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Tree-level scattering amplitudes for gravitons, gluons and Goldstone particles in any dimensions
are strongly constrained by basic principles, and they are intimately related to each other via
various relations. We study two types of “universal expansions” with respect to gauge bosons and
Goldstone bosons: the former express tree amplitudes in Einstein gravity (Yang-Mills) as linear
combinations of single-trace Einstein-Yang-Mills (Yang-Mills-φ3) amplitudes with coefficients given
by Lorentz products of polarizations and momenta; the latter express tree amplitudes in non-linear
sigma model, (Dirac-)Born-Infeld and a special Galileon theory, as linear combinations of single-
trace mixed amplitudes with particles of lower ”degree of Adler’s zero” and coefficients given by
products of Mandelstam variables. We trace the origin of gauge-theory expansions to the powerful
uniqueness theorem based on gauge invariance, and expansions in effective field theories can be
derived from gauge-theory ones via a special dimension reduction.

I. INTRODUCTION

Recent years have witnessed enormous progress in
unravelling unexpected simplifications and new, hid-
den mathematical structures for scattering amplitudes in
Quantum Field Theory (c.f. [1]). Such remarkable struc-
tures have been found not only for amplitudes in special
theories such as N = 4 super-Yang-Mills to all loop or-
ders [2–4], but also for tree amplitudes in a wide range
of theories such as gauge theories, gravity and effective
field theories (EFTs). Moreover, deep, universal relations
have been discovered for such amplitudes of gluons, gravi-
tons, and Goldstone particles (c.f. [5–8]), and the origin
for some of these relations still remain to be understood.

Tree amplitudes in general relativity (GR) and Yang-
Mills theory (YM), which encode leading two-derivative
interactions of gravitons and gluons, turn out to be
uniquely determined by gauge invariance, provided that
one starts with an ansatz of cubic tree graphs and correct
power counting [9, 10]. This is rather remarkable as it
implies that unitarity and locality, reflected in factoriza-
tion of amplitudes, can be derived from gauge invariance
and singularity structures for these amplitudes. On the
other hand, Goldstone particles for spontaneous symme-
try breaking have intriguing infrared behavior encoded
in soft limits [11, 12]: certain amplitudes of these EFTs
have enhanced Adler zero which are totally invisible in
Feynman diagrams, similar to gauge invariance for gauge
theories and gravity. These include pions in non-linear
sigma model (NLSM), scalars in Dirac-Born-Infeld (DBI)
and even a special (most symmetric) Galileon theory
(sGal), with increasingly vanishing soft behavior [12–14]
known as Adler zero [15]. Similarly, with quartic-graph
ansatz and correct power counting, these amplitudes are

uniquely determined by enhanced Adler zero under soft
limits [10]. Born-Infeld (BI) amplitudes enjoy both gauge
invariance and Adler zero, though it is slightly more non-
trivial to fix them using such conditions [16].

All these amplitudes are closely related to each other
via a web of relations. Perhaps the most famous ones
are double-copy relations (see the review [17] and ref-
erences therein), originally discovered by KLT in string
theory [18] and by BCJ via color-kinematics duality in
QFT [5, 19], which can be summarized in the slogan
“GR=YM ⊗ YM” [20]. We use L ⊗ R to denote the
theory whose amplitudes are obtained by field-theory
KLT [21, 22] or equivalently tree-level BCJ double-copy,
of amplitudes in theories L and R with color/flavor struc-
tures; this ⊗ operation becomes particularly natural and
universal in Cachazo-He-Yuan (CHY) formulas [6, 23–
26], and by construction bi-adjoint φ3 serves as the iden-
tity [25]: I = I ⊗ φ3 = φ3 ⊗ I for any theory I. From
this perspective, it has been extended to a large class of
theories including EFTs, e.g. (D)BI= YM(s) ⊗ NLSM,
and sGal = NLSM ⊗ NLSM [6]. Two more operations
connect these amplitudes in theory space, which can
be understood from CHY formulas [6, 26] or more di-
rectly as “unifying relations” [7]. The ⊕ operation pro-
duces mixed amplitudes of two types of particles, I ⊕ II,
with particular interactions between them, and addi-
tional color/flavor structure for II (compared to I), e.g.
GR ⊕ YM = Einstein-Yang-Mills (EYM) and an inter-
esting “extended DBI” theory from DBI ⊕ NLSM [6] (see
also [27]). A special dimension reduction (DR) “reduce”
gauge bosons to Goldstone bosons [8], e.g. YM to NLSM
(gluons to pions), GR to BI (gravitons to photons) etc.

