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THE QUADRIC ANSATZ FOR THE mn–DISPERSIONLESS KP

EQUATION, AND SUPERSYMMETRIC EINSTEIN–WEYL SPACES

MACIEJ DUNAJSKI AND PRIM PLANSANGKATE

Abstract. We consider two multi–dimensional generalisations of the dispersionless
Kadomtsev-Petviashvili (dKP) equation, both allowing for arbitrary dimensionality, and
non–linearity. For one of these generalisations, we characterise all solutions which are
constant on a central quadric. The quadric ansatz leads to a second order ODE which
is equivalent to Painleve I or II for the dKP equation, but fails to pass the Painlevé test
in higher dimensions. The second generalisation of the dKP equation leads to a class
of Einstein–Weyl structures in an arbitrary dimension, which is characterised by the
existence of a weighted parallel vector field, together with further holonomy reduction.
We construct and characterise an explicit new family of Einstein–Weyl spaces belonging
to this class, and depending on one arbitrary function of one variable.

1. Introduction

Let u : U −→ R, where U is an open set in R
N with coordinates xa = (x, y1, . . . , yn, t).

The mn–dispersionless Kadomtsev-Petviashvili (mn–dKP) equation [17, 20] is given by

uxt − (umux)x = △u, (1.1)

where △ = ∂/∂y1
2 + · · · + ∂/∂yn

2 and ux = ∂xu, etc. We refer the readers to [20] for
a list of references and applications of equation (1.1) ranging from non-linear optics and
acoustics to geometry for different values of integers (m,n).

The aim of this paper is to construct solutions to (1.1) which are constant on central
quadrics Q ⊂ R

N , i. e. there exists a symmetric N ×N matrix M = M(u) such that

Mab(u)x
axb = C, where C = const, and a, b = 1, . . . , N = n+ 2. (1.2)

If m = n = 1, then (1.1) becomes the standard dKP equation, and the ODE for the
matrix M(u) resulting from the quadric ansatz (1.2) is either solvable by quadratures,
or is equivalent to Painlevé I or Painlevé II (this last case being generic) [10]. In §2 we
shall perform the analysis of the quadric ansatz for (1.1). The non–generic linearisable
case leads to some explicit forms of M(u), which we shall present in §3.1. The other
two cases lead to 2nd order ODEs generalising Painlevé I and II, which however fail to
pass the Painlevé test (Theorem 3.3). Thus, in line with the integrability dogma [1],
we conclude that (1.1) is only integrable if m = n = 1 (the dKP case), or n = 0 (the
Riemann equation solvable by the method of characteristics), or m = 0 (the linear wave
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2 MACIEJ DUNAJSKI AND PRIM PLANSANGKATE

equation). It is known [9] that the dKP equation characterises a class of Einstein–Weyl
metrics in 2 + 1 dimensions which admit a parallel weighted vector field. While this
correspondence does not extend to (1.1) for general (m,n), in §4 we shall demonstrate
that a closely related equation

uxt − (uux)x +
2(n− 1)

n
u2
x = △u, (1.3)

characterises a class of EW structures admitting a parallel null weighted vector field, and
with a further assumption on the holonomy of the Weyl connection. Our main result in
§4 is Theorem 4.1 characterising an explicit family of Einstein–Weyl spaces in arbitrary
dimension.

Acknowledgements. MD has been partially supported by STFC grants ST/P000681/1,
and ST/T000694/1. PP is grateful for travel support from the Applied Analysis Research
Unit at PSU, and to CIRM in Lumini, where some of this research has been carried over
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Galaev for helpful correspondence.

