〈j′1j′2j′3|i′1i′2i′3〉

=
∑

j1,j2,j3,j′1,j
′
2,j

′
3

Ωj1j2j3Ωj′1j
′
2j

′
3
U

(1)
i1j1

U
(2)
i2j2

U
(3)
i3j3

U
(1)†
j′1i

′
1
U

(2)†
j′2i

′
2
U

(3)†
j′3i

′
3

(3.3)

The U (k) are unitaries that implement a change of basis between the fixed basis |jk〉 and

the eigenstate of the Hamiltonian, |ik〉, within a microcanonical window. Note that we

have three different unitaries U (k), because we are taking the three energy i1, i2, i3 to lie

in three different microcanonical windows.

12In a CFT, OPE coefficients have the conjugation property cOOO = c∗
O†O†O† . This structure must be

preserved by the Haar averages, and could influence the RMT universality class of CFTs. We will not be

careful about this fact and simply apply unitary averages, but we discuss this point further in the discussion

section.
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Statistical mean of operators

Ergodicity now implies that the unitaries are random, which means we can integrate over

them with the Haar measure. Performing the Haar average over the product of the unitaries

gives [53, 54],

〈iii2i3|O|i′1i′2i′3〉 =
∑

j1,j2,j3,j′1,j
′
2,j

′
3

Ωj1j2j3Ωj′1j
′
2j

′
3

∫ 3∏

k=1

[

dU (k)
]

U
(1)
i1j1

U
(2)
i2j2

U
(3)
i3j3

U
(1)†
j′1i

′
1
U

(2)†
j′2i

′
2
U

(3)†
j′3i

′
3

=
∑

j1,j2,j3

|Ωj1,j2,j3 |2
3∏

m=1

Wg(Di, 1,1)δimi′m (3.4)

The first argument of the Weingarten functions, Wg, is the dimensionality of the unitary

operators. The dimensionality of the unitary operators is the same as that of the micro-

canonical Hilbert space and are called Dis. The second argument is n, the number of

unitary operators inserted in the Haar integral (not counting the daggered-unitary inser-

tions). The third argument is an element of the permutation group, Sn. 1 ∈ Sn corresponds

to the identity element that doesn’t permute any element in the set. In this case, we simply

have

Wg(Di, 1,1) =
1

Di
. (3.5)

There are several remarkable features that have happened, once the Haar average has been

done. First, note that the coefficients are now purely diagonal, the off-diagonal elements

having been forced to zero upon doing the Haar average. Second, the only dependence on

O that is left is the term
∑

j1,j2,j3
|Ωj1,j2,j3 |2, but this is simply the trace of the operator

in the corresponding microcanonical windows.13 All dependence on the individual Ωj1,j2,j3

or on the choice of basis |j1,2,3〉 has been washed out. Since the trace is basis independent,

it is most convenient to write it in the energy basis and we thus have that the coefficient

of the Kronecker delta is

1

D1D2D3
TrO =

1

D1D2D3

∑

ijk

|cijk|2 , (3.6)

which is the averaged sum over OPE coefficients squared. This is coarse-grained informa-

tion which we have access to without knowing the detailed microscopics. In ETH, this

would correspond to the diagonal smooth function f(Ē). Just like in ETH, this function

of the mean energies is not fixed from first principles, and can be theory dependent. For

CFTs in general dimensions, it is currently unknown how to constrain the heavy-heavy-

heavy OPE coefficients (this is explored in [55]). However, for d = 2, Virasoro symmetry

fixes the averaged OPE coefficients. This is a result of modular invariance of the genus-2

partition function. Explicit expressions for the averaged OPE coefficients can be found in

[10, 12].

It is worth mentioning that the OPE coefficients are invariant under the permutation

of the three indices, and so the statistics should be built in a way that preserves this

13We have a microcanonical trace because the indices, j1, j2, j3, only take values corresponding to the

states that lie in the relevant microcanonical window.
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∗

∗

Figure 3. Sunset diagrams are the diagrammatic representation of the contractions depicted

in (3.9). Each vertex of the diagram represents an insertion of a OPE coefficient. The ones

corresponding to the insertions of c∗s are marked with a star, while the unmarked vertices are

the c insertions. Each edge in the diagram corresponds to the index contractions between OPE

coefficients.

symmetry. This is a minor technical step that we have not taken into account in the

presentation so far, for the sake of clarity. It would be straightforward to do so, but we

leave this procedure as being done implicitly to avoid cluttering expressions.

Statistical variance of operators

Having obtained the mean of the matrix elements of O, we now proceed to study their

statistical variance. We thus wish to compute

〈iii2i3|O|i′1i′2i′3〉2 − 〈iii2i3|O|i′1i′2i′3〉
2
, (3.7)

which can be done in a similar fashion by an appropriate integration over the unitary ma-

trices using the Haar measure. We give the explicit and detailed computation in appendix

B.1. The leading order contribution to the variance is given by

〈iii2i3|O|i′1i′2i′3〉2 − 〈iii2i3|O|i′1i′2i′3〉
2 ≈

(
1

D1D2D3

)2 [

TrO TrO (3.8)

+TrsunsetO
2
(

δi1i′1δi2i′2 + δi1i′1δi3i′3 + δi3i′3δi2i′2 + δi1i′1 + δi2i′2 + δi3i′3

)]

,

where we have defined the sunset trace contraction as

TrsunsetO
2 = cj1j2j3c

∗
j1j2k3 ck1k2k3c

∗
k1k2j3 . (3.9)

A diagram of this contraction is depicted in Figure 3. This particular sum of OPE coeffi-

cients appears in the sunset channel decomposition of a genus-3 partition function, hence

the name we have chosen for the trace.

It is important to note that the mean is as large as the variance (and for that matter

all the subsequent moments of the operator O). Hence, we can not apply the central

limit theorem and write the operator O using random variables which are approximately
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Gaussian. If we wish to write an ansatz for O which resembles ETH, we can write

c∗i1i2i3ci′1i′2i′3 ≈ TrO

D1D2D3
(δi1,i′1δi2,i′2δi3,i′3 +Ri1,i2,i3,i′1,i

′
2,i

′
3
)

+

√

TrsunsetO2

D1D2D3
Sym

[

δi1,i′1Ri2,i3,i′2,i
′
3
+ δi1,i′1δi2,i′2Ri3,i′3

]

,

(3.10)

where the Sym stands for S3 symmetrizing between the indices 1, 2 and 3, and simultane-

ously acting on 1’, 2’ and 3’ in the same way. We must however be very careful with what

we mean by such an equation.