In this note, we study a different type of relations
among amplitudes which further demonstrate how these
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amplitudes are strongly constrained and closely related
to each other. We call them “universal expansions” since
they apply to amplitudes of gravitons, gluons and Gold-
stone particles universally, and they encode ⊕, ⊗ as well
as DR in a natural way. The amplitude with n gravitons
can be expanded as a linear combination of EYM (GR
⊕ YM) mixed amplitudes with r+2 gluons in a single
trace and n−r−2 gravitons (for r = 0, 1, · · · , n−2), and
each coefficient is a Lorentz product of r+2 polarization
vectors and r momenta; the same holds if we replace
gravitons (gluons) with gluons(bi-adjoint φ3 scalars) in
YM, or photons in BI (pions in NLSM). Note that these
mixed amplitudes, which turn out to be building blocks
of the original amplitude, are simpler since the new par-
ticles have spin lowered by one compared to the original
ones. Remarkably, we find that with ansatz of [10], gauge
invariance in n−1 particles uniquely determines this ex-
pansion, thus indirectly fixes all these mixed amplitudes!
More precisely, gauge invariance in n−2 gravitons/gluons
already fixes the form of the expansion, with each term
obtained by certain differential operators acting on the
full ansatz [10]; by imposing gauge invariance on any of
the remaining two particles, we uniquely fix the expan-
sion and consequently these mixed amplitudes. Since
EFT amplitudes can be obtained via special DR from
gauge-theory ones, they have similar expansions e.g. BI
(NLSM) amplitude as a linear combination of mixed am-
plitudes of BI ⊕ YM (NLSM ⊕ φ3), with coefficients
given by products of Mandelstam variables. The new
particles in these mixed amplitudes, gluons (φ3 scalars),
have lower degree of Adler zero (by two) compared to
that of the original ones, photons (pions).
Let us summarize our main results as follows. For

gauge theories and gravity, their amplitudes satisfy gauge
invariance: An is invariant under eµi → eµi + α pµi for
i = 1, · · ·n. It turns out that gauge invariance implies an
expansion for the n-point tree amplitude of theory I [28]:

AI
n =

∑

α

(−1)rW (1, α, n)AI⊕II({ᾱ}|1, α, n), (1)

where we single out two special legs, e.g. 1, n; and the
sum is over all ordered subsets of {2, · · · , n− 1} denoted
by α (with |α| = r for r = 0, 1, · · · , n−2), and {ᾱ} de-
notes the complementary (unordered) set with n−2−r
labels [29]. For each term, we have a Lorentz-contraction
prefactor

W (1, α, n) ≡ e1 · fα1
· fα2

. . . fαr
· en,

with linearized field-strength fµν
i ≡ pµi e

ν
i − eµi p

ν
i , and

a mixed amplitude of n−2−r particles in theory I in
{ᾱ} and r+2 particles in theory II with spin lowered
by one; they are ordered as (1, α, n) := (1, α1, · · · , αr, n)
since they carry additional color/flavor structure. These
theories are summarized in the Table as follows.
There are similar universal expansions for EFT ampli-

tudes with (enhanced) Adler zero; the defining properties
of these EFTs is that their amplitudes vanish (to certain

1. Gauge Theories
I GR (s = 2) YM (s = 1) BI (s = 1)
II YM (s = 1) φ3 (s = 0) NLSM (s = 0)

a degree) under soft limit: for pµi = τ p̂µi with τ → 0, we
have limpi∼O(τ)→0An = O(τh) for any i, where we call h
the degree of Adler zero. These amplitudes and their ex-
pansions follow from gauge theory and gravity ones via a
special DR. One way for expanding amplitudes in theory
I with n Goldstone bosons is

AI
n =

∑

α;odd

Ŵ (1, 2, α, n) AI⊕II({ᾱ}|1, 2, α, n), (2)

where, after singling out 1, 2, n, the sum is over ordered
subsets of {3, · · · , n−1} with r = |α| odd, and

Ŵ (1, 2, α, n) ≡ p2 · f̂α1
· · · f̂αr

· pn

with f̂µν
i ≡ pµi p

ν
i , or Ŵ = s2,α1

sα1,α2
· · · sαr ,n (with

si,j := pi · pj) [30]; the mixed amplitudes has (n−3−r)
particles of theory I in {ᾱ} and r+3 particles of theory
II with degree of Adler’s zero h reduced by two, which
carry additional color/flavor structure and are ordered
as (1, 2, α, n). These theories and their degree of Adler’s
zero can be found in the following Table [31].

