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We provide numerical evidence that the thermal QCD crossover turns into a first order transition
in the presence of large enough magnetic background fields. The critical endpoint is found to be
located between eB = 4 GeV2 (where the pseudocritical temperature is Tc = (98 ± 3) MeV) and
eB = 9 GeV2 (where the critical temperature is Tc = (63±5) MeV). Results are based on the analysis
of quark condensates and number susceptibilities, determined by lattice simulations of Nf = 2 + 1
QCD at the physical point, discretized with three different lattice spacings, a = 0.114, 0.086 and
0.057 fm, via rooted stout staggered fermions and a Symanzik tree level improved pure gauge
action. We also present preliminary results regarding the confining properties of the thermal theory,
suggesting that they could change drastically going across the phase transition.

PACS numbers: 12.38.Aw, 11.15.Ha,12.38.Gc,12.38.Mh

I. INTRODUCTION

The investigation of QCD properties in a magnetic
background field has been the subject of various stud-
ies in the last few years, see, e.g., Refs. [1–3] for recent
reviews. Part of the interest is directly related to phe-
nomenology: strong background fields are expected in
non-central heavy ion collisions [4–9], in astrophysical
objects like magnetars [10], and might have been pro-
duced during the cosmological electroweak phase transi-
tion [11, 12], thus influencing the subsequent evolution of
the Universe, including the cosmological QCD transition.
Lattice QCD simulations have been essential to advance
knowledge in this field, given also the fact that, unlike the
case of a baryon chemical potential, no technical problem
hinders the application of standard Monte-Carlo tech-
niques for the computation of the QCD path-integral in
a magnetic background.

One of the most relevant aspects regards the influ-
ence of the magnetic field on the QCD phase diagram.
Early lattice studies of Nf = 2 QCD, adopting stan-
dard staggered fermions and heavier-than-physical quark
masses, showed a slightly increasing behavior of the
crossover temperature Tc as a function of the magnetic
field B [13, 14]. That was however not confirmed by an
investigation of Nf = 2 + 1 QCD at the physical point
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discretized via improved staggered fermion, showing in-
stead an appreciable decrease of Tc, of the order of 10-
20%, for magnetic fields going up to eB ∼ 1 GeV2 [15],
a behavior confirmed also by later lattice studies [16].
The reason for the discrepancy of early results has been
clarified by later studies: it should be ascribed to lattice
artefacts [17], while the decreasing behavior of Tc as a
function of B is observed also for larger than physical
pion masses [18, 19].

One important aspect, generally confirmed by lattice
simulations, is the strengthening of the QCD crossover
as the magnetic field is increased, which points to the
possibility that it could turn into a real phase transi-
tion for large enough B. Available predictions, based on
the extrapolation of lattice results and on the numerical
study of effective models, suggests that this could hap-
pen for eB of the order of 10 GeV2 [20]. That could
have significant implications for the physics of the Early
Universe, regarding in particular the consequences of a
first order cosmological QCD transition [21, 22]. As a
matter of fact, a direct observation of this phenomenon
has been reported only for discretizations adopting unim-
proved staggered quarks [17], for which however one also
observes that Tc increases (instead of decreasing) with B.

The main purpose of the present study is to push for-
ward our knowledge on this topic, by exploring finite tem-
perature Nf = 2+1 QCD with physical quark masses at
unprecedented values of the magnetic field, trying also to
keep control on UV cutoff effects. In order to do that, we
will consider a stout improved staggered discretization of
the theory and two different values of the magnetic field,
eB ≃ 4 and 9 GeV2, trying to keep control on discretiza-
tion effects by exploring three different lattice spacings,
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a = 0.057, 0.086 and 0.114 fm. Anticipating part of the
final results, we will provide evidence that the QCD tran-
sition is first order for eB = 9 GeV2 and that the critical
temperature, for that value of the magnetic field, goes
down to values below 70 MeV. We will also present a
preliminary investigation of the confining properties of
the theory, suggesting that they could change drastically
going across the phase transition.
Even if our investigation is not affected by any tech-

nical obstruction, such as a sign problem, it is anyway
extremely challenging from a numerical point of view.
On one hand, the need for large magnetic fields requires
correspondingly fine lattice spacings, of the order or be-
low 0.1 fm. On the other hand, given the fact that the
critical temperature keeps its steady decrease with B, we
require simulations with an Euclidean time compactifica-
tion length around 2 fm or larger, meaning that, in order
to reach lattice spacings below 0.1 fm, we need to per-
form simulations on lattices with a large number of sites
in the temporal direction (a few tens). That sets by itself
a strong limitation to the explorable lattices, in partic-
ular regarding the aspect ratios (ratio of the spatial to
the Euclidean time lattice extents) which are reasonably
affordable, given the available computational resources.
In particular regarding the approach to the thermody-
namical limit, our results should be considered as ex-
ploratory, but nevertheless providing an already consis-
tent and clear picture, which claims for future investiga-
tions and refinements.
The paper is organized as follows. In Section II we

discuss the lattice discretization of the theory and other
technical details regarding the implementation of the
magnetic background field and the physical observables
explored in our investigation. In Section III we present
and discuss our numerical results. Finally, in Section IV
we draw our conclusions and discuss future perspectives.