Contrary to ETH, the variables R above are not approximately Gaussian random vari-

ables. They are statistical variables that have zero mean and unit variance, but they have

non-trivial higher moments that are of the same size as the first and second moments. The

reason for this is that we are trying to write random variables directly for the operator O,

which is really a composite tensor made out of two cijk. It is the cijk that are approximately

Gaussian random, and the non-trivial random matrix in the diagonal Ri1,i2,i3,i′1,i
′
2,i

′
3
, which

is the same size as the mean, comes from the fact that there is a cross Wick contraction

in the variance of O which involves four cijk. One can make an intuitive parallel with

large N factorization in large N gauges theories. At infinite N , the theory is a generalized

free theory and all correlation functions are obtained from Wick contractions. However,

connected correlation function of multi-trace operators are non-trivial. This does not mean

that the underlying theory is not Gaussian, a free theory is obviously Gaussian, but simply

that we are considering composite operators. The same logic applies to (3.10).

To sum up, it is worth emphasizing what (3.10) really means. The microscopic def-

inition of the operator O was given in (3.1) and seems in tension with the result (3.10).

One should view these results in the same way as one views ETH: there is a microscopic

definition of the matrix elements, and there is the ETH ansatz which is true in a statistical

sense. It should be understood as statistically true, once sampled over enough individual

coefficients. While the general structure of our result follows closely that of matrix elements

in the ETH, there are also important distinctions to take into account, in particular the

composite nature of the operator O. We discuss them in section 3.3, but we first give the

general expression when all microcanonical windows are the same.

3.2 A single microcanonical ensemble

In this section we analyse the behaviour of the operator elements when the external states

belong to the same microcanonical window of energies. In this case, all unitaries that enter

in (3.4) are the same. Once integrated using the Haar measure, they produce new structure

because more Wick contractions are allowed. Let us start once more by calculating the

mean value of operators.
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Statistical mean of operators

We have

〈iii2i3|O|i′1i′2i′3〉 =
∑

j1,j2,j3,j′1,j
′
2,j

′
3

Ωj1j2j3Ωj′1j
′
2j

′
3
Ui1j1Ui2j2Ui3j3U

†
j′1i

′
1
U †
j′2i

′
2
U †
j′3i

′
3

(3.11)

The Haar integration over U is more complicated but the final result is

〈iii2i3|O|i′1i′2i′3〉 = TrO
(

Wg(D1, 3,1) + 3Wg(D1, 3, 2 · 1) + 2Wg(D1, 3, 3)
)

(

δEE′ + δi1i′2δi2i′3δi3i′1 + δi1i′3δi2i′1δi3i′2

+ δi1i′1δi3i′2δi2i′3 + δi1i′3δi2i′2δi3i′1 + δi1i′2δi2i′1δi3i′3

)

= TrO
1

D1(D1 + 1)(D1 + 2)
[δEE′ ]S3 . (3.12)

Note that in this case we have both diagonal as well as “off-diagonal” terms. However,

the off-diagonal terms are essentially the permutations of three indices labelling the OPE

coefficients, so they are rather trivial. To avoid clutter, we denote the S3 symmetrised

terms in the primed coordinates by a subscript, [δEE′ ]S3 .

To leading order in the large D1 limit, the coefficient of the delta function is simply

TrO/D3
1 which agrees with (3.4), once we have set the three windows to be the same size.

This makes sense, we wouldn’t expect there to be a big different between the same and

distinct microcanonical windows. There are only two small differences: first, we see that

the indices are symmetrized, which is natural in this case. Second, we see that there are

further exponentially suppressed corrections to the leading coefficient.

Statistical variance of operators

Once again, to be able to describe the random nature of the matrix elements of O, we need

to compute their variance. In the present scenario, we find

〈iii2i3|O|i′1i′2i′3〉2 − 〈iii2i3|O|i′1i′2i′3〉
2

≈ Wg(D1, 6,1)

[

TrOTrO (1 + δi1i2 + δi2i3 + δi3i1 + δi1i2δi2i3δi3i1)× (· · · )′

+ Trsunset[O
2]
(

δi1i′1δi2i′2 + · · · 647 terms · · ·
)]

. (3.13)

The term (· · · )′ represents the same parenthesis that precedes it, but with primed in-

dices. The 647 other terms correspond to all possible combinations of delta functions and

symmetrizations thereof. The gory details are given in appendix B.2.

Therefore the statistical properties of the heavy-heavy-heavy OPE coefficients as en-

capsulated by the operator, O, can be effectively given written as,

c∗i1i2i3ci′1i′2i′3 ≈ TrO

D3
1

(SymS3
[δi1,i′1δi2,i′2δi3,i′3 ] +Rs

i1,i2,i3,i′1,i
′
2,i

′
3

+

√

TrsunsetO2

D3
1

Symfull

[

δi1,i′1Ri2,i3,i′2,i
′
3
+ δi1,i′1δi2,i′2Ri3,i′3

]

, (3.14)
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where Rs is now a symmetric random tensor and Symfull is now fully symmetrizing in

all indices using the symmetric group S6. Once again, one must be careful with the

interpretation of this formula, the statistical variables R are not approximately Gaussian

random, but their mean vanishes and they have unit variance. We see that this is a more

sophisticated symmetrized version of (3.10), but other than that it shares the same general

structure. This gives us a measure of the variance of the OPE coefficients as conjectured in

[32]. We now move to discussing the difference and similarities between O and an operator

in ETH.

3.3 Comparison with conventional ETH

The framework we have developed to study the heavy-heavy-heavy OPE coefficients nat-

urally shares many features with conventional ETH where the objects of study are the

matrix elements of operators. This follows from the fact that we have defined a linear

operator on a tripled Hilbert space. Nevertheless, there are also a few differences that we

would like to underline.