2. The quadric ansatz

The quadric ansatz (1.2) is applicable to equations of the form

∂

∂xa

(
bab(u)

∂u

∂xb

)
= 0, (2.1)

where b(u) is a symmetric N × N matrix. While the ansatz can be traced back to
some works of Darboux [4], in the ‘modern’ times it has been applied to a class of
dispersionless, as well as linear PDEs: the SU(∞)–Toda equation [21], the dKP equation
[10], the Laplace equation [8], as well as a general class of equations integrable by the
method of hydrodynamic reductions [13]. The idea is to find and solve an ODE for M(u)
(and keep in mind that this ODE is not a symmetry reduction of the underlying PDE,
and the corresponding solutions in general do not admit any Lie–point, or generalised
symmetries). The ODE arises as follows: Differentiating (1.2) implicitly w.r.t. xa and
substituting the resulting expression for ∂u/∂xa into (2.1) yields a matrix ODE

gM′ = MbM, where ′ =
d

du

and the function g = g(u) is defined by 2g′ = Tr(bM). Setting N = −M−1, this matrix
ODE simplifies to

gN′ = b, (2.2)

and one finds that

g2 detN = ζ, (2.3)

where ζ is an arbitrary constant.
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From now, we shall regard the system (2.2, 2.3) as the reduction of (2.1) under the
quadric ansatz (1.2). Solving this system for the components of N gives the matrix M,
and thus leads to an implicit solution to the nonlinear PDE (2.1) of the form (1.2), which
is therefore constant on a central quadric.

The mn-dKP equation (1.1) is of the form (2.1), with

b(u) =




−um 0 · · · 0 1
2

0 0
... −1n

...
0 0
1
2

0 · · · 0 0




, (2.4)

where 1n denotes the n× n identity matrix. Equation (2.2) then implies that

N =




Y β1 · · · βn Z
β1 ε1
... X

...
βn εn
Z ε1 · · · εn φ




, (2.5)

where βi, εi, i = 1, . . . , n, and φ are constants, Y and Z are functions of u, and X is an
n × n symmetric matrix, whose diagonal components X1, X2, . . . , Xn are functions of u
and off-diagonal components αij, i > j are all constants. Equation (2.2) also implies that

Y ′ = −g−1um, Xi
′ = −g−1, Z ′ = (2g)−1.

The last equation gives g in terms of Z ′, so that

Y ′ + 2umZ ′ = 0, (2.6)

and
X(u) = −2Z(u)1n +X0 (2.7)

where X0 is a constant matrix with diagonal components γi and off–diagonal components
αij . The equation (2.3) becomes

detN = 4 ζ (Z ′)
2
, (2.8)

and, together with the form (2.5) gives an algebraic expression for Y in terms of Z,Z ′

and constants. Substituting this expression into (2.6) yields a second order scalar ODE
for Z of the form

Z ′′ = A(Z) (Z ′)
2
+B(Z) + C(Z)um, (2.9)

where A,B and C are rational functions of Z, of degrees respectively n, 2n + 1 and n,
which will be determined in §3.

If this equation can be solved, then reversing the steps above we can reconstruct the
matrix M(u), and thus find an explicit solution to (1.1) constant on a central quadric.
All solutions in the class (1.2) arise from this construction.
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2.1. Eliminating the constants. To make further progress we exploit some symmetries
of the mn–dKP equation (1.1) to eliminate some of the constants in (2.5). If m = 1,
then the transformation

xa → x̂a = Aa
bx

b, where A =




1 c1 c2 . . . cn k
1 0 . . . 0 2c1

1
. . .

... 2c2
. . . 0

...

0 1 2cn
1




(2.10)

together with

u → û = u+ c21 + c22 + · · ·+ c2n − k, (2.11)

where ci, i = 1, . . . , n, and k are constants is a symmetry of (1.1), which also preserves
the quadric ansatz (1.2) with a replacement

M(u) → M̂(û) = (A−1)TM(u)A−1, or N̂(û) = AN(u)AT . (2.12)

Using (2.12) we can set some of the constants (ε, β, α, γ) to 0. There are three cases to
consider depending on whether φ vanishes, or not.

3. Solutions

3.1. Case I. Assuming φ = εi = 0 for i = 1, . . . , n leads to the quadric ansatz equations
which are solvable by quadrature,

u = 2

∫ ( −ζ

Z2 detX

) 1

2

dZ, Y = −2

∫
um dZ

du
du. (3.1)

To derive these formulae note that in this case det(N) is independent on Y . Therefore
(3.1) arises from

4ζ(Z ′)2 = −Z2det(X) (3.2)

which is (2.8), where det(X) is a polynomial of degree n in Z. If n = 1 or 2, then the
corresponding expression for u is given by elementary functions. Two examples of such
solutions are given below:

3.1.1. (m,n) = (2, 1).