II. NUMERICAL METHODS

As in Refs. [18, 23], we consider a discretization of
Nf = 2 + 1 QCD based on the tree-level improved
Symanzik pure gauge action [24, 25] and on stout rooted
staggered fermions [26, 27], i.e. on the following partition
function

Z =

∫

[DU ] e−SY M

∏

f=u,d,s

det (Mf
st)

1

4 , (1)

where [DU ] is the Haar measure for gauge links, f is
the flavor index, and the fermion matrix and the gauge
action are respectively

Mf
st ij = m̂fδij +

4
∑

ν=1

ηi;ν
2

(

U
(2)
i;ν δi j−ν̂ − U

(2)†
i−ν̂;νδi j+ν̂

)

SYM = −β
3

∑

i
µ6=ν

(

5

6
W 1×1
i,µν − 1

12
W 1×2
i,µν

)

(2)

with periodic (antiperiodic) boundary conditions in the
Euclidean temporal direction for bosonic (fermionic)
fields, in order to reproduce thermal conditions. There,
i, j and µ, ν are respectively lattice sites and directions,
while β is the inverse gauge coupling, a is the lattice
spacing and m̂f = amf are the dimensionless bare quark

masses. The ηi;ν are the staggered quark phases, U
(2)
i;ν is

the two-times stout smeared link (with isotropic smear-
ing parameter ρ = 0.15), while W 1×·

i,µνs are the real parts
of the trace of the link products along the 1×1 and 1×2
rectangular closed path, respectively.
Bare quark masses and the gauge coupling values

have been tuned in order to move on a line of con-
stant physics, which reproduces experimental results for
hadronic observables, based on the determinations re-
ported in Refs. [28–30]. In particular, as in Ref. [23],
we have considered three different lattice spacings, a ≃
0.057, 0.086 and 0.114 fm; for each lattice spacing the
physical temperature of the system, which is equal to
the inverse of the Euclidean temporal extension, T =
1/(Nta), has been tuned by changing the number of tem-
poral lattice sites Nt at fixed a. Such a fixed scale ap-
proach to thermodynamics has the drawback of not al-
lowing for a fine tuning of the physical temperature, how-
ever it has many advantages at the same time, since it
simplifies both the renormalization of physical observ-
able and the continuum extrapolation at fixed physical
values of the external background field, as we discuss in
the following.

A. External magnetic field

In the lattice approach, the presence of an external
magnetic background field can be translated in the in-
troduction of additional U(1) phases to the elementary
parallel transporters

U
(2)
i;µ → ufi;µU

(2)
i;µ (3)

which are kept constant, i.e. no functional integration is
performed over them, and are different for the different
flavors, depending on their electric charge. In particular,

considering a uniform magnetic field ~B in the ẑ direction
and the following gauge choice

At = Ax = Az = 0, Ay(x) = Bx , (4)

a possible discretization on a periodic toroidal lattice is
the following

ufi;y = eia
2qfB ix , ufi;x|ix=Lx

= e−ia
2qfLxBiy , (5)

with all other U(1) link variables set to one, where Li
is the number of lattice sites along direction i and last
condition guarantees smoothness of the magnetic field
across the x-boundary [31–33]. This choice leads to a
constant magnetic field but for a single plaquette, which
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is pierced by an additional Dirac string and guarantees
a zero magnetic flux across the lattice torus; invisibility
of that string leads to a quantization condition for B,
which is more compelling for the smallest quark charge
qf = e/3:

qfB =
2πbz

a2LxLy
=⇒ eB =

6πbz
a2LxLy

, bz ∈ Z . (6)

The external field leads to additional discretization er-
rors. Since the magnetic field acts on the system through
the gauge invariant U(1) phase factors that dynamical
quarks pick up going through closed loops on the lat-
tice, the phase factor for the smallest non-trivial loop (a
plaquette in the xy plane)

exp
(

iqfBa
2
)

= exp

(

i
6πbz
LxLy

qf
e

)

(7)

must be much smaller than 2π, hence

2bz
LxLy

≪ 1 (8)

where we have considered the up quark, for which dis-
cretization errors are larger; all that sets a UV cut-off
for the largest field explorable for a given lattice spac-
ing, eB ≤ 2π/a2. For the coarsest lattice studied in this
study, a ≃ 0.114 fm, the cut-off is around 20 GeV2, which
is not too far from eB = 9 GeV2: this is at the origin
of sizable discretization effects observed for this value of
the magnetic field, which disappear only after a proper
continuum extrapolation [23].

