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ABSTRACT

The task of few-shot style transfer for voice cloning in text-to-
speech (TTS) synthesis aims at transferring speaking styles of
an arbitrary source speaker to a target speaker’s voice using
very limited amount of neutral data. This is a very chal-
lenging task since the learning algorithm needs to deal with
few-shot voice cloning and speaker-prosody disentanglement
at the same time. Accelerating the adaptation process for a
new target speaker is of importance in real-world applica-
tions, but even more challenging. In this paper, we approach
to the hard fast few-shot style transfer for voice cloning
task using meta learning. We investigate the model-agnostic
meta-learning (MAML) algorithm and meta-transfer a pre-
trained multi-speaker and multi-prosody base TTS model to
be highly sensitive for adaptation with few samples. Domain
adversarial training mechanism and orthogonal constraint are
adopted to disentangle speaker and prosody representations
for effective cross-speaker style transfer. Experimental re-
sults show that the proposed approach is able to conduct fast
voice cloning using only 5 samples (around 12 second speech
data) from a target speaker, with only 100 adaptation steps.
Audio samples are available online 1.

Index Terms— Fast voice cloning, style transfer, meta
learning, few-shot learning

1. INTRODUCTION

The quality, naturalness, and intelligibility of generated
speech by end-to-end neural text-to-speech (TTS) synthe-
sis models have been greatly improved in the past few years
[1–3]. Nowadays, it is in high demand to adapt an exist-
ing TTS model to support personalized and multi-prosody
speech synthesis for a new target speaker using his/her lim-
ited amount of data (e.g., 5 utterances). We refer to this task
as few-shot style transfer for voice cloning in TTS, aiming at
transferring speaking style of an arbitrary source speaker to a
target speaker’s voice under data-scarcity constraint. In real-
world applications, it is promising to endow a TTS model
with the capability of conducting fast adaptation, meaning
that the users can obtain instantaneous personalized speech

1https://liusongxiang.github.io/meta-voice-demo/

Fig. 1. Illustration of training procedure of Meta-Voice,
which contains three stages of large-scale pre-training, meta
learning and adaptation to new speakers.

interface. The task of fast few-shot style transfer is very chal-
lenging in the sense that the learning algorithm needs to deal
with not only a few-shot voice cloning problem (i.e., cloning
a new voice using few samples) but also a speaker-prosody
disentanglement and control problem.

Few-shot voice cloning alone is a challenging task, due to
the reason that the trade-off between model capacity and over-
fitting issues must be well dealt with. Existing approaches can
be roughly classified into two kinds [4], i.e., speaker encod-
ing approach and speaker adaptation approach, in terms of
whether to update parameters of the base TTS model during
voice cloning. Speaker encoding approach does not update
parameters of the base TTS model and represents speaker
characteristics using speaker embedding vectors, which are
expected to control the output voice. This approach does not
involve a fine-tuning process and conducts voice cloning in a
zero-shot adaptation manner. In [5], a speaker encoder model
is first separately trained with a speaker verification loss [6]
leveraging large-scale low-quality data; and then adopted to
compute speaker embedding vectors for a multi-speaker TTS
model. During voice cloning, the speaker encoder computes
an embedding vector from the limited adaptation data for a
new speaker and adapts the base TTS model to the new voice
by using the embedding vector as conditioning. Instead of
pre-training a speaker verification model using external data,
the speaker encoder model can also be trained using the TTS
data, either jointly optimized with the base TTS model or sep-
arately optimized [4, 7, 8]. This kind of approaches well
tackle the possible overfitting issue since there is no fine-
tuning process. However, embedding vectors computed by
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a pre-trained speaker encoder may not generalize well to an
unseen speaker, which further degrades the voice cloning per-
formance. Speaker adaptation approach [4, 7, 9] finetunes all
or part of the base TTS model with limited adaptation data,
which rely on careful selecting weights that are suitable for
adapting and adopting proper adaptation scheme to update
these weights in order to avoid overfitting the adaptation data.
However, the cloning speed is much slow than the speaker
encoding approaches [9].

In this paper, we aim at tackling the more challenging
fast few-shot style transfer problem, where we not only make
few-shot voice cloning faster but also enable the TTS model
to transfer from source styles to the cloned voice. To make
the voice cloning procedure faster, we extend the optimizing-
base model-agnostic meta-learning (MAML) approach [10]
to TTS.

