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Infinite families of fracton fluids with momentum conservation
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We construct infinite families of new universality classes of fracton hydrodynamics with momen-
tum conservation, both with multipole conservation laws and/or subsystem symmetry. We explore
the effects of broken inversion and/or time-reversal symmetry at the ideal fluid level, along with
momentum relaxation. In the case of one-dimensional multipole-conserving models, we write down
explicit microscopic Hamiltonian systems realizing these new universality classes. All of these hydro-
dynamic universality classes exhibit instabilities and will flow to new non-equilibrium fixed points.
Such fixed points are predicted to exist in arbitrarily large spatial dimensions.
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1. INTRODUCTION

Recent years have seen the discovery and classification of many new phases of quantum matter with elementary
excitations, dubbed fractons, which exhibit restricted mobility [1–26]. More recently, it has been noticed that these
same phases of quantum matter give rise to novel universality classes of hydrodynamic behavior [27], which arise due
to the conservation of exotic space-dependent conserved charges, such as the total dipole moment of a system [28–32],
or the charge along lines and/or planes in a higher-dimensional lattice [33, 34].
The first studies of such hydrodynamic behavior focused on the subdiffusion of a single conserved charge, which was

immediately relevant for both numerical studies of random quantum circuits [28, 30] as well as tilted Fermi-Hubbard
models in optical lattices [35, 36]. However, more recently, it has also been noted that these fracton fluids exhibit
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interesting and unexpected behavior when momentum is also conserved [37, 38]; in particular, hydrodynamics is
generally unstable in physically realizable dimensions [37].
In this paper, we will describe infinitely many new families of hydrodynamic models with “fractonic” conservation

laws, as well as momentum conservation. Our goal is not to systematically analyze any one of them (as [37] did for the
dipole-conserving fluid), but instead to draw some general lessons about the way in which momentum conservation
can modify fracton hydrodynamics. A detailed understanding of this issue will help lead to systematic field theories
which couple fractonic models to gravity (if and when this is even possible [39]): after all, the effective field theories of
hydrodynamics necessarily couple a momentum-conserving fluid to a spacetime or vielbein (when classical background
fields are accounted for) [40]. But as the field theoretic construction of a momentum-conserving universality class is
quite non-trivial [41–44], we will instead seek to analyze our new universality classes using simpler methods grounded
in classical Hamiltonian mechanics. We expect that our constructions will help to make progress on these more
challenging theoretical problems.
In Section 2, we use a continuum Hamiltonian formulation to describe fracton fluids with momentum conservation.

In Section 3, we will begin to discuss dissipative effects – in particular, the consequences of breaking momentum
conservation. We will both recover more conventional fractonic subdiffusion, and also argue for novel universality
classes that arise without time-reversal symmetry (which have not yet been discovered). In Section 4, we present one-
dimensional discrete Hamiltonian models which can form the basis of large-scale numerical simulations for theories
with quadrupole (and higher) conservation laws, and confirm that hydrodynamic quasinormal modes within ideal
hydrodynamics match with our more generic predictions.

2. IDEAL HYDRODYNAMICS IN THE CONTINUUM

We begin by developing a simple continuum Hamiltonian formalism for hydrodynamics with fractonic conservation
laws. This approach is more conceptually clean and will naturally work in all spatial dimensions d.

2.1. Poisson brackets

Let ρ(x) and πi(x) denote the charge density and d components of momentum density. We assume that the
coordinates x ∈ R

d live on the plane. Following [45], we define a classical Poisson bracket which correctly incorporates
the effects of translations on the classical fields:

{πi(x), ρ(y)} = ρ(x)∂iδ(x− y), (2.1a)

{πi(x), πj(y)} = (πj(x)∂i − πi(x)∂j)δ(x− y), (2.1b)

{ρ(x), ρ(y)} = 0. (2.1c)

Given some Hamiltonian H , we arrive at equations of motion by requiring that a variable φ evolves as

∂tφ = {φ,H}. (2.2)

Spatial locality demands that the Hamiltonian H be expressed as a local integral:

H =

∫

ddx H(ρ, πi), (2.3)

in terms of a Hamiltonian density H.
It is very useful to define

vi :=
πi

ρ
. (2.4)

Indeed, using (2.1), we notice that

{vi(x), ρ(y)} = ∂iδ(x− y). (2.5)

Because the commutator of vi and ρ leads to a field-independent object, we will find it most natural to write H in
terms of vi, rather than πi. The equations of motion for ρ and vi then become particularly simple:

∂tρ = −∂i
δH

δvi
(2.6a)

∂tvi = −∂i
δH

δρ
−

1

ρ
(∂ivj − ∂jvi)

δH

δvj
(2.6b)
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We will primarily focus on models where the latter term in the equation of motion for vi does not contribute.