B. Observables

The determination of the (pseudo)critical temperature
Tc will be based on the analysis of the renormalized chiral
condensate and of the susceptibility of the strange quark
number, which are two standard observables used for the
same purposes in previous studies.
The f -flavor condensate is defined as

〈ψ̄ψ〉f =
∂

∂mf

(

T

Vs
logZ

)

=
1

4a3L3
sNt

〈

Tr(Mf
st)

−1
〉

(9)

where Vs is the spatial volume and the trace of the in-
verse fermion matrix is determined configuration by con-
figuration, as usual, by means of noisy estimators. The
condensate is affected by both additive and multiplica-
tive renormalizations, which can be subtracted following
the prescription of Ref. [34]

〈ψ̄ψ〉rf (B, T )=
mf

m2
πF

2
π

(

〈ψ̄ψ〉f (B, T )−〈ψ̄ψ〉f (0, 0)
)

(10)

The zero-T subtraction, which is performed at fixed UV
cut-off, eliminates additive divergences, while multiplica-
tion by the bare quark mass mf takes care of multiplica-
tive ones.

In the following we will show results for the sum of
up and down contributions, i.e. the renormalized light
quark condensate Σrl (B, T ). The behavior of Σrl (B, T )
will be monitored to locate Tc, looking for its inflection
point in the region where it drops towards zero. Just
for the purpose of a finite size scaling analysis around
the transition, we will consider also the unrenormalized
disconnected chiral susceptibility

χdiscψ̄ψ,f ≡ 1

16L3
sNt

[

〈(TrM−1
f )2〉 − 〈TrM−1

f 〉2
]

. (11)

The dimensionless susceptibility of the strange quark
number is instead defined as follows (with f = s):

χf ≡ 1

T 2

∂

∂µ2
f

(

T

Vs
logZ

)

(12)

=
Nt
4L3

s

〈

Tr

[

M−1
f ∂2aµf

Mf −
(

M−1
f ∂aµf

Mf

)2
]〉

where µf is the quark chemical potential and, in the last
line, only terms which do not vanish at µf = 0 have been
left in1.

III. NUMERICAL RESULTS

Most of our simulations have been carried out at three
different lattice spacings, a ≃ 0.057, 0.086 and 0.114 fm,
keeping the spatial size fixed at aLs ≃ 2.75 fm and
varying the temporal lattice size Nt in order to change
the temperature. For reasons to be discussed below, re-
sults at the finest lattice spacing are only available for
eB = 4 GeV2. In this setup the magnetic field, accord-
ing to Eq. (6), is kept fixed in physical units by just using
the same number of quanta bz for every lattice spacing:
that makes the continuum extrapolation much easier.
In particular, we have fixed bz = 41 and bz = 93 re-

spectively for 4 and 9 GeV2. Larger spatial sizes, up to
∼ 4 fm, have been explored in a few cases, in order to
check the impact of finite size effects, or to perform a
finite size scaling analysis around the transition: in those
cases, bz has been increased accordingly in order to keep
eB fixed, see Eq. (6). Additional simulations, needed
for zero temperature subtractions or normalization, have
been performed for eB = 0, 4 and 9 GeV2 on lattices
with a temporal extension of around 5.5 fm, which is
large enough to be considered as a good approximation
for T ≃ 02.

1 Considering the standard introduction of the chemical poten-
tial on the lattice, where temporal gauge links in the for-
ward/backward temporal direction get multiplied by a factor
exp(±aµf ), the derivatives ∂aµf

Mf and ∂2
aµf

Mf correspond to

just the temporal part of the Dirac operator, with an additional
minus for each derivative in the backward propagation.

2 Given the relatively low temperatures explored in this study,
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FIG. 1: Renormalized chiral condensates, divided by their
values at T = 0, obtained for eB = 4 GeV2 (top) and
eB = 9 GeV2 (bottom) for various lattice spacings and spa-
tial extensions. The drop of the pseudocritical temperature
is clearly visible, as well as the appearance of a well defined
gap at the larger value of eB.