1

tan2 u

[
y2

4
+

(
2 sin2 u cosu

(
cosu ln(cosu) + u sin u

)
− u2 sin2 u+ δ2 cos4 u

)
t2

− δ(cos2 u)yt− (sin2 u)xt

]
= C, where δ = const. (3.3)
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3.1.2. (m,n) = (1, 2).

(4aeau+1)
[
4a3(y21+y22)+4e−au

(
a2xt−at2 ln(e−au+4a)

)
−e−2aut2

(
au+ln(e−au+4a)

)]
= C,

(3.4)
where a > 0 is a constant.

3.1.3. m = 1. There is also a simple class of solutions with m = 1, and arbitrary n. To
find it suppose that all constants in the matrices N and X0 are zero. Then equation (3.2)
with ζ = (−1)n+12n−2 becomes (Z ′)2 = Zn+2, which after integrating (3.1) gives

u
(
4u(lnu) t2 − 4xt + y21 + y22

)
= C, n = 2,

u2/n

(
8

n− 2
u t2 − 4xt+

n∑

i=1

y2i

)
= C, n 6= 2.

3.2. Case II. We shall now assume that the constant φ in (2.5) is zero, but at least one
of the εis is non–zero. If m = 1, the symmetry (2.10) can be used to eliminate all βs and
γ1. Then (2.8) with Rn(Z) ≡ det(X) gives

4 ζ (Z ′)
2
= Y Qn−1(Z)− Z2Rn(Z), where Qn−1(Z) ≡ det




ε1

X
...
εn

ε1 · · · εn 0


 .

(3.5)
Differentiating (3.5) with respect to u and substituting Y ′ = −2uZ ′ gives a second order
ODE for Z of the form (2.9) where m = 1, and

A(Z) =
1

2

d

dZ
(lnQn−1) , B(Z) =

1

8ζ

(
Z2Rn

d

dZ
(lnQn−1)−

d

dZ
(Z2Rn)

)
, C(Z) = −Qn−1

4ζ
.

Proposition 3.1. Let φ = 0, and at least one of the εis is non–zero in (2.5). If (m,n) =
(1, 1), the equation (2.9) is equivalent to Painlevé I. For m = 1, and n > 1 equation (2.9)
does not posses the Painlevé property.

Proof. For an ODE to have the Painlevé property, its movable singularities can only be
poles. Thus we follow the algorithm in [1] to determine whether the general solution of
(2.9) admits a movable branch point. For convenience we first conduct the Painlevé test
in the special case, where the constant matrix X0 is zero, so that X = −2Z1n, and (with
the definition ε2 ≡ ε1

2 + · · ·+ εn
2)

2ζ Z ′′ = ζ
(n− 1)

Z
(Z ′)

2 − 3(−2)n−2Zn+1 − ε2(−2)n−2Zn−1u. (3.6)

Assume that the dominant behaviour of a solution near a movable singularity u0 is of
the form

Z ≈ a(u− u0)
p, (3.7)
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where a and p are constants. Then substitute (3.7) into (3.6) and balance the power of
u − u0 of two or more terms. If the balancing terms are dominant, i.e. their power of
u − u0 is most negative, then other terms can be ignored, and one can solve for a. For
equation (3.6), it turns out that the only possible value of p is p = − 2

n
, which is not an

integer for n > 2 and suggests a movable algebraic branch point. Moreover, this result
extends to the general case (2.9). This is because the assumption that leads to the special
case (3.6) keeps only the highest degree terms in Qn−1 and Rn. The presence of the lower
degree terms in the rational functions A(Z), B(Z) and C(Z) will not change the possible
dominant behaviour in the first step of the Painlevé test. Therefore we conclude that
equation (2.9) does not posses the Painlevé property for n > 2.

If n = 1, then (3.6) and (2.9) are equivalent, after constant rescalings of dependent
and independent variables, to the Painlevé I equation.

