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Nijenhuis tensor and invariant polynomials

F. Bonechi*, J. Qiu | M. Tarlinif E. Viviani®

Abstract

We discuss the diagonalization problem of the Nijenhuis tensor in a
class of Poisson-Nijenhuis structures defined on compact hermitian sym-
metric spaces. We study its action on the ring of invariant polynomials
of a Thimm chain of subalgebras. The existence of ¢-minimal represen-
tations defines a suitable basis of invariant polynomials that completely
solves the diagonalization problem. We prove that such representations
exist in the classical cases AIIIl, BDI, DIII and CI, and do not exist in the
exceptional cases EIIl and EVII. We discuss a second general construc-
tion that in these two cases computes partially the spectrum and hints at
a different behavior with respect to the classical cases.

1 Introduction

The notion of symplectic groupoid was introduced by A. Weinstein ([16]) with
the problem of quantization of the underlying Poisson manifold in mind. The
basic idea is that a proper quantization must be compatible with the additional
groupoid structure so that the output of the procedure is an algebra, regarded
as the algebra of operators. If the quantization scheme is given by geometric
quantization, both prequantization and polarization should be compatible with
the groupoid structures. In [I7] it has been shown that the natural notion of
compatible prequantization is encoded in a central extension of the symplectic
groupoid; moreover, if the groupoid is prequantizable as a symplectic manifold,
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then such compatible prequantization always exists and is unique. In [8], where
this approach has been revived, a natural notion of multiplicative polarization has
been introduced. Finding polarizations that make geometric quantization work
is in general highly demanding, so that there are basically only two big classes
of symplectic manifolds where this program can be completed: cotangent and
Kahler manifolds. The corresponding polarizations are not in general compatible
with the groupoid structure so that this ambitious picture is bit meagre in terms
of concrete examples.

In [2] it was shown that a non degenerate symplectic Poisson-Nijenhuis struc-
tures (PN), a particular example of bihamiltonian geometry, is a source of such
multiplicative polarizations. A symplectic PN structure on a smooth manifold
M consists of a symplectic structure w and a Poisson structure 7 such that w=*
and 7 are compatible (i.e. [r,w™!] = 0). Among the consequences of this prop-
erty, the Nijenhuis tensor N = mow has vanishing torsion and defines a hierarchy

of compatible Poisson structures N ow™',n = 0,1,.... When N has maximal
rank, the hamiltonian forms
Q. ={acQY(M),da=dya =0}, (1)

where dy is the algebroid differential, define a lagrangian polarization that is
in general very singular and so unfit for standard geometric quantization. As
explained in [I2], the PN structure can be integrated to a multiplicative PN
structure Ng on the symplectic groupoid G integrating any Poisson structure of
the hierarchy so that the polarization defined by Ng is multiplicative too. The
polarization defined by the hamiltonian forms is still singular but it allows one
to define the topological groupoid of Lagrangian leaves and, upon regularity as-
sumptions, the groupoid of Bohr-Sommerfeld leaves. One can then consider its
convolution algebra as the quantization. This procedure was worked out in [3] for
CP, where the Bruhat-Poisson structure ([14]) 7 is compatible with the Fubiny-
Study symplectic form w. The C*-algebra of the groupoid of Bohr-Sommerfeld
leaves coincides with the C*-algebra of quantum homogeneous spaces, as shown in
[T5]. This is a particular case of a class of PN structures defined on compact her-
mitian symmetric spaces My, introduced in [10], where 7 is the Bruhat-Poisson
structure and w the KKS symplectic form.

Motivated by the problem of quantization, the study of these PN geometries
was started in [4], where the diagonalization of the Nijenhuis tensor was solved for
the classical cases (AIII, BI, DIII, CI). Let M, = K/K, be a compact hermitian
symmetric space, where K is a compact simple Lie group, € its Lie algebra and
K4 C K the subgroup integrating £, C € the Lie subalgebra defined by the non
compact root ¢. In particular it was proved that i) if A is an eigenvalue of any
solution M of the matrix equation, called the master equation,

NdM = dM~M + MdM* +rdM, dM* +dM~ = kdM (2)



for some k,r € C then A = kX +r is an eigenvalue of N; ii) the ¢-moment map
evaluated in a ¢-minimal representation (Definition [6.1]) satisfies the master
equation. Such representations were provided for the classical cases. By a case
by case analysis, it was proved that for each of the classical cases there exists a
chain of subalgebras

oDt DL, =t

where t is a Cartan subalgebra, such that the corresponding minors of the mo-
ment map in the ¢-minimal representation satisfy (2). We refer to it as Thimm
chain of subalgebras ([6]) The exceptional EIII, EVII spaces were not consid-
ered.

In this paper we discuss a new approach to this problem. We focus more on
the structure of the Hamiltonian forms Qj (M) rather than the eigenvalues
of N and describe them in terms of invariant polynomials with respect to the
Thimm chain. Notice that Nijenhuis eigenvalues are in general only continuous
functions and their derivatives have singularities. Since the multiplicative polar-
ization of the groupoid integrates the hamiltonian forms on My, it is important
that we describe them in terms of global variables. Moreover, we start the study
of the exceptional cases that were not discussed in [4].

Let us describe in some details our results. We consider the subcomplex
(Q;sz d) of the de Rham complex generated by the invariant polynomials S ()"
of any subalgebra £ C ¢ satisfying the compatibility condition (I[Il) with the
complex structure J of €. We compute in Proposition the general formula
[@3) for dyp where p € S(&)" and we write the sufficient condition (IF]) that
implies that dyp is €;-basic. This condition is satisfied if £ = €, for all compact
hermitian symmetric spaces so that dyp is a €4-basic form (Proposition B3)).

We consider Thimm chains of subalgebras satisfying (II]) in Section Bl We
are able to prove that the sufficient condition (IH]) is satisfied for each subalge-
bra provided a ¢-minimal representation of £ exists and we compute explicitly
the action of dy on a suitable basis of invariant polynomials (Theorem [6.3). In
particular, in this case (ijol, dy) is a subcomplex of the Nijenhuis complex and
the diagonalization is easily obtained (Corollary [64]). These ¢-minimal repre-
sentations exist for the classical cases: in particular the diagonalization results
of [4] are better understood in this more conceptual Lie theoretical framework.