2. Effective Field Theories

I sGal (τ 3) NLSM (τ 1) BI (τ 1) DBI (τ 2)
II NLSM (τ 1) φ3 (τ−1) YM (τ−1) YMs (τ 0)

We remark that these mixed amplitudes encode highly
non-trivial interactions between particles in theory I and
II, and it is not obvious at all why they appear as “build-
ing blocks” of universal expansions of pure amplitudes of
theory I. For example, the mixed amplitudes of Yang-
Mills ⊕ bi-adjoint φ3 come from the Lagrangian in [6],
which consists of YMs from dimension reduction and
the bi-adjoint φ3 interaction term; mixed amplitudes of
EYM=GR ⊕ YM encode the well-known minimal cou-
pling of gravitons and gluons. For BI ⊕ NLSM and other
cases for EFTs, it is only after computing these mixed
amplitudes via CHY or DR, can we determine the La-
grangian with rather intricate interaction terms [32, 33]!
Since these mixed amplitudes were originally discov-

ered via CHY, the two sets of expansions can be easily
derived using these formulas as well (see [34–37] and e.g.

[38, 39]); but this just shifts the question to why these
amplitudes have such nice CHY formulas. In this note we
do not rely on CHY formulas at all, but instead we find
that all mixed amplitudes in gauge theories and grav-
ity are indirectly determined by the uniqueness of the
full amplitude in GR/YM, which is naturally written as
an expansion. Note that each term in the gauge-theory
expansion is gauge invariant with respect to n−2 parti-
cles, which is the best one can achieve for any functions
other than the full amplitude [9, 10]. In a sense, such ex-
pansions resemble certain Taylor expansions for the full
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amplitude: each coefficient is the analog of xm (with x

being Lorentz products of e and p), and the mixed ampli-
tudes are given by corresponding m-th order derivatives,
which are known as transmuted operators [7] acting on

the full amplitude, ∂m

∂xmA(x).
Examples Before proceeding, we present a few sim-

ple examples for these expansions. For n = 3 YM am-
plitude, the expansion is trivial: we have two terms,

e1 ·e3AYM⊕φ3

({2}|1, 3) = 1
2e1 ·e3e2 · (p1−p3) with r = 0,

and −e1 · f2 · e3 with r = 1 (where Aφ3

(1, 2, 3) = 1). For
n = 4 we have terms with r = 0, 1, 2:

AYM
4 =

1

2!
e1 · e4A

YM⊕φ3

({2, 3}|1, 4) (3)

− e1 · f3 · e4A
YM⊕φ3

({2}|1, 3, 4)

+ e1 · f2 · f3 · e4A
φ3

(1, 2, 3, 4) + (2 ↔ 3)

and exactly the same expansion holds with YM (φ3) re-
placed by GR (YM) or BI (NLSM). For n = 4 EFT
amplitudes, we have only one term with r = 1: ANLSM

4 =

p2 · f̂3 · p4A
φ3

4 (1234) = s12 + s23, and for n = 6 we have

ANLSM
6 = p2 · f̂3 · f̂4 · f̂5 · p6A

φ3

(1, 2, 3, 4, 5, 6) (4)

+
1

2!
p2 · f̂3 · p6A

NLSM⊕φ3

({4, 5}|1, 2, 3, 6)

+ Perm(3, 4, 5).

Again the same holds when NLSM (φ3) is replaced by
sGal (NLSM), BI (YM) and DBI (YMs).