Monte-Carlo sampling of gauge configurations has
been performed based on a Rational Hybrid Monte-Carlo
(RHMC) algorithm running on GPUs [35, 36]. For each
simulation we performed O(103) RHMC trajectories of
unit length, taking measures every 5 trajectories.

A. The finite temperature transition at large eB

In Fig. 1 we show the renormalized light condensate
Σrl (B, T ) as a function of T for the two explored values of
eB and for various lattice spacings and spatial extensions.
Results have been normalized by those obtained for the

this is not a trivial statement. Actually, our reference “zero
temperature” lattice corresponds to T ≃ 36 MeV, which is well
below the explored values of T and deep in the confined region,
at least for the present values of eB.
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FIG. 2: Strange quark number susceptibility as a function
of T for both explored values of eB and for various lattice
spacings and spatial extensions. Significant UV cut-off effects
are visible for the larger magnetic field, however this does not
affect the conclusion for the appearance of a large gap at the
transition in that case.

same values of B at T ≃ 0: that suppresses much of
the UV cut-off dependence already observed for eB =
9 GeV2 at T = 0 in Ref. [23].
A residual UV cut-off, as well as a finite size depen-

dence, is visible around the transition, however that does
not obscure the main message emerging from Fig. 1. Tc
is around 100 MeV for eB = 4 GeV2 and drops below
80 MeV for eB = 9 GeV2. Moreover, one observes a sig-
nificant strengthening of the transition, which seems to
become strong first order, with a large gap in the chiral
condensate, at the larger value of eB.
Some considerations should be made about the pos-

sible weaknesses of our results. We have been forced
to work with aspect ratios Ls/Nt around 2, which is
marginally compatible with a reliable study of thermo-
dynamics, by some converging constraints: the fact that
the range of physically relevant temperatures turns out to
be lower than expected from previous lattice studies [20],
and the need for lattice spacings fine enough to support
the explored values of eB, all that combined with a lim-
ited budget of available computational resources. This
is also the reason we do not have results available for
the finest lattice spacing at eB = 9 GeV2, since in that
case, without a significant increase of Ls, the aspect ratio
would have been close to 1 around the transition.
Nevertheless, the main results depicted above do not

seem to be much affected by such weaknesses. The de-
pendence on the finite spatial size is visible around the
transition but is not significant. The value of Tc at
eB = 9 GeV2, where only two lattice spacings are avail-
able, seems to decrease even more when moving from the
coarser to the finer lattice, while the transition is sharp
and seemingly strong first order in both cases.
Similar conclusions are obtained by looking at results

for the strange quark susceptibility, which are reported
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FIG. 3: Transition temperatures as a function of a2, deter-
mined from the chiral condensate and from the strange quark
number susceptibility at the two explored values of eB. For
eB = 4 GeV2, Tc has been determined by fitting the inflection
point of Σr

l or χs. For eB = 9 GeV2, instead, the determi-
nation is obtained from the sharp jump observed for both
quantities, with an uncertainty given by the half-difference of
the temperatures on the two sides of the jump. A tentative
continuum extrapolation of Tc, assuming O(a2) corrections,
is reported in both cases, however for eB = 9 GeV2 this is
not even a fit, since only two lattice spacings are available.

in Fig. 2. The susceptibility raises in correspondence of
the same temperatures at which the chiral condensate
drops, and has a sudden jump, suggesting a strong first
order transition, for eB = 9 GeV2. In the latter case,
UV cut-off effects are clearly visible and significant,
even if they affect mostly the overall magnitude of the
susceptibility, and only marginally the location of Tc:
similar significant UV cut-off effects have been reported
in Ref. [23], at the same value of eB, for the chiral
condensate, and can be ascribed to the rough discretiza-
tion of such large magnetic field, since up quarks pick
an elementary phase around plaquettes which is large
(∼ 2π/3 and ∼ π/3, respectively, for a = 0.114 fm and
a = 0.086 fm). We notice that the magnetic field induces
a strong enhancement in quark number susceptibili-
ties: similar observations have been reported in Ref. [37].

Results obtained for Tc from both observables are
shown as a function of a2 in Fig. 3. For eB = 4 GeV2

Tc has been determined by fitting the inflection point
of Σrl or χs, while for eB = 9 GeV2 the determination
coincides with the midpoint of the two temperatures
where the sharp jump is observed, with an uncertainty
given by their half-difference; a systematic uncertainty
of around 2 %, related to the determination the lattice
spacing [28–30], should be considered in both cases.
A tentative continuum extrapolation of Tc, assuming
O(a2) corrections, is also reported for eB = 4 GeV2,
leading to Tc(eB = 4GeV2) = (98 ± 3) MeV, while

for eB = 9 GeV2 we do not have enough degrees of
freedom even for a linear fit. In the latter case, given the
two available lattice spacings and all other systematic
uncertainties, we believe that a safe and conservative
estimate for the continuum extrapolated temperature is
Tc(eB = 9GeV2) = (63± 5) MeV.