2.2. Thermodynamics

The requirement that our theory is consistent with thermodynamics leads to additional insight into the nature of
these equations. In particular, note that (ignoring temperature and thermal hydrodynamic fluctuations, which will
not play much of a role in this paper although certainly of importance in principle):

dH = −µdρ− Vidπ
i = −µdρ− Vi(vidρ+ ρdvi). (2.7)

We emphasize that Vi is defined as the chemical potential of the ith component of momentum density, and that in
general Vi is very different from vi. Requiring that pressure P is the Legendre transform of H ,

dP = dH + d(µρ) + d(Viπ
i), (2.8)

we see that

dP = ρdµ+ πjdV
j . (2.9)

Note that (2.8) and (2.9) simply represent our first law of thermodynamics, with the important caveat that we are
not including energy density among the conserved modes to keep track of.1 It follows from (2.7) that

δH

δρ
= Viv

i + µ, (2.10a)

δH

δvi
= V iρ, . (2.10b)

These definitions are sufficient to show

− ∂tπi = −ρ∂tvi − vi∂tρ = ρ∂iµ+ πj∂iV
j + ∂j

(

πiV
j
)

. (2.11)

In particular, (2.9) gives

∂iP = ρ∂iµ+ πj∂iV
j (2.12)

so

− ∂tπj = ∂iP + ∂j(πiV
j). (2.13)

With the identification

Tij = δijP + πiVj , (2.14)

we ascertain that momentum is conserved and that

− ∂tπi = ∂jT
j
i . (2.15)

(2.14) represents the ideal hydrodynamic expression for the stress tensor, in agreement with [37]. The charge current
Ji = ρVi, but as in general fracton hydrodynamics [27], it is not appropriate to think of the current as a vector;
instead, one should think of currents in alternative representations of the spatial symmetry group. The practical
consequence of this is that Vi will (as we see) usually itself be a total derivative.

1 Alternatively, one may wish to consider states at constant entropy density, so that the Tds contribution to (2.7) vanishes.
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2.3. Enumerating conserved charges

For any integrable function f(x1, x2, . . . , xd), we define a “multipolar” charge associated to f as

Qf :=

∫

ddxf(x1, x2, . . . , xd)ρ. (2.16)

We say that Qf is conserved if

dQf

dt
:= {Qf , H} = 0. (2.17)

If F and G are conserved by the dynamics, it follows from the Jacobi identity that {F,G} is also conserved. This
places strong constraints on the kinds of fracton fluids that are allowed.
Define total momentum

Πi =

∫

ddxπi. (2.18)

Recalling the definition made in (2.1a), we immediately see that

{Qf , Πi} =

∫

ddx
∂f

∂xi
ρ = Q∂if . (2.19)

That is, provided that momentum is conserved by dynamics and a given Qf is conserved, every charge corresponding
to any number of partial derivatives of f is also conserved. We consider a number of examples where we demonstrate
that a particular Qf is conserved; based on the discussion above to provide the fact that derivatives of f also generate
conserved charges, and do not need to be listed explicitly. In particular, the conservation of a charge generated by a
polynomial of finite degree in xi implies that the charges generated by all lower–degree polynomials are also conserved.
Now consider the transformation

vi → vi + ∂if (2.20)

We see, under this transformation, H transforms as

δH =

∫

ddx
δH

δvi
∂if = −

∫

ddx f∂i
δH

δvi
= −{H,Qf}. (2.21)

Evidently, the charge generated by f is conserved if and only if H is invariant under the transformation (2.20). We
regard this fact as a consequence of the multipole algebra [46].
Pragmatically, this will allow us to construct kinetic terms which preserve charges generated by arbitrary f . We

can also see why vi is more natural than πi, since the “shift symmetry” demanded by Qf is realized in a simpler way
in (2.20). In particular, if Di is a collection of d differential operators (in d spatial dimensions) obeying

Di∂
if = 0, (2.22)

whenever Qf is conserved, then

T =
1

2
(Div

i)2 (2.23)

is a kinetic term which preserves the charge generated by f . In general it appears to be possible to “eyeball” the
sensible choices of Di which involve the fewest derivatives.