The first difference we have come across is the fact that the diagonal and off-diagonal

matrix elements of O are of the same size. This should be contrasted with ETH, where

the diagonal contribution given by the microcanonical one-point function is expected to be

much larger.14 The reason for this is that the operator O is not the most general operator

that acts on a Hilbert space of size D3,15 but rather is a composite operator made out of

two tensors cijk. It is thus specified by D3 numbers, rather than a generic operator which

would require D6 terms. Comparing to ETH, this would be similar to defining a vector v

such that

Rmn = vmv∗n , (3.15)

Clearly, the most general matrix is not of this type. Now, if v effectively becomes averaged

over, the diagonal and off-diagonal elements are on different footing since the diagonal

elements are real and positive numbers. Something similar is happening for us with the

operator O.

The fact that the off-diagonal matrix elements are of the same size as the diagonal ones

should however be seen as a feature, not a bug. The ergodic nature of the OPE coefficients

is consistent with the observed behaviour of the operator O, that can be regarded as a

composite operator in terms of the OPE coefficients cijk. The Gaussian nature of the cijk
imply “large” higher moments for O. This is why the variance was the same order as the

mean, because there is a non-trivial Wick contraction in the variance of O, which contains

four cijk. The same is true for higher moments, that all have the same size as the mean.

We would like to emphasize that this is not inconsistent with the cijk being Gaussian, but

rather happens precisely because they are!

14Note that this separation between diagonal and off-diagonal parts is not universal and in particular

in 2d CFTs, the diagonal term is kinematically exponentially suppressed because one-point functions of

primary operators vanish on the cylinder.
15In fact, it is a projector. Had we picked the fixed basis to be the eigenbasis of O, we would have had a

single non-zero eigenvalue, which shows the operator is very constrained.
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A second difference with ETH comes from the size of the true non-Gaussianities, which

in our case are measured by
√

TrsunsetO2. In ETH, one finds that the variance is suppressed

by e−S/2 as long as the microcanonical two-point function is of the same order as the

microcanonical one-point function. Here, the condition for the true non-Gaussianities to

be small is that
√

TrsunsetO2 ≪ TrO . (3.16)

This can be viewed as the condition for the OPE coefficients to be approximately Gaussian

random variables. It is currently unknown if this is true in all CFTs, but it has been proven

in d = 2 [38]. It is however important to underline that it is not an output of our analysis,

but rather has to be assumed as an extra condition.

Finally, we would like to emphasize that we did not do a D3 unitary average over

the basis of the Hamiltonian, which is what would be required if we had naively applied

standard ETH to O with a random Hamiltonian of size D3. If we would have done this

larger unitary average, O would have behavd as

〈E|O|E′〉 ≈ TrO

D3

(

δEE′ +REE′

)

, (3.17)

which misses the contributions of the sunset diagrams. As we now see, observables like the

genus-2 spectral form factor do not receive contributions from the Haar-average over the

unitary operators, and thus do not actually perceive the triple tensor-product structure of

the Hilbert space. We discuss this in further in the following section, as we now turn to

the study of the genus-2 spectral form factor using the EFT of quantum chaos.

4 EFT for the Genus-2 Spectral Form Factor

In this section we change gears and compute the genus-2 spectral form factor, (1.6),

F (t1, t2, t3) = |Z(τ1 + it1, τ2 + it2, τ3 + it3)|2 , (4.1)

Z(τ1, τ2, τ3) =
∑

O1,O2,O3

|C123|2q∆1
1 q∆1

2 q∆3
3 , qi = e2πiτi . (4.2)

As defined, the genus-2 spectral form factor involves a sum over all the operators of the

CFT. Because of the state-operator correspondence, this amounts to a sum over the entire

Hilbert space of the theory. Nevertheless, at sufficiently high “temperatures” (i.e. for small

moduli) the dominant contribution arises from the high energy part of the spectrum. For

holographic CFTs, as long as one is above the Hawking-Page temperature, this would probe

the chaotic sector of the spectrum. Alternatively, one could restrict the sum in (4.2) to

a microcanonical window within this high energy spectrum. This microcanonical genus-2

spectral form factor would capture the chaotic physics that we are interested in equally

well. For simplicity, we consider the sum over the entire Hilbert space of our theory, while

pointing out the differences with a microcanonical version of the spectral form factor when

relevant.16

16Note that we are considering CFTs, so formally the dimension of the full Hilbert space D = ∞. In the

end, we study a fixed microcanonical window of size D1 which in practice corresponds to setting D = D1.

We keep D general is what follows, see the discussion after (4.11).
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In section 2.3, we discussed how one can write the genus-2 spectral form factor as

a correlation function of a linear operator that acts on the tripled Hilbert space. This

facilitates a rewriting of the genus-2 partition function as the path integral

R± = −Re

[

∂h+∂h−
Z[ĥ]

]

,

Z[ĥ] =

〈∫

DΨ̄DΨ exp
[

iΨ̄ ·
(

ẑ −Hfull − ĥ
)

·Ψ
]〉

avg.

. (4.3)

An important difference from the observables studied in the preceding sections is that the

genus-2 spectral form factor involves traces over either the entire Hilbert space or a part

of it - an appropriate microcanonical window. The cyclicity of traces implies that the

unitaries that rotate the physical states of the Hilbert space cancel against their complex

conjugates. Consequently, the genus-2 spectral form factor only depends on the statistics of

the eigenvalues in the ergodic limit but not on that of the eigenstates. As we shall see below,

this implies that in the quantum ergodic limit, the information about the product nature of

the underlying Hilbert space is not relevant. Although, when working with microcanonical

windows one would need to restrict the auxilliary graded vectors introduced in the above

equation, as well as the corresponding unitary rotations to only the relevant sector of the

Hilbert space.

We now bring the formalism described in section 2.1 to bear on the genus-2 spectral

form factor. This involves writing down the effective field theory of chaos based on the

tripled Hilbert space we made copious use of in this work. The EFT of quantum chaos is a

theory on the space of Hamiltonians, whose dynamics captures the approach of a generic

chaotic Hamiltonian to the predictions of random-matrix theory in the ergodic limit (see

e.g. [6, 8]).