II. UNIVERSAL EXPANSIONS FOR GAUGE

THEORIES AND GRAVITY

In this section we derive expansions of GR and YM
amplitudes [40] from the powerful uniqueness theorem
based on gauge invariance [9, 10]. We start by writing
general forms of the ansatz:

An =
∑

g

Ng
∏

i Pg,i
, (5)

where we sum over all possible cubic graph g (only pla-
nar ones for color-ordered YM amplitudes), and for each
graph g we have n−3 propagators (i = 1, · · · , n−3). The
numerator takes the form

Ng =
∑

I

mIcg,I ,

where we sum over a basis of monomials mI of Lorentz
products e·e, e·p, p·pwith constants cg,I to be fixed. Each
monomial contains s copies of polarization vectors ei for
i = 1, 2, . . . , n, and k = s(n−2) powers of momenta from
power counting (s = 1, 2 for YM and GR respectively).
The basis is determined from constraints p2i = 0, e2i =
0, pi · ei = 0,

∑n
i=1 pi = 0; in particular, it can be chosen

by eliminating pi · pn for i 6= n and p1 · pn−1, as well as
pn · ei (for i 6= n), p1 · en. The ansatz for n = 4 YM case

A4 =
c1,1e1 · e4e2 · p1e3 · p1

s1,2
+
c2,1e1 · e4e2 · p1e3 · p1

s2,3
+ · · ·

has two planar cubic trees and 30 monomials in our basis,
thus there are 60 constant parameters c1,i and c2,i for
i = 1, · · · , 30 [41]. For GR we have 3 cubic trees and
each numerator has 302 monomials as “square” of the
YM ones, thus 2700 parameters in total.
Let us first review the uniqueness theorem for YM and

GR amplitudes based on gauge invariance [10]. It states
that gauge invariance for any n−1 particles uniquely fixes
the above ansatz An (up to an overall constant) to be the
correct n-point YM or GR amplitudes. The key in the
proof of this theorem relies on the following Lemma which
we will use shortly.
Lemma: Let B(k) be a polynomial linear in each po-

larization vector, with at most k factors of the form e · p
in any given term, then B(k) can only be gauge invariant
in at most in k particles for k < n−2 (with momentum
conservation in n particles). With these at hand, we now
move to our main claim:
Claim: The gauge invariance in n−1 legs, e.g.

1, 2, · · · , n−1, uniquely fixes the above ansatz An (up
to an overall constant) in the form of (1), which in turn
fix all mixed amplitudes contained in the expansion.
We will prove this in three steps, and we focus on YM

case (the proof for GR is completely analogous).
Step 1: We show that after imposing gauge invariance

of {2, 3, . . . , n − 1}, each monomial of the ansatz must
contain a Lorentz product of the form:

w(1, α, n|signs) ≡ e1 · vα1

(

r
∏

i=2

v̄αi−1
· vαi

)

v̄αr
· en, (6)

where we introduce a new notation: given an ordered
set α = (α1, · · · , αr), there are 2r terms from W (1, α, n)
and we label them with r signs; we use the vector vi
to denote either pi or ei for particle i, with v̄i the
other one, i.e. (vi, v̄i) = (pi, ei) or (ei, pi), and the
first/second choice is denoted by a + or − sign. For
example, w(1, 2, 3, 4|−,+) = (e1 ·e2)(p2 ·p3)(e3 ·e4) while
w(1, 2, 3, 4|+,−) = (e1 ·p2)(e2 ·e3)(p3 ·e4). In other words,
using gauge invariance in 2, · · · , n−1 we will show that
the ansatz takes the form:

An =
∑

α

∑

signs

w(1, α, n|signs)C(1, α, n|signs), (7)

where for each prefactor we denote its coefficients in the
ansatz as C which looks like an “amplitude” since it again
has all cubic trees with numerators given by remaining
Lorentz products of e’s and p’s.
To prove this, we look at the vector dotted into e1 for

each term in the ansatz. If it is en we are done, and we
only need to consider ei and pi for i 6= 1, n in our basis.
If e1 is dotted with pi, this term must contain ei and the
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chain goes on, but if we have e1 ·ei, then gauge invariance
of particle i forces us to have another term, with e1 · pi,
thus we have An = e1 · piC

+
i + e1 · eiC

−
i + · · · . Under

the replacement ei → pi, we see that the two terms must
cancel against each other, which means that C−

i must
contain pi in it (such that there is a chance for it to
cancel C+

i |ei→pi
with the replacement). We have shown

that in our basis, when e1 is dotted with vi, there must
be v̄i in the same term, and we can continue in asking
what vector is dotted into v̄i. In this way, we see that for
any term we have a prefactor as

e1 · vρ1

(

t
∏

i=2

v̄ρi−1
· vρi

)

v̄µρt

where |ρ| = t < n−2. Now there are three possibilities
with the vector dotted into v̄ρt

:

1. en, for which we are done.