We have put the two critical temperatures, together
with previous results available in the literature, in order
to draw a first tentative sketch of the updated QCD phase
diagram in a magnetic field, which is reported in Fig. 4. A
first observation is that our results, which are consistent
with all previous direct lattice determinations, point to a
steady decrease of Tc even in the large field region, con-
trary to a much smoother approach to the infinite B limit
reported in the investigation of Ref. [20], which however
was based on an effective description of QCD at large
eB in terms of an anisotropic pure gauge theory [3, 38].
The second observation is that our results strongly sug-
gest the presence of a strong first order transition, with
a critical endpoint along the line which continously con-
nect Tc(eB = 0) with Tc(eB = 9 GeV2). The presence of
a first order transition at large eB was predicted in previ-
ous literature, with an estimate for the critical endpoint,
based on an extrapolation, at eBc = 10(2) GeV2 [20]; our
results suggest, for the first time from a direct lattice de-
termination, that the critical point is located somewhere
in the middle between eB = 4 GeV2 and eB = 9 GeV2.
Such a conclusion however requires some deepening of
our investigation, based on a finite size scaling analysis,
in order to assess that at eB = 9 GeV2 the transition is
indeed first order: this is done in the following subsec-
tion.

B. Finite size scaling around the critical

temperature

The fixed UV cut-off approach we have followed till
now allows only for a discrete set of temperatures; as
a consequence, a large jump in some observables some-
where is only suggestive of a first order transition, but
does not necessarily imply it. Smoking guns would be
instead the presence of metastable histories, double peak
distributions and a proper finite size scaling (FSS) anal-
ysis, which however require a fine tuning of the temper-
ature around the transition point.
Therefore, in order to clarify this aspect, we have de-

cided to give up our fixed cut-off approach for a set of
dedicated simulations. In particular, we have chosen one
of the two simulation points at eB = 9 GeV2 adiacent
to the jump, taking it as the starting point for a temper-
ature scan where Nt is kept fixed and T is changed by
tuning the lattice spacing through the bare parameters.
As a further variation, the lattice spacing has been

changed by tuning just the inverse gauge coupling β,
which enters the pure gauge action, and not the bare
quark masses, which enter the fermion determinant.
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FIG. 4: We draw a first sketch of the updated version of the
QCD phase diagram in a magnetic field, where our continuum
extrapolated determinations of Tc at eB = 4 and 9 GeV2 are
plotted together with previous lattice determinations as well
as tentative extrapolations (dotted line). The blue and red
bands in the small field region are continuum extrapolations
from Ref. [15], obtained respectively from the strange quark
number susceptibility and the quark condensate. The deter-
minations of Ref. [20] are not extrapolated to the continuum
limit, which may account for their values seeming a bit higher.

That simplifies the FSS analysis, allowing for an easy
application of the multi-histogram method, in particular
without the need for a costly reweighting of the fermion
determinant. On the other hand, that has the draw-
back of moving us away from the physical line, however
it should be clear that this is not a relevant aspect: we
are just doing a fine tuning, with the purpose of crossing
the critical surface somewhere close to the starting point
and test if it is first order or not; since the presence of
a first order transition, i.e. of a gap in physical observ-
ables, is stable under small variations of the parameters,
we will obtain a valid and clear-cut answer anyway.
In order to make the computational effort of the FSS

analysis affordable, we worked on the coarsest lattice; on
the other hand, the jumps observed in the chiral conden-
sate and in the strange quark number susceptibility sug-
gest that the transition does not weaken going towards
the continuum limit. As a starting point, we have cho-
sen the Nt = 22 lattice at β = 3.787, ams = 0.0457 and
amu/d = 0.00162, which corresponds to T ≃ 78.5 MeV
and is the first point on the upper side of the transition,
and changed β downwards, so as to increase the lattice
spacing and decrease T , till we have crossed the transi-
tion. This has been repeated for three different spatial
sizes, Ls = 24, 30 and 36.
As a first result, in Fig. 5 we show the disconnected and

unrenormalized3 chiral susceptibility χdisc,u of the up

3 Since we want to explore the critical behavior of the chiral sus-
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FIG. 5: FSS analysis of the unrenormalized disconnected chi-
ral susceptibility of the up quark. Data have been obtained
on lattices with Nt = 22, fixing bz = 93, 145, 209 respectively
for Ls = 24, 30, 36, so as to keep eB constant as the thermo-
dynamical limit is approached; the inverse gauge coupling β
has been tuned while keeping the bare quark masses fixed at
ams = 0.0457 and amu/d = 0.00162. The FSS ansatz has
been checked (lower figure) by fixing ν = 1/3 and γ = 1, as
expected around a first order transition, with βc ≃ 3.780.