We prove also that these representations do not exist for EIIl and EVII
(Proposition [L1]) so that Corollary does not apply to these cases. We can
still use the general result of Proposition that implies that dyS(t,)% are £,
basic forms, where £, = s0(10) & s0(2) for EIII and ¢, = ¢s @ s0(2) for EVIL. We
give its explicit description in Section @ and prove that (fo;l, dy) is a subcomplex
of the Nijenhuis complex for EIIIL. In the case of EVII a new phenomenon occurs
that suggests that we have to consider a polynomial ring of invariants bigger than
S(&,)t . These results show that the exceptional cases behave quite differently
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with respect to the classical cases and open the way to the complete solution
that we plan to address in a future paper.

2 Compact Hermitian symmetric spaces

We fix here notations and basic facts of compact hermitian symmetric spaces
(see [18, [11]. Let g be a complex semisimple Lie algebra and let € be its compact
real form. We denote with (,) the Killing form. Let us fix a compact Cartan
subalgebra t C € and let us denote by t¢ its complexification. We denote with A,
AT and IT the roots, a choice of positive roots and the simple roots, respectively.
For each @ € A we denote with g, the root space and we fix a root vector e,.
We define J : g — g as

J) =0, J(ey) =1isign(a)e, . (3)

We fix the normalization of the root vectors as (e,,e_,)(a,a) = 2 so that
[€as €—a] = ha, Where h,, is the coroot vector of a.
A simple root ¢ is called non compact (see [I8]) if the decomposition of any
a € AT along ¢ is either 0 or 1. Roots (and positive roots) are decomposed
accordingly as A = A, [[ A, where A, are the compact roots and A,,. the non
compact ones. Since the sum of two compact roots, if it is a root, is compact,
then
by = thpear (Batg-a) NE (4)

is a subalgebra. Its center 34 is one dimensional and is generated by ps; € t
defined as a(py) = 0 for each a € A, and normalized as ¢(py) = i. We get the
decomposition

with £ semisimple. We denote with Ej) = —i—ae Ajw(ga%g_a) N £ the orthogonal
complement with respect to the Killing form. We have that

T = [po =], (Jle)? = —1. (6)

If K and K, C K integrate £ and &;,, we denote with My, = K/K, the
corresponding homogeneous space, that is a compact hermitian symmetric space.
After identifying € with €, M, can be realized as an adjoint orbit My = Kp,K .
We denote with w the Konstant-Kirillov-Souriau symplectic form and with pu :
M, — & the moment map for the hamiltonian K-action. We will denote with
X* the fundamental vector field associated to X € ¢ and with vy = w™ldf the
hamiltonian vector field of f € C*(My).

Let us consider the non compact real form

go = bty
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of g where the Cartan involution 6 is defined as 0], = id and 9,% = —id. A
f-stable Cartan subalgebra § of go is decomposed as h = to @ ia; it is maximally
non compact when the dimension of a is as large as possible. A maximal abelian
subalgebra a C Eé is unique up to Ky-conjugation (see [LI]). We refer to dima
as the rank of M.

Here we list the classification of compact hermitian symmetric spaces.

AIIT) ¢ = su(n+ 1) and ¢ = o, €, = s(u(i) @ u(n + 1 —4)). The rank is
min{i,n + 1 —1i}.

We mark in Figure [l the non compact roots ¢ in the Dynkin diagram of the
complexified Lie algebras g.

A a1 Qg a;  Ap—] an B a1 Qg ®p—2 ®pn_—1 anp
n O—0O-0-0—0 " O0—O--0—C—®
) ) an_1
a1 ag &p—2 On—1 anp aq ag &p_—3 ¥p—2 “
¢n oo 000 Dn O0—0--
) ) «—
Q4 Q5 an
ay g ag ay  ag ay ag  ag ?(m ag  ary
B k. o0—o0—0—0—0—0
) ) )

Figure 1: Dynkin diagrams with the non compact roots marked.

3 Nijenhuis tensor on compact hermitian sym-
metric spaces

We collect here the basic facts that we need about Poisson-Nijenhuis geometry
(see for instance [2] for more details) and we introduce the examples we are going
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to study. For background in Poisson-Lie groups and Poisson homogeneous spaces
see for instance [13]. Let M be a smooth manifold, w be a symplectic form and
7 be a Poisson tensor on M that are compatible, i.e.

w7 =0. (7)
As a consequence the (1,1)-tensor N = 7 o w has vanishing torsion
T(N)(Ul,’l}g) = N([N’Ul,’Ug] + [’Ul, NUQ] - N[’Ul, Ug]) - [NUl, N’Ug] =0. (8)

We remark that the PN geometry defined by ([7]) has been recently generalized
in terms of compatibility between the Nijenhuis tensor and Dirac structures,
together with the lift to Lie groupoids, in [5].

Let (M) denote the graded ring of differentiable forms and let ¢y : Q(M) —
Q(M) the degree zero derivation defined as ¢y (f) = 0 and ty(v) = N'v for all
feC>®(M)andve Q' (M). As a consequence of the vanishing of the Nijenhuis
torsion

dN = [d, LN] = dLN — LNd (9)

squares to zero. Remark that dyf = Ndf for f € C>(M). We refer to the
complex Qy = (QM),dy) as the Nijenhuis complez. We have clearly that
[d, dy] = 0; Hamiltonian forms defined in () are then those one forms that are
closed with respect to both d and dy.

The symplectic form w : TM — T*M defines an isomorphism of complexes
between (Q(M), dy) and the complex (I'(AT'M), d,.) computing the Lichnerowicz
Poisson cohomology of .

Let K a compact simple Lie group; we denote with € its Lie algebra and
with t a choice of Cartan subalgebra. Let ¢ be a non compact root, £, C € the
corresponding Lie subalgebra and K4 C K the subgroup. Let p, be the generator
of the one dimensional center 3(ks) normalized by ¢(ps) = i. The homogeneous
space /K, can be realized as the adjoint orbit My of p,, endowing it with the
KKS symplectic form w. The moment map of the K-action is denoted

My — € =¢,

where the identification is done thanks to the Killing form.
The standard Poisson-Lie structure mx on K is defined for each &k € K as

Tr (k) = le(r) — 72(r)

where 7 is the classical r-matrix

r:% Z (A

aceAt
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The subgroup K, is a Poisson subgroup and induces a Poisson structure on M,
that we denote with m and we call the Bruhat-Poisson structure. The homoge-
neous K-action on M, is a Poisson action, i.e. for each X € £ we have that

[XF, 7] = 0(X),

where § : £ — A?Eis the cocycle encoding the dual Lie algebra on £* (see Thm.2.6
in [14]).