To avoid overffiting issues when updating all model pa-
rameters with limited adaptation data, we split model param-
eters into style specific parameters and shared parameters.
In what follows, we term the proposed model as Meta-Voice
for clarity. As illustrated in Fig. 1, we transfer the shared
parameters from a multi-speaker and multi-prosody base
TTS model pre-trained with a large-scale corpus and con-
duct meta-training on the style specific parameters to a state
which is highly sensitive for fast adaptation with only few
samples from a new speaker. For the purpose of style trans-
fer, we adopt domain adversarial training mechanism [11]
and orthogonal constraint [12] to disentangle speaker and
prosody representations. The contributions of this work are
summarized as follows:

• To the best of our knowledge, this paper is the first work
addressing the challenging few-shot style transfer prob-
lem for voice cloning.

• We use meta-learning algorithms on a pretrained TTS
model to make it adaptable to a new voice quickly with
few samples.

• We adopt effective speaker-prosody disentangling
methods to achieve few-shot cross-speaker style trans-
fer.

The rest of this paper is organized as follows: Details of
the proposed approach are presented in Section 2 and Sec-
tion 3. Experimental results are shown in Section 4 and Sec-
tion 5 concludes this paper.

2. MODEL ARCHITECTURE OF META-VOICE

In this section, we describe the architecture of Meta-Voice for
multi-speaker and multi-style speech generation. As shown in
Fig. 2, Meta-Voice consists of four major modules: a text en-
coder, a variance adaptor, a mel decoder and a style encoder.
In this work, we decouple a speaking style into speaker and

Fig. 2. The base model architecture. SALN represents “style-
adaptive layer normalization”, whose details are illustrated in
Fig. 4. In total, M SALN layers are used in the base model.
Details of the style encoder are illustrated in Fig. 3.

prosody components, omitting other factors such as phonet-
ics and channel effects, according to the “subtractive” defini-
tion of prosody in [13]. We extend the style-adaptive layer
normalization (SALN) presented in [8] to support multiple
speakers and prosodic types and add SALN layers in both
the text encoder and the mel decoder, making Meta-Voice
fully conditioned on speaking style information. We split pa-
rameters θ in Meta-Voice into shared parameters θ̄, speaker-
related parameters θs and prosody-related parameters θp, i.e.,
θ = {θ̄, θs, θp}. θ̄ contains parameters of the text encoder,
the variance adaptor and the mel decoder, which are respon-
sible of producing right pronunciations corresponding to the
input textual content. θs and θp as a whole contain parame-
ters of the style encoder, which generates scaling and shifting
parameters for SALN layers, modulating hidden features in
both the text encoder and mel decoder to control timbre and
prosodic characteristics of generated speech.



Fig. 3. Style Encoder. GRL represents “gradient reversal
layer” and LUT is for “look-up table”. M is the total number
of SALN layers in Meta-Voice.

Fig. 4. The style-adaptive layer normalization. CLN rep-
resents “conditional layer normalization”. Hiin is the input
hidden feature of the i-th SALN layer, whose output hidden
feature isHiout.

2.1. Shared model parameters

The text encoder is the same as the one presented in [8],
except that we use different SALN layers. We convert nor-
malized text into phoneme sequence, which are transformed
into trainable real-valued text embeddings with a text embed-
ding layer. A convolutional prenet, which consists of two
convolutional layers and a linear layer with residual connec-
tion, convert the text embeddings to hidden representation.
Meta-Voice adopts 4 feed-forward transformer (FFT) blocks
for both the text encoder and mel decoder, following model
design in FastSpeech2. The variance adaptor has similar net-
work architecture to FastSpeech2, where phoneme-level pitch
and energy features are used. A fully-connected (FC) layer is
added on the output of FFT blocks in mel decoder to output
raw predicted mel spectrogram. Inspired by [2], we add a
residual postnet to post-process raw mel spectrogram to ob-

tain the final predicted mel spectrogram. Sinusoidal posi-
tional encodings [14] is added to both the text encoder and
the mel decoder following common practice.

2.2. Style-related parameters

The style encoder used in Meta-Voice is illustrated in Fig. 3.
Speaker information is represented by speaker IDs, while
prosody information is extracted from mel spectrogram with
a prosody mel encoder. One-hot speaker IDs are transformed
into speaker vector via a trainable speaker look-up-table
(LUT), a speaker conditional layer normalization (CLN)
adaptor consumes speaker vectors to generate speaker-related
SALN parameters, i.e., scale γ’s and shift β’s. The prosody
mel encoder comprises of a spectral processing block, tem-
poral processing block, a multi-head self-attention block and
a final temporal averaging layer, following the design in [8],
which convert a mel spectrogram into a fixed-length prosody
vector. We then use a prosody CLN adaptor to generate
prosody-related SALN parameters.

