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CONWAY INVARIANT JACOBI FORMS ON THE LEECH LATTICE

KAIWEN SUN AND HAOWU WANG

ABSTRACT. In this paper we study Jacobi forms associated with the Leech lattice A which are
invariant under the Conway group Cog. We determine and construct generators of modules of both
weak and holomorphic Jacobi forms of integral weight and fixed index t < 3. As applications,
(1) we find the modular linear differential equations satisfied by the holomorphic generators; (2)
we determine the decompositions of many products of orbits of Leech vectors; (3) we calculate the
intersections between orbits and Leech vectors; (4) we derive some conjugate relations among orbits
modulo tA.

1. INTRODUCTION

In 1985 Eichler and Zagier introduced the theory of Jacobi forms in their monograph [14]. These
forms are holomorphic functions in two variables (7,z) € H x C which are modular in 7 with
respective to SLy(Z) and quasi-periodic in z. Later, Gritsenko [15] defined Jacobi forms of lattice
index by replacing z with many variables associated with an integral positive-definite lattice. The
Jacobi form creates an elegant bridge between different types of modular forms. For example,
Jacobi forms can be identified as modular forms for the Weil representation of SLg(Z) through the
theta decomposition, and are connected to modular forms on symmetric domains of type IV by
the Fourier—Jacobi expansion (see [17]). Jacobi forms also have many applications in mathematical
physics, such as the elliptic genera of some manifolds including K3 surfaces, and the topological
string partition functions on various Calabi—Yau threefolds. It is a natural question to determine
the structure of the space of Jacobi forms. This question was solved by Wirthmiller [27] for Jacobi
forms associated with root systems not of Eg type, and by [24, 25, 22] for the exceptional root
system Eg. The ring of Jacobi forms indexed by lattices of rank two was recently described in [26].
Little is known about spaces of Jacobi forms associated with other lattices, especially irreducible
lattices of large rank.

In this paper we investigate Jacobi forms on the Leech lattice which are invariant under the
Conway group Cog, and give many applications to computational aspects of the Leech lattice. The
Leech lattice is the unique even unimodular positive-definite lattice of rank 24 which has no roots.
It was discovered by Leech in 1967 [18], and its uniqueness was proved by Conway in 1969 [9].
This lattice has many remarkable properties. For example, it plays a role in constructing the fake
monster Lie algebra [2] and proving the monstrous moonshine conjecture [3], and it achieves the
densest sphere packing in R?* [8]. The group Cog is the automorphism group of the Leech lattice,
whose structure was first described by Conway [10]. The quotient of Cop by its center gives a
sporadic simple group of order 4,157,776, 806, 543, 360, 000. Therefore, the Leech lattice is highly
symmetrical, and we expect that the space of Conway invariant Jacobi forms will not be too large.
Due to the importance of the Leech lattice and the Conway group, we also expect that Conway
invariant Jacobi forms will have some applications in mathematics and physics. These motivate us
to study such Jacobi forms.
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We introduce the definition of Conway invariant Jacobi forms and state the main results. Let A
denote the Leech lattice equipped with bilinear form (—, —).

Definition 1.1. Let k£ € Z be an integer and ¢ € N be a non-negative integer. If a holomorphic
function ¢ : H x (A ® C) — C satisfies the conditions

(i) Conway invariance:

(70(7—70-(3)) = (10(7—73)7 OIS COOv
(ii) Quasi-periodicity:
Q(7,5 + a7 +y) = exp (—tmi(z, x)7 — 2mi(z,3)) p(7,3), @,y €A,
(iii) Modularity:

¢ (“T+b d > = (cr + d)F exp (m' s.2) > (7,3, ( o’ > € SLy(2),

cr+d er+d et +d

and the Fourier expansion of ¢ takes the form

o0
p(r3) =Y > f(n,0q"¢, g=e, ¢F=emd),
n=0/leA
then it is called a Conway invariant weak Jacobi form of weight k and index t. If ¢ further satisfies
that f(n,¢) = 0 whenever 2nt — (¢,¢) < 0, then it is called a Conway invariant holomorphic Jacobi
form. We denote the spaces of Conway invariant weak and holomorphic Jacobi forms of weight &
and index t by JX Acf ¢ and J,S ?\Ot respectively.

Jacobi forms of index 0 are independent of 3 and degenerate into usual modular forms on SLy(Z).
Since the Leech lattice A is unimodular, the theta decomposition (see [17, Corollary 2.6])) yields
that every Conway invariant weak Jacobi form of weight k£ and index 1 is a holomorphic Jacobi form
and can be expressed as g(7)OA(7,3), where g(7) is a modular form of weight £ — 12 on SLy(Z),
and ©x(7,3) is the Jacobi theta function of the Leech lattice defined by

(L1) On(r,3) = 3 emiltirsamitts),
leN

In this paper we determine the generators of Conway invariant Jacobi forms of indices 2 and 3.

Let J:VAC;) © and JSX‘?t denote the spaces of Conway invariant weak and holomorphic Jacobi forms of

integral weight and given index t respectively. Let M,(SLo(Z)) = C[Ey, Eg] be the ring of modular
forms on SLy(Z). The following is our main theorem.

Theorem 1.2. As free modules over M,(SLa(Z)),

(1) JZ}S;O is generated by four forms of weights —4, —2, 0, 0.

(2) JSX?Q is generated by four forms of weights 12, 12, 14, 16.
(3) J:}Sgo is generated by ten forms of weights —14, —12, —12, —12, —10, —8, —6, —4, —2, 0.
(4) JSX??’ 1s generated by ten forms of weights 12, 12, 12, 14, 14, 16, 16, 16, 18, 18.

We sketch the main idea of the proof. We first use the differential operators approach in [24]
to estimate the minimal weight of weak Jacobi forms of a given index. Then we combine the
arguments in [20, 24, 22] to construct generators. We also construct one of the singular-weight
generators of JSX% as the t-th Fourier—Jacobi coefficient of Borcherds’ automorphic form ®15 for
the unimodular lattice IIyg2 (see [4]). The main difficulty of the proof is to calculate the Fourier

expansions of generators, because Conway invariant Jacobi forms have unwieldy Fourier expansions
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in 25 variables. To overcome this difficulty, we write the Fourier expansion of a Jacobi form in terms
of Conway orbits defined as the Cog-invariant exponential polynomials

(1.2) orb(v) = Z e2milo(v)s),

o€Coq /(Cop)w

where v € A and (Coyp), is the stabilizer of Cop with respect to v. The Conway orbits orb(v) of
type %(v,v) < 16 are available in [12]. In order to calculate the Fourier expansions of products
of Jacobi forms, we have to know the decomposition of some products orb(v)orb(u) into linear
combinations of Conway orbits. We determine such non-trivial decompositions by comparing the
Fourier—Jacobi expansion of ®15 and the Borcherds denominator formula for the fake monster Lie
algebra (see [2, 4]). Combining these arguments together, we prove the theorem.

This paper is structured as follows. In §2 we collect and prove some basic results on Conway
invariant Jacobi forms and orbits of Leech vectors. In §3 we introduce two methods to calculate
the Fourier—Jacobi expansion of Borcherds’ form ®15, and determine the product decompositions
of orb(vy) orb(vg) and orb(vy) orb(vs) by comparing the two methods, where vy and vs are Leech
vectors of types 2 and 3. The main theorem is proved in §4 for index ¢ = 2 and in §5 for index
t = 3. In §6 we present many applications of our main results. (i) We find the modular linear
differential equations satisfied by some holomorphic Jacobi forms. (ii) We determine more product
decompositions of Conway orbits by means of linear relations among Conway invariant holomorphic
Jacobi forms of index 3. These results are formulated in Appendix A. (iii) We classify Conway
invariant holomorphic Jacobi forms of singular weight 12 and index ¢t < 3 with non-trivial character.
(iv) We use the Fourier expansions of our Jacobi forms to determine all conjugate relations among
Conway orbits of type 3(v,v) < 16 modulo 2A and 3A. (v) We calculate the pullbacks of Conway
invariant Jacobi forms and Conway orbits along Leech vectors of types 2, 3 and 4. The pullbacks
of Conway orbits are formulated in Appendix B. In §7 we discuss Conway invariant Jacobi forms
of higher index and propose some open questions. We know from Borcherds’ thesis [1] that A/4A
have 31 orbits with respect to Cog. We give an explicit description of the representative system of
minimal length of A/4A in Theorem 7.1. Borcherds’ result yields that the rank of JKI’\(?ZO is 31. It
seems very difficult to determine and construct the associated 31 generators of index 4.

2. CONWAY INVARIANT JACOBI FORMS

In this section we prove some basic properties of Conway invariant Jacobi forms. Most of them
are standard in the general theory of Jacobi forms. We also construct some basic Conway invariant
holomorphic Jacobi forms.

2.1. Basic results. All results in this subsection are known to experts, and their analogues hold if
we replace the Leech lattice and the Conway group with any even lattice and its orthogonal group.

Lemma 2.1. There is no nonzero Conway invariant weak Jacobi form of odd weight.

Proof. 1t follows from —id € Coy. O

Lemma 2.2. The Fourier expansion of ¢ € J]:V}\Cf‘) with t > 1 satisfies the following properties.

(1) If 2nqt — (01,01) = 2not — (b, 02) and U1 — Uy € tA, then f(ny,01) = f(ng,l2). In addition,
f(n,0) = f(n,—¢), foralln e N and € A.
(2) If f(n,0) #0, then
2nt — (0,4) > —min{(v,v) : v € £+ tA}.
Proof. Tt is a particular case of [17, Lemma 2.1]. The proof follows from the quasi-periodicity and

the transformation under —Iy € SLy(Z). O
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The above (2) yields that for any n > 0 the ¢"-term of a Conway invariant weak Jacobi form ¢
defined by
(lgn =3 fn.0)C, ¢F = e
leA
has only finitely many terms, and is actually an exponential polynomial invariant under Coy.

Lemma 2.3. Let ¢ be a non-constant Conway invariant holomorphic Jacobi form of weight k and
index t > 1. Then k > 12. Moreover, if ¢ is of weight 12, then its Fourier expansion has the form

p(ra) =Y. > fn0g¢

n=0 2SN
(£,0)=2nt

Proof. The claim is proved by the theta decomposition (see e.g. [17, Lemma 2.3, Lemma 2.5]). O

The minimal positive weight 12 is called the singular weight of Conway invariant holomorphic
Jacobi forms. By the two lemmas above, the Fourier coefficients f(n, /) of a Conway invariant
holomorphic Jacobi form of singular weight and index t only depend on the Cog-orbit of the class
of £in A/tA.

We have defined the Conway orbit of any Leech vector in (1.2). Obviously, any ¢"-term of a
Conway invariant Jacobi form is a C-linear combination of finitely many Conway orbits. In view of
the ¢’-term of a Conway invariant weak Jacobi form of index ¢ > 1 (see Lemma 2.2), we consider
the Leech vectors of minimal norm modulo tA. Let us define

(2.1) Si={veA:(v,v) <(u,u), for all u € v + tA}.

Due to the Conway invariance, we further consider the orbit space S;/ Cog. If two orbits Cop v and
Copu in S;/ Cog are conjugate modulo tA, namely there exists o € Cogy such that v — o(u) € tA,
then (v,v) = (u,u). The conjugate orbits of the same norm in §;/ Cog correspond to the same
Fourier coefficient in the sense of Lemma 2.2. Thus we define the quotient space (S;/ Cog)/tA, and
denote the number of its elements by

(2.2) s(t) := |(St/ Cop) /tA].

In other words, s(t) is the number of Cog-orbits of the representative system of minimal length of
A/tA. For convenience, we call the Conway orbits

(2.3) orb(v), wve€ 8/ Cog

the basic Conway orbits of index t, as they appear in the ¢’-terms of weak Jacobi forms of index t.