The compatibility between the KKS symplectic from and the Bruhat-Poisson
structure 7 has been proven in [10].

We skip all details concerning the Bruhat-Poisson structure, that can be
found for instance in [I4]. In this paper we will only need the following formula
that has been proven in Theorem 6.1 of [4]

dup = dp — [J(dp). ] (10)

The following Lemma is a consequence of the fact that the K-action on M, is
a Poisson action. Let & C € any Lie subalgebra and let (%, d) be the complex
of ¢ invariant forms.

Lemma 3.1. (2%, dy) is a subcomplex of the Nijenhuis complez.

Proof. Since the t-action (and then €;) is hamiltonian, the cochain map
w: (Qdy) — (I'(ATM),d,) exchanges the t-actions via Lie derivatives on
forms and multivector fields. So it is enough to prove the statement on the LP
complex. Indeed, for each X € ¢; and A € I'(AT' M) such that Ly:(A) =0 we
have

Lys(dr(A)) = [XF, [, A]] = [[XF, 7], A] = [8(X)?, A] = 0.

O

4 Nijenhuis operator and invariant polynomials

We saw in Lemma [BJ] that invariant forms with respect to ¢ (and to any sub-
algebra) form a subcomplex of the Nijenhuis complex. Here we ask the same
question about the subcomplex generated by invariant polynomials.

We limit ourselves to a class of subalgebras that is compatible with the com-
plex structure J defined in (B]). Let €& C € be a Lie subalgebra and K; C K
be the subgroup integrating it. It is clear that £ is invariant under the adjoint
action of €;. Let us ask now that both £ and Ef are J-invariant and that for
each X € € we have that

fadx, J]y] = 0. (1)

We denote with pr,, and It the orthogonal projections to €; and & respectively.
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Lemma 4.1. If €, satisfies the conditions {I1) then, for each £, € € we have
that

prh([‘]ga 77] + [67 Jn]) =0
Proof. For each X € € we have that

(X, [JE n] + (&, Inl) = (X, J&lm) + (1X, €], In) = (JX, €], n) + (X, €], Jn) = 0

where in the second equality we used (II]) and in the last one the antisymmetry
of J with respect to the Killing form. !

We denote with pi, = My — € the moment map and let po = pe, + 12 the
decomposition of &-moment map given by & = & +¥€. It is clear that for each

Xely
Xﬁ(#ff) = [X, Mfll]> Xﬁ(J,Utli) = [X, JMB%L (12)

where the second equality is a consequence of ([[T]).

Let us consider the space S”(£;)% of invariant polynomials that are homo-
geneous of degree r and let S(€,)" = @®,505"(€)" C C®(€*). If p € S™(¥))",
we denote with p the corresponding r-linear application ¢; ® ... ® ¢, — C.
In order to avoid cumbersome notations, we use the same symbol p to denote
pz, (p) € C=(My). We denote with (;',d) C (92%,d) the subcomplex of &-
basic forms and with (Q;lol, d) C (', d) the subcomplex generated by S(£).
We would like to study the conditions under which Qﬁol is a subcomplex of the

p
Nijenhuis complex. We prove the following preliminary result.

Proposition 4.2. i) If & satisfies conditions (I1) then for each p € S™(&)%
we compute

dynp =dp — rp(peeys - - - oy, dAe, ) (13)
where we defined
Ay = o i g (14
As a consequence dyp is a & -invariant form.
i) If
[Aey, pe] =0 (15)

then dyp 1s a € -basic form.

Proof. We compute from (I0)

dnpe, = dpe, — pre, [Jdp, p] = dpe, — [Jdpe,, pie,] — pre, [Jd,uella Mell] :
From Lemma 1] we see that

prgl[Jd,u{zlL, Mell] = dA, .
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As a consequence of ([I2]) we have that for each X € ¢
Xi(Ay) = [X, Ay ]. (16)
Let p € S(€)". We compute

de - Zﬁ(’uel""’dNMEl”’WMEl):Tﬁ(:uﬁv”w,uéud]\/',uh)
i=1

= dp - Tﬁ(,uhv sy Mgy [']d:uﬁnu’fl] + dAh) .

By using the invariance of p we get (I3)).
Since A, satisfies (I0) and p is an invariant polynomial, it follows that for
each X € ¢

Lx:t(dnp) =0,
so that dyp is invariant. Let us assume that [ue,, Ae,] = 0; from (6) we now
compute
r—1
LXﬁ(de> = _Tﬁ(lu’h? sy Mg [Xv Ah]) =T Zﬁ(:uhv T [Ahvlu’h]v ce 7X) =0.
i=1

U
Corollary 4.3. Let ¢,p € S(&)% then

{a.p}==0. (17)

Let us suppose that ({I3) holds and let ¢5 C €. Then (I7) holds for each q €
S(8)* and p € S(&)".

Proof. Let v, = w™'(dq) be the hamiltonian vector field of q. We compute

from (I3)
{Qap}w = Ly, (de) = _Tﬁ(:u’év sy g 'UQ(A’C’l)) = _Tﬁ(:u’év sy Mgy [an Ah])

r—1
= TZﬁ(th"'[anuh]?"'AEl) (18)
=1

where X, € £ C £ is defined as

(Y7 Xq) = Q(th ey Mgy Y)
for each Y € & so that X? = v, and the second step follows from (IG). It is now
clear that [X,, ue,] = 0, since for each Y € €, we have that

(Yv [MENXI]D = ([Yv /J’?l]vXII) = d(:u?w e My va :u?l]) =0

since ¢ is invariant.
If (I3) holds, then by using the invariance of p in the last equality of the first
line of (X)), we get that (IT7) holds also when ¢ € S(€)% and p € S(£;)". O



5 The Thimm chain of subalgebras

We recall here the Thimm method for constructing integrable models (see [6] for
details). Let us consider £ D € D & nested Lie subalgebras and let ¢ € S(&)"
and p € S(&)%. Since jup, = po; © pie,, where py; : & — € we have that

L, 0, ke, a3 = { e, P 0> e, 0} = pe, {0510, ¢Jex = 0

since S* (€;) C O™ (&) is the centre of the Poisson algebra. Let us consider now
a chain of Lie subalgebras

t=¢DO¢t, D...¢,
and let K; C K the corresponding subgroups. Let us denote with
SEDE...DE) =US(E)" (19)

the union of invariant polynomials of any subalgebra of the chain. By the above
observation, all these polynomials are in involution.