In order to proceed, let us write the Hamiltonian, H, in a complete basis of hermitian

matrices, Xa, in D-dimensions, which we then adapt to the tripled Hilbert space

Xa ≡ Xa ⊗ 1⊗ 1+ κ11⊗Xa ⊗ 1+ κ21⊗ 1⊗Xa, (4.4)

This basis is labelled by the parameter a which takes values, a = 0, 1, 2, . . . ,D2 − 1 and

X0 = 1. We can then expand the tripled Hamiltonian in this basis as17

Hfull = aaXa (4.5)

The ergodic limit is characterised by the indistinguishability of the physical Hamil-

tonian from a typical representative of the corresponding RMT ensemble. How a given

chaotic Hamiltonian approaches this limit is a highly interesting subject, [6, 8], but for the

present purposes we may simply assume that the theory has such an ergodic limit. The

strength of our formalism is that it is well-suited to study the non-universal modes that lead

to deviation from the ergodic limit at times earlier than the Thouless/ergodic time. These

17In appendix A, we discuss the spectrum of Hfull and its relationship with the Hamiltonian of the original

theory, H.
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non-universal modes, referred to as massive modes, arise from the fact that the matrix

elements of a physical Hamiltonian are highly correlated. Outside the ergodic limit, this

is reflected in correlations between the aa parameters. However, in the quantum ergodic

limit, random-matrix universality implies that the individual elements of the Hamiltonian,

Hij , are chosen from a Gaussian distribution. This translates to performing a Gaussian

disorder average over the aa parameters with a probability distribution given by,

P (aa) = exp

[

− 1

2ā
(aa)2

]

, (4.6)

for some fixed ā. Performing the integral over these parameters gives us the expression

Z[ĥ] =

∫

DΨ̄DΨ exp

[

iΨ̄ ·
(

ẑ − ĥ
)

·Ψ− ā

2

∑

a

(
Ψ̄XaΨ

)2

]

. (4.7)

whose last term is quartic in the graded fields Ψ. This quartic term can be treated by

a Hubbard-Stratanovich transformation to rewrite the path integral in terms of the new

fields, Aa,

Z[ĥ] =

∫

DAaDΨ̄DΨ exp

[

iΨ̄ ·
(

ẑ − ĥ
)

·Ψ+ i
∑

a

STr
[
Aa
(
XaΨΨ̄

)]

− 1

2ā

∑

a

STr
[
(Aa)2

]

]

. (4.8)

The resulting action is quadratic in the Ψ fields and which can therefore be integrated

exactly, so that finally we arrive at the expression

Z[ĥ] =

∫

DAa exp

[

− 1

2ā

∑

a

STr
[
(Aa)2

]
− STr ln

[

ẑ − ĥ+Aa
Xa

]
]

. (4.9)

In the above and in some of the following expressions we are not taking care of the normal-

isation factors which can be easily fixed by requiring that the final expression for the path

integral should be equal to 1 when all the sources are switched off. This is true for the

simple reason that the determinants that appear in the numerator and the denominator of

(2.17) are identical in the absence of sources.

The final expression above is amenable to saddle point analysis when the size of the

Hilbert space is large. The saddle point equations are

Aa = −ā (ẑ +Aa
Xa)

−1
Xa . (4.10)

Note that we have dropped the source term in the above saddle equation. Following a

standard treatment, the sources are treated perturbatively and the operators are assumed

to not backreact on the solutions of the saddle equations.18 At this stage, we consider

the homogeneous Hilbert space ansatz according to which the saddle point solution of the

above path integral is homogeneous in the complete D3 dimensional Hilbert space,

Aa = ŷ δa0 1
⊗3 . (4.11)

18This is an assumption. We comment on this point further in the discussion section.
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The physical motivation and the validity of this ansatz is discussed in great detail in

[6]. When working with a microcanonical window instead of the entire Hilbert space, the

homogeneous Hilbert space ansatz is restricted only to the relevant part of the Hilbert space

in this equation. This implies that the identity matrix, 1⊗3, is not an identity matrix in

the entire Hilbert space but only a subsector of it. The factors of Hilbert space dimensions

that appear in the following discussion will therefore get modified accordingly to reflect the

dimensionality of the microcanonical Hilbert space (effectively, this means taking D = D1

from now on).

The path integral simplifies on taking the ansatz, (4.11), also making the validity of

the saddle point approximation more apparent in the large D limit,

Z[ĥ] =

∫

Dŷ exp

[

− D3

2ā

∑

a

STr
[
(ŷ)2

]
−D3

STr ln [ẑ + γŷ]− STr ln
[

1+ (ẑ + γŷ)−1 ĥ
]
]

,

(4.12)

γ := 1 + κ1 + κ2 . (4.13)

Note that we have chosen to write the term containing the sources seprately. Because we

evaluate the path integral at ĥ = 0, this term is expanded in powers of ĥ starting at linear

order. In the D ≫ 1 limit, the solutions of the saddle point equation, (4.10), simplifies to

take the form

ŷ = −ā (ẑ + ŷ)−1 , (4.14)

⇒ ŷ = − E

2γ
+ iΛ

√

ā− E2

4γ2
, (4.15)

where the matrix Λ determines the different choices of saddle, as

Λ0 = σRA
3 ⊗ 1

bf (4.16)

ΛAA = σRA
3 ⊗ σbf

3 (4.17)

Following standard convention, we refer to these as the standard saddle and the Andreev-

Altschuler saddle, respectively. The standard saddle point corresponds to the following

density of states in the tripled Hilbert space,

ρ(E) =
D3

π
√
āγ

√

1− E2

4āγ2
, ∆(E) =

1

ρ(E)
. (4.18)

We have also defined the mean level spacing, ∆(E) as the inverse of the density of states,

ρ(E). One way of seeing (4.18) is to use (2.5) - (2.7) to compute

ρ(E) := ρ1(E) =
1

π
Im ∂h1Z[ĥ]

∣
∣
∣
ĥ=0

. (4.19)

Notice that as long as the energy arguments that appear in ẑ are all the same, the path

integral (4.12) is symmetric under the U(1, 1|2) rotations in the graded spaces,

Ψ → g ·Ψ, g ∈ U(1, 1|2) . (4.20)
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which translates to following transformation of the Hubbard-Stratonovic field, ŷ,