Lemma 2.4. The space J:V}\Cf * of Conway invariant weak Jacobi forms of integral weight and fized

index t > 1 is a free module of rank s(t) over M,(SLa(Z)). Moreover, the ¢°-terms of generators
are C-linear combinations of basic Conway orbits of index t, and thus linearly independent over C.

The space JSX% is also a free module of the same rank s(t) over M,(SLa(Z)).

Proof. For any ¢ € J;’ }\Cf ° the product A% is a holomorphic Jacobi form for all integers d satisfying

1
d> 5 -max{(v,v) : v € §}.

Thus the weight of Conway invariant weak Jacobi forms is bounded from below. Similar to the
proof of [14, Theorem 8.4], we show that J:VAC;) * and JSX‘?t are free modules of the same rank over
M, (SLa(Z)). Lemma 2.2 yields that the ¢%-term of a Conway invariant weak Jacobi form of index ¢
is a C-linear combination of the Conway orbits associated with vectors in S;. On the other hand, we

view Conway invariant weak Jacobi forms of index ¢ as modular forms for the Weil representation
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attached to A/tA (see [5]). By the obstruction principle in [6], there exist weak Jacobi forms of
sufficiently large weight whose ¢’-term is a single basic Conway orbit of index t (up to conjugate
modulo tA). Tt follows that the rank is s(t). The ¢%-terms of generators are linearly independent,
otherwise a suitable C - E{ Eg-linear combination of generators will give a weak Jacobi form whose
q°-term is zero, and therefore can be written as the product of A and a C[Ey, Fg]-linear combination

of generators. This contradicts the freeness of J:VACf % as a C[Ey, Eg]-module. O
Lemma 2.5. For any even integer k > 14, the following identity holds

(2.4) dim J' 20 — dim JIP, =6, > 1,

where 0 is defined as

(2.5) 5 = Z/ e<(v2’”)>,
tA

ve(St/ Coop)

here €(z) == min{n € Z : n > z}.

Proof. The proof is similar to that of [22, Proposition 5.1]. We only mention two essential ingre-
dients of the proof. (a) A Conway invariant weak Jacobi form of index ¢ is a holomorphic Jacobi
form if and only if its Fourier expansion does not contain the following terms

¢"orb(v), 0<n< %(v,v), v € (S¢/ Cop)/tA.

(b) When the weight k > 14, the obstruction principle yields the existence of Conway invariant
weak Jacobi forms of index ¢t whose Fourier expansion involves only one of the above terms. O

2.2. The construction of Jacobi forms. We introduce two standard methods to construct Ja-
cobi forms. The first one is the differential operators which raise the weight of Jacobi forms.

Lemma 2.6. Given a Conway invariant weak Jacobi form of weight k and index t > 1
[o¢]
p(r3) =Y > f(nr)g"-orb(r).
n=0reA/Cog

Then Hy(p) is a Conway invariant weak Jacobi form of weight k + 2 and index t, where

Hil(p)(r,3) = H(p)(7,3) + s Ba(r)o(r.3),

Her) =3 3 (n— “’”)fm,r)q"-orb(r),

2t
neNreA/ Cog
and Es(7) =1—243" -, 0(n)q" is the Eisenstein series of weight 2 on SLa(Z).

Proof. The construction of Hj relies heavily on the transformation laws of the heat operator H
with respect to SLa(Z) which were described in [14, 7]. We refer to [23, Lemma 2.2] for a proof. [

Subsequently, if there is no confusion, we will write Hy = Hy(¢), and denote the d-th composition
of H by H? for short.

w,Cog

Lemma 2.7. The ¢°-term of any ¢ € J07A7t satisfies the following identity
> (2t —=(r,r) f(0,r)]orb(r)| = 0.
reA/ Cog

Proof. Tt is a particular case of [16, Proposition 2.6]. It follows from that the constant term of
Hy(¢)(7,0) is zero. O
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The second method is the Hecke operators which raise the index of Jacobi forms.

J,;foo. Then we have

b
aks@ <% ) € JZVACZZ’

Lemma 2.8. Let m be a positive integer and ¢ €

m~! Z

ad=m,a>0
0<b<d

(s T-(m))(7,3) =

and the Fourier expansion of p|T—(m) is given by

T m) (s =3 3 d- 1f<71;7’,£> net,
neN  d>1
LeA d|(n,l,m)

where f(n,l) are Fourier coefficients of ¢, and d|(n,¢,m) means that d|n, djm and d=1¢ € A.
Proof. Tt is a particular case of [15, Corollary 1 of Proposition 4] or [17, Corollary 2.9]. O

2.3. Orbits of Leech vectors under the Conway group. Following the ATLAS [12], we define
the type of a Leech vector v as half of its norm, i.e. %(v, v). One can read the number \,, of Leech

vectors of type n from the theta function of the Leech lattice

Z miOT Z s

e

We note that 05 (1) = Oa(7,0) (see (1.1)). It is well-known that 6, is a modular form of weight 12
on SLg(Z), and it can be calculated via (see e.g. [11])

65520 65520 —

Era(T) — WA( T) = 691 n:1(0’11(n)

(2.6)

n

(2.7) On(7) = —7(n))q".

where E12(7) =14 O(q) is the normalized Eisenstein series of weight 12, and

—qH 1-q")

is the unique normalized cusp form of welght 12 on SLy(Z).

The Conway group Cog acts naturally on Leech vectors. The orbits of A/ Cop were described
in ATLAS [12, Page 181] for Leech vectors of type & < 16. There are in total 44 orbits of type
z < 16 including the orbit of type 0. Among the 44 orbits, the orbits of the same type have distinct
numbers of elements, and their numbers of elements are all divisible by p = 65520. Let O, ,, stand
for an orbit of type x whose number of elements is yp. If there are multiple orbits of the same
type, then we mark them as Ouq,y,p, Ozb,yop, €tc. in the order of the ATLAS. We formulate the 43
nonzero orbits as follows

o0

=> 7(n)q"

n=1

(2.8)

02,3y O3 256 O4,6075p Os 70656p Oéa,518400p
Osb,6900p O7 2861568p Oga,3p Ogp,12295800p Ogc,141312p
Og4,12441600p Ogp,32972800p O10a,143078400p  O10b,279450p O10¢,1430784p
O114,19430400p O115,393465600p O124,256p O12p,141312p O12¢,12441600p
0124,2049300p O12¢,393465600p O12f,667699200p  O13a,12441600p0  O130,1007271936p

O13¢,1573862400p
O14e,49183200p

O15¢,3147724800p
O16e,5901984000p

O144,286156800p
O154,2861568p
O164,6075p
O16£,16024780800p

O141,5508518400p
O150,1335398400p
O16b,12441600p

O16¢,3147724800p
6

O14¢,13800p
O15¢,19430400p
O16¢,286156300p

O144,19430400p
O154,8012390400p
O164,98366400p



Since the numbers y appearing in the above orbits are very large, for the sake of simplicity, we omit
the subscript yp of the orbit. We also use the same notation O, to denote the corresponding Conway
orbit Zver e2™i(v:3) . There are 3 non-primitive orbits of type z < 16, that is, Og, = orb(2vs),
012, = orb(2v3) and Oq4, = orb(2v4), where v, is a Leech vector of type x. For future use, we
denote by O1g, = orb(3v2) the non-primitive Conway orbit of type 18.

To describe the representative system of A/tA, we introduce the following notions.

Definition 2.9. For v,u € A, we say that v is conjugate to u modulo tA if v —u € tA, noted by
v ~¢ u. The t-weight of a Leech vector v is defined as the number
#{ueA:ueth+v, (u,u) = (v,v)}.
The t-weight of an orbit Cogv is defined as the number
#{u € Copv :u € tA +v}.

We warn that the t-weight of an orbit may be different from the ¢-weight of a vector in this orbit
(see Theorem 7.1). The following lemma was proved in [9].

Lemma 2.10. Representatives of A/2A of minimal norm may be found among vectors of types up
to 4, according to the weighted equality (here the 2-weights of orbits and vectors coincide)
02| | O3] | |04 _ o4
1 =27
i 2 i 2 + 48

The following lemma was proved in [19, Theorem 4.1]. It can also be derived from [1, Figure 2].

Lemma 2.11. Representatives of A/3A of minimal norm may be found among vectors of types up
to 9, according to the weighted equality (here the 3-weights of orbits and vectors coincide)
Ocol | [07] O]  [Ow| _ 24

1 a
+ (02| + O3] + |0a] + 05| +O6a| + =5 + 5+ =57 + 5

We know from [19, Lemma 4.3] that Og,, Os. and Oy, are respectively conjugate to Oy, O5 and
Og, modulo 3A. Tt is easy to derive the following result from the lemmas above.

Lemma 2.12.
(1) The rank of JKI’\(?SO over M (SLa(Z)) is 4. The basic Conway orbits of index 2 are O, O2,
O3, O4. The number 09 defined in Lemma 2.5 is 5.
(2) The rank of J:fgo over M,(SLa(Z)) is 10. The basic Conway orbits of index 3 are Oy, O3,
O3, Oy, Os, Oga, Ogp, O7, Ogp, Ogp. The number 03 defined in Lemma 2.5 is 19.

2.4. Conway invariant holomorphic Jacobi forms. We construct some Conway invariant holo-
morphic Jacobi forms of low weights. As in [20] we start with the Jacobi theta function of A. As
we mentioned in the introduction, the Jacobi theta function ©(7,3) defined in (1.1) is a Conway
invariant holomorphic Jacobi form of weight 12 and index 1. By applying the Hecke operators
introduced in Lemma 2.8 to ©(7,3), we can construct Conway invariant holomorphic Jacobi forms
of weight 12 and arbitrary index. More precisely, for any ¢t > 2 we have

Ay(1,3) = (OAIT_(t))(7,3)
(2.9) 7u)
| = Ulll(t) Y. a0 e TR,

CeA,(0,0)=2t
It is easy to see from Lemma 2.8 that every o11(t)A; has integral Fourier coefficients. For conve-
nience, we will use Ay instead of ©, from now on. The reduction of A; is given by
65520 T(t
- "0 A@r).

691 o11(f)
7

(2.10) Ay(7,0) = Enz(7)



Using the data of Conway orbits of type x < 16, we can calculate the ¢%terms of the Fourier
expansion of A; for d < 16/t. The forms Ay and As will be used later and we present their Fourier
expansions up to q5—terms

1
Ay =1+ 2049 (qu + 04q® + (Opq + Ogp)q* + (204903, + Ogy, + Osc)q"

+ (0104 + O106 + 0100)q5> +0(¢%),
(2.11)

Agzl—l—

177148 (O3q + (O6a + O6b)q* + (Oga + Ogp)q* + (O12a + O126 + O12¢ + O124

+ O12¢ + O125)q" + (0150 + O15p + Ot + O154 + 015e)q5) +0(q°%).