2. ej or pj for j /∈ {1, ρ, n}, for which we keep going
and extends the chain.

3. pj for j ∈ {1, ρ} which is ruled out by the Lemma:
note the coefficient of such a factor is equivalent to
a polynomial B(k) with at most k = n−t−3 e · p
factors, but we require it to be gauge invariant in
n−t−2 particles, and that leads to a contradiction.

This concludes our proof for Eq.(7).
Step 2: To proceed, it is crucial to note that the re-

placement eαj
→ pαj

eliminates the difference between
vαj

and v̄αj
, thus gauge invariance in this particle al-

lows us to relate two terms in Eq.(7) with only one sign
difference for αj ; both terms contain a factor of the form

e1 · vα1
· · · v̄αj−1

· pαj
× pαj

· vαj+1
· · · v̄αr

· en

and clearly the two coefficients only differ by a sign:

C(1, α, n| . . . ,+, . . .) = −C(1, α, n| . . . ,−, . . .), (8)

thus 2r coefficients with the same α at most differ by a
sign (q denotes the number of − in the signs):

C(1, α, n|signs) = (−1)qC(1, α, n|all plus). (9)

Therefore, for each α, the 2r prefactors w exactly com-
bine into W (1, α, n) =

∑

signs(−1)qw(1, α, n|signs) and
we have

An =
∑

α

W (1, α, n)A′({ᾱ}|1, α, n). (10)

where we have defined the coefficients

A′({ᾱ}|1, α, n) ≡ C(1, α, n|all plus). (11)

Furthermore, we see that A′({ᾱ}|1, α, n) must be gauge
invariant for particles in {ᾱ} since each term does
not talk to each other under gauge transformations of

{2, · · · , n−1}. We conclude that by even just gauge in-
variance of n−2 particles puts strong constraints on An,
such that it takes the expansion form Eq.(10) with gauge
invariant coefficients A′, which need to be fixed.
Finally, we note that since each A′ is the coefficient

of w(1, α, n|all plus) of An, it can be extracted using a
differential operator acting on An:

A′({ᾱ}|1, α, n) = ∂e1·pα1

(

r
∏

i=2

∂eαi−1
·pαi

)

∂eαr ·enAn.

Step 3: Before proceeding, we need one of the main
results of [7], where transmuted operators for ⊕ was in-
troduced. Single-trace YM⊕φ3 ( GR⊕YM) amplitudes
with an ordered subset β can be obtained by acting such
operators on the YM/GR amplitude, e.g.

T [β]AYM = AYM⊕φ3

({β̄}|β), (12)

where gluons in {β} are transmuted into bi-adjoint φ3

scalars by the operator (we denote s = |β|)

T [β] = ∂eβ1
·eβs

s−1
∏

i=2

∂eβi
·(pβi−1

−pβs )
, (13)

An example is T [1, 2, 3, 4] = ∂e1·e4∂e2·(p1−p4)∂e3·(p2−p4).
A crucial point is that in our basis where pn is elim-
inated by momentum conservation, all the derivatives
w.r.t. ei · pn can be dropped, thus the operator becomes
very similar to the one extracting A′ from An!
As a final step, we impose gauge invariance on 1 or n,

which fixes An to be AYM
n thus all remaining parameters

in those A′’s are completely fixed. Not surprisingly they
turn out to be those mixed amplitudes we want:

A′({ᾱ}|1, α, n) = T [α−1, 1, n]AYM
n (1, 2, . . . , n)

= AYM⊕φ3

({ᾱ}|α−1, 1, n)

= (−1)rAYM⊕φ3

({ᾱ}|1, α, n),

(14)

where we have used the fact that the amplitude picks up
(−1)r under reflection, and we arrive at Eq.(1).
We have also explicitly checked our proof for n = 4, 5.