If n = 2, with βs and γ1 eliminated by the symmetry for m = 1, then (2.9) becomes

4ζ Z ′′ =
4ζ

2Z + δ
(Z ′)

2
+

4Z4 − 2γZ3 − α2Z2

2Z + δ
− 8Z3 + 3γZ2 + α2Z − ε2(2Z + δ)u, (3.8)

where we let ε2 ≡ ε21+ε22, γ ≡ γ2 and δ ≡ 2αε1ε2−γε2
1

ε2
1
+ε2

2

. Here α is the off–diagonal component

of the matrix X0. Substituting (3.7) in (3.8), the only possibility is (p, a) = (−1, (−ζ)1/2).
Let −ζ = κ2, and take a = κ. The remaining steps in the algorithm will determine
whether the general solution of (3.8) can be represented near a movable singular point
u0 by the Laurent series, with the leading term κ

(u−u0)
. It turns out that to satisfy (3.8)

one needs to introduce a logarithmic term, which gives

Z(u) ≈ κ

(u− u0)
+
γ

8
−32ε2u0 − 3γ2 − 8α2

192κ
(u−u0)+

(
c+

ε2

8κ
ln(u− u0)

)
(u−u0)

2+O((u−u0)
2),

where c is an arbitrary constant. The logarithmic term indicates a logarithmic branch
point, and this shows that (3.8) does not posses the Painlevé property. Hence we conclude
that equation (2.9) does not posses the Painlevé property for m = 1, n > 1.

�

3.3. Case III. This is the generic case, where we assume that φ 6= 0 in (2.5). If
m = n = 1, then the ODE resulting from the quadric anzats reduces to Painlevé II [10].
For general n, and m = 1 the symmetry (2.10) can be used to eliminate γ1 and all εs.
Equation (2.8) takes the form

4 ζ (Z ′)
2
= (φY − Z2)Rn(Z) +Qn−1(Z), (3.9)

where Rn(Z) = detX, and here Qn−1(Z) = −φ
∑n

i=1 βi detBi with Bi denoting the ma-
trices obtained from replacing the ith column ofX (2.7) by the column vector (β1, . . . , βn)

T .
Solving this for Y in terms of Z and Z ′, and differentiating to eliminate Y ′ by Y ′ = −2uZ ′
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gives (2.9) where m = 1, and

A(Z) =
1

2

d

dZ
(lnRn) , B(Z) =

1

8ζ

(
dQn−1

dZ
−Qn−1

d

dZ
(lnRn)− 2ZRn

)
, C(Z) = − φ

4ζ
Rn.

Proposition 3.2. Let φ 6= 0 in (2.5). If (m,n) = (1, 1), the equation (2.9) is equivalent
to Painlevé II. For m = 1 and n > 1 equation (2.9) does not posses the Painlevé property.

Proof. The result is obtained by first performing the Painlevé test on the special case
case where X = −2Z 1n (i.e. assuming X0 = 0 in (2.7)) and (2.9) is

2ζ Z ′′ =
nζ

Z
(Z ′)

2
+ (−2)n−1

(
Zn+1 +

φβ2

4
Zn−2

)
+ (−2)n−1φZnu, (3.10)

where β2 ≡ β2
1 + · · · + β2

n. When n = 1, then, after a coordinate transformation [10]
this family of ODEs (3.10) gives the Painlevé II equation. For n > 2, the ODE (3.10)
fails the test at the first step of finding the dominant behaviour of the general solution,
where it displays the dominant term of the form a(u − u0)

p with p = − 2
n
. For n > 2,

this indicates an algebraic branch point of order − 2
n
, hence (3.10) does not have the

Painlevé property. Then we argue that this result extends to the general form (2.9) as
(2.9) differs from (3.10) only by the lower degree terms in the polynomials appearing
in the rational functions A(Z), B(Z) and C(Z), and these will not affect the dominant
behaviour analysis.