Since A; has singular weight, the differential operators introduced in Lemma 2.6 acting on them
give zero. In order to construct Conway invariant holomorphic Jacobi forms of weight 14 and index
t > 2, we use the trick in [20, 24]. We notice that A;(¢7,t3) is a Conway invariant holomorphic
Jacobi form of weight 12 and index ¢ with respect to the congruence subgroup I'g(¢) of SLa(Z).
Given a modular form f(7) of weight k& on I'g(¢), then fi(7)A;(¢t7,t3) defines a Conway invariant
holomorphic Jacobi form of weight 12 + k and index ¢ for T'4(¢). The trace operation

(2.12) Trsr, z) (fr(T)A1(tT,13)) = Z (fr(T)AL(tT,3)) 124 5,67
v€lo(t)\ SL2(Z)

gives a Conway invariant holomorphic Jacobi form of weight 12 4+ k and index ¢, where |5y is the
slash action of v € SLa(Z) defined via

(3, b
<wmwv¢w=@T+®*@@<*”§ﬁz>¢<gi@uﬁid>

It is well-known that fo(7) := (tEa(t7) — Ea(7))/(t — 1) € M2(To(t)). We apply the trace operator
to fa(7)A1(t7,t3) and denote the normalized image by

(2.13) By(7,5) =1+0(q) € Jy, %, t>2,
whose reduction is
(2.14) By(7,0) = Ew(r) = Ea(7)*Eg(7).
More precisely, for prime ¢ we have

12

B 1, (THGY, (TH]
(2.15) Bmwﬁfj@mmwm—ﬁgh(tmxtwﬁ

The Fourier expansions of By and Bs are as follows

1
By=1+—— ((98280 — 02)q + (98280 — 240, — 2403 — O4)q* + (393120 — 240,

4095
— 9603 — 2404 — 2405 — Ogq — Ogp)q° + (98280 — 9605 — 14403 — 240,
(2.16) — 9605 — 2404, — 240¢), — 2407 + 409508, — Oy, — Og.)q* + (589680 — 240,

— 19205 — 9604 — 14405 — 2404, — 240¢, — 9607 + 9828003, — 240y,

— 2405, — 240y, — 2405, — O100 — O10 — Or0)d° ) + O(a°).
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Bs =1+

531440 <(6377280 — 1203 — O3)q + (19131840 — 840, — 1203 — 3604 — 1205

— Opa — Ogp) > + (6377280 — 9605 — 3603 — 7204 — 8405 — 1204, — 1204,

— 3607 — 1208, — 1208, — 1208 — Ogq — Ogy)¢> + (44640960 — 21605 — 1205
— 18004 — 9605 — 360¢, — 360¢, — 7207 — 8403, — 840g, — 840g. — 120y,

— 1209, — 36010, — 360105 — 36010 — 120114 — 12011 — O124 — O125 — O12¢

— O12q — O12¢ — O1a5)¢* + (38263680 — 16805 — 8403 — 14404 — 21605 — 1204,
— 120¢, — 18007 — 960g, — 9605, — 960g. — 360g, — 360g, — 720104 — 72010
— 72010c — 840114 — 84011y — 120124 — 120195 — 12019 — 120194 — 12019,

— 120125 — 36013, — 360135 — 36013. — 120144 — 12014 — 12014. — 120144

—12014¢ — O15q — O155 — O15¢ — O154 — 015e)q5> +0(¢%).

(2.17)

3. JACOBI FORMS OF SINGULAR WEIGHT AND THE FAKE MONSTER LIE ALGEBRA

In 1990 Borcherds [2] constructed a celebrated generalized Kac-Moody algebra whose root lattice
is g5 1, that is, the unique even unimodular lattice of signature (25,1). This infinite-dimensional
Lie algebra describes the physical states of a bosonic string moving on the Zs orbifold of the torus
R?>! /1951 (see the string theory background in [13]), and is called the fake monster Lie algebra.
Borcherds proved that the denominator identity of this algebra defines an automorphic form of
weight 12 on a symmetric domain of type IV and dimension 26. This form is exceptional, because
Scheithauer [21] proved that it is the unique holomorphic Borcherds product of singular weight on
unimodular lattices. In this section we construct Conway invariant holomorphic Jacobi forms of
singular weight and calculate their Fourier expansions using this remarkable identity.

We first review the modularity of this denominator identity. Let U be an even unimodular lattice
of signature (1,1). Then U & A gives a model of IIp5 1. We further define Ilps9 = 2U & A. The
symmetric domain D(Ily2) of type IV attached to Ilyso is one of the two conjugate connected
components of the space

{[Z2] e P(lx2®C): (2,2)=0,(Z,Z) < 0}.
Let O*(Ily2) denote the orthogonal group which preserves Ilag2 and D(Ilag2). We define the
affine cone over D(Ily ) as

A(Ilgs2) ={Z €Il @ C: [Z] € D(Ilp62)}.
In 1995 Borcherds constructed a holomorphic function ®15 : A(Ily2) — C which satisfies

Dp(t2) =t 2d15(2), forall t € CX,
@12(9(2)) = det(g)fblg(Z), for all g c O+(112672),

and vanishes precisely with multiplicity one on hyperplanes orthogonal to roots of Il 2. In other
words, @19 is a modular form of minimal weight 12 and determinant character for O+(112672).
This function has an infinite product expansion. The modular variety D(Ilgs2)/ O" (Ily62) has a
unique 0-dimensional cusp and twenty-four 1-dimensional cusps which correspond to the twenty-
four Niemeier lattices. We fix a basis U = Ze + Zf with €2 = f2 = 0 and (e, f) = —1. At the
1-dimensional cusp corresponding to the Leech lattice we realize D(Ilz2) as the tube domain

HA)={Z=-we+j3—7f:T,weH, 36 A®C: (Im(Z),Im(Z)) < 0}.
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We write & = ne + £+ mf € U@ A as (n,£,m). Note that a®> = —2nm + (£,£) and (o, Z) =
nt + mw + (¢,3). Borcherds [2, 4] proved that ®,5 are represented on H(A) by

@12(2) = e27ri(P7Z) H (1 - 627”‘(0[,2))1’24(1—(0!704)/2)

aEA
(3.1) -l
= Z det(o) ZT(n)ezm(”("”)’Z),
oceW n=1

where p = (1,0,0) is the Weyl vector, W is the reflection group of U @ A, A is the set of positive
roots of the fake monster Lie algebra which are either positive multiples of p or vectors avin U & A
satisfying (o, ) < 2 and (a,p) < 0, 7(n) is the Ramanujan tau function in (2.8), and pos(n) is

defined by
= Zp24(n)qn_1-
n=0

This is the so-called Weyl-Kac—Borcherds denominator identity of the fake monster Lie algebra.
In terms of Conway invariant Jacobi forms, one can express ®15 as follows (see [4, 16])

®15(Z) = A(T) - exp ( _ Z((A_lAl)‘T_(m))(T,j)e%imw)
m=1

(3.2) -
_ Z q>127m(7_’3)e27rimw’
m=0
where T__(m) are Hecke operators introduced in Lemma 2.8.

Theorem 3.1. For any m € N, the function ®12 ,, is a Conway invariant holomorphic Jacobi form
of weight 12 and index m. Moreover, its Fourier expansion takes the form

P1om(7,3) = Z > emn, 0)g¢!

n=0 leA
(0,0)=2nm

and satisfies the following properties.
(1) For any n,m € N and ¢ € A we have

em(n,0) = —cp(m, L),

In particular, ¢,(m,€) =0 for any m € N and £ € A.
(2) For any n,m € N and ¢ € A, we have ¢y, (n,l) € Z. Let d be the largest positive integer
such that n/d,m/d € N and d=*¢ € A. Then we have

em(n, ) € {r(d), —7(d),0}.
Proof. The function ®12,, is in fact the m-th Fourier—Jacobi coefficient of ®15 at the Leech cusp,
which follows that it is a Conway invariant holomorphic Jacobi form of weight 12 and index m.
Since ®12,, has singular weight, Lemma 2.3 yields the claimed Fourier expansion. We notice that
®19 has the determinant character. Thus ®19 is anti-invariant under exchanging 7 and w, which
implies the property (1). The property (2) follows from the denominator identity (3.1). O

It is clear that ®120 = A and ®12; = —A;. We derive from the above theorem that ¢,,(0,0) =
—cp(m,0) = —7(m) and ¢ (1,€) = —c1(m,€) = 1. Thus when m > 2 the Fourier expansion of
D19, starts with

(3.3) Ciom(r,3) =—T(m)+ Y, q-C"+0(),
(e, (6,0)=2m
10



and the reduction of ®13 ,, is given by

65520
691
By comparing reductions of A; and ®;2;, we prove the following lemma.

(3.4) D19, (7,0) = —7(m)E12(7) + o11(m)A(T).

Lemma 3.2. Whent > 2, the forms Ay and ®124 are linearly independent. In particular, we have
dim J1020?\t >2, fort>2.

By Theorem 3.1 and the reduction to modular forms of weight 12 on SLy(Z), we can unambigu-
ously determine the Fourier expansion of ®12; to very high ¢ orders. For example, we find

D129 =24+ 02q + Ogyg® + (24054 + Osc)q"* + (0106 + O10c)¢° + (240124 + O125 + O12¢)¢°
+ (Ouae + Orag + Orae)q” + (240164 + O16p + O16c)q° + O(q”),

®193 = — 252 4+ O3q — Ogyq® + (O120 + O126 — O124)q" + (O150 — O15¢)a° + O(¢°),

P14 =1472 4+ O4q — ¢*(24034 + Osc) — ¢*(O124 + O125 — O124) + O(¢°).

(3.5)

Let us briefly show how to find the above ®32. We first determine its reduction by (3.4) as

®199(7,0) =24 + 196560q + 452088000¢° + 9263479680¢" + 1120545316804°

3.6
(3.6) + 824834949120¢° + 4496467248000¢" + 19573719984000¢° + O(¢").

Since P19 is a holomorphic Jacobi form of index 2 and singular weight, its ¢"-term is a linear
combination of Conway orbits of type 2n. Clearly, the ¢'-term has to be Oy. To determine the
¢>-term, we write [@12,2]48 = 2064 + yOgp. Then

[®19,2]43(7,0) = £|Opa| + y|Os|, i.c. 339655680002 + 452088000y = 452088000.

By Theorem 3.1, z,y can only be £1 or 0. Obviously, the only solution is x = 0 and y = 1.
Following this procedure, we uniquely determine the Fourier expansion of ®125 up to ¢®-term. For
[@12,2]48, the similar linear equation has two solutions: the one in (3.5) and 24(O164 + O16p), but
the second possibility is ruled out knowing only orbits of type orb(2v) have coefficient 24 which
can only be O16,. We also use the same trick to find the Fourier expansions of ®153 up to ¢°-term
and ®q24 up to ¢*-term.

It turns out that these ®12; are very useful to determine the product decomposition of Conway
orbits, which would be very difficult to compute in a brutal way due to the huge size of the orbits.
For example, from (3.2) it is straightforward to compute

1 A2 Ay
Pu2=37 ~A[(3)[T-0)
(3.7) — 24+ Ogq + <%Og ® Oq — 98280 — 230004 — 27605 — 230, — O — %Oga> 4

+ (1205 ® O3 + O3 ® O3 — 2358720 — 10230405 — 1780203 — 260004
— 29905 — 2406, — 240q, — O7 + 1208,)¢" + O(¢°).

By comparing the ¢3-, ¢*-terms of (3.5) and (3.7), we can neatly determine the decompositions of
orbit products Oy ® Os and Oy ® O3. We then achieve the following result.

Lemma 3.3. The decompositions of Os @ Oo and O2 ® Os in Appendiz A hold.

By comparing the ¢°-term of ®125 in (3.5) and (3.7), we further determine the decomposition
of O3 @ O3 4+ 205 ® Oy, but cannot separate this combination. Using the ¢%-term of P90, we
11



determine O3 ® O4 + O ® Os, but cannot separate them either. Utilizing these constraints, we can
compute from (3.2) that

e A G RN

(3.8) =—252+ O3q — Oﬁb(] + = (202 ® O5 — 02 @ Ogp + O ® Og, — 8960902 — 15180005
— 9319604 — 3835005 — 1186806a — 94840, — 280407 + 460005, — 4840y,
— 27603 — 2309, — 6609, — 30104 + 43010 + 30124 — O184)q* + O(g°).

By comparing the ¢*-term of @153 in (3.5) and (3.8), we determine the decomposition of the
combination Oy ® (205 — Ogp + Ogg). These partially determined decompositions of orbit products
can be remedied by the technique of Conway invariant Jacobi forms of index 3, which will be
discussed later. The new technique even allows us to determine more product decompositions of
orbits, which does not appear in the combinations here, such as Oy ® Og,.

4. CONWAY INVARIANT JACOBI FORMS OF INDEX 2

In this section we prove parts (1) and (2) of Theorem 1.2. We first determine the space of Conway
invariant holomorphic Jacobi forms of singular weight and index 2.