Starting from our ansatz with 60 parameters, by impos-
ing gauge invariance of particle 2, 3, we indeed find the
expansion form (10) and only 9 parameters remain for
those A′. By imposing gauge invariance of 1 or 4, the
amplitude becomes Eq.(1) up to an overall constant. For
n = 5, the general ansatz includes 2475 parameters, im-
posing gauge invariance of 2, 3, 4 gives Eq.(10) with only
72 parameters left; gauge invariance for 1 or 5 uniquely
fixes it as the expansion of n = 5 YM amplitudes.

III. UNIVERSAL EXPANSIONS FOR

EFFECTIVE FIELD THEORIES

The expansions of EFTs can be obtained by imposing
the special DR [7, 8] on both sides of Eq.(1). We define
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GR

GR ⊕ YM

GR⊕

2YM⊕φ3

YM

YM ⊕ φ3

sGal

sGal ⊕
NLSM

sGal ⊕
2NLSM⊕φ3

NLSM

NLSM
⊕φ3

BI

BI ⊕
NLSM

BI ⊕
NLSM ⊕

YM ⊕φ3

BI ⊕ YM

FIG. 1. Summary of universal expansions

(2d+1)-dimensional momenta for the original particles
to be pj = (pµj , 0, 0

µ) with the first and third entries
d-dimensional and the middle entry one-dimensional.
We choose two special legs a, b with polarization vector
ea = eb = (0µ, 1, 0µ); the remaining n−2 polarizations
are chosen as ej = (pµj , 0, ip

µ
j ) for j 6= a, b. Reducing to

d dimensions gives (pi · pj trivially reduce):

ei·ej →

{

1 {i, j} = {a, b}

0 otherwise
, ei·pj →

{

0 i ∈ {a, b}

pi · pj otherwise

(15)
It is remarkable that gluons in 2d+1 dimensions then
become pions in d dimensions; equivalently, we can use
the operators that transmute gluons to pions [7]:

∂

∂ (eaeb)

n
∏

i6=a,b





n
∑

j 6=i

pipj
∂

∂ (pjei)



AYM
n = ANLSM

n . (16)

By applying DR or such operators on RHS of Eq.(1), they
transmute e.g. gluons in {ᾱ} into pions term-by-term

and change the coefficients W to Ŵ . It is interesting
that different choices of a, b (w.r.t. 1, n) lead to three
different types of EFT expansions, and we keep in mind
that mixed amplitudes with odd number of Goldstone
particles in theory I vanish.
If we choose a, b = 1, n, then on the RHS only the

term with e1 · en → 1 survives from DR and we reach
at the well-known fact that the amplitude in theory I is
identical to that with only two particles in II (as a trivial
expansion) AI

n = AI⊕II({2, · · · , n− 1}|1, n) [32].
The second choice is e.g. a, b = 1, 2, then we reach

at the expansion in Eq.(2), where we must have odd r
since we need the number of particles in I, r+3, to be

even, and we have
∑n−3

i=1,odd i!
(

n−3
i

)

terms on the RHS.
Note the only non-vanishing term must start with 1, 2
and since e1 · e2 → 1 we have p2 on the left end of Ŵ .
Finally, we have the slightly more complicated expan-

sion with the third choice e.g. a, b = 2, 3:

AI
n =

∑

α,β

(−1)s+1(p1 · f̂α1
· · · f̂αr

· p2)(p3 · f̂β1
· · · f̂βs

· pn)

× AI⊕II({ᾱ ∩ β̄}|1, α, 2, 3, β, n) + (2 ↔ 3), (17)

where we sum over (non-intersecting) ordered sets α, β ⊂
{4, · · · , n−1} with r = |α|, s = |β| and r+s even; par-
ticles in II form an ordering (1, α, 2, 3, β, n), and we
refer to the complementary set with n−4−r−s parti-
cles in I as {ᾱ ∩ β̄}. One can check that we have
∑n−4

i=0,even 2(i + 1)i!
(

n−4
i

)

terms in the expansion. Even

for n = 4, we have two terms ANLSM
4 = −p1 · p2p3 ·

p4A
φ3

(1, 2, 3, 4) + (2 ↔ 3). These expansions hold for
even n, and when n is odd, the EFT amplitudes van-
ish and instead we have a non-trivial linear relation for
mixed amplitudes from DR. Such relations take the same
form as Eq.(2) and Eq.(17) with the only difference that
r or r + s are even or odd, in these two cases.
Last but not least, there are different ways of applying