ŷ → g · ŷ · g† . (4.21)

Both the saddle points break this U(1, 1|2) symmetry spontaneously to U(1|1) × U(1|1).
In fact, when ω = 0, the entire coset manifold, U(1, 1|2)/U(1|1) × U(1|1), is a space of

solutions of the saddle point solutions. We parametrise this manifold as a ‘rotation’ of the

standard saddle point,

TΛ0T
−1 ∈ U(1, 1|2)

U(1|1) × U(1|1) . (4.22)

The Andreev-Altschuler saddle point lies on this manifold and corresponds to,

T = T0 = 1
RA ⊗ Pb + σRA

1 ⊗ Pf . (4.23)

The fact that saddle point solutions break the symmetry spontaneously can be argued

as follows. The sign of the regulator, ε, that differentiates between the advanced and the

retarded sector leads to this spontaneous symmetry breaking. In a fashion the reader might

be familiar from the treatment of advanced and retarded correlation functions in elementary

QFT, the regulator displaces the poles in the integration plane of the eigenvalues of ŷ by a

small amount along the imaginary direction. The integration contour runs along the real

axis for the bosonic components of the graded matrix, ŷ. The presence of the infinitesimally

displaced pole restricts the deformation of this integration contour to only one of the two

choices for the saddle point solutions. This choice is different for different causalities,

hence leading to the spontaneous symmetry breaking. The fermionic sector has no such

restrictions because of the lack of poles in the integration plane. For a more detailed

technical discussion, we refer the reader to [8, 56].

The precise nature of the structure of symmetry breaking relies on the observable un-

der study. For example, in the computation of the density of states in (4.19), ρ(E) involves

only one of the two causality sectors. Therefore the symmetry breaking is irrelevant in this

case. Similarly, for the computation of higher point functions, we need to introduce addi-

tional copies of the Hilbert space corresponding to additional insertion of the determinant

operators. In this case too, the symmetry breaking will be different. Such observables are

not the subject of current work.

The U(1, 1|2) symmetry is explicitly broken when ω 6= 0, which corresponds to different

values of zis. In this case, we do not have a full coset manifold worth of saddle points

solutions. However, the standard saddle and the Andreev-Altschuler saddle continue to

be solutions to the saddle point equations. The additional action-cost associated with the

points of the coset manifold can be computed in the limit s = πω/∆ ≪ 1. We treat

s = πω/∆ as a perturbative parameter and expand the action, (4.12), as a power series in

this parameter. Under such a treatment, various points on the coset-manifold can therefore

be regarded as pseudo-Goldstone bosons.

It is useful to parametrise the points on the coset manifold in terms of pion fields, W ,

Q = TΛ0T
−1 ∈ U(1, 1|2)

U(1|1) × U(1|1) , T = e−W , W = −
(

0 B

B̃ 0

)

. (4.24)
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On substituting the above parametrisation of the coset manifold into the action, (4.12),

and performing the perturbative expansion in small ω one obtains the leading order term,

2iπ
ω

∆(E)
STr

[

BB̃
]

. (4.25)

The above term can be compared to the “quark mass” for the pions in the chiral pertur-

bation theory. Following a top down approach, for complex Hamiltonians one can write

down an effective action on the coset manifold in increasing orders of ω as well as B, B̃,

∫

dQe−S[Q;ω], Q ∈ U(1, 1|2)
U(1|1) × U(1|1) , (4.26)

in the same spirit as the chiral perturbation theory. The integration on the coset manifold

can be performed exactly [56]. However, because the integration is one-loop exact, [56,

57], it is sufficient to perform the integration perturbatively in the pion fields around the

individual saddle points. It is for this reason we have expanded the action in B, B̃ fields

and kept only the leading quadratic term in above equation.

To compute the resolvent, (4.3), we need to take the derivative of the path integral,

(4.12), with respect to the sources, h±. This amounts to expanding the last term in this

action that depends on the source to quadratic order in ĥ. Taking derivatives of this term

with respect to the sources introduces certain pre-exponential terms in the σ-model path

integral,
(

1

āγ2
+

4π2ρ2(E)

D6
STr

[

BB̃Pb

]

STr
[

B̃BPb

])

TrOTrO†

−4π2ρ2(E)

D6
STr

[

BPbB̃Pb

]

Tr[OO
†] + · · · .

(4.27)

Here, we have explicitly written only the terms that involve non-trivial contraction of B, B̃

fields. There are other terms that evaluate to zero and aren’t shown above. From (4.25)

one can deduce the following contraction rules between the pion fields:

STr[B ·X]STr[B̃ · Y ] =
1

2πρ(E)

i

ω + i0+
STr[XY ] , (4.28)

STr[B ·X · B̃ · Y ] =
1

2πρ(E)

i

ω + i0+
STr[X]STr[Y ] . (4.29)

Using these contraction rules, one can solve (4.27) to get the following answer for the

resolvent,

R(ω) =

(
1

āγ2
− 1

D6ω2

)

TrOTrO† . (4.30)

Note that contractions between the B, B̃ that have a common index is zero. For example,

one does not receive a contribution from contracting the fields within the same STr terms.

This is because it corresponds to X = 1 in (4.29) and STr1 = 0. As we remarked above,

for small s when the symmetry breaking is small, one needs to perform the integration over

the entire coset manifold. However, one-loop exactness of the path integral implies that the

exact answer is the sum over one-loop contributions around the individual saddle points.

– 26 –



The result in (4.30) is the contribution around the standard saddle point. Therefore, we

need to add to the above answer the contribution of the Andreev-Altschuler saddle point as

well. Additionally, for the complete answer we also need to add the contribution of the R
+
+,

(2.16). The computation of these terms closely follows equivalent computations presented

in [8], and therefore we do not discuss these details here. Adding in all these contributions,

one gets the full answer for the resolvent in the ergodic limit,

R(s) =
2π2ρ2(E)

D6

(

πδ(s) + 1− sin2(s)

s2

)

TrOTrO† . (4.31)

In this expression, note that the leading disconnected contribution corresponding to ‘1’ is

enhanced by a factor of D3 with respect to the asymptotic contribution of the connected

piece given by the δ(s). This happens because s = πρ(E)ω ∼ D3ω.