For n = 2, the form of (2.9) is still quite complicated by the presence of the constants α

and γ = γ2 in the matrix X. After a translational change of variable Z → Ẑ = Z − γ/4,
and then dropping the hat, (2.9) becomes

ζ Z ′′ =
ζZ

Z2 − ρ2
(Z ′)

2−(Z+
γ

4
)(Z2−ρ2)−φβ2

4
(2Z+δ)

Z

Z2 − ρ2
+
φβ2

4
−φ(Z2−ρ2)u, (3.11)

where β2 = β2
1 + β2

2 , δ =
4αβ1β2+γ(β2

2
−β2

1
)

2β2 and ρ2 =
4α2 + γ2

16
.

The Painlevé test then shows that the general solution of (3.11) has a logarithmic
branch point

Z(u) ≈ κ

(u− u0)
− φu0

2
+

γ

8
+

(
c+

φ

3
ln(u− u0)

)
(u− u0) +O(u− u0),

where κ =
√
−ζ and c and u0 are arbitrary constants. Hence we conclude that (2.9) does

not have the Painlevé property for m = 1, n = 2.

�

If m > 1, there is no obvious symmetry to eliminate the constants in N. Nevertheless,
the Painlevé analysis shows that the case m = n = 1 is the only case that the quadric
ansatz reduction possesses the Painlevé property.
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Theorem 3.3. The quadric ansatz reduction of the mn-dKP equation does not posses
the Painlevé property unless m = n = 1.

Proof. The quadric ansatz reduction is of the form (2.9), where A(Z) and B(Z) are
rational functions of degrees respectively n and 2n + 1, and C(Z) is a polynomial of
degree n. The non–zero constants in N for m ≥ 1 only contribute to the lower degree
terms in the polynomials appearing in (A(Z), B(Z), C(Z)) and thus will not change the
dominant behaviour of a solution near a movable singularity u0. Also, the term C(Z)um is
not leading for any m. Therefore, from the proofs of Propositions 3.1 and 3.2 we conclude
that for n > 2, and any m ≥ 1 the general solution has a movable algebraic branch point
of order − 2

n
.

It remains to settle the case where n = 1 or 2, and m > 1. Performing the Painlevé
test in these cases we find that the general solution exhibits a logarithmic branch point.
In particular, we have the following form of the general solution:
Case II. φ = 0 and at least one of the εis is non–zero in (2.5).
n = 1 :

Z(u) ≈ 8ζ

(u− u0)2
+

γ

6
− 12ε(um

0 ε+ β)− γ2

480ζ
(u− u0)

2 − mum−1
0 ε2

24ζ
(u− u0)

3

+

(
c+

m(m− 1)um−2
0 ε2

56ζ
ln(u− u0)

)
(u− u0)

4 + O((u− u0)
4)

n = 2 :
Z(u) ≈ κ

(u− u0)
+

γ1 + γ2
8

− 32(um
0 (ε

2
1 + ε22) + β1ε1 + β2ε2)− 8α2 − 3(γ2

1 + γ2
2) + 2γ1γ2

192κ
(u− u0)

+

(
c+

mum−1
0 (ε21 + ε22)

8κ
ln(u− u0)

)
(u− u0)

2 + O((u− u0)
2)

Case III. φ 6= 0 in (2.5).
n = 1 :

Z(u) ≈ 8ζ

(u− u0)2
− 2

3
um
0 φ +

γ

6
− mum−1

0 φ(u− u0)

+

(
c+

2m(m− 1)um−2
0 φ

5
ln(u− u0)

)
(u− u0)

2 + O((u− u0)
2)

n = 2 :
Z(u) ≈ κ

(u− u0)
− um

0 φ

2
+

γ1 + γ2
8

+

(
c+

mum−1
0 φ

3
ln(u− u0)

)
(u− u0) +O(u− u0),

Here, κ =
√
−ζ, c is an arbitrary constant, and γ ≡ γ1 for n = 1.

�

4. Einstein–Weyl geometry

There is a, by now well established, link between 2+1 dimensional Einstein–Weyl
geometry, and dispersionless integrable systems [22, 9, 7, 2, 11, 14]. In particular, the
Manakov–Santini equation [16] is known to be the general local normal form of the
Einstein–Weyl equations [12].
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In this section we construct a Weyl structure in an arbitrary dimension N = n + 2,
such that the Einstein–Weyl condition reduces to a single dispersionless PDE. In the case
when n = 1 this PDE is the dKP equation, and the Einstein–Weyl structure is that of
[9], and for n > 1 the PDE is (1.3). The main result (Theorem 4.1) is an explicit class
of Einstein–Weyl spaces depending on one arbitrary function of one variable.