Let us discuss if they are independent and so form an integrable model.
The following two properties are equivalent: i) the ring of invariant functions
C>(M)% is abelian with respect to the Poisson bracket; #i) for each coadjoint
orbit O C & the symplectic reduction p; *(O)/K is a point. If one of the above
condition (and then both) is true then the K-action is said to be multiplicity free
([7). If for each K;- orbit O C M, the action of K;_; on O is multiplicitely free
then the hamiltonians in (I9) define an integrable model.

Let us consider now the case M = My; we want to see the conditions under
which the hamiltonians (I9) commute also with respect to the Poisson structure
7. Let us choose a non compact root ¢, of £ and let p; the normalized generator
of the one dimensional centre 3; of €, . In general this root ¢; can be different
from ¢ involved in the definition of the hermitian symmetric space.

Let £, = &4, = ¢, ©® 3 with £ being simple. Let ¢, be a non compact
root of £ with p, the normalized generator of the one dimensional center 3o of
by, C by Let &y =t5, D31 =1t @ 32D 3. We get the decomposition

b= byt = (8 NE)HE =68 NE e,

where the third equality follows because we included 3; in the definition of £5. We
remark that the perpendicular is always taken in €. We can iterate the procedure
and choose ¢; non compact root of £,  with p; the normalized generator of the
centre 3; of £y, C €y and define

b=ty D3 1D...D5 . (20)
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We get the ¢ — th decomposition of £
b=t N ) =6 N )FED NE ). e (21)
We remark that J acts on each addend &N, of ) as ad,,.

Lemma 5.1. Every subalgebra ¥; satisfies condition (11]).

Proof. By construction the Cartan subalgebra t is included in ¢; for each .
Moreover, given any root «, either the root vector e, € & or e, € & . This implies
that € and & are J-invariant. Equation (I is straightforward if X € t C &,.
Let X = e, € & and ez € & be two root vectors. If a+ 3 is not a root then both
terms are zero; if a« + ( is a root then it is non compact and it will be positive if
and only if § is positive so that [X, J(ez)] = J[X, eg]. O

We will see in the examples that, for each simple compact Lie algebra &, it is
possible to find such a chain that ends with ¢, = t the Cartan subalgebra of €.
Such a choice will not be unique. We call such a chain

EOE D8 DE, =t (22)

a Thimm chain.

6 The ¢-minimal representations

Let ¢ be a non compact root of the simple Lie algebra € and let p4 the normalized
generator of the center 3 of ¢;. Let Ry : € — End(V(A)) be an irreducible
representation of highest weight A € t*. It is easy to see that V(A) decomposes
in eigenspaces of p, as

VI(A) = S0V (A)e (23)

where V(A), are Eg-invariant, pslya), = Ag — il with Ay = A(py) and e, :
V(A)y = V(A)p—y for every non compact positive root a.

Definition 6.1. We say that Ry is ¢ -minimal if the sum in (23) runs over
¢ = 0,1 and V(A)y is irreducible. In this case we denote Vo = V(A)y and
V_ = V(A)l

Let now ¢ be the noncompact root defining the Hermitian symmetric space
M, and let us suppose that V(A) is ¢ -minimal. Since M, is the adjoint orbit of
pe, the moment map pp = Rx(p) in the representation R, satisfies then

(1 = Ng)(ua — Ag 1) = pi} — (20 — D)ua + Ag(Ag —1) = 0. (24)

Let us consider now the Thimm chain (22) and let us suppose that V(A) is
also ¢1-minimal as V(A) = V! @& V!, We can go on along the Thimm chain ([22))
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and let us assume that V! is ¢o-minimal as V! = V2 @ V2 and so on. At level 1,
we assume that V™ Lis gbz minimal so that VZ ! VZ @ V. At each level i, we
get the decomp081t10n of V into ¢;-representation as

VA=W oW (25)

where Wi = VI and W = V! @ V' ... & V1. If these conditions are satisfied
we say that the representation R, is minimal with respect to the chain (22]).

Lemma 6.2. If the representation Ra is minimal with respect to the Thimm
chain (22) then each & € € decomposes with respect to (23) as

RA@):(_OVT ’;), RA<J<€>>:<£T JZZ/A))

Proof. Let us consider the decomposition (25)) of V' in ¢; representations. It is
clear that £ : Wi — W’ Indeed if £ € & NE, then&: Wi =V] = VI C W’;
if £ € &, then ¢ : Wi =VicC Vfl — V1 ¢ W', Let a be a positive root
such that ea € (8N E;H) ® C, then eqly: = ealy; = 0;if eq € ¢, ® C then

ea‘Wi = Calvi = (€a

Let us consider now the the ring of €;-invariant polynomials generated by the
traces in the er representation: let us define

19(X) = =Ty (X7) (26)
Theorem 6.3. We compute
Ay I® = —2iNydI® + 2411, . (27)

Proof. We then have to compute ([4) in the representation W. If we write

Ra(pe,) = < RWi (’?Ei) . ) )

v Ry () + A
then by using Lemmal6.2l we can compute Ag, defined in (I4)) in the representation
Wi as
Ry (A,) = —ivy)
From (24]) we find that

Ryi (Av,) = —iRy (1,)” + (208 + 1) Ry (1) — Ag(1 +iAg) . (28)
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Let us now insert it in (I3 with p = I, and get

dyI® = dI9 4+ 7L (e, . id(u2) — (2iAg + 1)dpe)
= I i Ty (g () — (2ihg + 1)L

T

so that we finally get (27]). O

From (27)) it is now easy to prove the following corollary.

Corollary 6.4. i) The subcomplex (Qg’l,d) of the de Rham complex gener-
ated by S(&)%, defines also a subcomplex (Q,,dn) of the Nijenhuis complex

9);

i1) if X is an eigenvalue of the moment map py, then

A =2i(A—Ay) (29)
15 a Nigenhuis eigenvalue.

In the next section we will prove that such minimal representations exist
in the classical symmetric spaces so that the above Corollary reproduces the
diagonalization proved case by case in [4].

7 Existence of ¢-minimal representations

Here we discuss the existence of ¢-minimal representations. We give the ex-
plicit examples for the classical groups and prove that they do not exist in the
exceptional cases.