2.4. Multipole conservation

We wish to construct a family of models for each integer n that conserve the first n multipole moments. Pursuant
to this, choose some fixed polynomial fn of degree n and define

Qfn =

∫

ddx fnρ. (2.24)
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for each positive integer n. Explicitly, we desire to construct a kinetic motif which preserves all possible choices of
Qfn for fixed n (and all m < n). Pursuant to this, we define

Di1,i2,...,in = ∂i1∂i2 · · · ∂in . (2.25)

Since any polynomial of degree less than n is in the kernel of (2.25), we immediately see that

H =
ρ

2

(

Di1,i2,...,invin+1

) (

Di1,i2,...,invin+1
)

+
1

2
ρ2 (2.26)

preserves Qfn .
2 Without loss of generality, we are setting some prefactors to unity to simplify the resulting equations.

This system is in equilibrium when ρ is constant and πi any polynomial of degree less than n. We will now examine
the properties of this system near equilibrium with and without the breaking of space–inversion and time–reversal
symmetries.
We start with a system with both inversion and time-reversal symmetry. While it is possible to compute an explicit

expression for the stress tensor of this system, we elect to compute it only to linear order in perturbations from
equilibrium. We denote the first order deviation of some variable from its equilibrium value with a δ. From (2.10)
and (2.26), one can see that each Vi vanishes in equilibrium and therefore that only the pressure is nontrivial at first
order. Once again appealing to (2.10), one discovers that

∂tδρ = −(−1)n(∂i∂
i)n∂jδπ

j (2.27a)

∂tδπi = −∂iδρ (2.27b)

and, in turn, ω = ±|k|n+1. Hence we find “magnon-like” modes but with arbitrary weak dispersion relations.
A curious feature of these systems is that the momentum susceptibility

χPP ∼
πi

Vi
∼ k−2n. (2.28)

This generalizes the result of [37] to general multipole-conserving models with n > 1.

2.5. Breaking time-reversal symmetry in one dimensional models

For the sake of convenience, we now restrict ourselves to a single spatial dimension. We examine the properties
of the multipole conserving Hamiltonians (2.26) under the breaking of space–inversion and time–reversal symmetry.
Consider

H = HT + U , (2.29)

where HT is a time-reversal symmetric Hamiltonian and

U = γ∂m
x ρ∂n

xv. (2.30)

Let us note the symmetries of U . It is always time-reversal odd, because under time-reversal (T):

T · ρ = ρ, (2.31a)

T · v = −v. (2.31b)

Since under spatial inversion (or parity, P, in one dimension):

P · ρ = ρ, (2.32a)

P · v = −v, (2.32b)

we conclude that U is parity-odd/even whenever n+m is even/odd. These facts will prove useful below, because we
will want to consider the behavior of our theories when we either break time-reversal alone, or time-reversal along
with parity.

2 Note that we have not chosen the only way to contract indices above together. Enumerating the additional allowed tensors is straight-
forward (but tedious) and we will not do it here. See e.g. [27, 30, 31].
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P U = U P U = −U

n+m odd n+m even

ω = ±kn+1
(

1− γ2k2m
)

ω = kn+1(±1 + σγkm)

TABLE 1: Dispersion relation in linear response given by (2.33) at small k for broken T and broken/unbroken P. σ
is a fixed real number determined by n and m so that σ2 = 1.

The equations of motion for (2.29) are:

∂tv = −∂x

(

1

2
(∂n

x v)
2 + ρ+ γ(−1)m∂n+m

x v

)

∂tρ = −∂n+1
x (−1)n (ρ∂n

xv + γ∂m
x ρ) .