Lemma 4.1.
dim J} 5 = 2.
Proof. Suppose dim J12 ‘A2 > 2. We notice that there is only one Conway orbit of type 2. By virtue

of Ay and @199, we can cancel the ¢°- and ¢'-terms of the third holomorphic Jacobi form of weight
12 and index 2. Then Lemma 2.3 yields that there exists a Jacobi form

o(r.3)=q" Y, [0 +0(g"
CeA,(£,0)=4n
for some positive integer n > 2. Since ¢/A? defines a weak Jacobi form of weight —12 and index
2, we have ¢(7,0) = 0. By Lemma 2.2, the ¢"-term of ¢ is a linear combination of basic Conway

orbits of type 2n and index 2. Therefore, Lemma 2.12 implies that n = 2 and up to nonzero scalar
#(7,3) = ¢°O4 + O(¢?), which contradicts with ¢(7,0) = 0. O

Theorem 4.2. The free C[Ey, Eg]-module J A2 is generated by Az, ®122, By and HDBs.

Proof. We know that the minimal weight of non-constant Jacobi forms in J A 5 is 12. According to
Lemma 2.12, J_ COO has four generators. By the above lemma, there are exactly two generators of
weight 12. Clearly, B> has to be a generator of weight 14. The image of By under the differential
operator introduced in Lemma 2.6 gives a Conway invariant holomorphic Jacobi form of weight
16 and index 2. We verify that HBj is independent of EyAs and E;®129. Therefore, HB> is a
generator of weight 16. We have found all four generators, and thus proved the theorem. O

We remark that A% can be expressed by Ay, @122, By, HBy as

455 683
—2° E\(E¢By — 3E,HB
1024 1(EeBy — 3E4H B,) + 18432

To determine the free module of weak Jacobi forms, we first estimate the minimal weight of weak
Jacobi forms using the differential operators approach established in [24].

(4.1) A2 =2AD55 + —_(5E} +4F%)A,.

Lemma 4.3.
C .
Tl — O k<t



Proof. Suppose that there exists a nonzero ¢ € J,:Vfgo for some k < —4 whose ¢’-term is nonzero.
We can assume that k& = —8 or —6, otherwise we multiply ¢ with a modular form in C[Ey, Eg).
We write the ¢°-term of ¢y, as

[r]q0 = c0O00 + 202 + €303 4 404,  co,c2,¢3,¢4 € C.

Applying the differential operators to ¢, we construct weak Jacobi forms H ey, H?¢p, ... of weights
k+2, k+4, .... For each weak Jacobi form of negative weight including ¢, its reduction to 3 = 0 is
identically zero, and in particular its ¢°-term reduces to zero by taking 3 = 0, which yields a linear
equation with four unknowns ¢;. For example, for ¢5 we have ¢y + c2|O2| + ¢3|O3| + ¢4]O4] = 0. For
the weak Jacobi form of weight 0, there is a similar linear equation obtained from Lemma 2.7. In
this way, we build a system of |k|/2 4 1 linear equations with 4 unknowns ¢;. A direct calculation
shows that this linear system has only trivial solution for K = —6 and —8. This contradicts our
assumption that the ¢%-term of ¢, is nonzero. O

In the following we construct four weak Jacobi forms ¢y, o of weight £ and index 2 in terms of
holomorphic generators and present their ¢%- and ¢'-terms.

P12 =355 <E4(2813277A2 — 2048® 15 5) + 1842750(Eg By, + 15E4HBQ))
(4.2) — (8491392000 — 202503 + 640y) + (543449088000 — 20736000,
— 38070003 + 337920, — 202505 + 64044)q + O(q?).

Y22 =0Hp_ 42
1
(4.3) = 3A7 <E4(921375E4B2 — 2813277Fg Ay 4 2048 E®19.9) — 11056500 E H B2>

= (67931136000 + 202503 — 2560,) + (5977939968000 — 165888000,
— 151470003 4 552960, + 202505 — 2560¢4)q + O(¢?).

w02 =3Hp 22
) 1622 <(3E4 + 2E2)(2813277 Ay — 2048B15.5) +1842750E, (21 E, H By — 4E6B2))
— (237758976000 — 202505 + 64004) + (33150394368000 — 580608000,
319950003 + 4915204 — 202505 + 640064 )q + O(¢?).

683(
A
Theorem 4.4. The free C[Ey4, Eg]-module JW COO is generated by p_42, Y_22, Yoo and Yg2.

(4.5) o2 = D99 — 24A5) = 67502 + 8(202502 — O4)q + O(g 2).

w,Cog

Proof. As we mentioned in the proof of Lemma 2.4, for any ¢, € J Ao » the product A%y is a
holomorphic Jacobi form of weight k 4 24, and therefore lies in the (C[E4, Es]-module generated by
Ag, ®122, By and HBy. In this way, we find that the vector space JZVAC;O for k = —4, —2 and 0
has dimension 1, 1 and 3 respectively. Thus there are one generator of weight —4, one generator of
weight —2 and two generators of weight 0. We then finish the proof. O

We remark that the argument in the proof of Lemma 4.3 also yields the estimations
dim JY 0% < 1, dimJYy % <2, dim Jyys° < 3.

This gives another proof of the above theorem. As far as the authors know, JW COO is the first free

module of weak Jacobi forms on an irreducible lattice which has multiple generators of weight 0.
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In summary, the generating series of Conway invariant weak Jacobi forms of index 2 is given by

Zdlm WCO() E_ _4+$_2+2
= (1 —2%)(1 — 20)

4.6
(4.6) =4+ 272+ 3+ 227 + 42t + 425 + 528 4+ 5210 + 7212 + 6214 4 8216

+ 8218 4+ 9220 4+ 922 + 112 4 10220 + 1227 + 1220 4+ O(2?).

5. CONWAY INVARIANT JACOBI FORMS OF INDEX 3
In this section we prove parts (3) and (4) of Theorem 1.2.

5.1. Conway invariant holomorphic Jacobi forms of index 3. We first estimate the minimal
weight of Conway invariant weak Jacobi forms of index 3 in a similar way to the case of index 2.

Lemma 5.1.
TUe ={0} ifk <14,

Proof. Suppose that there exists a nonzero ¢, € J }\Cgo for some k < —14 whose ¢"-term is nonzero.
As explained in the proof of Lemma 4.3, we only need to consider the cases of k = —18 and —16.
We represent the ¢*-term of ¢y, as

[Pr]q0 = c000 + 202 + €303 + €404 + 505 + 64064 + c6,O6p + 707 + cgOgp + c9Og,  ¢; € C.

Again, by applying the differential operators to ¢;, we construct Jacobi forms H¢y,, H?¢y, ... of
weights k& + 2, k + 4, .... By taking 3 = 0 and considering the reductions of weak Jacobi forms of
non-positive weights, we construct a system of |k|/2 + 1 linear equations with 10 unknowns ¢;. By
direct calculation, we find that the only non-trivial solution of this linear system is

€0, C2, €3, €4, C5,C7,C8,C9 = 0, ¢6a|Opal + co5|Ogp| = 0.
Thus the ¢%-term of ¢, has the form
¢ = |06b|O6a — |Oga|Ogb + O(q).

We notice that A?¢;, defines a Conway invariant holomorphic Jacobi form of weight k + 24 and
index 3. It follows that k 4+ 24 > 12, i.e. £ > —12. This contradicts our assumption on the weight
k. We have thus proved the lemma. O

For calculation purposes, we need to determine the decompositions of O ® O4 and O3 ® O3. The
following identity is useful.

Lemma 5.2. The following identity holds.

H(A1By) =AHBs — (44287(7}34 +9E3) A3 + T97160E, EBs

1326780
292
(5.1) — 1206410150 — 388800125 ) + T (2] + EY) HBs
584 2
~ B F¢H?Bs + —— (2049H? (A, Ay) — 4H* (A, ® .
gl [t 3+4095(09 (A1Ag) — (A1®122))

Proof. By means of the decomposition of Oy ® O2 which was determined in Lemma 3.3, we are
able to calculate the Fourier expansions of the basic forms A1 Ay, A1®122, A1By and A1HDB; up
to (and including) ¢3-terms. These data are enough to verify that both sides of (5.1) have the
same Fourier coefficients up to ¢>-terms. Therefore, the quotient of their difference by A? gives a
Conway invariant weak Jacobi form of weight —20 and index 3, which has to be zero by Lemma

5.1. We then prove the desired identity. O
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Lemma 5.3. The decompositions of Oy @ Oy and O3 ® Os in Appendiz A hold.

Proof. As mentioned in §3, we can determine the product decomposition
O3 ® O3 + 209 @ O4 = 16773120 + 114015602 + 35480003 + 9715204 + 2235605
(5.2) + 409405, + 459804, + 55207 + 4804, + 209, + 20g,
+ 20105 + 2010¢ 4+ O124.

The ¢*-terms of A1 Ay, A1Bs and A1 HBs contain Oy ® Oy, but not O3 ® O3. To determine the
decomposition of Oy ® Oy, one first needs to make an ansatz. From the triangle inequality, we see

(53) 0y 0y =Y nOues (Vo= V2P <0 < 5(VI+ V)

Then Os ® O4 at most contains orbits of type from 2 to 11, while O3 ® O3 at most contains orbits
of type from 0 to 12. In fact, we can do better knowing only the orbits in O3 ® O3 + 205 ® O4 can
appear in the ansatz. In summary, we have the following ansatz:

(5.4) 0y ©04 = 2.0.,  O3®03=16773120 + O135 + »_ 4.0

The above sums take over orbits Og, O3, 04, O5, Oga, Ogp, O7, Ogp, Ogq, Ogp, O10p, O10c. Substitute
the above ansatz for Oy ® Oy into Ay Ay, A1 By, AjH B, then the ¢*-term of (5.1) solves

(5.5)  x = 93150, 25 = 48600, 74 = 16192, 25 = 4050, 26, = 759, T = 891, z7 = 100, 2, = 8.

It remains to determine %oy, Zop, T10p, 10c- Using |O2 @ Oy4| = |O2| x |O4], we can solve
(5.6) I 26175 - @x - 5600x - Ex
' 1067 0044 2379 243 87t

As all z, and y, need to be non-negative integers, (5.2) and (5.4) require that xgs, Zop, T106, T10c
can only be 0 or 1. It is then easy to find that the only solution is

(5.7) T9q =1, wop =0, z10p = 1, 10 = 0.
This solves the decomposition of Oy ® Oy, and by extension O3 ® Os. O

Thanks to the decompositions of Oy ® O, O ® O3 and Oy ® Oy, we are able to calculate the
Fourier expansions of A; A, A1®122, A1 By and A1 H By up to (and including) ¢*-terms. This allows
us to construct a new Conway invariant holomorphic Jacobi form of weight 12 and index 3, and
prove that this new form generates JlC?(,)?Xﬁ together with Az and @19 3.

Lemma 5.4. The following function lies in the space ch2°?\3

W19 3 =84909P12 3 +

(42576(486¢24,3 + 33215(F, F¢Bs — 6E2 HBs + 12Es H* B3))

3888A
(5.8) + 10345968 A1 (17® 195 — 2049A5) + 44287 A3(18153E3 + 10231E§)>
= (483840¢, — 64404,)q> + (—64409, + 24309;)¢° + q* (—644015. + 48384019
— 644012, + 2430125) + ¢°(—64401 5, + 48384015, + 2430154 — 644015.) + O(¢°),
where
1
(5.9) Yoy 3 = 7 (8190A1HB2 + 2049H% (A1 Ag) — 16H2(A1c1>12,2)).

Proof. We first calculate the Fourier coefficients of W93 up to ¢>-terms by definition. If W93 has
no poles, then we conclude from its Fourier expansion that Wi 3 is a holomorphic Jacobi form.
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We now prove that Wis 3 has no poles. This is equivalent to show that 194 3 is holomorphic, which
follows from the following identity

A 44287
Eethosz = — 2—41(59421%/@ + 1515156, By + 424E®192) — 21033 ———— A3(85041E3 Eg + 19583E7)
33215 66430
— B3 (2199E}] + 4340E,E}) — ——— H*B3 (3249E} + 3290E7) — 53AE® 13
13122 2187
217192885 34833
— 55323H3 (A1 Ay) + =—————F31FEsHB3 + E,H(AAy).