quark (similar results are obtained for the down quark).
Results clearly show that the susceptibility increases with
the volume and that data collapse onto each other accord-
ing to the following FSS ansatz (φ is an unknown scaling
function)

χdisc,u(Ls, β)

L
γ/ν
s

= φ
(

(β − βc)L
1/ν
s

)

, (13)

when ν and γ are fixed to the expected effective first

ceptibility as the thermodynamical limit is approached, looking
at just the disconnected part, which is expected to diverge it-
self at a genuine transition, is enough. For the same reason,
the subtraction of regular (at fixed UV cut-off) renormalization
constants is irrelevant to our purposes.
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FIG. 6: MC history and distribution of the light quark con-
densate on the 243 × 22 lattice at β = 3.7755, ams = 0.0457,
amu/d = 0.00162 and bz = 93. The bistability and the corre-
sponding double peak distribution are clearly visible.

order critical indexes for three spatial dimensions, i.e. ν =
1/3 and γ = 1. The critical value of β in Fig. 5, which
optimizes the collapse, is βc ≃ 3.780.
As further evidence of the presence of a first transition,

now we focus on Monte-Carlo (MC) histories of some ob-
servables, looking for the presence of double peak distri-
butions or metastable behaviors around the transition.
Fig. 6 shows the MC history of the light chiral conden-
sate, in units of HMC trajectories of unit length, on the
Ls = 24 lattice at β = 3.7755: the history clearly oscil-
lates between two values, with a corresponding and well
defined double peak distribution.
As we move to a larger lattice, Ls = 36, the double

peak distribution becomes so sharp that the system is
not able to easily tunnel from one phase to the other in a
reasonable MC time. This is clear from Fig. 7, where we
show the MC histories of two twin runs, performed with
exactly the same parameters but starting from different
sides of the phase transition: the two runs keep staying
in their phase for a few thousands of RHMC trajectories;
moreover, in this case the bistability is clearly visible also
in the pure gauge action.

C. Confining properties of the two phases

Having clarified that the large B region of the B − T
phase diagram is characterized by a well defined phase
separation, a number of interesting questions emerge, re-
garding the properties and differences between the two
phases. It is not the purpose of the present investiga-
tion to give a comprehensive answer to such questions,
however we would like to touch at least one aspect, which
has been already considered in some previous studies and
regards the confining properties of the theory [23, 39–44].
It is known that, at zero temperature, the static quark-

antiquark potential become anisotropic, with a suppres-

2000 3000 4000 5000
# HMC traj

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Σ l

Deconfined replica
Confined replica

2000 3000 4000 5000
# HMC traj

-6.67

-6.66

S
Y

M
 ×

 1
0-6

Deconfined replica
Confined replica

FIG. 7: Two twin MC histories obtained on the 363 × 22
lattice at β = 3.7785, ams = 0.0457, amu/d = 0.00162 and
bz = 209. The two runs have been started from different sides
of the phase transition, and keep staying in their starting
phase for the whole run, consisting of a few thousands of
RHMC trajectories of unit length. We show both the light
quark condensate (top) and the pure gauge action (down).

sion of the string tension in the direction parallel to the
magnetic field, and an enhancement in the transverse di-
rections [23, 40–43]. The longitudinal string tension σL
is suppressed by more than one order of magnitude at
eB = 9 GeV2, with respect to its value at eB = 0, while
the transverse string tension σT seems to saturate its in-
crease at a value which is around 50% higher that the
B = 0 value [23]. The possible existence of a critical
magnetic field Bc at T = 0, where the longitudinal string
tension vanishes, and what could happen at such a criti-
cal field, is still unclear [23]. On the other hand, studies
at finite temperature and up to moderate values of the
magnetic field [42, 44] have shown that anisotropies in
the static potential become less significant approaching
the phase transition.