(2.33)

Expanding in perturbations from equilibrium, Fourier transforming, and solving the resulting relation between fre-
quency and wave number, we find

ω = kn+1
[

γλ(n,m)km ±
√

1− γ2λ(n+ 1,m)2k2m
]

(2.34)

with

λ(n,m) = cos
[π

2
(n−m)

]

cos[π(n+m)]. (2.35)

We will continue to use this definition of λ(n,m) for the remainder of this paper. The key features of λ(n,m) are that
λ(n,m) is only nonzero when n and m are of the same parity in Z2 and in this case, |λ(n,m)| = 1. In some sense,
the symmetry properties of the system at hand are captured entirely by λ and we find that precisely this function
appears in other examples.
Small k expansions of (2.34) are available in Table 1. We are primarily interested in m = 0 and m = 1 special

cases of U because inflating m provides corrections to the dispersion relation that are further and further from leading
order; however, depending on whether we want parity to be broken or not, we must consider both the cases m = 0
and m = 1.
Observe that when parity is preserved, the dispersion relations do not qualitatively change. Indeed, from Table 1,

the dispersion relation modified only by O(1) constants, or at subleading orders in derivatives – either of these effects
however could also arise from time reversal symmetric perturbations. However, when parity is broken, there is always
a “drift” term which is an odd integer power, such as γk2ℓ+1; this is intuitive, since ω(γ, k) = ω(−γ,−k).
It is instructive to consider particular instances of the above construction. First, we consider the dipole conserving

case with m = 1,

H =
ρ

2
(∂xv)

2 +
1

2
ρ2 + γ∂xρ∂xv. (2.36)

Notice that the symmetry–breaking term, ∂xρ∂xv, is odd under space inversion and odd under time–reversal symmetry.
Referring to (2.34), we see that the leading order dispersion relation acquires a sub–leading order drift term

ω = ±k2 − γk3. (2.37)

The choice m = 1 seems more interesting than m = 0 because the latter gives

ω = ±k2(1 − γ2) (2.38)

which is qualitatively similar to the unbroken case. By contrast, in the quadrupole conserving case with m = 0,

H =
ρ

2
(∂2

xv)
2 +

1

2
ρ2 + γρ∂2

xv (2.39)

leads to

ω = ±k3 + γk3. (2.40)

In this case, the leading order dispersion relation is already modified by the “drift” term proportional to γ.
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2.6. (Generalized) subsystem symmetries

We now turn our attention to a family of models which exhibit a so–called “subsystem symmetry” [33] (along with
some multipolar generalizations thereof). We wish to construct a Hamiltonian density which preserves some number
of multipole moments on every d−1 dimensional subset with a single fixed coordinate. In two spatial dimensions, this
would mean that charge, dipole moment, etc are fixed on every line of fixed x and every line of fixed y. Explicitly, in
this setting, we demand

d

dt

∫

x=a

dy yαρ =
d

dt

∫

y=b

dxxβρ = 0 (2.41)

for integers α and β less than or equal to some fixed positive integers n1 and n2 respectively. Recalling the discussion
above, this amounts to conserving any charges of the form

f(x, y) =

n1
∑

m1=0

ym1f1(x) +

n2
∑

m2=0

xm2f2(y). (2.42)

Keeping previous constructions in mind, we seek to manufacture a kinetic term invariant under (2.20). Defining

K := ∂xvy + ∂yvx, (2.43)

and

D2[v] := ∂n1

x ∂n2

y K, (2.44)

we see that D2[v] is sufficient for our purposes because

∂n1+1
x ∂n2+1

y f(x, y) = 0. (2.45)

Generalizing this to an arbitrary number of spatial dimensions is not complicated. The following Hamiltonian includes
both time-reversal breaking (γ) and the appropriate kinetic motifs to enforce the generalized subsystem symmetry
above:

H =
ρ

4
D2[v]

2 +
1

2
ρ2 +

γ

2
ρD2[v]. (2.46)

Using the equations of motion given in (2.6a), we find that within linear response:

∂tρ = (−1)n1+n2∂n1+1
x ∂n2+1

y (ρD2[v] + γρ)

∂tvi = −∂i

(

ρ+
γ

2
D2[v]

)

.
(2.47)

In order to obtain dispersion relations for this system, we must only consider that K vanishes in equilibrium and thus
dispersions are given by

− iω







δρ

δπx,k

δπy,k






=







−γ(−i)n1+n2kn1+1
x kn2+1

y −ik2n1+1
x k2n2+2

y −ik2n1+2
x k2n2+1

y

−ikx in1+n2 γ
2k

n1+1
x kn2+1

y in1+n2 γ
2k

n1+2
x kn2

y

−iky in1+n2 γ
2k

n1
x kn2+2

y in1+n2 γ
2k

n1+1
x kn2+1

y













δρk
δπx,k

δπy,k






. (2.48)