2187
We explain why the above identity holds. Let 303 denote the right hand side of this identity.
We check that FgE 1043 — F41303 = O(¢%). Thus the quotient by A® defines a Conway invariant
weak Jacobi form of weight —26 and index 3, which has to be zero by Lemma 5.1. This proves our
claim, and thus proves the lemma. To calculate the ¢*- and ¢°-terms of U193, we solve the linear
equations (defined by the reductions of ¢*- and ¢°-terms to 3 = 0)

Zc*lolg*‘ = 0 and ZC*‘OL”)*’ = O.

These coefficients have to be 0, —644, 48384 or 243, as the orbits of types 12 and 15 are conjugate
to O3, Ogq, Ogp or Ogp modulo 3A. O

Lemma 5.5. The space J%??x,?, is generated by As, ®123 and Via3.

Proof. Suppose dim chzoj)\g > 3. Similar to Lemma 4.1, by means of A3, ®123 and W53, we can

cancel the ¢%-, ¢'- and ¢*-terms of the fourth Jacobi form of singular weight and index 3 denoted
#. Then its Fourier expansion takes the form ¢3Ogy, + O(q¢*), which contradicts ¢(7,0) = 0. O

We further construct a form Vi3 € Jﬁ‘??\’?) which is linearly independent of Bs, and a form
\1’16,3 S Jl%olo\ 3 which is linearly independent of E4A3, E4(I)1273, E4\I’1273, HBg and H\I/1473.

Uyy3=——(14E,4(E 45B3 E. 4A5E, 2F H?>B;—FsHB
14,3 1109777760 ( 4( 4(996 5B3F, + 88574 A3 6) + 597870( 4 3 6 3))
— 1990170A; By + 729(4098 H (A Ag) — H(Al@m)))
1
(5.10) =1+ G3F0IS0 <2(41102880 — 310203 + 2903)q + (246617280 — 434280,

+ 69603 — 9480, — 12905 — 50¢, — 11064 )¢* + (82205760 — 4963205
+ 208803 — 189604 — 90305 — 6006, — 13206, — 46207 — 620403,

12905, — 1560g, — 1109, — 14Ogb)q3> +O(gh.

1
W16 = 266052981 ®153 + oot ( — 69984 (1825659 H2 (A Ag) + 123364H? (A1 P195))

+ 1594320(278111E3 Eg By — 6(174161E7 + 103950E3) H Bs + 3337332, EgH* Bs)
— 388841 (1079802514 Ay — 1239877® 15 9 By — 1360490040 H By )
+ 449875, A5 (3734541 F3 + 516501 1E§)>
= 616(39744000, — 18630003 + 1177604 — 67505 + 172806 )q°
+ (979292160005 — 103284720003 + 10155622404 — 706860005 — 306028806,
+ 2426941440¢;, — 3080007 4 215040z, — 41580008, — 2673093)q> + O(q*).

Lemma 5.6. The space J&O})\ 3 18 generated by B3 and Vq43.
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Proof. We know that FjAs, E4s®123, E4Vi23, Y163, HB3 and HVy, 3 are linearly independent.
Suppose dim Jﬁ‘??\’?) > 3. Then dim Jz%‘??\’?) > 9. Therefore, there exists a nonzero ¢ € Jz%‘??\’?) whose
Fourier expansion takes the form

¢ = q2(C() + 09 + 0303) + O(qg).
This gives a weak Jacobi form
V= A2 = ¢y + 205+ 303+ O(q) € Jivffg.

We apply the differential operators to construct H1 and H?1. The reductions to 3 = 0 of these
two Jacobi forms together with v yields a system of 3 linear equations with 3 unknowns ¢y, co and
c3. We find that this system has only trivial solution. Thus 1/A gives a nonzero Conway invariant
weak Jacobi form of weight —16 and index 3, which contradicts Lemma 5.1. O

Theorem 5.7. The free C[Ey, Eg]-module J*Cxog is generated by ten forms
Az, @123, Uia3, B, V143, HB3, HU143, V163, H> B3, H* U143
which have weights 12, 12, 12, 14, 14, 16, 16, 16, 18, 18 respectively.

Proof. We know from Lemma 2.12 that this free module has ten generators. By Lemma 5.5 and

Lemma 5.6, there are exactly three generators of weight 12 and two generators of weight 14. Since
Vi6,3, HB3 and HWy,3 are linearly independent with E;As, Ey®123 and F4VUqo 3, they have to
be generators of weight 16. We also verify that H?Bs and H?Wy, 3 are linearly independent of
EsAs, Eg®123, FgV123, B3 and E4¥14 3, so they are generators of weight 18. We have found all
ten generators. This completes the proof of the theorem. ]

5.2. Conway invariant weak Jacobi forms of index 3. We now construct Conway invariant
weak Jacobi forms of index 3 in terms of the ten holomorphic generators. For the lowest weight
weak Jacobi form ¢_143, we normalize the constant term in its ¢*-term to be 1.

B 1 (_ E,FEg
P8 T 860201280047 \ 4881764160

(6737646323408 A3 + 333264204P 19 3 + 62607V 2 3)

E? Es
— — (324193 B3 + 25407V ————(3W143 — 26961014080H B
36 3 143) ¥ Sg5760 OV 163 ’
(5.11) + 32854902080 H W 14 3) + E4(35843H% B3 + 166557H2\I'1473)),
B <1 Oy i O3 Oy . Os O
N 8190 199680 3159000 55111680 5208053760
Osp Ogp )
— O(q).
* 38362896000 540094464000 +0()
We remark that this ¢-term is consistent with the unique solution of the linear system built in a
similar way to Lemma 5.1 for k = —14. For weight —12, two obvious weak Jacobi forms are
13 (@) 70 @) @) 0
Hp 143 = (_ 2 3 4 5 4 7
(5.12) 6 5460 1198080 3790800 = 110223360 31248322560
3 Osp n Ogp > 4+ 0(g)
76725792000 = 648113356800 ’
and
Vi3
(5.13) Y123 = = = (483840¢, — 64404,) + O(q).

A2
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We construct the third independent weak Jacobi form of weight —12 such that its ¢-term does not
contain Oy and Ogg:

1 ( E3
579467520A% \ 3973760

2

E
- m(202943145966736143 + 2540386815 5 + 2307555015 5)

¢_1273 = (16703964459728A3 + 277004364(1)12,3 + 178351@12,3)

2

E
(5.14) — 91E, E¢(248711B;3 + 272890 14 3) + ﬁ(797547951201{33

+ 54331156830 HW 14 3 + 3W16.3) + 364F (1682869 H> B3 — 8469H2\1/14,3)>

1903 i 1704 _ 2505 13066 _ 1107 n Ogb _ Ogb >—|—O( )
256 2025 23552 1380 953856 1366200 32972800 @

Theorem 5.8. The free C[Ey, Eg]-module J:VAcgo is generated by ten forms

143, G-123, V_123, HY% 13, 1<d<7
whose weights are respectively —14, —12, —12, =144 2d, for 1 < d < 7.

—(0:-

Proof. For any ¢ € J,:Vfgo we have A3¢y, € J??ﬁ(j(r)k A3- We note that the Fourier expansions of ten

holomorphic generators can be calculated up to (and including) ¢3-terms. These data are sufficient
to determine the subspace

T =1{f € JE}CG(:(_)k7A73 f= O(qg)}
JW,COO

which is isomorphic to J; \’5° via the map f — f/ A3, Therefore, for any even —14 < k < 0 we can

. w,Cog
find a basis of Jk’A73

bases and determine their weights. Notice the ¢’-term of 14,3 does not contain orbits of type 6,
then the ¢°-terms of all H dgp_14,3 do not contain orbits of type 6. On the other hand, the ¢°-terms
of both ¢_123 and 1 _12 3 do contain orbits of type 6 and are linearly independent. Then it is easy
to verify that the ¢"-terms of the ten forms are linearly independent over C. Therefore, the ten
forms are indeed generators. This concludes the proof. O

with known ¢-terms. We then pick up the ten weak generators from these

In summary, the generating series of Conway invariant weak Jacobi forms of index 3 is given by

. owCop kT M 43240446t a2 41
Zdlka7}x73 " = (= 2N = 29)
keZ

(5.15) =2 M+ 30712+ 20710 4 5278 4 6270 + Tx7t + 9272 + 12 + 1127

+ 152" +162° 4+ 172° + 1920 + 222" + 212" + 252'° 4 262"
+ 27270 4 29272 + 3222 + 312%° + 3528 + 3620 + O(2*?).
By Theorem 5.8, the two-dimensional vector space of Conway invariant weak Jacobi forms of

weight —10 and index 3 are spanned by Ejp_143 and H2<p_1473. Thus H¢_12 3 should be linearly
dependent of them. Indeed, we find

(516) H¢_12’3 == 4680H2(,0_1473 — 20280E4(,0_14,3.

6. APPLICATIONS

6.1. Modular linear differential equations. Modular forms on SLy(Z) satisfy some modular

linear differential equations (MLDEs) composed of Serre derivatives. As a generalization, Jacobi

forms can satisfy MLDEs composed of differential operators introduced in Lemma 2.6. The MLDEs
18



for holomorphic Jacobi forms are particularly interesting. For example, all holomorphic Jacobi
forms ¢ of singular weight (including A, @12 and Wy 3) satisfy the first-order MLDE

(6.1) He¢=0.

We further study MLDESs for holomorphic Jacobi forms of non-singular weight. We first conclude
that By € J&?})\’Z satisfies the following second-order MLDE

E,
6.2 [HQ - —}B ~0.
(62) °g,
We also find that the two Conway invariant holomorphic Jacobi forms of weight 14 and index 3,

that is, Bs and W4 3 satisfy the same third-order MLDE

3 Ea Eg

(6.3) L 12H+72]¢_0.
For any even positive-definite unimodular lattice L and any fixed index ¢ > 2, we can define the
similar holomorphic Jacobi form B; of weight %rank(L) + 2 and index ¢ for L which is invariant
under the orthogonal group of L. We remark that the MLDE of B; does not depend on the lattice
L. In fact, the MLDE of B, is completely determined by the MLDE of the modular form of weight
2 involved in the definition of B;. Indeed, Sakai’s Jacobi forms By and Bs for root lattice Eg (see
[20]) satisfy the same MLDEs as (6.2) and (6.3) respectively.

The Conway invariant holomorphic Jacobi form Wis3 of weight 16 and index 3 satisfies the
following fifth-order MLDE

5E4 5E¢ ., bHE?
4 [Hf’— H H? H}\If —0.
(6.4) PR 144 163 =0
This MLDE is integrable. In fact, we find
E E A
(6.5) H' - %H2 + %H} Uigs = 88% (85562484(252A3 + P1a3) — 3359W1933).

Due to the singular weight property and the equality H(A¢) = AH(¢), the H-image of the above
right hand side is indeed zero.

The MLDEs for the products of two Jacobi forms usually have high orders. For example, we
find that A;®12 2 satisfies the following MLDE of order ten

[0 + 11 EH® 4 o B H + s EYHO + pa BB H? + (us 3 + po B H*

(6.6)
+ ur EFEgH® + (us EoE§ + poEy)H? + (1m0 Eg + unEZZ’EG)H] (A1@122) =0
where
__§ _@ __§ __@ 7325 ~ 1075
(67) H1 = 67 H2 = 367 H3 = 167 Ha = 1447 M5_17287 He = 2167
' 23275 2525 1475 25 11675
7 = us 24

T 3456 ~ 1728 12060 MO Tazyy MUT T3040

To prove this MLDE, it is sufficient to verify the Fourier expansion up to ¢*-term. We remark that
the MLDESs for A1 Ay, A1Bs and A1 H By have orders 13, 14 and 15. In the next subsection, we will
also encounter systems of MLDESs, which we also call modular linear relations.
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6.2. The product decomposition of Conway orbits. In previous sections, we have determined
the decompositions of Os ® 02, O3 ® 03, 0504 and O3 03. We now use the technique of Conway
invariant Jacobi forms of index 3 to determine more product decompositions of Conway orbits. As
we mentioned in §3, the ¢%-term of ®19 - enables us to determine

O3 ® 04 + 09 ® O5 =4194304049 + 161287503 + 56524804 + 17740005 + 485760,
(6.8) + 471040¢;, + 1117707 + 204805g;, + 230005, + 2760g,,
+ 27609, + 240104 + O114 + O11p + O125 + O12¢.