As a minimal, additional contribution to the investi-
gation of the confining properties in the B−T plane, we
decided to investigate the static quark-antiquark poten-
tial at a fixed value of the temperature, T ≃ 86 MeV, for
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the two different explored magnetic fields, eB = 4 and
9 GeV2. According to Fig. 4, the two simulations points
should lay on the two different sides of the transition line.
In this case we have decided to perform the investigation
on the finest lattice, whose size is 483 × 40.
In order to determine the static quark-antiquark po-

tential, similarly to Refs. [23, 41, 42], we studied the
Wilson loop 〈TrW (a~n, ant)〉 and its dependence on the
Euclidean time ant, exploiting the relation

〈TrW (a~n, ant)〉 ∝ e−aV (a~n)nt , (14)

which holds for large enough ant. In particular, from
previous equation one can derive

aV (a~n) = lim
nt→∞

log

( 〈TrW (a~n, ant)〉
〈TrW (a~n, a(nt + 1))〉

)

, (15)

so that the potential at fixed ~n can be obtained by fitting
to a constant the log in the RHS of Eq. (15) as a function
of nt, at least in a suitable stability range.
The application of such prescription in the present fi-

nite temperature context might seem not appropriate.
Indeed, because of the limited Euclidean temporal ex-
tension, the static quark-antiquark potential is usually
extracted from Polyakov loop correlators. However, on
one hand such correlators turns out to be extremely noisy
in our case, beyond the limit of feasibility, because of the
relatively low temperatures considered in our investiga-
tion, which imply a large number of lattice sites in the
temporal direction. On the other hand, because of the
same reason, the temporal extension turns out be large
enough (Nt = 40 in our particular case) and marginally
compatible with an extraction of the potential also from
Wilson loops. It is clear that one should be careful about
possible systematic effects related to this compromise,
however the results we are going to show are clear-cut
enough to make such systematics less worrying.
Results for the static quark-antiquark potential, com-

puted for the two different orientations and magnetic
fields, are shown in Fig. 8: the different behavior in the
two phases is particularly clear, also by eye, for the trans-
verse direction, where the linearly rising potential sud-
denly flattens moving from 4 to 9 GeV2. In order to
make a more quantitative analysis, we have tried to fit
data according to the Cornell ansatz

V (r) = V0 −
α

r
+ σr (16)

obtaining the following results. For eB = 9 GeV2, data
are well fitted (with χ2/d.o.f. . 1) by a purely Coulom-
bic potential both in the trasverse and in the longitudinal
direction; if one tries to include a non-zero σ, the fit
returns negative values (for σL) or values compatible
with zero within errors (for σT ). For eB = 4 GeV2,
instead, a non-zero string tension is clearly needed in
the transverse direction, with

√
σT = 475(20) MeV,

which is not far from the T = 0 result obtained for the
same lattice spacing in Ref. [23],

√
σT ≃ 520 MeV; for
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FIG. 8: Static quark-antiquark potential, extracted from Wil-
son loops computed on the 483×40 lattice at the two different
values of the magnetic field and separately for the transverse
(T) and longitudinal (L) directions. The reported curves cor-
respond to fit to the Cornell potential (for eB = 4 GeV2) or
to a purely Coulombic potential (for eB = 9 GeV2).

the longitudinal direction a full fit to Eq. (16) returns√
σL = 215(20) MeV (which is close also in this case to

the T = 0 result
√
σL ≃ 240 MeV [23]), however one

should consider that in this case reasonably good fits are
obtained also assuming a purely Coulombic potential, if
enough points are discarded at short distances.

To summarize, present evidence is compatible, within
numerical uncertainties, with the transition from a
strongly anisotropic confined phase to a completely de-
confined phase, in which the string tension vanishes in all
directions, as the critical line is crossed. Such evidence
should be supported by future studies, aimed at assessing
in a more precise way which string tension is vanishing
or not on both sides of the transition. In this respects,
several scenarios are plausible, including the possibile ex-
istence of an intermediate phase in which σL = 0 but
σT 6= 0, for a subset of values of B and T .

However, the sudden drop of the transverse string
tension is a quite clear and undoubtful phenomenon
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even now. In the simplest scenario, one can assume
that the critical temperature Tc(B) continues its drop
as a function of B until it hits the ground at some
critical magnetic field Bc. That would imply that, even
at T = 0, there is no transition to an anisotropically
deconfined phase where σL = 0 and σT 6= 0, but rather a
sudden transition to a completely deconfined phase. Of
course, even the assumption that Tc(B) hits the ground
is not supported, at the present time, by any other
evidence.