This gives

ω = kn1+1
x kn2+1

y

(

γλ(n1 + n2 + 1, 0)±
√

2− γ2λ(n1 + n2, 0)2
)

. (2.49)

This is very similar in form to the result given in (2.34). A notable difference is that, since K is even under space–
inversion and odd under time–reversal, inversion is broken when n1 + n2 is odd, or when n1 + n2 + 1 is even, which
is the circumstance wherein we see a drift term appear in (2.49).
The careful reader may notice that we could have defined a more general kinetic term K:

K := c1∂xvy + c2∂yvx (2.50)



8

without disrupting the symmetries of (2.46). Indeed, one may wonder if additional symmetries could be achieved by
particular choices of c1 and c2. Since partial derivatives commute, under (2.20),

K → K + (c1 + c2)∂x∂yf (2.51)

for generic f . Of course, if c1 + c2 = 0, then we effectively require

d

dt
Qf = 0 (2.52)

for every function f . This is only possible if ρ is static. This is to say that the choice of c1 and c2 is unimportant
qualitatively except in the case given by (2.52), in which case there is almost no dynamics. This is slightly curious,
since this choice corresponds to a motif where K is the analogue of “vorticity” in a regular fluid.
Another argument that one cannot simply add a “vorticity” kinetic term to H is as follows. Using (2.50),

∂i
δ

δvi
ρD2[vi]

2 = 2(−1)n1+n2(c1 + c2)∂
n1+1
x ∂n2+1

y (ρD2[vi]) . (2.53)

Of course, if c1 + c2 = 0, then this means that ∂tρ = 0. It is straightforward to verify then that K is static and
therefore that vi is static provided that ∂iρ also vanishes. In fact, in this particular setting, any function ρ(x) may
be chosen as the equilibrium value of ρ. Then, we find that

∂tvi = −∂iρ, (2.54)

which implies that the velocity field is in general a linear function of t, since the right hand side is independent of t.

3. TOWARDS DISSIPATIVE HYDRODYNAMICS

In this section, we will provide a few brief comments about the dissipative corrections to ideal hydrodynamics. These
are quite interesting, because following [37] they are expected to lead to new non-equilibrium universality classes which
generalize the Kardar-Parisi-Zhang fixed point [47, 48]. However, an exhaustive analysis of these effects is beyond this
paper: in particular, because with the breaking of spacetime symmetries, we do not yet have a complete understanding
of the allowed dissipative coefficients within hydrodynamics. Nevertheless, we will present some preliminary thoughts
about what we expect, and hope to address these questions more systematically in the near future.

3.1. Momentum relaxation

One way to predict dissipative corrections to hydrodynamics is to relax momentum in a self-consistent way. When
this is done, we expect to reproduce the subdiffusive theories of [27], albeit now with the possibility of including
inversion-breaking terms as well.
Let us restrict our attention only to models in a single space dimension for the sake of convenience. Suppose we

replace the equations of motion given in (2.6a) with

∂tρ = −∂i
δH

δvi

∂tvi = −∂i
δH

δρ
+ (∂ivj − ∂jvi)

δH

δvj
− βvi.

(3.1)

Note that β is the relaxation rate for momentum density. The dispersion relation of this system is given by

det

(

γ(−1)n+1(ik)n+m+1 + iω (−1)n+1(ik)2n+1

−ik γ(−1)m+1(ik)n+m+1 + iω − β

)

= 0 (3.2)

or equivalently

ω = −iβ + γλ(n,m)km+n+1 ±

√

k2n+2 − [kn+m+1γλ(n+ 1,m) + β]
2
. (3.3)
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As in conventional hydrodynamics in the presence of momentum relaxation [49, 50], there are two modes that exist,
with dispersion relations as k → 0:

ω ≈ −iβ, (3.4a)

ω ≈ γλ(n,m)km+n+1 −
ik2n+2

2β
. (3.4b)

The former corresponds to the finite relaxation rate for momentum density, while the latter corresponds to a subdif-
fusive mode for charge, with possible drift in the presence of inversion-breaking. We see that, again, the presence of
a leading order drift term depends on whether or not n+m is even, as in Table 1. Note that the power of the drift
term will generically be either kn+1 or kn+2 depending on whether n is even or odd.
This is actually somewhat non-trivial: as was emphasized already in [27], in general it is not the case that one

can write down the lowest order coefficients in the higher-rank currents Ji1···in+1
in a fracton fluid. Nevertheless, the

model above implies that one must be able to write down these leading order terms for dissipationless drift in the
presence of inversion breaking. In particular, we predict that for a dipole-conserving model, one can only write down
Jxx = ∂xρ when inversion and time-reversal are broken, yet when quadrupoles are conserved, we can write down
Jxxx = ρ!