7.1 AIIl

Let My = SU(n)/S(U(k) x U(n — k)) and let us consider the root ordering as
in A,_1 Dynkin diagram in Figure [l the non compact root is ¢ = . In the
fundamental representation fo,) of su(n),

Pay, = E < 0 —k 1n—k) ’ (30)

so that fou(n) is ap-minimal and decomposes in representations of s(u(k)®u(n—k))
as foumn) = Vi @ V_, where

V-i- = (.fu(k)> 0u(n—k))>
Vo= (Ou(k)> fu(n—k))>
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with fyx) and Ous) respectively the fundamental and the trivial representation.
The eigenvalue of p,, on Vi is then

(31)
Now, let us consider the Thimm chain of subalgebras
su(n) Dsun —1)@u(l)) D ... Ds(un—i) oud)’) > ... ou@)* . (32)

Let us choose ¢y = a1 so that fe,) decomposes with respect to s(u(n — 1) ®
u(l)) as fsu(n) = V_& ©® V_l, with

Vi = (fun-1),0).

We obtain for the i-th step of the chain ([B2)) that fi:,) decomposes with respect
to s(u(n — i) @ u(l)) as

foumy = WL & W,
with

Wi = <fu(n—i)aw)v

i—times
that is ¢;11 = a,_1_;-minimal, where «,,_1_; is a root of su(n — i). Then, the
fundamental representation fe(,) of su(n) is minimal with respect to the chain
of subalgebras ([32)). Formula (27)) then gives

. n—k . ;
Ay I = szL@ + 241, (33)

7.2 BDI

Let us consider M, = SO(n + 2)/SO(n) x SO(2) and the root ordering of
Dynkin diagrams D,,, and B,, in Figure[ll for n +2 =2m and n +2 = 2m + 1
cases respectively. In these Dynkin diagrams, the non compact root defining the
compact hermitian symmetric space is ¢ = a;. The fundamental representation
is realized by anti-symmetric real matrices acting on R"*2. We can select a
Cartan subalgebra as spanned by

0 0 .
0 a®a) ya = diag(aq, ..., an),a; € R}

n+2=2m: t={a® o0, a=diag(a,...,an),a € R},

n+2=2m+1: t:{(

0 1

with o = (_1 0

). Then, in both cases,

o= ) )
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which clearly has 3 different eingenvalues. So, we can conclude that the funda-
mental representation is not ¢-minimal.

We are going to show that the spin representation is ¢-minimal. Let us
consider the Clifford algebra Cl(n+2,R), let z; coordinates on C™. The gamma
matrices act on S™*2) = AC™ as

Fi = dZZ/\, Fg = Zazi

together with I'y = (—1)9 if n is odd. Then, the so(n + 2)-spin representation

is realized as 1
S(X) = gXij[Fiuer X 650(n+2).

In particular,

S(py) = i (rmrm _ %) | (35)

It has two different eingenvalues 4i/2 so that the spin representation is ¢-
minimal, i.e. S+ =V, @ V_, where

Vi=Ndz,i=1,...,m—1), Vo=V (A) ®dz,,

which are (S +i/2) representation of so(n) @ so0(2) respectively. Easily, one

obtains that ,
i

Now, let us consider the Thimm chains
50(2m) D ... D s0(2m — 25) ®s0(2)! D ... D 50(2)", 37)

s0(2m+1)D ... Dso(2m+1—25) ®s0(2) D ... D s0(3) ®so(2)" .

This calculation can be iterated step-by-step along these chains and we get

Wi — (5(n+2—2j) Lo i)
—+ 727 72 I
N——

J—times

with S*+2-2)) the spin representation of so(n + 2 — 25). Moreover, WZ(A) is
¢j+1 = ag-minimal, where a4 is the non compact root of so(n + 2 — 2j). The
spin representation is then minimal with respect to the chain in ([37)). Then, the
Nijenhuis tensor acts on s0(2n + 2 — 2j)-invariant polynomials 19 ), as defined in

26), as |
dyI9 = dIV) 4 2418, (38)
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7.3 DIII

Let us consider My = SO(2n)/U(n) and the same root ordering of the D, case
in Figure [l The non compact simple root defining this compact hermitian sym-
metric space is ¢ = «,,. In the fundamental representation, the Lie subalgebra
u(n) is embedded in s0(2n) as

. A B
u(n) 3 A+iB — (—B A)’

with A, B € M,(R) such those A = —A', B = B'. The Cartan subalgebra can

be chosen as
0, a L
- {(_a On) ’a_dlag(a'la"'aan),ai GR}

0 l1n)
Pp = 2 . (39)
o= (7

Then, the fundamental representation V = C?" is ¢-minimal, i.e. V =V, §V_,
where

So,

V—‘r - <(aa +ia)aa' € Cn> - fu(n)a
and, clearly,

As=3. (40)

Moreover, if one considers the Thimm chain

s0(2n) Du(n) D..Dun—i) @u(l) >..Dul)", (41)

then, repeating the analysis for the case AIII one obtains that V' decomposes in
representations of u(n — ) @ u(1)" as V.= Wi & W, where

Wi = <fu(n—i)7 U );

(i—1)—times

and W is ¢; = a,—;_1-minimal, where a,_;_1 is the root of su(n — ). Then the
fundamental representation is minimal with respect to the whole Thimm chain
(@1 and one obtains that

dyI9 = dIV) + 2418, (42)
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74 CI

Let us consider M, = Sp(2n)/U(n) with the root ordering as in the C), case in
Figure[ll The non compact simple root defining the compact hermitian symmet-
ric space Cl is ¢ = «,. In the fundamental representation,

sp(2n) = {X(A, B) = (_‘Zt —it) A, B € M,(C),A=—A" B = Bt} ,

while u(n) = {X(A,0) € sp(2n)}. The Cartan subalgebra is spanned by matrices
in u(n) with A diagonal. Then,

11 0
— 2N

Then, the fundamental representation fe 2, is ¢-minimal, i.e. fopon) = V4@ V_,
where

Vi = fuw),
and the eigenvalue of p; is _
i
Ay ==, 44
0=75 (44)

Now, let us consider the Thimm chain
sp(2n) Du(n) Dun—1)du(l) D ... Du(l)™ (45)
At step i 4 1, fopon) decomposes in €1 = u(n — i) & u(l)"-representations as

fopon)y = Wi & W', where

Wi = <fu(n—i)aw)v

i—times

so that W is a,,_;_1-minimal, where a,_;_; is a root of su(n — 7). Then, the
fundamental representation fy2,) is minimal with respect to the Thimm chain
in ([A3)). Finally, one obtains that

dnIY) = dID + 2419, (46)

7.5 EIII and EVII

Proposition 7.1. There are no ¢ -minimal representations of eg and er.