Let us consider only the connected contribution,

2π2ρ2(E)

D6

(

πδ(s)− sin2(s)

s2

)

TrOTrO† . (4.32)

This term corresponds to the ramp-plateau behaviour depicted in Figure 2 after performing

the Fourier transform to the time domain,
∫

(connected term)eiωt =

(

2 + t
∆(E)

π
+

(

2− t
∆(E)

π

)

sgn

(

t
∆(E)

π
− 2

))

. (4.33)

This term is zero at t = 0. The disconnected term gives,
∫

(disconnected term)eiωt =
2π2ρ2(E)

D6
TrOTrO† δ(t) . (4.34)

The above integration gives rise to a Dirac-delta function only when the integration over ω

is unbounded. In physical examples, the range of ω integration is fixed by the width of the

spectrum (∼
√
āγ) and therefore the width of the regulated-delta function is controlled by

1/(
√
āγ). Importantly, the value of the genus-2 partition spectral form factor is non-zero

at t = 0 (it is simply given by the square of the genus-2 partition function).

From a gravitational point of view, there are two types of geometry relevant for the

genus-2 spectral form factor. Handlebody geometries [58], which correspond to a bulk

filling of a genus-2 surface. For the square of the genus-2 partition function, one can thus

have two disconnected handlebodies. The second type of geometry is the genus-2 wormhole,

see [32, 37], which connects two genus-2 boundaries. One interesting aspect of the genus-2

wormhole is that it is a true saddle-point of the gravitational equations of motion, even at

t = 0. This should be contrasted with the double-trumpet or the double-cone [34–36, 59]

relevant for the usual spectral form factor. As we increase time, the genus-2 wormhole

eventually dominates over the two disconnected handlebodies. It is not known when this

happens exactly, but the fact that the genus-2 wormhole is a true saddle may play a role.

In the current treatment, we have considered the homogeneous Hilbert space ansatz, which

studies the theory only in the ergodic regime. At earlier times, it becomes crucial that the

Hamiltonian is fixed. This can be captured by studying the contributions of the massive

modes like in [8]. It would be interesting to understand whether the fact that the genus-2

wormhole is a true saddle even at early times is important. We will address this in future

work.
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5 Discussion

In this paper, we have analyzed the statistics of heavy-heavy-heavy OPE coefficients from

the point of view of ergodicity and random matrix theory. To transform the problem into

that of ordinary quantum mechanics, we defined a linearized operator on the tripled Hilbert

space of the CFT whose matrix elements are given by the product of two OPE coefficients.

We then proceeded to analyze the properties of this operator from a random matrix theory

point of view. We argue that the behaviour of this operator in the ergodic limit can be

explained by the statistics of the OPE coefficients, a conjecture originally proposed in [32].

Using the effective theory of quantum chaos, we also studied the genus-2 spectral form

factor and found that it should have a ramp and plateau.

5.1 Open questions

We conclude the paper with some open questions.

From CFT to QM

Part of the goal of this paper was to translate a CFT question which does not manifestly

have a nice counterpart in quantum mechanics, into a framework that can be tackled

strictly within quantum mechanics using random matrix theory. To do so, we defined a

linear operator in a tripled Hilbert space. The next step was to assume that this operator

is a random operator on the tripled Hilbert space. From the effective theory of quantum

chaos, this amounts to assuming that the insertion of the operator source does not cause

a large backreaction on the saddle-point. At this stage, this is an assumption, and it

would be very interesting to understand whether this assumption is true. Also note that

the framework we have presented would work for other tensors made out of more OPE

coefficients, and it would be interesting to see whether the validity of the saddle-point

assumption depends on the particular choice of tensor we made (i.e. on the particular

combination of OPE coefficients).

This ties to a more profound understanding of what a heavy CFT operator is. An

alternative route to that studied in this paper would be to study the expectation value of

complicated (i.e. extensive) operators in high energy states à la ETH. This could presum-

ably be done numerically, although might quickly become difficult. The major problem

that remains, even with the numerical methods, is to understand what the right basis of

operators is. In CFTs, the state-operator correspondence tells us that local operators and

energy eigenstates are one and the same. We don’t see such an obvious choice in quantum

mechanics. In a chaotic spin-chain, what is the “right” extensive operator to pick? Should

one consider randomized extensive operators?

Perhaps the most interesting theory to study in this regard is the SYK model. The

SYK model can offer a bridge between a notion of complicated operator in QM and the

CFT language, since the theory is conformal in the IR. A complicated operator would

be one that is built from an O(1) fraction of the N fermions, and the question becomes

understanding what that maps to in the IR, in terms of the spectrum of local operators.

– 28 –



This could be tackled using a combination of numerical and analytics techniques following

up on [15–17].

Another point to mention is that CFTs always have more symmetries than generic

quantum systems. One should thus organize the operators according to representations

of the conformal group, and statements like the ETH should be always understood as

applied to primary operators. This is particularly relevant in 2d CFTs, because of Virasoro

symmetry. We do not expect the results to exhibit qualitative differences once this has

been taken into account, but it be would be interesting to understand how this affects the

EFT of quantum chaos.

Minimal models and the genus-2 spectral form factor

Another interesting avenue to explore would be to study the genus-2 spectral form factor

in rational CFTs that can be solved. The most natural example is the minimal models.

For the usual spectral form factor, this was studied in [60]. Note that the minimal models

are completely solved, so there is in no conceptual obstruction in computing the genus-2

spectral form factor. There are however some practical problems, coming from the fact

that the genus-2 conformal blocks are not known in closed form, contrary to Virasoro

characters. For plotting the genus-2 spectral form factor, this should not be too much of a

problem since one can get the blocks numerically.

It would be interesting to check whether the minimal models at large level do display a

ramp and plateau for the genus-2 spectral form factor. Even more interestingly, one could

check if the dip time of the usual spectral form factor and that of its genus-2 counterpart

are the same or not. In this paper, since we used only ergodicity arguments, we don’t have

an understanding of the Thouless time for the genus-2 spectral form factor. The Thouless

time is both theory and observable dependent, and therefore it is natural to think that the

Thouless time could be quite different for the genus-2 spectral form factor.