3.2. Instabilities

In this subsection, we will predict the upper critical dimension below which hydrodynamics is unstable to fluctua-
tions. We again assume momentum is conserved. We will focus on multipole-conserving theories in the discussion for
simplicity, though similar power counting should hold for other models. Following [27] and the discussion above, we
predict that the dynamical critical exponent of dissipation is

z = 2n+ 2. (3.5)

This is important, as this will fix the relative scaling of time and space in our power-counting arguments. The
reason for this is that, as in the ordinary KPZ analysis, one wishes to study the breakdown of hydrodynamics at
the propagating wavefront of an excitation, which in a multipole-conserving theory, will have a dissipationless part
ω ∼ kn+1 + · · · .
The equations of motion are

∂tπi + ∂jT
j
i = 0, (3.6a)

∂tρ+ ∂i1∂i2 . . . ∂in+1
J i1i2...in+1 = 0. (3.6b)

We add noise in the form of τij and ξi1i2...in+1
so that the dynamics with fluctuations are related to those without by

Tij → Tij + τij (3.7a)

Ji1i2...in+1
→ Ji1i2...in+1

+ ξi1i2...in+1
(3.7b)

Above, τij and ξi1... are Gaussian white noise, with variances given by

〈τijτlm〉 = 2ηijlmδ(t)δd(x), (3.8a)

〈ξi1i2...in+1
ξj1j2...jn+1

〉 = Ci1···n+1j1...jn+1
δ(t)δd(x). (3.8b)

η and C here represent tensors proportional to dissipative coefficients within hydrodynamics. In fluctuating hydro-
dynamics, we must take these noise terms to be marginal. Combining (3.5) and (3.8), we find that τij ∼ ξi1···in+1

∼

kn+1+d/2. (By this power counting, note that ω ∼ k2n+2.) But since the dimensions of currents and densities must
be related, we can deduce that ρ ∼ k−2n−2+(n+1)ξ ∼ kd/2, while πi ∼ kd/2−n.
The leading order nonlinearity arises in the pressure P (ρ), and so when expanding the equations about equilibrium

(δρ = ρ− ρeq):

∂tδπi +
1

χ
∂xδρ+ λδρ∂xδρ+ λ′δρ2∂xδρ+ ∂xτ

xx + · · · = 0, (3.9a)

∂tδρ−A∂2n+1
x vx +

C

χ
∂2n+2
x δρ+ ∂n+1

x ξxx...x + · · · = 0, (3.9b)
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we find that the dimension of the coefficient λ ∼ kn+2+d/2k−1−d ∼ kn+1−d/2. Thus this is a relevant perturbation
whenever

d < 2n+ 2. (3.10)

This means that 2n+2 is the upper critical dimension of the momentum-conserving theory with n-pole conservation.
For large n, this can be arbitrarily large. Below this upper critical dimension, we expect that this theory will flow
towards a multipolar generalization of the KPZ fixed point, as was explained in detail for the case n = 1 in [37].

4. MICROSCOPIC MODELS IN 1D

In this section, we present a list of microscopic Hamiltonian models which exhibit both momentum and multipole
conservation in one spatial dimension. We will present these systems as Hamiltonian dynamical systems, and so
strictly speaking all of these models also have energy conservation. Following [37], it is possible to relax energy
conservation by adding suitable noise; one can also simply make some coefficients time-dependent if desired. These
constructions may be useful in actually carrying out large scale numerical simulations, in order to look for the non-
equilibrium fixed points predicted above. Unfortunately, due to the extremely slow relaxation predicted above, it will
be quite challenging to run the simulation for long enough to detect the new physics!