As shown in Fig. 4, the SALN layer in Meta-Voice uses
speaker-related SALN parameters {γis, βis}Mi=1 and prosody-
related SALN parameters {γip, βip}Mi=1, where M is the total
number of SALN layers in Meta-Voice, to modulate hidden
features in the text encoder and mel decoder, as

Hiout = (γis · LN(Hiin) + βis) + (γip · LN(Hiin) + βip), (1)

where LN(·) denotes layer normalization without trainable
affine transformation.

To fully disentangle information carried by speaker vector
and prosody vector, we adopt two methods. We add a gradi-
ent reversal layer (GRL) and a speaker classifier on prosody
vector, following the notion of domain adversarial training.
We also add an orthogonal constraint on speaker vector and
prosody vector following [12]. Both methods are used dur-
ing the large-scale pre-training phase, while only the orthog-
onal constraint is used during the meta learning phase and the
adaptation phase.

3. META LEARNING ALGORITHM

We adopt MAML as the meta learning algorithm. The goal of
MAML is to find a sensitive initial point of model param-
eters through cross-task meta-training such that a few gra-
dient updates lead to large performance improvement in a
new task during meta-test. Previous works have shown that
taking model parameters pre-trained on large-scale existing
data as a warm start of meta-training can achieve better per-
formance [15], i.e., transferring knowledge from large-scale
pre-training. Therefore, in our case, the training process of
Meta-Voice consists of three phases: large-scale pre-training,
meta learning and adaptation to new speakers, as illustrated
in Fig. 1.



We denote a pair of text and mel spectrogram as (X,Y ).
During large-scale pre-training phase, parameters of Meta-
Voice are initialized as θ0 = {θ̄0, θs0, θ

p
0} and optimized to

minimize a reconstruction loss between a predicted mel spec-
trogram Ŷ and the ground-truth Y , as well as the domain ad-
versarial classification loss Lda and orthogonal loss Lorth in-
troduced in Section 2.2:

LD(θ) = E[‖Ŷ − Y ‖1 + α1Lda + α2Lorth] (2)

where ‖ · ‖1 is L1 distance and α1 and α2 are loss weights.
After the pre-training phase, the initial model parameters θ0
becomes θT . We omit the reconstruction terms of pitch and
energy features for brevity.

During the meta learning phase, we synthesize meta
dataset Dmeta for the cross-task training. The meta-learner
is initialized with parameter θT and optimized with Dmeta,
which is divided into Dtr for task-level training and Dte for
task-level test. We freeze shared parameters θ̄ and prosody-
related parameters θp and only update speaker-related param-
eters θs. For an N -shot adaptation task Ti, e.g., voice cloning
with N samples, we sample N samples from a speaker to
form Dtr and another N samples from the same speaker to
form Dte. In each inner loop step, a base-learner is initialized
from the meta-learner, and conducts one or more gradient
descent updates. For one gradient update, new adapted pa-
rameters θi is computed as:

θsi = θs − α∇θsLDtr

Ti (θ), (3)

where α is the fast adaptation learning rate. During meta
learning, the parameters of the meta-learner are trained to op-
timize the performance of the adapted model on the test split
Dte. Parameters of the meta-learner is updated by collecting
a batch of task-level test losses as:

θs ← θs − β∇θs
∑

Ti∼p(Ti)

LDte

Ti ({θ̄, θsi , θp}) (4)

where β is the meta learning rate.
The large-scale pre-training and meta learning procedures

are summarized in Algorithm 1. After meta-transfer learning,
we obtain model parameters θM , which are expected to adapt
to a new speaker using limited adaption data rapidly.

4. EXPERIMENTS

4.1. Setups

We use an internal multi-speaker and multi-prosody Mandarin
Chinese corpus for both the pre-training and meta learning
phases. The corpus contains data from 140 speakers, with 10-
prosody annotations (i.e., neutral, happy, angry, sad, scary,
news, story, broadcast, poetry and call-center). In total, the
corpus has 71 hours speech data. During meta testing (i.e.,
adaptation phase), we use another speech dataset consisting

Algorithm 1 Large-scale Pre-training and Meta Learning
Input: Large-scale multi-speaker and multi-prosody TTS
corpus D; Learning rate α and β
Output: Meta model θM

1: Randomly initialize θ ← {θ̄0, θs0, θ
p
0};

2: for samples in D do
3: Evaluate LD(θ) by Eq. 2;
4: Optimize θ with gradient descent;
5: end for
6: Generate task distribution p(T ) with D
7: while not done do
8: Sample task batch Ti ∼ p(T );
9: for all Ti do

10: Evaluate training loss LDtr

Ti (θ);
11: Adapt speaker-related parameters with gradient de-

scent: θsi ← θs − α∇θsLDtr

Ti (θ)
12: end for
13: Update θs with respect to average test loss:
14: θs ← θs − β∇θs

∑
Ti∼p(Ti) L

Dte

Ti ({θ̄, θsi , θp})
15: end while

of 4 neutral speakers (2 females and 2 males) to evaluate few-
shot style transfer performance of Meta-Voice. Audio is sam-
pled at 24 KHz.