This allows us to make ansatz

(6.9) 0;®05 =Y 2.0, 030054= Y 4.0,
0€es 0€esS

where S is the set of 16 orbits
02,03, 04, Os, Oga, Ogp, O7, Ogp, Oge, Oga, Ogpy, O10a, O11a; O118, O126, O12¢-

On the other hand, the ¢°-terms of A;As, A1Bs, AiHBs and A1 @122 contain orbit products
05 ® O35, Oy ® Ogq and O @ Og,. We also need to make ansatz for the last two of them. From
bound (5.3), we know Oz ® Og at most contains orbits of type from 2 to 14. Furthermore, the ¢’-
term of @13 5 enables us to determine the decomposition of O4 ® O4 +203® O5 + 202 @ (Ogq + Ogp).
From these two constraints we obtain the following most general ansatz

(6.10) 0y @060 = »_ 0., 0380 =Y 20,
0€Ss 0€Ss

where Sy is the set of 26 orbits Og, O3, O4, Os, Oga, Ogp, O7, Osa, Ogp, Ose, Ogas Ogp, O10a; O106, O10c,
O114; O11p, O124, O12¢, O12f, O134, O13p, O13¢; O14¢, O144, O14e. Now we can compute A;Az, AyBs,
A1HBy and A;®129 up to (and including) ¢°-terms with 68 parameters Ty, 22, 20 involved. We

consider the modular linear relations among the following holomorphic Jacobi forms
(6.11) Az, @123, V103, H' By, H' (A1 Ag), H' (A1 Ba), H (A1 HBs), H' (A1 ®122).

Due to MLDE (6.3), for H? B3 we only need to consider i = 0,1,2. Two modular linear relations at
weight 28 have been given in (5.1) and (5.8). We find five more modular linear relations at weight
30, among which we display two examples here

0 = 4098EGA; Ay + E4(5915A, By — 3415H (Ay Ag) + 52H (A1 ®15))

6.12
(6.12) + 8196 H? (A1 Ag) — 64H? (A1 ®199) — 8190H? (A1 Bs) + 49140H (A1 H By),

0 = 44287 A3(16695E7 + 11689E2) — 574776 A1 (61425, By + 2E6(14343 A5 4 650122))
(613) — 1296AE6(223767¢1273 + \1’1273) + 21288(66430E4E§Bg — 81E4(10245H(A1 Ag)
+ 64H (A1 ®192)) — 398580E2 Eq H B + 2730(2187H (A H By) + 292E2 H? By)).

These identities are established by checking their Fourier expansions up to ¢3-terms. Then the ¢°-
terms of all these seven modular linear relations give many constraints and together determine 60 of
the 68 parameters, but left with 8 ones of the large orbits z114, 116, 254, 2535 280s 204es 2o4gs Zo4e- 1t
turns out that all these 8 left parameters can be uniquely fixed by the condition |O® O| = |O| x |O|
and the requirement that all z, 22, 2 are non-negative integers. For example, |O2®@05| = |O2|x|Os|

implies

1273079808000z 114 + 25779866112000z 11, = 1273079808000, ie. 4xi14 + 8lxi1p = 4.
20



Clearly, the only non-negative integer solution is x11, = 1,211, = 0. By this process, we completely
determine the product decompositions of Oy ® Os, O ® Og,, O2 ® Og, and by extension O3 ® Oy.
The results are collected in Appendix A.

Furthermore, as we mentioned in §3, the ¢*-term of ®19 3 enables us to find

O3 ® (205 — Ogp + Ogga) =8960902 + 15180003 + 9319604 + 3835005 + 118680,
(6.14) + 94840¢, + 280407 — 460005, + 4840g;, + 2760g. + 2309,
+ 6609, + 30104 — 43010y + 30125 — 30124 + O184-

This allows us to also fix the decomposition of Oy ® Og,, which is presented in Appendix A.

In conclusion, we have proved the decompositions for nine products of Conway orbits which are
formulated in Appendix A.

To determine the ¢’-terms of holormorphic generators Vis3 and Wi3 and more orbit prod-
ucts decomposition, we need to compute As, B, A1 Az, A1 P29, A1 By, A1 HB> to ¢%-terms. This of
course cannot be achieved completely due to the lack of classification on Conway orbits of types
17 and 18. However, we can introduce two pseudo-orbits O17 19597544448p, O181 93053764668 besides
O184, in the sense that we do not distinguish the orbits of type 17 and the orbits of type 18 except
O184- This is legitimate for our current purpose, since the orbits of the same type are uniformly
transformed under the differential operators H. Therefore, our following computations and results
are rigorous for all orbits of type smaller than 17 and also O1g,. Note that the two pseudo-orbits
appearing in the orbit product decomposition do not necessarily have integer coefficients.

With the two pseudo-orbits, we can compute As and Bs up to their ¢-terms. The ¢5-terms of
A1 A, A1(I)12,2, A1 Bs, A1 H B> involve the orbit products Oy ® O7, Oy ® Ogp,, Oy ® Og.., O3 ® Os,
03 ® Ogq, O3 ® Ogp, and O4 ® O4. To write ansatz for the decompositions of these orbit products,
we first make use of the Fourier expansion of ®155. The ¢ -term of @199 gives us

04 ® 04 +203 ® Os
= 398034000 + 4574240002 + 2016511203 + 826914404 + 313555005 + 108744004,
(6.15) + 1095120063, + 33900007 + 18735805, + 926140g;, + 8960605, + 2129809,
+ 2138409y, + 3940010, + 4512010y + 4400010 + 5480114 + 5360115 + 420124
+ 46012, + 48012 + 2013y + 2013 + 20144 + 2014¢ + O16q-
This enables us to make ansatz for Oy ® O4 and O3 ® Os using the orbits appearing in the right
hand side of the above decomposition. The ¢®-term of ®19 9 gives us
04 @054 03 ® O7 + O3 @ Ogq + O3 @ Ogy
=9953280002 + 4889767803 + 228925440, + 1013115605 + 42003520, + 419430404,
+ 161287507 + 56524804y, + 57007805, + 17739909, + 17739909, + 485760104
+ 47104010p 4+ 47104010 + 111780114 + 111780114 + 2300019, + 2300012, + 20480194
+ 2048012 + 2048012 + 276013, + 276013y + 276013c + 240144 + 24014 + O154
+ O15p + O15c + O154 + O15¢ + O16p + O16c-

(6.16)

This enables us to make ansatz for Oy ® Oz, O3 ® Og, and O3 ® Ogy,. Note that the ¢°-term of Qo3
relates Oy ® O7 and O3 ® Ogp, by

0Os ® O7 — O3 ® Ogp
= — 6472203 + 3248105 + 309120, + 358400¢;, + 1787507 + 76800¢;, + 712805,
+ 230009, + 26640g; + 660010, + 704010 + 1300711, — 275019 + 23012, + 24012f

— 230134 + O13p + O13¢ + O154 — O15c.
21
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For O2®0Ogj, and O2®0s,, by bound (5.3) they at most contain orbits of type from 2 to 18. With the
ansatz for all these seven orbit products, we can finally compute the ¢%-terms of A; Ao, 4, D199, A1 B
and A1 H B, with parameters.

Consider the ¢®-terms of the two weight 28 modular linear relations (5.1) and (5.8) and the
five weight 30 modular linear relations including (6.12) and (6.13). In these relations, when ®15 3
and Wiy 3 appear, they are always multiplied by A (e.g. see (6.13)). Therefore, we can compute
the Fourier expansion of each monomial in these relations up to O(q7). Then the ¢S-terms of
all the modular linear relations give a large number of constraints on the ansatz. Together with
the requirement on the non-negative integrity of the decomposition coefficients, we are able to
determine the following combinations of orbit products:

04 ® 04+ O3 @ Ogq + O2 ® Ogy,

= 398034000 + 3693600002 + 1751220003 + 82382320, + 365310005 + 151501004,
+ 151826404, + 58190007 + 9315003, + 2040300g;, + 20250005, + 6375609,
+ 6415209, + 175250104 + 16192010 + 17525010 + 40500114 + 4032011 + 759012,
+ 8900124 + 758012¢ + 7280125 + 1000135 + 100013 + 9014 + 9O014¢ + O15p + O15¢
+ O16a + O166 + O164-

(6.18)

O3 ® 05 + O3 ® O7
= 647680009 + 394583403 + 188416004 + 80240605 + 31022404, + 3110400¢;,
(6.19) + 10762507 + 4710403, + 3276804, + 3168103, + 839509, + 85050¢;, + 1782010,
+ 2048010, + 1804010 + 2740114 + 286011y + 23012 + 24012 + 360125 + 2013,
+ 2013 + O14q + O14q + O154-

O3 ® Ogp + O2 ® Oge
= 7645203 + 4710404 + 2687505 + 1269604, + 1126404, + 540207 + 4710403,
(6.20) + 2048043, + 432505, + 10120, + 56109, + 1980104 + 2048010 + 20001,
+ 2740114 + 36011 + 5520194 + 550019y + 23012 + 24012, + 46013, + O13p
+ O13c + 2014q + 20144 + 3015c + c177 0177,

where ¢177 = 1/350979. This ¢;7 suggests that at type 17 there probably exists an orbit O17 141312p
such that its coefficient in the above decomposition is 1.

Unfortunately, we cannot separate the above decomposition of orbit products. There may be
some opportunity to use Conway invariant Jacobi forms of index 4 to separate these combina-
tions. The above (6.18), (6.19) and (6.20) appear in pairs in the Fourier expansion of any product
of Ay and a Conway invariant Jacobi form of index 2, since Oy is conjugate to Og, and Ogy,
and Ojs is conjugate to O7, and Og, is conjugate to Og., in the sense of modulo 2A (see §6.4).
Therefore, the above combinations are sufficient for us to fix U4 3 and W63 up to O(q%), and
A1Ay, A1 P22, A1 Bo, AyHBs up to O(q7). The Fourier expansions of these holomorphic Jacobi
forms are very useful in determining the conjugate relations among Conway orbits modulo 2A and
3A, which will be discussed in §6.4.

6.3. Conway invariant Jacobi forms of singular weight and non-trivial character. Let v,
be the multiplier system of the Dedekind eta function

T](AT) L Ol n a b
) = AT o) =k [0 - A= (20 esn@.
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We classify singular-weight Conway invariant holomorphic Jacobi forms of index ¢ < 3 and character
fug, where d is an even integer which only depends on the conjugate class modulo 24. Through
the theta decomposition [17], such forms are one-to-one corresponding to invariants of the Weil
representation of SLo(Z) attached to A/tA which are invariant under Cog. Similar to the case of
trivial character, such a form takes the Fourier expansion of the form

(6.21) D12,4a(7,3) Z Z f(n, 0q"¢",

AR A
n€git (0,0)=2nt

where a = 24/(24,d) indicates the order of the character vfl].