DR to the GR expansion, which lead to expansions for
other EFTs. Note that the polarization tensor contains
two sets of polarization vectors e, ẽ, and in Eq.(1) we have
only expanded with e in W (1, α, n) (ẽ side is untouched).
If we perform DR with the replacement Eq.(15) on e, we
have EFT expansion of BI (into BI⊕YM); if we perform
DR on ẽ, we have gauge-theory expansion of BI (into
BI⊕NLSM); very nicely, if we perform DR on both e and
ẽ, we obtain the (EFT) expansion of sGal into sGal ⊕
NLSM. All these expansions are summarized in Fig.1.
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IV. DOUBLE & RECURSIVE EXPANSIONS,

AND DOUBLE COPY

In this section, we present more expansions, such as
“double expansions” in the case of GR, sGal and espe-
cially BI; we point out that our expansions represent the
first step of expanding amplitudes in a recursive way,
which allows us to connect to the double copy directly.

Let us start with GR case, where we apply (1) to both
e and ẽ, and this leads to a double expansion

AGR =
∑

α,β

(−1)r+sW (1, α, n)W̃ (1, β, n) (18)

× AGR⊕2YM⊕φ3

({ᾱ ∩ β̄}|α ∩ β̄|β ∩ ᾱ|1, α ∩ β, n)

where the prefactor W (1, α, n) and W̃ (1, β, n) contains
e and ẽ respectively; the four subsets of particles refer
to φ3 scalars (with both orderings), gluons with ordering
α (polarization ẽ) and β (e), as well as gravitons. By
applying DR on both e and ẽ gives double expansion for
sGal, and if we only apply it on e or ẽ, we have the double
expansion for BI (with poins, gluons and φ3 scalars in
mixed amplitudes). All these are consequences of (1)
and (18) which originate from the uniqueness theorem;
alternatively they can be derived from double copies of
“basic” expansions of YM and NLSM amplitudes, which
implies that ⊕ and ⊗ “commute”, e.g. (YM ⊕ φ3) ⊗
(NLSM⊕ φ3) = BI⊕NLSM⊕YM⊕ φ3. We summarize
them with red color in Fig.1.

What is more interesting is that these mixed ampli-
tudes can be expanded further with more particles in II,
leading to a recursive expansion of the original amplitude
in I. At each step we need to pick a “reference particle”,
e.g. for EFTs, (2) can already be viewed as expanding
the (trivial) mixed amplitude AI⊕II

n ({2, · · · , n−1}|1, n)
with reference 2. We focus on gauge-theory case since
EFT ones can be derived via DR, whose precise form de-
pends on the choice of a, b. Quite nicely, such recursive
expansions for gauge theories and gravity read [34–37]:

AI⊕II({ᾱ}|1, α, n) =
∑

β,�,j

eᾱ0
· fβ1

· fβ2
. . . fβs

· pαj
×

AI⊕II({β̄}|1, · · · , αj , (αj+1, · · · , αr)� (β−1, ᾱ0), n),
(19)

where ᾱ0 is an arbitrary reference particle in {ᾱ}, β is
an ordered subset with s labels of {ᾱ}/{ᾱ0} and {β̄} is
the complementary set as usual; we need to sum over
j = 0, 1, . . . , r (with α0 ≡ 1 for j = 0 case), and shuf-
fle the two ordered sets. For example, with reference 2,

AYM⊕φ3

({2, 3, 4}|1, 5, 6) can be expanded as

1

2!
e2 · p1A

YM⊕φ3

({3, 4}|1, (5)� (2), 6)

+
1

2!
e2 · p5A

Y M⊕φ3

({3, 4}|1, 5, 2, 6)

+ e2 · f3 · p1A
Y M⊕φ3

({4}|1, (5)� (3, 2), 6)

+ e2 · f3 · p5A
Y M⊕φ3

({4}|1, 5, 3, 2, 6)

+ e2 · f3 · f4 · p1A
φ3

(1, (5)� (4, 3, 2), 6)