Proof. Let A be a dominant weight and let V' (A) be the finite dimensional
irreducible representation of g with highest weight A and highest weight vector
vp. If V(A) is ¢-minimal then e_ge_,vy = 0 for each a, f € Al (otherwise the
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spectrum of py contains the three distinct eigenvalues Ay = A(py), Ap—1i, Ay —27).
Taking o = [ this means that the string {A + ja} of weights extends at most to
1< <0, ie

(A, o) € {0,1} VaeA] (47)

nc

where we assume that (a,a) = 2 for all roots. Suppose now that A satisfies
[@7) and that o € A, is such that A — « is a weight of V/(A). Then the string
{A — a+ jB} extends to —r < j < ¢ with r = ¢+ (A — «, 5). We are going to
show that there exists § € Al such that (A —a,f) =1sothat r=¢g+1>1
and e_ge_,vp # 0. In particular this happens if there exists such 3 such that
(o, B) =0 and (A, ) = 1.

¢s) Let R® = (¢;,i = 1,...8). The real Cartan subalgebra tg = it can be
described as the subspace of R® generated by ¢;, i =1,...,5 and € = €5 + €7 + €5.
As in [I], the positive roots A are

5
1
{6 = ei—€ <ics H{fz’j = (eit€j) ic H{§(€+ E si€i), si = &, Il;s; = —1}.
i=1

(48)
The simple roots are

= {o; = €311}y H{% = f15, 6 = l(6 - Z €)} (49)

5
2 :
-1

and the non compact simple root ¢ = ag. The non compact positive roots are

5

Ay = {¢+%Z<1+si)ei,ﬂisi =—1}. (50)

i=1

The weight A = Z?Zl Aie; + Age is dominant if (A, ;) = N;, @ =1,...,6, with
N; € N. A straightforward computation gives

1 1
A =Ny + Ny+ N3+ =(Ny+ Ns), Ay =Ny+ N3+ —(Ny+ Ns),

2 2
1
A3:N3+§(N4+N5>,
1 1
A4:§(N4+N5), A5:§(N5—N4),
1 2 1 5 2
Ag==N —N. N- —N, —N, —Ng .
0 31+3 9+ 3+2 4+6 5+36

Condition (A1) means

(A,9) = Neg €{0,1}, (A,o+¢€ +¢€) =N+ A; +Aj €{0,1},

18



(Ap+e+e+e+6e)=Neg+ AN+ A+ A+ A € {0,1},

where 4, 7, k,l =1,...,5. Let us consider first Ny = 1. It is not difficult to verify
that the only solution is N; = 0 for i # 6 so that only A = %e satisfies (7). Since
(A,a) = 1 for each a € A for every couple «, 5 of orthogonal non compact
positive roots (which exists since the rank is 2) A — a — 3 is a weight.

Let us consider now Ng = 0. Since all couples A; + A;’s are non negative
integers only one couple can be different from zero; and since Ay > Ay > A3z >
Ay > Aj it can be only A; + Ay. This means N3 = Ny = N5 =0 and Ay + Ay =
N;+ 2Ny =1 so that Ny =1 and Ny = 0. The solution is then A = ¢; + %e. Let
us choose now o = %(6—1—61 — €y —€3+e,—€5) and f = %(64-614—624—63—644—65)
so that (A,a) = (A, 5) =1 and (o, ) = 0 so that A —a — [ is a weight.

¢7) The real Cartan subalgebra tg = it is realized as the subspace of R®
generated by ¢;, 1 <17 <6 and € = €7 4+ €g. The simple roots can be chosen as

6
. 1
M= {a;=¢€—¢€1,1 <i <5 a6 =65+ 66,070 = 5(5—;@)}
and the non compact simple root ¢ = a; [I]. The non compact positive roots
Al are

6
1
{61 — €5, €1 + Ej;2 S] < 6} | |{€, 5(61 + €+ E 3i€i)73i = :l:l,HiZQSi = 1} .
=2

The weight A = E?Zl Aie; + Age is dominant if (A, ;) = N; € N. A straightfor-
ward computation gives

1 1
A1=N1+N2+N3+N4+§(N5+N6), A2=N2+N3+N4+§(N5+N6),

1
A3 = N3+ Ny+ = (N5 + Ng) ,

2
1 1 1
A4=N4+§(N5+N6), A5 = §(N5+N6)>A6 = §(N6_N5)
1 3 3
AO:N0+§N1+N2+§N3+2N4+N5+§N6.

Condition (A7) means
(A>€1 + Ej) - Al + Aj € {Oa 1}7 (A>€1 - Ej) = Al - Aj € {Oa 1}7

(A, 6) = 2A0 S {O, 1},
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6 6
(A, %(61 +€+;Si€i)) = % +A0 —|—%Z§;82A2 < {0, 1}, .

Let us choose N7 = (A, e; —e3) = 0. Then (A, €1+ €3) = Ay + Ay = 2(Ny + N3 +

N4)—|—N5+N6 € {O, 1} fixes N2 = N3 = N4 = 0. Then 2A0 = 2N0+2N5—|—3N6 c

{0, 1} implies Ny = N5 = Ng = 0 so that A = 0.

Let us choose N; = 1. Then A; + Ay = 1 implies Ny = ... = Ng = 0 and
2Ag = 2Ny + 1 = 1 implies Ny = 0. We then get A = ¢; + %e. It is clear that
(A, @) = 1 for each non compact positive root «, so that A —a — 3 is a weight for
every couple «, 5 of orthogonal noncompact positive roots (the rank is 3). O

8 Invariant polynomials of £

We are going to prove that, if we choose ¢ = €, as defined in (), the condition
(@) is satisfied, so that, from Theorem 2] the action of the Nijenhuis tensor
on invariant €4,-polynomials produces £,-basic forms. We remark that £, = €
in the Thimm chain defined in Section [ for all cases but My = Gr(k,n) with
1 < k <n—1, .e. Grassmanians that are not complex projective spaces.

The result is based on a local parametrization of the moment map around
ps- We refer to Section [2 for notations and basic facts about compact hermitian
symmetric spaces. Let us choose P, C A satisfying the following properties:

i) for each o, € Py, o — B & A,
it) P, is maximal with respect to (7).