The Symmetry Class of a CFT

In section 3, we computed the mean and variance of the matrix elements of O. We saw

that the variance of the matrix elements involved a TrO2 term. The trace here is given by

a particular cyclic contraction of the indices, and matches the decomposition of a genus-3

partition function in the sunset channel [38]. However, we have obtained a single type of

trace for O2 and there are in fact 5 possible trace structures involving four OPE coefficients

(corresponding to the 5 OPE decompositions of a genus-3 surface), two examples of which

are

Trskylinec
4 = cabcc

∗
adecfbec

∗
fdc (5.1)

Trcombc
4 = caadc

∗
bbecccfc

∗
def . (5.2)

To correctly account for the statistics of the heavy-heavy-heavy OPE coefficients, we need

all five of these structures [38]. It is easy to see that the reason that we did not find all

five structures lies in the way we applied unitary Haar averages to the operator O.

One could imagine a more refined analysis in which we are more careful about the

discrete symmetries of a CFT and the operator under consideration. Generic CFT’s have
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real and complex fields, and under complex conjugation of operators the OPE coefficients

are also complex conjugated. This particular symmetry is not implemented in the unitary

averaging we considered so far, and taking it into account will presumably lead to a different

type of averaging, a different type of RMT and and a different sigma model corresponding

to a different symmetry class. It is our expectation that such a more precise treatment

will lead to some quantitative changes in our result, in particular that a richer structure

of random matrices and index structures will appear, but that the qualitative conclusions

remain unaltered. Moreover, we expect that the leading order scaling with D remains the

same, and that we still have a version of a ramp and a plateau in the relevant generalized

form factors. We leave the interesting question which symmetry classes are realized in

CFTs, with and without operator statistics, and how these impact randomness and chaos,

to a future study.

The OPE coefficients cLLH

There are essentially three types of OPE coefficients involving heavy operators, depending

on whether one, two or three of the operators are heavy. As explained in the introduction,

the operators cLHH are easiest to understand since the ETH ansatz makes a prediction

for them. In this paper, we have developed a tool to study the OPE coefficients cHHH .

The final OPE coefficients to understand are thus cLLH . Asymptotic formulas for such

coefficients are also known [12, 55, 61–63] and it is natural to ask what random matrix

theory has to say about them.

While our framework could in principle be used to study such operators as well, it

seems important to underline a physical difference between these objects and the ones

studied in this paper: there is no spectral form factor that one can define only with cLLH
coefficients. In fact, the most Lorentzian probe of these OPE coefficients that one can cook

up is simply the out-of-time-ordered four-point function on the plane. This is also a probe

of quantum chaos, but of a quite different nature.19 Since this object maps to a thermal

correlator, but on Rindler space (a non-compact space), there is no discrete eigenspectrum

to probe and hence no ramp and plateau. It would be interesting to understand better

how random matrix theory constrains these OPE coefficients.

Acknowledgements

We are happy to thank Alexander Altland, Daniel Jafferis, Diego Liska for fruitful discus-

sions. The presentation of certain results contained in this paper was improved following a

comment posted by Brehm, Das and Datta. JdB is supported by the European Research

Council under the European Unions Seventh Framework Programme (FP7/2007-2013),

ERC Grant agreement ADG 834878. JS thanks ENS Paris for hospitality during the final

stages of this work. This work has been partially supported by the SNF through Project

19In fact, it really probes scrambling more than chaos. Even if the two are often related, they are not

exactly the same thing. For example, the rate of scrambling is theory dependent while the eigenvalue

statistics is much more universal. This suggests that how random the cLLH truly are could also be theory

dependent. A similar observation was made in [64].

– 30 –



Grants 200020 182513, as well as the NCCR 51NF40-141869 The Mathematics of Physics

(SwissMAP).

A Density of states in the tripled space

In this appendix, we explore the relationship between the density of states of the tripled

Hilbert space and that of the original Hilbert space. When τis are all equal, the density of

states in the tripled space is given by,

̺(E) = lim
ǫ→0

Tr

[
ǫ

(Hfull − z)2 + ǫ2

]

=
1

2πi
Tr
[
G−(z)−G+(z)

]
,

=

∫

dEiρ(E1)ρ(E2)ρ(E3) δ

(

E −
∑

i

Ei

)

=
∑

n1,n2,n3

δ

(

E −
∑

i

Eni

)

.

(A.1)

This means that there is always 3-fold degeneracy. Evidently, the density of states in the

tripled Hilbert space is a convolution of the density of states of the original Hilbert space.

B Haar integrals

B.1 Variance of the OPE coefficients corresponding to different ensembles

This section details the variance computation of the product of OPE coefficients leading

to the result (3.8). The variance we are interested in is given by the expression

〈iii2i3|O|i′1i′2i′3〉2 − 〈iii2i3|O|i′1i′2i′3〉
2
. (B.1)

The first term of the above expression is given by,

〈iii2i3|O|i′1i′2i′3〉2 =
∫ 3∏

m=1

[

dU (m)
]

U
(1)
i1j1

U
(2)
i2j2

U
(3)
i3j3

U
(1)†
j′1i

′
1
U

(2)†
j′2i

′
2
U

(3)†
j′3i

′
3
U

(1)
i′1k

′
1
U

(2)
i′2k

′
2
U

(3)
i′3k

′
3
U

(1)†
k1i1

U
(2)†
k2i2

U
(3)†
k3i3

× Ω∗
j1j2j3Ωj′1j

′
2j

′
3
Ω∗
k′1k

′
2k

′
3
Ωk1k2k3

=

3∏

m=1

(

δimi′m

(

δjmj′mδkmk′mWg(Dm, 2,1)− δjmkmδj′mk′mWg(Dm, 2, (2 1))
)

+
(

δjmkmδj′mk′mWg(Dm, 2,1)− δjmj′mδkmk′mWg(Dm, 2, (2 1))
))

× Ω∗
j1j2j3Ωj′1j

′
2j

′
3
Ω∗
k′1k

′
2k

′
3
Ωk1k2k3 (B.2)

There are a total of 64 terms in the above expression and let us look at only the leading

order terms to begin with. Because of the following scaling property of the Weingarten

functions,

Wg(D,n, σ) D≫1
∼ D−n−|σ| (B.3)
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we need to only consider the terms proportional to Wg(D, 2,1). Here, |σ| is the minimum

number of pair exchanges required to build the permutation σ.