Recall [19] that a Weyl structure on a manifold U (which is really just an open set in
R

N , as our considerations are local) consists of a conformal structure [h] represented by a
metric h, and a torsion–free connection D which is compatible with [h] in the sense that
Dh = ν ⊗ h for some one–form ν. This compatibility is invariant under the conformal
change of metric:

h → Ω2h, ν → ν + 2d(lnΩ), (4.1)

where Ω : U → R
+. A Weyl structure is said to be non–closed if dν 6= 0, or equivalently

if D is not a Levi–Civita connection of any metric in the class [h]. The Einstein–Weyl
(EW) equations hold if the symmetrised Ricci tensor of D is proportional to some metric
h ∈ [h]. The EW equations can be regarded as a system of PDEs for the representative
metric h, and the associated one–form ν:

χab ≡ Rab +
N − 2

2
∇(aνb) +

N − 2

4
νaνb −

1

N
hab

(
R +

N − 2

2
∇cν

c +
N − 2

4
νcν

c

)
= 0,

(4.2)
where ∇, Rab and R are respectively the Levi–Civita connection, the Ricci tensor, and
the Ricci scalar of h. A tensor V is said to be of weight k, if V → ΩkV under the
conformal rescaling (4.1). If V is a vector field of weight k, then the weighted covariant
derivative of V with respect to the Weyl connection is given by

D̃aV
b = ∇aV

b − 1

2
νcV

cδa
b − 1

2
(k + 1)νaV

b +
1

2
Vaν

b. (4.3)

The mn–dKP equation (1.1) can be written in the form d ⋆ du = 0, where the Hodge
endomorphism ⋆ : Λ1 → Λn+1 corresponds to the metric (note that the inverse metric
corresponds to the matrix b(u) in (2.1))

h = dy21 + · · ·+ dy2n − 4dxdt− 4umdt2. (4.4)

In the case m = n = 1 there exists a one–form ν = −4uxdt such that the Einstein–Weyl
condition reduces to the dKP equation [9]. It turns out that there is no one–form which,
together with the metric (4.4) gives themn–dKP equation if n > 1. We shall instead take
the metric (4.4) with m = 1 (which can always be achieved by re-defining the function
u) as a starting point. It can then be verified by an explicit computation of (4.2) that
for the Weyl structure represented by

h = dy21 + · · ·+ dy2n − 4dxdt− 4udt2, ν = −4

n
uxdt (4.5)
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with x0 := t, xi := yi, i = 1, . . . , n, and xn+1 := x, all components of χab except χ00

vanish identically. The resulting Einstein–Weyl equation χ00 = 0 is a scalar PDE (1.3)

uxt − (uux)x +
2(n− 1)

n
u2
x = △u.

Moreover, the vector field V = ∂/∂x is null, and covariantly constant with weight −n
2

with respect to D. Equation (1.3) is the dKP equation if n = 1, or its generalisation
[18, 5] if n > 1.

This class of Einstein–Weyl structures falls into a larger class of solutions which admit
a parallel weighted spinor [5]. The particular case (4.5) corresponds to Example 4 in
this reference. To understand a coordinate invariant characterisation of (4.5), assume
that an (n+2)–dimensional Weyl space represented by a pair (h, ν) admits a covariantly
constant null vector field with weight −n/2. Then the one–form V = h(V, ·) dual to V
satisfies

dV =
4− n

4
ν ∧V. (4.6)

The Frobenius theorem implies that there exist functions (v, t) on U so that V = vdt.
We shall use t as one of the local coordinates on U . The existence of canonical (up to
some freedom) remaining (n + 1) coordinates (y1, . . . , yn, x) is also guaranteed by the
Frobenius theorem: the distribution V of null curves is spanned by V = ∂/∂x, and its
integrable orthogonal complement V⊥ is spanned by {∂/∂x, ∂/∂y1, . . . , ∂/∂yn}.