Since the sum of two positive non compact roots is never a root, condition i)
implies that roots in Py are all orthogonal and in particular linearly independent.

Let ap, C £ denote the space spanned by {i(eq 4+ e_o), € Py} and tp, =
(Py)° C t C &,. We denote a/P¢> = J(ap,), that is the space spanned by {e, —
e_q, o € Py}

Let us consider the non compact real form gy = Eﬁ—z’{?é of g. We recall
that a Cartan subalgebra § of gy is maximally non compact if the non compact
component h M€ is a maximal abelian subalgebra of €.

Lemma 8.1. h = tp, ®iap, is a mazimally non compact Cartan subalgebra of
the non compact real form go.

Proof. From the definitions it follows that [tp,,ap,] = 0 and [ap,,ap,] = 0.
Since roots in Py are linearly independent, dimtp, = rk(g) — 1P, = rk(g) —
dimap,. In particular b is a Cartan subalgebra. In order to prove that the non
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compact part ap, is maximal, let us suppose that there exists § = > 1+ (a€a+

nc

§_at_a) € t5 such that [§,a] = 0 for each a € ap,. Then for each § € P, we
have that

(€ es+e_pl = (§s— Ep)les e—gl + D Laleare—gl + &ale—ares] =0 |

OZEA;EC\P¢

where [eg, e_g] € it. First of all, we conclude that 5 = {_g for § € Py. Then, let
us suppose that &, # 0 for some o € A\ Py; the above condition implies that
a — 3 is not a root for all B € Py, but such root does not exist by maximality of
Py. We can then conclude that § =3 5 p s(es +e—g) € ap,. O

The compact Cartan is then decomposed as t = tp, @ t’P¢, where t’P¢ = t1%¢ Nt.

It is well known the Ky-orbits of any maximal abelian subalgebra of {%qf cover all
¢, (see Thm. 6.51 in [I1]), i.e.

EJ' = AdK¢(ap¢) . (51)
We need to prove the following properties.
Lemma 8.2. i) [ap,, ap | Ctp ;
i) [t,ap,] = a/P¢'
Proof. Let us prove 7). Let o, f € P, and compute
[i(eq + €—a),5 — €—g| = —2i04 5(€a,€—a)Ta € t’P¢

where (7., H) = a(H) for each H € t. Point ii) follows because [H,i(eq+6e_n)] =
ia(H)(eq — €_4) for each H € t. O

The orthogonal decomposition £ = Eﬁ—?j) assures that there exists an open
neighborhood of ps € My where the moment map p € C*°(M,)®¥ can be written
as

H= Ady Adef (p¢>

for k € K, and € € {%qf so that p ~ Ad.(ps) where ~ denotes up to Ky-adjoint
action. By using (5I) and the fact that p, is Ky-invariant we can write

i~ Adea(py) (52)
Proposition 8.3. We have that

[:u’édn A’C’¢] =0

where Ay, is defined in (14). As a consequence, for each p € S(ty)t, dyp is a
basic €,-form.
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Proof. Let us write .
o~ (53)
where j € £, and € € t;. From (52) we can write

1 ~ 1
p= Z (2k)! ady"(pg), €= Z m ad?f“(%) :
! par !

It is clear that by using Lemma B2 ii) we see that ad.(ps) € df,, from )
ad?(py) € E/P¢ C t; we then show that ad?"(p,) € t and ad?**™ (py) € ap,, so that
pEtand ¢ € a/P¢‘ By recalling (I4]), we compute up to K,-adjoint action that

1 o

[0 [7(8). €]l € [t [T (o), ap, ] = [t [ap,. ap ]l = [t = 0,

[MB¢,, AB¢] ~
where we used Lemma [82] 7). O
We finally give the following explicit description of the terms appearing in

B3).
Corollary 8.4. Let P, = {o;}

rank M,
for any a=>" ?a;Xo, where a; € R, we compute

rank M

iz1 »ap, spanned by Xo, = i(eq, +e_o,). Then,

i=j
rank M rank M
p= P+ Z [ thay, §= Z 9 Xy, (54)
j=1 J=1
where 1 1
fi= §(cos(2aj) —1), 9% =5 sin(2a;). (55)
Moreover,
rank M,
[JEE =2 Y [+ 7] iha,. (56)
j=1

Proof. First of all, let us remind that, for a;, oy € Py, [ihe,, Xo,] = 205 (J Xo,)
and [Xo,, JXo] = 26j1iha,. Then, if we set

ad2(ps) = D (Fi)rihay,  adZ ™ (pg) = D (g8 Xa,,

J J

we can find the following recursive relations

(File = =405 (k-1 (95)k = —4a3(g5)h
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with (f;)1 = —2a? and (g;)o = —a;. Then, we can write

(-1 (-1

(fj)k:T@aj)%, (gj)r = 5 (2a,)*",

and so, putting f; = Y07, 55(f;)r and g; = ZZOZOM(%);C, one obtains
(BABE). The last claim is obtained by a straightforward calculation and by

considering that
2 2
formula obtained by (55]) using some basic goniometric relations. O

Thanks to (54]) and (B6) €,- invariant polynomials can be expressed as polyno-
mials in the variables f;, j = 1...,1k(My). Let us denote with p,(f) = Zj ci f1,
where ¢; = i(ha,, pp) = —2/(a;, ;). Remark that (ihg;,iha,) = 20j,c;. Let us
introduce the following £4-invariant polynomials

To = (e, po) = (Por pg) + 01, To0 = (e, tte,) = (P, pg) + 21 + 2p2,  (57)

1
Ioy = (pg; Ae,) = p1+p2 = 5([2,0—(/7457%))7 Iy = (ptey, Ae,) = p1+3pa+2p3 .
By applying ([I3]) we now easily compute

2 1
sl0—50a) . (58)

1
dylio=d(lo— 512,0) , dylao = d(Iy — 3

Let us remark that while Io; € pg, (S (€4)%), it is not obvious that the same is
true for I; ; so that (I3)) is not enough to compute dy/; ;. This property will be
analyzed in Section [0 for the exceptional cases EIII and EVII.