〈iii2i3|O|i′1i′2i′3〉2

≈
3∏

i=1

Wg(Di, 2,1)

3∏

m=1

(

δimi′mδjmj′mδkmk′m + δjmkmδj′mk′m

)

Ω∗
j1j2j3Ωj′1j

′
2j

′
3
Ω∗
k′1k

′
2k

′
3
Ωk1k2k3

=

3∏

i=1

Wg(Di, 2,1)

[

Ωj1j2j3Ω
∗
j1j2j3 Ωk1k2k3Ω

∗
k1k2k3

(

δEE′ + 1
)

+ Ωj1j2j3Ω
∗
j1j2k3 Ωk1k2k3Ω

∗
k1k2j3

(

δi1i′1δi2i′2 + δi1i′1δi3i′3 + δi3i′3δi2i′2 + δi1i′1 + δi2i′2 + δi3i′3

)]

(B.4)

Subtracting off the disconnected contribution, (3.4), we get,

〈iii2i3|O|i′1i′2i′3〉2 − 〈iii2i3|O|i′1i′2i′3〉
2

≈
(

3∏

i=1

Wg(Di, 2,1)−
3∏

i=1

Wg(Di, 1,1)
2

)

Ωj1j2j3Ω
∗
j1j2j3 Ωk1k2k3Ω

∗
k1k2k3δEE′

+

3∏

i=1

Wg(Di, 2,1)

[

Ωj1j2j3Ω
∗
j1j2j3 Ωk1k2k3Ω

∗
k1k2k3

+ Ωj1j2j3Ω
∗
j1j2k3 Ωk1k2k3Ω

∗
k1k2j3

(

δi1i′1δi2i′2 + δi1i′1δi3i′3 + δi3i′3δi2i′2 + δi1i′1 + δi2i′2 + δi3i′3

)]

(B.5)

Using the following definitions for the Weingarten functions,

Wg(D, 2,1) =
1

D2 − 1
, Wg(D, 1,1) =

1

D
, (B.6)

we get (treating the Di ∼ D),

Wg(D, 2,1)3 −Wg(D, 1,1)6 =
3D4 − 3D2 + 1

D6(D2 − 1)3
D≫1
=

3

D8
+ · · · . (B.7)

We see that the term in the first line of the RHS in (B.5) is subleading. Also note that

the terms in the last line on the RHS contribute only to a parametrically smaller number

of elements of the operator, O, these are “partially off-diagonal” terms. The coefficient is

given by
∑

j1,j2,j3,k1,k2,k3

Ωj1j2j3Ω
∗
j1j2k3 Ωk1k2k3Ω

∗
k1k2j3 . (B.8)

This is again a trace, which means it is basis independent. We call such a term TrO2 and

we have

TrO2 = CijkC
∗
ijlCmnlC

∗
mnk . (B.9)

This combination of OPE coefficients appears in the sunset decomposition of the genus-2

partition function [38]. Therefore, we call this term TrsunsetO
2.
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B.2 Variance of the OPE coefficients corresponding to identical ensembles

This section details the variance computation of the product of OPE coefficients leading

to the result, (3.13). The variance we are interested in is given by the expression,

〈iii2i3|O|i′1i′2i′3〉2 − 〈iii2i3|O|i′1i′2i′3〉
2
, (B.10)

but with all the states lying in the same microcanonical ensemble this time. The first term

of the above expression is given by,

〈iii2i3|O|i′1i′2i′3〉2 =
∫ 3∏

m=1

[

dU (m)
]

Ui1j1Ui2j2Ui3j3Ui′1j4
Ui′2j5

Ui′3j6
U †
j′1i

′
1
U †
j′2i

′
2
U †
j′3i

′
3
U †
j′4i1

U †
j′5i2

U †
j′6i3

× Ω∗
j1j2j3Ωj′1j

′
2j

′
3
Ω∗
j4j5j6Ωj′4j

′
5j

′
6

=
∑

σ,τ∈S6

Wg(D1, 6, στ
−1)

6∏

k=1

δiki′σ(k)
δjkj′τ(k) (B.11)

There are a total of 6!2 terms in this expression, but at the leading order only terms where

τ = σ contribute (see (B.3)). Their contribution is proportional to Wg(D, 6,1) ∼ 1/D6.

This is still a large number of terms (720). But, a smaller subgoup, S3×S3, only generates

the terms that permute the three individual states defining the full state, |i1i2i3〉. As we

mentioned in the main text, when all states belong to the same microcanonical window,

then this difference is superficial and doesn’t give rise to new terms. Discounting this

redundancy, we are left with only 20 different terms. Only one of these terms corresponds

to the disconnected piece. Subtracting off the disconnected contribution, (3.12), we get,

〈iii2i3|O|i′1i′2i′3〉2 − 〈iii2i3|O|i′1i′2i′3〉
2

≈
(

Wg(D1, 6,1) −
1

D2
1(D1 + 1)2(D1 + 2)2

)

Ωj1j2j3Ω
∗
j1j2j3 Ωk1k2k3Ω

∗
k1k2k3 [δEE′ ]S3

+Wg(D1, 6,1)

[

Ωj1j2j3Ω
∗
j1j2j3 Ωk1k2k3Ω

∗
k1k2k3 (1 + δi1i2 + δi2i3 + δi3i1 + δi1i2δi2i3δi3i1)× (· · · )′

+ Ωj1j2j3Ω
∗
j1j2k3 Ωk1k2k3Ω

∗
k1k2j3

(

δi1i′1δi2i′2 + · · · 647 terms · · ·
)]

. (B.12)

On the right hand side, in the second line (· · · )′ represents the terms in the first bracket but

with the primed indices. In the third line the 648 terms correspond to partial contractions

between the primed and the unprimed indices corresponding to the external bra-ket states.

Once again, using the asymptotic properties of the Weingarten functions we get,

Wg(D1, 6,1) −
1

D2
1(D1 + 1)2(D1 + 2)2

∼ O(D−7
1 ). (B.13)

We see that the term in the first line of the RHS in (B.12) is subleading.
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