Meta-Voice uses 4 feed-forward Transformer (FFT)
blocks in both the text encoder and the mel decoder. The
hidden size, number of attention heads, kernel size and filer
size of the 1-dimensional convolution in the FFT block are
set as 256, 2, 9 and 1024, respectively. The dimension of the
speaker vector and the prosody vector is 128.

During the pre-training phase, we follow the common
multi-speaker training procedure with loss function in Eq.
(2), where we set α1 = 0.01 and α2 = 0.02. In this
work, we focus on 5-shot (around 12 second speech data
in total) style transfer. Therefore, during the meta learn-
ing phase, we sample 5 training samples and 5 test samples
from one speaker to form a meta task. We regard a pair of
speaker-prosody as a pseudo-speaker. Thus, in total there are
1400 pseudo-speakers, which are split into a meta training
set (1300 pseudo-speakers) and a meta validation set (100
pseudo-speakers). We randomly initialize a speaker vector
before meta learning, i.e., the speaker LUT only has one
shared entry across all pseudo-speakers. We use a meta batch
size of 10. Meta learning rate is 0.0001 and base learning rate
is 0.001. The Adam optimizer [16] is adopted as the meta
optimizer, while the vanilla SGD optimizer is adopted as the
base optimizer.

A HifiGAN vocoder [17] is used to generate waveform
from mel spectrogram, which is trained with the same multi-
speaker and multi-style corpus. During meta testing (i.e.,
adaptation process), the initial base learning rate is 0.001. We
found that using an exponential learning rate scheduler with
decay factor 0.9998 accelerates adaptation.



Fig. 5. 5-shot cross-gender style transfer results.

4.2. Evaluations

To the best of our knowledge, there is no existing work ad-
dressing few-shot style transfer in voice cloning. We use
the popular pre-train-finetune adaptation pipeline as the base-
line. Specifically, the baseline model adopts the same model
structure as Meta-Voice with the same pre-training procedure.
During finetuning, we randomly initialize a speaker vector for
a new speaker and update the speaker-related parameters only
with the 5 adaptation samples. The adaptation process is the
same as that of Meta-Voice.

In this section, we use the metrics of speaker cosine sim-
ilarity and mel cepstral distortion (MCD) to objectively mea-
sure the few-shot voice cloning performance in terms of voice
similarity and quality, respectively. Audio samples are avail-
able online 2.

We adopt a pre-trained speaker verification model to com-
pute embedding vectors of the generated samples and their
corresponding reference recordings and then compute paired
cosine distances. Each compared model is evaluated with
5600 generated samples under all ten prosody annotations.
MCDs are computed with only the neutral samples since the
four testing speakers only have neutral recordings.

5-shot cross-gender and intra-gender style transfer results
are shown in Fig. 5 and Fig. 6, respectively. We can see
that Meta-Voice can adapt to a new speaker very quickly with
speaker cosine similarity above 0.7 with only 100 adaptation
steps, while the baseline needs much more adaptation steps
to reach the same level of speaker cosine similarity. We see
similar phenomena in MCD results. However, it is worthy to
note that the baseline model reaches similar level of speaker
cosine similarities and MCDs to Meta-Voice after sufficient
number of adaptation steps. Therefore, the major benefit of
meta learning algorithms, such as MAML, is to learn a bet-
ter model initialization such that the model can be quickly
adapted to new speakers. Faster adaptation can significantly
reduce the compuational cost and the overall processing time.

2https://liusongxiang.github.io/meta-voice-demo/

Fig. 6. 5-shot intra-gender style transfer results.

5. CONCLUSION

In this paper, we have presented a novel few-shot style trans-
fer approach, named Meta-Voice, for voice cloning. The
MAML algorithm is adopted to accelerate the adaptation pro-
cess. Domain adversarial training mechanism and orthogonal
constraint are adopted to disentangle speaker and prosody
representations for effective cross-speaker style transfer. Ex-
perimental results have shown that Meta-Voice can achieve
speaker cosine similarity of 0.7 within 100 adaptation steps
for both cross-gender and intra-gender style transfer set-
tings. Future directions include investigating the use of meta
learning methods in totally end-to-end TTS models (i.e.,
text-to-waveform synthesis).
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