Clearly, the singular-weight Conway invariant holomorphic Jacobi forms of index 1 and non-
trivial character do not exist. When index t = 2, this type of form does not exist either. Otherwise,
if such a form exists, then d can only be 12, and the Fourier expansion has to be

3 5
P122:2(7,3) = q203 + O(q2),
w,Cog

which contradicts the reduction @19 2.2(7,0) = 0 because ®13 . 2/77 € J A0
When t = 3, this type of Jacobi form does exist. We construct a Conway invariant holomorphic
Jacobi form of weight 16 and index 3
E4(3359W 2 3 — 85562484(252A3 + ®123)) 6251063 (HBs — HV115) — 3Wi6.3 ’
7311718400 920 90675200

Fig3 =

and find that
P1o33 =1 "Fig

2

(6.22) 809605 + 7705 + (809608, — 40s, + T708.)¢> + (770114 — 4011) >

8096 (
4 (770140 — 4014 + 80960140 + 770144 — 40140 )¢* + O(q5)).

By the product decomposition in Appendix A, we are able to calculate the ¢"-terms in the above
bracket for n < 3. This implies that ®19 3.3 is a singular-weight Conway invariant holomorphic
Jacobi form of index 3 and character U%G. We then determine the ¢-term by solving the linear
equation
24| O14q| + | O14p| + 2¢|O14c| + £4|O144| + 2e|O14e| = 11420136000,

where these coefficients x, can only be 8096, 77 or —4, and the constant on the right hand side
is determined by the ¢**/3-term of the reduction P®153.3(7,0). Besides, the ¢*-term can also be
computed by using the ¢°-terms of holomorphic generators which are determined at the end of the
previous subsection. We have checked that the two types of calculation are consistent. We then
arrive at the following classification.

Proposition 6.1. The form ®i9 3.3 is the unique (up to scalar) singular-weight Conway invariant
holomorphic Jacobi form of index t < 3 and non-trivial character.

Proof. 1t suffices to prove that there is no other singular Jacobi form of index 3 and character
776 which is linearly independent of @19 3.3, and there is no singular Jacobi form of index 3 and
character U,%. Suppose that the second singular-weight Jacobi form of index 3 and character 1)7176

exists. Then its Fourier expansion will have the form
5 8 8 u
U233 =q305 +O0(q3) or ¢30s + O(q3),
which contradicts the reduction Wiz 3.5(7,0) = 0. Suppose that the singular-weight Jacobi form of

index 3 and character vg exists. Then its Fourier expansion takes the form

4 7 7 10
Ui93.3=¢304+0(q3) or ¢307+0(q3),
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which contradicts the reduction Wi 3.3(7,0) = 0 again. We then complete the proof. ]

6.4. Conjugate classes of orbits modulo tA. According to Lemma 2.2, in the Fourier expansion
of a Conway invariant weak Jacobi form of index t, the coefficients f(ni,¢1) and f(ng,¥s) are equal
if 2nyt — (1,01) = 2nat — (€2, ¢3) and ¢1 — {9 € tA. From this basic fact, we can determine whether
or not two orbits of A/ Cop are conjugate modulo tA by observing the Fourier expansions of some
nice Jacobi forms. We first consider the case of t = 2. The orbits Oy, Oz, O3 and O4 form a
minimal length representative system of (A/ Cop)/2A. Clearly, every orbit of odd type is conjugate
to O3 modulo 2A. The following result describes the conjugate classes of orbits of even type x < 16,
which can be found in [12, Page 181]. We give it a simple proof based on Jacobi forms.

Proposition 6.2. For orbits of even type x < 16, the modulo 2A conjugate classes are as follows
Oo:  Osay O124; O16a;
Oz 1 Ogp, Ose, O10p, O1r0cs O126, O12¢, O14¢; Or4d5 Or4e, O16p, O16e;
Os:  Oga, Ogp, O10a, O12d, O12¢, O12f, O14a, Or4p, O16d, O16e; O16f, O164-

Proof. The proof follows from the Fourier expansion (3.5) of ®12 (does not rely on the conjugate
relations modulo 2A), where the terms ¢°Og, ¢O2 and ¢?04 have distinct coefficients 24, 1, 0. O

We now consider the case of ¢ = 3. We prove the following theorem.

Proposition 6.3. For orbits of type x < 16, the modulo 3A conjugate classes are as follows
Op: 0
Oz :  Osay O14e;
Os:  O12a; O120, O154;
Os:  O1op, O13a; Ot6a; O16h, O16ds
Os5:  Ose, Otr1ay O14a, O144;
O6a : Oga; O12¢, Or2e, O1sp, O1se;
Oep : O124, O1sc;
O7:  O10as O1r0cs O13p, O13¢, Ot16e; O16e, Ot6f5 O16g;
Osp : O11p, O1r4p; O14e;
Ogp i Orzf, O154-

Proof. We first determine the conjugate classes of orbits of type 3xz. We derive the conjugate classes
of Op, O3 and Og, from the Fourier expansion of ®13 3 given in (3.5), because the terms ¢°0y, qO5
and ¢2Og, have distinct coefficients —252, 1 and —1. We further determine the conjugate classes
of Og, and Og;, from the Fourier expansion of Wip 3 given in (5.8), because the terms ¢*Og, and
¢>Oqp, have distinct coefficients —644 and 243.

We then consider the conjugate classes of orbits of type 3z + 2. We read the information from
the Fourier expansion of ®13 3.3 given in (6.22), where the terms *304, ¢°/305 and ¢%/30g;, have
distinct coefficients 1, 77/8096 and —4/8096.

We observe the conjugate classes of orbits of type 3x + 1 from the Fourier expansion of A;As,
where the terms ¢?04 and ¢®O7 have distinct coefficients 1/2049 and 0. O

6.5. Pullbacks of Conway invariant Jacobi forms to Jacobi forms of Eichler—Zaiger. We
study the pullback of Conway invariant Jacobi forms to classical Jacobi forms of Eichler—Zaiger [14]
along a Leech vector. The Fourier coefficients of these pullback forms are very useful to characterize
the intersection of Leech vectors, which are not easy to obtain by brutal computations.
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Let v, be a Leech vector of type a and z € C. For any f;.; € J, ACtO, the pullback f, +(7, zv,) along
v, is a weak Jacobi form of weight k and index at in the sense of Eichler— Zagier [14]. The Conway
invariance yields that fy (7, 2v,) depends only on the Cog-orbit of v,. We express fj+(7,2v,) in
terms of the standard generators

(6.23) do(7,2) = uF + 104+ O(q), ¢_a(7,2) =utt =2+ 0(q)

of the polynomial algebra of classical weak Jacobi forms of even weight and integral index over
C[Ey, Eg), where

u:l:n — e27rznz + e—2mnz’ for n € N.

For two Leech vectors x and y, we define their intersection number as the inner product (z,y). By
means of the expression of fy, (7, zv,), we calculate the pullbacks of Conway orbits

(6.24) orb(r)(zvg) = Z e2mivva)z.

veCoq 1

which describe the intersection numbers of Leech vectors. We next consider some examples.
We first determine the pullback of Conway invariant Jacobi form A; along vy. From the obvious
fact A1(1, 2v9) = 1 + O(g?), we derive

Ay(r,209) = 5 ((7E4 +5E2)¢2 — 24E2Egod—s + SE4(E3 + 3E2)¢2, )

(6.25) =1+ ¢*(u™ + 4600u™2 + 47104u*" + 93150)
+ ¢*(47104u™* 4 953856u2 + 4147200u™" + 6476800) + O(q*).

The above g’-term characterizes the intersection between O, and wy. More precisely, among all
196560 Leech vectors of type 2 there are exactly 1, 4600, 47104 vectors whose intersection numbers
with vy are respectively 4, 2, 1, and there are exactly 93150 vectors orthogonal to vo. Similarly,
we read the intersections between O3z, Oy4, Os, O7 and vy from the ¢>-, ¢*-, ¢°-, ¢"-terms of the
above pullback respectively. However, we cannot determine from Aj (7, zvy) itself the intersection
between other Conway orbits and vy, because there are multiple orbits of the same type.

We further consider the pullback of ®1 5 along vo. We find that its ¢°- and ¢>-terms are sufficient
to determine

D19o(T, 209) = (qso (511E% — 415E7) — 384FE7 Egid—2 + 2E4d50 , (TT9E] — 491F3)

82944
+48Fg00% o (TES — 15E2) + 3E2¢%, (6153 — 202) )

=24 + q(u™ + 4600u™ + 47104u™" + 93150) + ¢*(4600u™° + 20493000="*
+12953600u™ + 51791400u™2 + 95385600u™" + 127719000) + O(g*).

The intersection between Og, and vy corresponds to the above ¢3-term. We note that the inter-
section between Og, and vy follows from the intersection between the primitive orbit Oy and wvs.
Combining the two pullbacks together, we further determine the intersections between Og,, Ogq,
Osp, Ose, O104 and vo. The intersections between Og,, Og, and vy can be determined by further
computing the pullback of Wi, 3, of which we omit the expression here. We also calculate the
pullbacks of A; and ®125 along v3 and v4, and use these Fourier expansions to determine the
intersections of orbits of type less than 9 with v3 and vs. The exponential polynomials to express
these intersections are formulated in Appendix B.
Certainly, by calculating the pullbacks of more Jacobi forms along v,, we can determine more
intersections between Conway orbits and v,. For any v,u € A/ Cog, we have the following relation
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between pullbacks of Conway orbits defined by (6.24)
|orb(u)| - orb(v)(zu) = | orb(v)| - orb(u)(zv).

Thus the known intersections are useful to calculate the pullbacks of Conway invariant Jacobi forms
of large index along Leech vectors of large type.

7. CONWAY INVARIANT JACOBI FORMS OF HIGHER INDEX

In this section we discuss Conway invariant Jacobi forms of index larger than 3 and propose
some open questions. We first determine the minimal-norm representatives of A/4A. The following
theorem is derived from Borcherds’ thesis [1].

Theorem 7.1. Representatives of AJAN of minimal norm may be found among vectors of types up
to 16, according to the weighted equality

1
4% =1+ |Og| + |O3| + |04] + 05| + [Oga| + |0gp| + |O7] + §|08a| + |Ogy| + |Ose|

1 1 1
+ [0gal + [Ogs| + [O10a] + 5!01%\ + [O10c| + 5\011& + [O11p| + 5!01211\
(7.1)

1 1 1 1 1

+ |O12¢| + 1!012[1! + 5!0126! + |O12¢] + 5\01317! + g!Olsc! + 6\01417\
1 1 1
ﬁ(’olsb’ + |O154]) + @’Olﬁa‘ + 5’0166"
In the above equality, the weights are the 4-weights of vectors in the orbits (see Definition 2.9).
Moreover, we have the following facts.

1 1
+ 1!014[1! + §!014e! +

(i) The orbits O15, and O15q are conjugate modulo 4\, but they are not conjugate to other
orbits of type 15.
(ii) Every orbit Oy in (7.1) not of type 15 is not conjugate to any orbit Oy of type y < x modulo
4A. Thus the 4-weight of O, coincides with the 4-weight of any vector in O,.
(iii) The 4-weights of O1s, and O1sq are respectively 2 and 12, which are different from the
4-weight of any vector in O1sp or O1sq, i.e. 14.

Proof. We know from Borcherds’ thesis that the Cog-orbits of A/4A correspond one-to-one to the
non-empty Dynkin diagrams related to orbits of vectors in Ilzs5; of height 4, and the size of the
Dynkin diagram describes the 4-weight of any vector in the orbit, that is the number of Leech
vectors of type z which are conjugate (modulo 4A) to a given vector of type x (see Definition 2.9
for notions). We refer to [1, Figure 2, Page 91| for details. More precisely, the minimal-norm
representative system of A/4A consists of the following orbits.

(1) All orbits of type & < 11. For these orbits, their 4-weights coincide with the 4-weights of
vectors. There are unique orbits of types 8, 10 and 11 which have 4-weight 2. The other
orbits have 4-weight 1.

Five orbits of type 12, whose vectors have 4-weights 1, 1, 2, 2 and 4.

Two orbits of type 13, whose vectors have 4-weights 2 and 3.

Three orbits of type 14, whose vectors have 4-weights 4, 6 and 8.

One orbit of type 15, whose any vector has 4-weight 14.

(6) Two orbits of type 16, whose vectors have 4-weights 32 and 48.