+ e2 · f3 · f4 · p5A
φ3

(1, 5, 4, 3, 2, 6)

+ Perm(3, 4)

(20)

One can keep going until only Aφ3

amplitudes remain on
the RHS. In general, the end result for such recursive

expansion reads AI
n =

∑

π∈Sn−2
N

I/II
n (π) AII

n (1, π, n)

where we have expressed AI
n as a linear combination

of (n−2)! ordered amplitudes in II with coefficients Nn

known as the BCJ master numerators in the theory I/II
(such that I/II ⊗ II = I). Note that the “quotient”
theory is again universal: for gauge-theory expansions
I/II = YM, and for EFT ones, I/II = NLSM. Such
expansions thus provide a systematic way for extract-
ing kinematic numerators needed in all these theories,
and this way of extracting them was originally found us-
ing CHY formulas in [34, 36, 42] (see also [43, 44]) and
automatized in [45, 46]. Different choices of reference
particles lead to different recursive expansions and BCJ
numerators, but all of them are equivalent. It is an in-
teresting open question if we can derive such expansions
directly from e.g. gauge invariance and Adler zero.

V. CONCLUSION AND DISCUSSIONS

In this note we study certain expansions of amplitudes
which work universally in gauge theories, gravity and var-
ious EFTs, and they “interpolate” ⊕ and ⊗ operations
that connect all these amplitudes. While gauge-theory
expansions follow from uniqueness based on gauge in-
variance, currently we have only derived expansions in
EFTs (including BI) from the gauge-theory ones via DR;
their Adler-zero uniqueness relies on singularity structure
of quartic diagrams but individual mixed amplitudes in-
volve cubic diagrams, thus more works are needed for ob-
taining them directly from uniqueness. In addition, we
do not know how to derive recursive expansions, which
eventually lead to BCJ numerators of YM/NLSM, with-
out referring to CHY formulas. We would like to un-
derstand all these from the perspective of constraining
amplitudes from basic principles.
Relatedly, one can prove such expansions by using on-

shell recursion relations [13, 47, 48], since it is straight-
forward to show that residues at any poles agree on both
sides by factorizations. What remains to show is the ab-
sence of pole at infinity, e.g. for BCFW shifts of 1, n in
gauge-theory cases. Note that gauge invariance for n−2
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particles are manifest in (1), and the non-trivial point is
the gauge invariance in 1 or n, which in turn implies such
behavior at infinity [49]. A similar argument applies to
EFT expansions (2) where we need to show (enhanced)
Adler zero of 1, 2, n, which also relates to the behavior at
infinity [? ]. It would be highly desirable to understand
all these better. Another interesting question concerns
possible relations of our EFT expansion with the appear-
ance of these mixed amplitudes from soft limits, where
they were first discovered as “extensions” of original the-
ories [32]. Of course all relations we discussed follow from
CHY formulas, and as usual we can look for their origins
in string theory (c.f. [22, 44, 50–54]). The question we
ask here is, however, can we demystify these relations
purely from field-theory perspective (see [55, 56])?
Last but not least, a direct consequence of Eq. (1) is a

similar expansion for corresponding one-loop integrands
obtained by the forward limit [57–59], which is in the
representation naturally given by ambitwistor string [60,
61] at one loop [62, 63] (see also [64, 65]). As an example,
we first expand the (n+ 2)-pt YM tree amplitude:

AYM(+, 1, 2, . . . , n,−) =
∑

α

(−1)rW (+, α,−)AYM⊕φ3

({ᾱ}|+, α,−), (21)

where we expand the amplitude by fixing external legs

labeled by +,−, and α denotes ordered subsets of
{1,2,. . . ,n}. We take the forward limit of +,− on both
sides, identify e+ with e− and sum over the possible
states; the prefactor becomes

W (+, α,−)
F.L.−−−→ Tr(fα1

· fα2
. . . fαr

).

Thus we get the one-loop expansion for YM:

AYM,loop(1, 2, . . . , n) = (22)
∑

α

(−1)r Tr(fα1
· fα2

. . . fαr
)AYM⊕φ3,scalar−loop({ᾱ}|α).

It would be interesting to further study such expansions
in gauge theories and EFTs at loop level.
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