4.1. Constructing the Hamiltonian

Consider N particles, arranged on a one dimensional line, labeled by i = 1, . . . , N . Their position and momentum
are given by the canonically related xi and pi:

{xi, pj} = δij . (4.1)

In this language, we define the multipole moments

Qn =

N
∑

i=1

xn
i (4.2)

so that Q0 is total system charge, Q1 is the total dipole moment and so on. We also define

P =

N
∑

i=1

pi (4.3)

to be the total momentum of the system. We aim to construct a family of models which leave the first few multipole
moments and total momentum invariant under time evolution. Namely, we are looking for a Hamiltonian H such that

{H,P} = {H,Q0} = · · · = {H,Qn} = 0. (4.4)

Note that

{H,Qn} =

{

N
∑

i=1

xn
i , H

}

= n

N
∑

i=1

xn−1
i

∂H

∂pi
= 0. (4.5)

To help construct such an H , for positive integers n and m, let us define

Λn,i =





















pi pi+1 . . . pi+n

1 1 . . . 1

xi xi+1 . . . xi+n

x2
i x2

i+1 . . . x2
i+n

...
...

xn−1
i xn−1

i+1 . . . xn−1
i+n





















(4.6)
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and

Ln,i = detΛn,i. (4.7)

Since Ln,i is a sum of terms linear in momenta,

N
∑

j=1

xn−1
j

∂Ln,i

∂pj
= det





















xn−1
i xn−1

i+1 . . . xn−1
i+n

1 1 . . . 1

xi xi+1 . . . xi+n

x2
i x2

i+1 . . . x2
i+n

...
...

xn−1
i xn−1

i+1 . . . xn−1
i+n





















= 0 (4.8)

by linear dependence. In fact, we conclude that

{Qm, Ln,i} = 0, (m ≤ n). (4.9)

As a consequence, Ln,i is an invariant which we can use to start building invariant Hamiltonians.
It is instructive to simplify the form of Ln,i somewhat. Assuming that i ≤ j ≤ i+ n, the coefficient of pj in Ln,i is

given by

∂Ln,i

∂pj
= (−1)j−i det

















1 1 . . . 1 1 . . . 1

xi xi+1 . . . xj−1 xj+1 . . . xi+n

x2
i x2

i+1 . . . x2
j−1 x2

j+1 . . . x2
i+n

...
...

xn−1
i xn−1

i+1 . . . xn−1
j−1 xn−1

j+1 . . . xn−1
i+n

















. (4.10)

Noting that

am − bm = (a− b)

m
∑

l=1

am−lbl−1, (4.11)

and subtracting one column appearing in (4.10) from another, we see that for any pair of integers (a, b) so that

a 6= j 6= b and a 6= b with both i ≤ a, b ≤ i + n, xa − xb is a factor of
∂Ln,i

∂pj
. Realizing that Ln,i is linear in each

momenta, that the coefficient of each term in this multinomial (in xks) coefficient is ±1, and by power counting, we
deduce that, up to an overall sign,

Ln,i = ±

i+n
∑

j=i

pj
∏

i≤u≤v≤i+n
u,v 6=j

(xu − xv). (4.12)

We immediately see that Ln,i is invariant under xi → xi + c for all i, and therefore

{P,Ln,i} = 0. (4.13)

Thus Ln,i can be used to write down a multipole-conserving kinetic motif. Note that once n > 1, Ln,i is intrinsically
nonlinear.
Now, consider a Hamiltonian of the form

H = V (x1, . . . , xN ) +

N−n
∑

i=1

1

2
L2
n,i. (4.14)

So long as V is translation invariant, we are guaranteed that (4.4) is obeyed. A minimal Hamiltonian corresponds to
choosing

H =

N−1
∑

i=1

1

2
(1 + xi − xi+1)

2 +

N−n
∑

i=1

1

2
L2
n,i. (4.15)

Note that we have chosen our potential energy such that equilibrium corresponds to (e.g.) xi = i. For any suitable
choice of equilibrium, we must have that Ln,i vanishes in equilibrium. One can see from (4.8) that Ln,i vanishes at
pi = c for all i.
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4.2. Time-reversal breaking

It is straightforward to incorporate broken time reversal symmetry (and/or broken parity). Let Γi be a function of
only xks, which is invariant under translation and reasonably local. Then we can try to add the following time-reversal
breaking term to H :

H̃ = γ
N−n
∑

i=1

ΓiLn,i. (4.16)

Here γ is a constant. In order to preserve a chosen equilibrium, we require that

∂

∂xm
H̃
∣

∣

eq
=

∂

∂pm
H̃
∣

∣

eq
= 0 (4.17)

for any integer m. Given that Ln,i must vanish in equlibrium and that Γi is assumed to be independent of momenta,
these conditions are equivalent to