IV. CONCLUSIONS AND PERSPECTIVES

The numerical results presented in this study update
our understanding of the QCD phase diagram in an ex-
ternal magnetic field in a substantial way, bringing new
facts and new speculations into the overall picture. The
main new results are that the (pseudo)critical tempera-
ture Tc(B) continues its steady decrease as a function of
eB, reaching values as a low as 60 MeV for eB of the order
of 10 GeV2, and that the crossover turns into a real first
order transition for large enough magnetic fields. The
latter fact has been speculated for a long time: in this
paper we have provided first numerical evidence based
on lattice simulation of Nf = 2 + 1 QCD with physical
quark masses. Moreover, we have provided a first rough
location of the critical endpoint (BE , TE) of the first or-
der line, with 4 GeV2 < eBE < 9 GeV2, or alternatively
65 MeV . TE . 95 MeV).
The existence and location of this critical endpoint

have many significant implications: from a phenomeno-
logical point of view, especially for the possible conse-
quences stemming from a strong first order cosmological
QCD transition, which could be observable even nowa-
days [21, 22]; from a theoretical point of view, for a com-
parison with predictions from many effective model stud-
ies [45–52].
The new facts emerging from our investigation are re-

ported in Fig. 9, which represents our present proposal
for the QCD phase diagram. The proposal contains also
some question marks, concerning open issues and specu-
lations, that essentially regards the fate of Tc(B) in the
large B limit. A naive linear extrapolation of present de-
terminations of Tc in the B − T plane would imply that
Tc vanishes for eBc ∼ 20 GeV2: does that really happen,
and in that case would 20 GeV2 be a natural scale for
Nf = 2 + 1 QCD? Or does instead Tc flatten for larger
magnetic fields, approaching a finite value, or zero, only
asymptotically?
The issue will be likely solved by future studies, and is

strictly correlated to the fate of the confining properties
of the QCD vacuum in a strong magnetic field. Indeed,
if any critical magnetic field exists at T = 0 where the
confining properties of QCD get disrupted, this field
likely coincides with the critical field where Tc(B) hits
the ground: results from Ref. [23] indicate that such

FIG. 9: Updated QCD Phase Diagram in an external mag-
netic field, based on new facts and new speculations emerging
from our numerical investigations. The (pseudo)critical tem-
perature Tc(B) continues its steady drop as a function of B,
and the transition switches from a crossover to first order at
a critical endpoint located in the range 4 GeV2 < eBE <
9 GeV2 (or alternatively 65 MeV < TE < 95 MeV). The fact
that Tc(B) hits the ground at some finite critical magnetic
field Bc or not remains an open question for future studies.

critical field, if any, is larger than 9 GeV2, and so do
the finite T results presented here. One interesting
point emerging from our study is that, as one crosses
the critical line, the string tension seems to vanish,
within our present numerical uncertainties, both in the
longitudinal and in the transverse directions: if that
applies down to T = 0, then one should not expect
any anisotropic deconfinement of the QCD vacuum at
large fields, as hypothesized in Ref. [42], with the string
tension vanishing only in the longitudinal direction, but
rather a sudden quench of σ in all directions at Bc.

There is a number of relevant issues that should be re-
fined or investigated by future studies. First of all, one
should consider that our study has been performed with
a compromise between the need for a fine lattice spac-
ing, in order to allow for a large magnetic field, and the
need for large spatial sizes, in order to properly study
thermodynamics. The compromise, given the presently
available computational resources, has revealed to be not
easy at all, essentially because of the unexpectedly low
temperatures reached by the critical line, which forced us
to work with low aspect ratios. Even if we have shown
that systematics related to the finite UV cut-off and to
the finite spatial size are reasonably under control, ef-
forts should be pursued in the future to improve on such
systematics.

A more precise location of the critical endpoint
(BE , TE) could be achieved following different ap-
proaches. Since the first order transition at 9 GeV2 seems
to be quite strong, one could consider lower values of
eB and investigate how the gap in physical observables
changes along the transition line, trying to extrapolate
the point where it vanishes. Alternatively, one could start
from the low B region, trying to detect the critical be-
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havior associated with the endpoint, which is generally
expected to be in the 3D-Ising universality class.
A future line of research should be dedicated to a pre-

cise characterization of the properties and differences of
the two phases along the first order transition. In this
investigation we have started a preliminary characteriza-
tion of the confining properties, but many other relevant
physical quantities should be considered, including a de-
termination of the latent heat along the first order line
and of the transport properties [53, 54] in both phases.
Finally, present results, in particular those regarding

the critical endpoint, should be put in the framework of
a more general and multidimensional view of the QCD
phase diagram, including a finite baryon chemical poten-
tial [55–61], different number of light fermions [62] or a
finite rotation [63–66].
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