Let finally express the above formula on the basis given by the symmetric
polynomials p;. We get

4
dnpr = —dpy, dnps = —gdpza : (59)
It is tempting to state that
dyfi = =2fidfi ;i =1,...1k(My) (60)

that actually imply (59)). Since in (G0) there are two equations, if rk(M,) = 2
then (60) and (B9) are equivalent. To see what happens when rk(M,) > 2 it
is useful to connect with the results of Theorem and Corollary for the
classical BC'D cases. Let us consider a ¢ -minimal representation V(A) = V, @V_
of £ (see Definition [6.1]). We need the following result.
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Lemma 8.5. In a ¢ -minimal representation, on V. we have that
h'ai haj = 5ijhai
for each o; € Py.

Proof. Let a be a positive non compact root and let us consider the sl(2,C)
subalgebra generated by {ha,€q,€¢_o}. Let vy € Vi be a common eigenvector of
the Cartan subalgebra with weight A such that A\, = A(h,) # 0. The eigenvector
Ur—a = €_oUx € V_ is non vanishing (indeed e,vy_o = havy = Ayvy). Let us
consider W, = (v, Ux_q); Since e vy = e_o0x_o = 0, W, is the two dimensional
irreducible representation of s[(2,C). As a consequence A\, = 1. We can then
conclude that the eigenvalues of h, on V can be 0,1 (and so h, is idempotent).

Let us denote with A; = A(h,,). For each i # j we compute

>\2)\j - (U)\v h,aih,aj’l])\) = (U)\v [eam e—ai][ea]w e_aj]’l])\) )
where (,) here denotes the scalar product that makes V(A) unitary. Since «;
are non compact roots, in a ¢-minimal representation e, e,; = 0; since a; € Py
are mutually orthogonal then [eiq,,ezq;] = 0 for i # j. As a consequence
We then conclude that the non zero eigenvalues of pg, in the representation

V., are {Ay+1 fz}fi(lM 2 By applying the formula of Corollary [6.4]i7) we see that
—2f; is a Nijenhuis eigenvalue, i.e. (60) holds.

9 A formula for S(¢,)% on EIIl and EVII

We are going to discuss here the exceptional cases. We saw in the previous
section that minimal representations do not exist for e¢g and e; so that we cannot
apply Corollary to the Thimm chains discussed in Section [l For &,, that is
the first subalgebra of the chain, we can apply Proposition B3l we are going to
compute the explicit form of the subcomplex of the Nijenhuis complex generated
by €;-invariant polynomials.

9.1 EIII

Let us consider My = Eg/SO(10) x SO(2). We are going to give the explicit
formulas for the action of the Nijenhuis tensor on s0(10) & so(2)-invariant poly-
nomials.

By using the description of positive roots and non compact positive roots of
¢¢ given in (48] and (B0) respectively, we get that

1 > 1
P¢: {QS:§(€_Z€i)7w:§(€+61+€2+63+64_65)} CA:’L_C (61)

=1
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are orthogonal noncompact roots. Since rk(My) = 2, this subset is maximal. Let
ap, be the spaces spanned by { Xy = i(ey +e_y), Xy = i(ey +e_y)}, according
to Section B Thus, formulas (54]) and (G5) are written as
p = ps+ foihg + fyihy, (62)
f = g¢JX¢ +g¢JX¢.
Since rk(M,;) = 2 the formulas computed in (G8)) completely describe the
action of dy on s50(10) & so(2)-invariant polynomials. Indeed from (GI]) we have

that ¢y = i(hay,ps) = ¢y = i(hay,,ps) = —1 while (py, ps) = —3. Then,
pn(f) = —f4 — [} and we have the following polynomial relation
_ 3 1
p3 = 2171]92 2p1.

From (59) we get that

4
dypr = —dpy, dyps = éd (3pip2 + 1)

Qso(lo)®5o(2) d

so that p; and py generate the subcomplex ( ol ,

that

~). We can conclude

dnfo = —2fpdfy, dnfyp=—=2fydfy,
i.e. —2f4 and —2f, are Nijenhuis eigenvalues.

9.2 EVII

The case My = E7/Eg x SO(2) presents a new feature. Indeed, since rk(My) = 3
we need three generators to describe yig, (S (€5))'. Two of them can be ;o =
(Pg, pe,) and Ing = (pue,, fte,), We have to look for the third one. The general
formulas (B8) involve also I1; = (i, A¢,) Which, by looking at the expression
given in (58]), as a cubic polynomials in the f’s, is clearly independent. The
problem is now to understand if I ; € pg, (S (£4)%). In the previous case of EII1,
since the rank was 2, I 1, as a polynomial of (maximal) degree 3 in two variables,
was clearly generated by I; o and Io. The next independent generator in S(eg)%
appears in degree 5; we can write it as /5o = Try, ,uf6 for some representation Vj
of eg; it is a polynomial of degree 5 in the f-variables. By counting the f-degree,
we easily conclude that [; ; cannot be polynomially generated by {11, I20, 50}
and I5( is a polynomial function of {0, lo0,11}. By inverting this relation,
I, ;1 can be expressed as a non polynomial function of the moment map, i.e.
Iy o€ py (C™=(eg)). We can then conclude that if we want to preserve the
polynomial structure, we are forced to deal with the bigger ring that includes
also polynomials in the variables A,,. More importantly, the computation of
dnI ;1 requires an extension of (I3) to this bigger ring of invariants.
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10 Conclusions

In this paper we discussed two different approaches to the problem of diagonal-
izing the Nijenhuis tensor N on the hermitian symmetric spaces M, = K /K.
The first one is based on the existence of a special representation of £ that
we call ¢-minimal: in this case we can define a Thimm chain of subalgebras
ED e ... DE... together with the set of generators I, of the ring of invariant
polynomials S(&)% that make the diagonalization problem easily solved.

The second construction is based on a local parametrization around py € M.
This method is valid for all cases, including the exceptional ones, and produces
the subset of the spectrum related to the subalgebra £,. It detects a different
behavior of the EVII case: in fact the ring of invariant polynomials S(&,)t is
not preserved by the algebroid differential dy and the bigger ring of polynomials
of , and A , must be taken into consideration. Formula (I3) must be then
generalized. Moreover, preliminary computations for the second subalgebra £, =
50(8) @ s0(2) in the Thimm chain of EIII show that the sufficient condition
[ftey, Ae,] = 0 in ([3]) is not satisfied. These facts indicate that the cases EI1]
and EV II have an exceptional behavior. It is possible that it will be convenient
to relate it to the fact that S(&)* # S (a%)% for the exceptional cases proved by

Helgason in [9]. This problem will be addressed in a future publication.
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