If n 6= 4 (so that the dim(U) 6= 6), the we can rescale the metric so that V = −2dt
and

h = f ij dyidyj − 4dxdt+ 2Aidyidt− 4udt2, ν = bdt,

where the functions f ij, Ai, b and u at this stage depend on all coordinates. Going back
to (4.3) with V = ∂/∂x and k = −n/2, and considering its symmetrised part shows that
f ij and Ai do not depend on x. Moreover a coordinate transformation yi → ŷi(yj, t)
together with a redefinition of f ij(y, t) and u(x, y, t) can be used to set Ai = 0. The
parallel weighted condition on V also imples that b = −(4/n)ux.

The final step reducing the functions f ij to the identity n×n matrix is achieved in [5]
by considering the connection induced by D on the screen bundle (see [15])

S ≡ V⊥/V ⊂ TU, (4.7)

and restricting its holonomy to R⊗ Id (equivalently the so(n) projection of the holonomy
algebra of this connection is zero). Now the metric and the one–form are given by (4.5),
and the Einstein–Weyl equations reduce to1 (1.3).

To this end we shall construct an explicit subclass of examples of (4.5) and (1.3)
under the additional assumption that the screen bundle distribution V⊥/V generates an

1In the special case n = 4, we start–off with the metric (4.5), and the general one–form ν and impose
the weighted parallel conditon on V = ∂/∂x to reduce the one–form ν to (4.5).
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isometric action of Rn or T n on the Einstein–Weyl space. This will be done by linearising
(1.3) by a contact transformation.

Theorem 4.1. Let (h, ν) be an (n + 2)–dimensional Einstein–Weyl structure U which
admits a parallel weighted null vector field V with weight −n

2
, and such that

• The connection on the screen bundle S defined by (4.7) induced by D has holonomy
R⊗ Id.

• The sections of the screen bundle S generate the isometric action of the group of
translations Rn on U .

Then there exits local coordinates (t, yi, s) such that the one–form V ≡ h(V, ·) = −2dt,
the isometric action is generated by {∂/∂y1, . . . , ∂/∂yn} and the Einstein–Weyl structure
is given by

h = dy1
2 + · · ·+ dyn

2 +
4G(s)

(t− s)
n

n−2

dsdt, ν = − 4

(n− 2)(t− s)
dt if n 6= 2

h = dy1
2 + dy2

2 + 4G(s)e−stdsdt, ν = −2sdt if n = 2, (4.8)

where G = G(s) is an arbitrary function of one variable.

Proof. The existence of the parallel weighed null vector field, and the holonomy reduc-
tion in Theorem 4.1 implies - as explained above - that the metric, and the one–form
take the local normal form (4.5). The additional symmetry assumption in the Theorem
then implies that u = u(x, t), and the Einstein–Weyl condition (1.3) becomes

uxt − uuxx + κux
2 = 0, where κ =

n− 2

n
. (4.9)

Rewrite (4.9) as a differential ideal

ω1 ≡ du− uxdx− utdt = 0, (4.10)

ω2 ≡ dux ∧ dx+ udux ∧ dt+ κux
2dt ∧ dx = 0

and set

H = u− xux, p = ux

Rewrtting ω1 (4.10) as

dH = utdt− xdux

= Htdt+Hpdp

gives

x = −Hp, ut = Ht, u = H − pHp (4.11)

where now H = H(p, t). Substituting (4.11) into ω2 in (4.10) gives

Hpt + pHp −H − κp2Hpp = 0. (4.12)
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The corresponding Einstein–Weyl structure (4.5) takes the form

h = dy1
2 + · · ·+ dyn

2 + 4F (dpdt+ κp2dt2), ν = −4

n
pdt, where F ≡ Hpp. (4.13)

This only depends on the second derivatives of the function H , so the function F is
constrained by one PDE obtained from differentiating (4.12) with respect to p:

Ft + (1− 2k)pF − κp2Fp = 0. (4.14)

This PDE can be solved explicitly, and the form of the general solution depends on
n = 2/(1− k):

F =

{
p−

n−4

n−2G
(
t− n

(n−2)p

)
if n 6= 2,

G(p)e−pt, if n = 2,
(4.15)

where in both cases G is an arbitrary function of one variable. Introducing a new variable
s by

s =

{
t− n

(n−2)p
if n 6= 2,

p if n = 2,

absorbing the overall constant into the arbitrary function G, and adopting (yi, t, s) as
local coordinates on U yields (4.8).