N−n
∑

i=1

Γi
∂Ln,i

∂pm

∣

∣

∣

∣

eq

=

N−n
∑

i=1

Γi
∂Ln,i

∂xm

∣

∣

∣

∣

eq

= 0. (4.18)

Again, the form of (4.8) guarantees that the second above inequality (namely conservation of momentum) holds and
we are left only with the condition that

N−n
∑

i=1

Γi
∂Ln,i

∂pm

∣

∣

∣

∣

eq

= 0. (4.19)

Recalling the expression given in (4.10), we find that

∂Ln,i

∂pm

∣

∣

∣

∣

xj=j

= (−1)m−i

(

n

m− i

) n−1
∏

j=1

j! (4.20)

There are a large class of Γi which may be chosen to satisfy (4.19) in equilibrium with (4.20). In particular, we can
take Γi to be a polynomial of degree < n in xi (or xi+j for some j 6= 0), because for any polynomial A of degree less
than n, for any m:

n
∑

i=0

(−1)i
(

n

i

)

A(m+ i) = 0. (4.21)

4.3. Quasinormal modes

Now suppose we wish to conserve up to the n-pole moment. Without concerning ourselves over whether or not H
would be convergent, we consider the infinite chain limit (N → ∞):

H =
1

2

∞
∑

i=−∞

(1 + xi − xi+1)
2 + L2

i + γΓiLi. (4.22)

Loosely, this is H+ H̃ from (4.14) and (4.16) respectively. There are a variety of suitable choices for Γi. As a minimal
choice, we will require that Γi be linear in positions and odd under space–inversion. Namely,

Γi = xi − xi−1. (4.23)

However, the following results are insensitive to the details of Γi. Indeed, assuming only that dΓi/dxj |eq is dependent
only on i − j is sufficient to ascertain dispersion relations up to constant coefficients. Writing xk and pk to be the
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discrete Fourier transform of xn and pn respectively, and defining

S = (1− e−ik)n (4.24a)

N =

∞
∑

l=−∞

eilk
∂Γ0

∂xl
(4.24b)

M = 4 sin2
(

k

2

)

(4.24c)

and we find that the equations of motion given by H are

∂tδxk = c2nM
nδpk + γcnS

∗N∗δxk (4.25a)

−∂tδpk = Mδxk + γcnSNδpk (4.25b)

with

cn =

n−1
∏

m=1

m!. (4.26)

For our particular choice of Γi,

N = 1− e−ik. (4.27)

Using, (4.25), we can produce an exact dispersion relation:

ω = cnγIm[SN]± cn

√

4n+1 sin2n+2(k/2)− γ2Re[SN]2. (4.28)

It follows immediately that ω is real valued for sufficiently small γ. Momentum conservation guarantees that N
vanishes at vanishing k. This fact immediately demonstrates that the leading k behavior of ω cannot be reduced by
breaking symmetry in this manner.
Expanding, now, in small k, we find that

S ≈ (ik)n +
n

2
kn+1, (4.29a)

N ≈ ik +
k2

2
, (4.29b)

M ≈ k2. (4.29c)

Therefore,

Im(SN) ∼

{

kn+2 n odd

kn+1 n even
, (4.30a)

Re(SN) ∼

{

kn+1 n odd

kn+2 n even
. (4.30b)

Observe that the propagating modes have, at leading order, ω ∼ kn+1. When n is even, we observe that the drift
term in (4.28) must be subleading. These facts are precisely in agreement with our theory in Section 2.

5. CONCLUSIONS

To summarize, we have described infinitely many new universality classes of fracton hydrodynamics with both
momentum conservation and multipolar or subsystem conservation laws. We expect that all of these universality
classes are – in sufficiently low dimension – unstable, similar to what was found in [37] for fluids with dipole and
momentum conservation. The models presented in the previous section can serve as concrete starting points for
systematic numerical investigations of these new non-equilibrium fixed points in one-dimensional models; however,
we caution that due to the very large dynamical critical exponents expected for each new universality class, the time
scales required to simulate the dynamics may be quite long (and thus require many computational resources).
Beyond more direct investigations of dissipative dynamics in these new universality classes, which we expect will

largely follow [37, 41], we believe that it is particularly important to understand better the role of spacetime symmetries
(such as time-reversal) in fracton hydrodynamics. The models we constructed in this paper will provide a valuable
starting point for any such future investigation, with or without momentum conservation.
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