~— — — —

(2
(3
(4
(5

Firstly, it is easy to determine the orbits of type z < 11 and weight 2 by observing their shapes
in ATLAS [12]. For example, O11, has shape us -+ 2vs, and then ug + 2vy ~4 usz — 2v9, which implies
that O11, has 4-weight 2 and thus Oq1; has 4-weight 1.

For orbits of type 12, we see from their shapes that Oq9, ~4 Og.. Thus any two of the remaining
5 orbits of type 12 are not conjugate modulo 4A, and they are the orbits of minimal length in (2).
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Clearly, the 4-weight of the non-primitive orbit O19, equals the 2-weight of O3 which is 2. Then
the other 4 orbits must have 4-weights 1, 1, 2 and 4. We need to consider 12 possibilities in (2).

Again, we see from their shapes that O3, ~4 Og,. We cannot determine the weights of the other
two orbits of type 13. Thus we need to consider 2 possibilities in (3).

There are 5 orbits of type 14. By the shapes in the ATLAS, O144 ~4 O10a, O14c ~4 Ogp. Thus
the other 3 orbits are the orbits in (4) with 4-weights 4, 6 and 8. There are 6 possibilities in (4).

We have O15, ~4 O7 by their shapes. One or multiple of O15p, O15c, O15¢ and Oqs. will be the
orbits of minimal length modulo 4A whose vectors have 4-weight 14. Thus we need to consider all
2% = 16 possibilities in (5).

We first conclude from the shapes that Oqg, ~4 O12.. Since O4 has minimal norm modulo 2A,
the non-primitive orbit O16, = orb(2v4) has minimal norm modulo 4A. Moreover, the 4-weight of
O16q equals the 2-weight of O4 which is 48. Clearly, if v ~4 u then v ~9 u. By Proposition 6.2,
O16c #4 O16a> O16d, O16es O16f, O169- We cannot distinguish the orbits of type 16 and 4-weight
32, which may be either Oig., or one or multiple of O164, O16e, O16f and O164. Thus we need to
consider 1+ 2* = 17 possibilities in (6).

In total, we need to check 12 x 2 x 6 x 16 x 17 = 39168 possibilities. By scanning the weighted
equality of form (7.1), we find that there is a unique solution which is exactly (7.1). The properties
(1)—(4) follow from this equality and the above discussion. O

The above theorem yields that Oq¢. is conjugate to some orbit of smaller type modulo 4A. By
Proposition 6.2, O1g. is conjugate to Og. or O1a. modulo 4A. We see from the Fourier expansion
of @1274 given in (3.5) that Ol6c 744 Ogc. Thus Ol6c ~4q 0120 ~4q Olﬁb'

The above theorem yields the following facts on Conway invariant Jacobi forms of index 4.

Proposition 7.2. The rank of J:}SZO is 31. The basic Conway orbits of index 4 are the 32 orbits
in (7.1). The number d4 defined in Lemma 2.5 is 85.

Besides, we conclude from A4JKI’\(?Z° C JSX% that J;" }\CZO = {0} for k < —36. We check that Ay,

D94, A1(7,23), P122|/T-(2) are linearly independent. Thus dim JICQ?IO\A > 4. A similar argument

to Lemma 5.5 gives upper bound dim Jl(;o?\ 4 < 9. We do not know the exact dimension. We note

that dim Jl(;o?\ ¢ = 9, because the following five Jacobi forms are linearly independent.
As,  Pi26,  Pi22[T-(3), Pi3[T-(2), Vig3|T-(2).

By Theorem 1.2, there exist Conway invariant weak Jacobi forms of weight 4 and index 2 whose
¢*-terms are a single orbit Op, Oz, O3 or O4. Similarly, there exist Conway invariant weak Jacobi
forms of weight 4 and index 3 whose ¢’-terms are a single orbit Og, O2, O3, Oy4, Os, Oga, Ogp, O7,
Ogyp, or Ogp. Therefore, each of the following orbit products

{00, 02,035,044} ®{Og, Oz, 03, Oy, Os, Ogq, Ogp, Oz, Ogp, Ogp,

can be regarded as the ¢’-term of a Conway invariant weak Jacobi form of weight 8 and index
5. Thus every orbit appearing in the decompositions of these products has minimal norm modulo
5A, and if two orbits of the same type have distinct coefficients in a given product decomposition,
then they are not conjugate modulo 5A. In this way, from the decompositions of orbit products
determined in this paper we derive that all orbits of type < 15, O164, O16p, O16c, O164 and O1ge
have minimal norm modulo 5A, and any two of them are not conjugate modulo 5A. To prove this
claim, we also use the simple fact that if O, has minimal norm modulo tA then it has minimal
norm modulo sA for all s > ¢. We do not know if Oy65 and Oy have minimal norm modulo 5A.

In fact, we can also determine some orbits of minimal norm modulo 4A from the decomposition
of orbit products O ® O2, O @ O3, O ® O4, O3 ® O3 and O3 ® O4. These minimal-length orbits
are consistent with Theorem 7.1.
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Question 7.3. We formulate some questions related to Conway invariant Jacobi forms.

(1) What is the minimal weight of Conway invariant weak Jacobi forms of given index? We
guess that J\"C% = {0} if k < —6t.

(2) To find a set of 24 algebraically independent Conway orbits.

(3) To give a formula to describe the rank of J:VAC;) % i.e. the number of Cog-orbits of A/tA.

(4) To give a dimensional formula for the space of Conway invariant holomorphic Jacobi forms
of singular weight and given index.

(5) Is the ring J WACOO finitely generated? If so, what is the maximal index of the generators?

*, Nk
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APPENDIX A. PRODUCT DECOMPOSITIONS OF CONWAY ORBITS

We determine the following orbit product decompositions:

09 ® 09 =1965600¢ @ 460009 @ 55203 ® 4604 D 205 & 20¢;, B Ogq
05 ® O3 =4710409 & 1117803 @ 204804 ® 27505 ® 240¢, B O7 @ Oge.
09 ® O4 =9315004 ¢ 4860003 ¢ 1619204 6 405005 P 75906, © 89104, & 10007
©® 80sp D Ogq & O10p
O3 ® O3 =167731200¢ b 95385602 & 25760003 ¢ 6476804 ¢ 1425605 P 25760,
@ 28160¢, D 35207 @ 3205, B 209, B 2010 D O124
09 ® O5 =47104049 & 7590003 @ 4710404 P 1945005 B 607204, P 563204, B 145207
@ 2560g;, D 27503 B 2309, P 3309, B 20104 B O110 D O12p
O3 ® O4 =414720005 @& 153697503 & 5181440, & 15795005 @ 4250404, & 4147204,
@ 972507 ® 179205, ® 202505 & 25309, P 24309, B 220104 B O11p P O12¢
03 ® Ogq = 4860003 ® 6476804 @ 4455005 P 2125206, B 2073604, & 780007 ¢ 224004,
@ 202505, @ 50609, B 48609, B 770104 B 100010 B 8011 ® O12¢ B O134
03 ® Ogp, = 460005 P 101204 @ 55005 @ 27604, D 178204, D 10007 & 46000g, ® 2804y,
® 27508. ® 2309, ® O104 © 440105 D 20114 D 30124 D O14¢

02 ® Ogq =02 © 206, @ O10p © O125 © Oz @ O14c @ O184
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APPENDIX B. INTERSECTION BETWEEN CONWAY ORBITS AND LEECH VECTORS

For the intersection between O, and any Leech vector of type 2, we have

Oy : u™ + 4600u™? + 47104u™ + 93150

Os : 512(92u™3 + 1863u™? 4 8100u™" + 12650)

Oy : 4050(23u™ + 1024u™> + 8096u™2 + 23552u™" + 32890)

Os : 23552(2u™5 + 275u™ 4 4050u™3 + 1945002 + 451000t + 58806)

Ogq = 518400(8u™® + 253u™ + 2024u™3 + 717602 + 14352u™! 4 17894)

Ogp : 2300(2u™5 + 891u™* + 5632u™> 4 22518u™2 4 41472u*! + 55530)

O7 = 953856(u~S + 100u™ + 1452u™* + 7900u™> 4 22825u%2 + 41152u*! + 49700)

Ogq = u™® 4 4600u™ + 47104u™? 4 93150

Ogp : 16394400(2u™*® + 64u™® 4 567u™* + 2368u™® 4 5902u*2 4 9856u™" + 11622)

Oge : 47104(ut" + 275u™° + 2300u™ + 9153u™> + 24576u™2 + 37675u™" + 48600)

Ogq = 4147200(u™" + 23u™5 + 529055 + 3059u™ + 10879u™> 4 24035u™2 + 37743uT! + 44022)
Ogp : 32972800(11u™0 + 162u™5 + 1053u™ + 358602 + 8019u™2 + 12636u™" + 14586)

O10a : 47692800(2u™7 + 78u™0+ 814u™® 4 3993u** + 11882u™3 + 2426602 + 36454u™" + 41582)

For the intersection between O, and any Leech vector of type 3, we have

Os : 6(92u™3 + 1863u™2 + 8100u™! 4 12650)
O3 - w0 4+ 11178u™ 4 257600u™> + 1536975u~2 + 3934656u~" + 5292300
Oy : 6075(8u™® + 253u™ 4 2024u™> + 7176u™? + 14352u™! + 17894)
Os : 276(275u™0 + 142560 4 157950u™" + 743600u™> 4 1986525u~2 + 3434400u™! + 4099108)
Opq : 16200(3u™" + 322u%0 + 5313u™ + 33396u™* + 11511503 + 256542u~2 + 403857u™!
+ 467544)
Ogp, : 6900(11u~0 4 162u™5 + 1053u™? + 3586u~2 4 8019u™? + 12636u*! 4 14586)
O7 - 11178(u™® + 352u™" + 9725u™C 4 84800u™° + 376750u™* + 1053504u™3 4 2075603u™>>
+ 3053600u™" + 3464450)
Oga : 6(92u™C + 1863u™* + 8100u™! + 12650)
Ogp, : 1536975(u™® + 56u™" + 728u™5 + 4264u™5 + 14924u™* + 36024u™> + 6474402 + 90728u™!
+101222)
Oge = 552(u™® + 2025u~7 + 22528u~0 + 137700u™® + 476928u™* + 1151700u™3 + 2073600u>2

+ 2902878u*t + 3238400)
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For the intersection between O, and any Leech vector of type 4, we have

02

0 2(23u™ +1024u™3 + 8096uL? + 23552uF! + 32890)

O3 : 256(8u™° + 253u™ 4 2024u™3 + 717602 + 14352uF! + 17894)
Oy : u™® + 1619205 + 518144u™ 4 45950320t + 19171328u™> + 4782969612 + 79794176u™!

Os

+ 94184862
0 23552(2ur7 + 78urC 4 814u™5 + 39930t 4 11882ut3 + 24266ur? + 36454ur! + 41582)

Opq : 256(253u™8 + 14168u™7 + 184368u™0 + 1078792u™® + 3779498u** 4 911407203

+ 16396432ur2 + 22954184uT! 4 25634466)

Ogp : 92(11u™® + 512u™7 4 6864u™0 + 399360 + 139854u™ + 337920u™> + 606832u™2

Or

+ 850432u™! 4 949278)
:11776(4ut” + 389u™® + 677607 + 48532urC 4 2007720t + 564135uT + 118175603
+ 1943044u™2 + 2592004uT! 4 2846536)

Osq : 2(23u™® 4 1024u™0 + 8096u™* + 23552u™2 4 32890)
Ogp : 4048(4u*10 + 8960~ + 23011u™® + 209664u™" + 1038804u~0 + 3398784u™> + 8194512u*4

+ 15480192u™3 4 23860008u~? + 30652288u~! + 33300674)

Oge : 47104(u™? + 22u™® + 209u™7 + 1024u™0 + 3356u™° + 8096u™* + 15292u™3 + 235520~

(1]

(12]

(13]

+ 30294ut! + 32868)
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