�

5. Conclusions

We have demonstrated that solutions to the mn–dKP equation (1.1) constant on cen-
tral quadrics are characterised by solutions to a 2nd order scalar ODE. In the generic case
this ODE is of Painlevé type if m = n = 1, but does not posses the Painlevé property
if m · n > 1. This rules out the integrability of (1.1) for these values of m,n. There are
other approaches to dispersionless integrability of (1.1) discussed in [20], and in particu-
lar Boris Kruglikov informed us that the approach taken in references [14, 3] could also
be used to rule out non–integrable cases, and perhaps narrow them down to m = n = 1.

Equation (1.1) with n = 1 has been studied numerically in [6], where an asymptotic
description of a gradient catastrophe in generalised KP equation was conjectured, and
related to special solutions of Painlevé I. In [20] the analytical approach to this shock
formation has been presented. It would be interesting to understand whether our explicit
solutions shed more light on these shock formations.

In §4 we have related another multi–dimensional generalisation of the dKP equation
(1.3) to a class of Lorentzian Einstein–Weyl structures. This class admits a parallel
weighted null vector, and thus a parallel weighted spinor which makes it interesting in
both physics (supersymmetric solutions to Einstein–Weyl equations [18]), and geometry,
where the existence of such spinor corresponds to a holonomy reduction of the Weyl
connection [5].
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[11] Dunajski, M. and Kryński, W. (2014) Einstein–Weyl geometry, dispersionless Hirota equation and
Veronese webs arXiv:1301.0621. Math. Proc. Camb. Phil. Soc. 157, 139-150 8

[12] Dunajski, M., Ferapontov, E. and Kruglikov, B. (2015) On the Einstein-Weyl and conformal self-
duality equations. arXiv:1406.0018. Jour. Math. Phys. 56 8

[13] Ferapontov, E. V., Huard, B. and Zhang, A. (2012) On the central quadric ansatz: integrable
models and Painlevé reductions, J. Phys. A: Math. Theor. 45, 195204. 2

[14] Ferapontov, E. and Kruglikov, B. (2014) Dispersionless integrable systems in 3D and Einstein-Weyl
geometry J. Differential Geom. 97: 215-254. 8, 12

[15] Leistner, T. (2006) Screen bundles of Lorentzian manifolds and some generalisations of pp–waves.
J. Geom. Phys. 56, 2117-2134. 10

[16] Manakov, S. V. and Santini, P. M. (2006) The Cauchy problem on the plane for the dispersionless
Kadomtsev-Petviashvili equation, JETP Lett. 83, 462–466. 8

[17] Manakov, S. V. and Santini, P. M. (2011) On the dispersionless Kadomtsev–Petviashvili equation
in n+ 1 dimensions: exact solutions, the Cauchy problem for small initial data and wave breaking; J.
Phys. A: Math. Theor. 44, 405203. 1

[18] Meessen, P, Ort́ın, T., and Palomo-Lozano, A. (2012) On supersymmetric Einstein-Weyl spaces. J.
Geom. Phys. 62 301. 10, 12

[19] Pedersen, H. and Tod, K. P. (1993) Three-dimensional Einstein-Weyl geometry, Adv. Math. 97,
74-109. 9

[20] Santucci, F. and Santini, P. M. (2016) On the dispersionless Kadomtsev–Petviashvili equation
with arbitrary nonlinearity and dimensionality: exact solutions, longtime asymptotics of the Cauchy
problem, wave breaking and shocks, J. Phys. A: Math. Theor. 49, 405203. 1, 12

[21] Tod, K. P. (1995) Scalar-flat Kähler and hyper-Kähler metrics from Painlevé-III, Class. Quantum
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