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Abstract: We study a thermo-field double type entangle state on two disjoint gravitating

universes, say A and B, with an eternal black hole on each. As was shown previously, its

entanglement entropy of the universe A is computed by the generalized entropy on a new

spacetime constructed by suitably gluing the black holes on A and B. We study such spacetime

gluings when universes are asymptotically flat and AdS cases, especially when the masses of

these black holes are different. We also clarify the rule to construct such a glued spacetime

in more general settings from the gravitational path integral view point.
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1 Introduction

The semi-classical description of a black hole and the Hawking quanta entangled with it has

appeared to be inconsistent with principles of quantum theory in many respects [1, 2]. In

particular, although the von Neumann entropy of the Hawking radiation should follow a Page
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curve [3, 4] due to the unitarity of quantum theory, the naive von Neumann entropy of the

Hawking radiation in the semi-classical description does not. Recent developments show that

we can get the von Neumann entropy of the Hawking radiation R in a semi-classical way by

using the so-called island formula [5–7],

Sisland(ρR) = MinExt
I

[
Area(∂I)

4GN
+ Seff(R ∪ I)

]
, (1.1)

where Area(∂I) is the area of the endpoints of a new region I called the island, and Seff(R∪I)

is the von Neumann entropy of the bulk effective quantum field theory on the union of the

two regions R and I, computed on a fixed background spacetime, and MinExt
I

denotes the

extremization and the minimization of the generalized entropy over all possible islands I (see

figure 1). The island contribution originates from so-called replica wormholes connecting

different replicas in computing the von Neumann entropy of the Hawking radiation by using

the replica trick in the semi-classical description of gravity [8, 9]. See also e.g., [10–65] for

discussions on the island formula, and e.g., [66–72] on replica wormholes.

<latexit sha1_base64="8faC8bcwJJBLvGCqm4SMjVkxEu4="></latexit>
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Figure 1: The Penrose diagram of an AdS black hole coupled to the non-gravitating external

bath. We take the radiation region R (red solid line) in the non-gravitating external bath.

After the Page time, the island region I (orange solid line) becomes non-empty, and the

entanglement wedge of the black hole BH is outside the horizon of the black hole (green

shaded region).

A frequently used setup for studying the von Neumann entropy of Hawking radiation

consists of a black hole in anti-de Sitter (AdS) spacetime and a non-gravitating external bath

system attached at the AdS boundary (see figure 1 again) with the transparent boundary

conditions [5–7, 9, 73]. Using such a setup, we can actually get the Page curve by using the

island formula.

The introduction of the non-gravitating bath helps to define the Hawking radiation R
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without ambiguities coming from gravitational effects and simplifies the situation. However,

if we consider a bath which is also gravitating, then the situation drastically changes and be-

comes more complex. Such setups are studied in [40], see also [48, 53, 54, 62]. However, there

are subtle points in defining the von Neumann entropy in the presence of dynamical gravity.

One of them is that the tensor factorization of Hilbert spaces associated with gravitating

regions is not well-defined because of the existence of the gravitational edge modes living in

the boundary of such regions [74], see also [75] for a recent discussion on the implication of

this fact to the island formula. The other difficulty is that the diffeomorphism invariance of

gravity does not allow us to define a region in an unambiguous way.

One way to avoid these subtleties is to prepare two disjoint gravitating universes A and

B, then make them entangled [54]1. In this setup, one can take the entangled state to be the

thermo-field double state on the two universes

|Ψ〉 =
∑
i

√
pi|ψi〉A ⊗ |ψi〉B, pi =

e−βEi

Z(β)
, (1.2)

where |ψi〉A,B are bulk effective field theory eigenstates with energy Ei. We will study this

state in detail in next section 2. In computing the entanglement entropy of the state on the

universe A (or the universe B) by using the replica trick, the dominant replica wormhole con-

tribution is the one connecting all the gravitating universe’s replicas when the entanglement

between the two universes is sufficiently large β → 0 [54]. Such a contribution leads us to the

formula,

S(ρA) = Min{Sth(β), Sswap(ρA)}, Sswap(ρA) = MinExt
I

[
Area(A/B, ∂I)

4GN
+ Seff(I)

]
, (1.3)

where Area(A/B, ∂I) is the area of ∂I on a new spacetime denoted by A/B, which is con-

structed by glueing two original universes A and B, and Seff(I) is the von Neumann entropy

in the bulk quantum field theory of the region I on the new spacetime A/B (see figure 2).

Also Sth(β) denotes the thermal entropy of the same bulk QFT with the temperature 1/β.

The appearance of the new spacetime A/B comes from the above mentioned wormhole, and

one can consider such a new spacetime A/B as a realization of the “ER=EPR” [76], which

states that the existence of the entanglement between two distant regions is related to the

existence of a wormhole connecting the two regions. In other words, the sufficiently large en-

tanglement between the two disjoint universes A,B induces a geometric connection between

them, leading to the introduction of the new spacetime A/B (see figure 2 again).

In the previous paper [54], only the simplest setup where the universes A,B have eternal

black holes with the same black hole mass (or equivalently a same black hole entropy) was

1See also [48] for the related discussion, and [28, 29, 49] for the discussion on entangled two disjoint universes,

one of which is non-gravitating and the other is gravitating and contains a black hole.
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Figure 2: Schematic picture of two phases of entangled two universes (AdS) A,B. (Top) The

two universes are disjoint and just entangled with each other. In this case, the entanglement

entropy of the state (1.2) on the universe A is the Hawking-like thermal entropy Sth(β).

(Bottom) A sufficiently large entanglement between the two universes induces the geometric

connection of the two spacetimes, resulting in two glued spacetimes A/B and B/A. Unlike the

above disjoint universes, since there is an island in the glued spacetime A/B, the entanglement

entropy of the universe A is given by the black hole entropy of the glued spacetime A/B.

– 4 –



studied. The resulting glued spacetime A/B also contains eternal black holes with the same

mass.

In this paper, we generalize this entropy calculation, and discuss more involved setups

where the black hole mass in the universe A is different from the one in the universe B, to

further understand the detailed properties of the formula (1.3). In such situations, there are

several possibilities for the glued geometry A/B, which are indistinguishable in the previous

setup [54]. Our results show that the dominant glued geometry A/B, which contributes the

entropy formula (1.3) is given by the one which minimizes the total black hole entropy in

A/B. For definiteness, in this paper we focus on two dimensional dilaton gravities; Jackiw-

Teitelboim gravity in two-dimensional AdS spacetime and CGHS gravity in two dimensional

flat spacetime.

The outline of our paper is as follows. In section 2, we review and explain the results of

the previous paper [54] on the entanglement entropy between two gravitating universes. In

section 3, we construct a dilaton profile describing the glued spacetimes A/B with different

black hole masses for AdS JT gravity, and in the next section 4 we do a similar construction

for CGHS gravity. In section 5, by using the dilaton profiles constructed in previous sections

we compute the von Neumann entropy of the universe A and give its interpretation. In

section 6 we discuss an approximate way to construct such a glued geometry using shock

waves. In section 7, we consider more general settings where the each of these two eternal

black holes has different the left and the right black hole masses, MAL 6= MAR,MBL 6= MBR,

for AdS JT gravity and for flat CGHS gravity, and then compute the entanglement entropy

of the universe A. In section 8, we summarize our results and discuss their implications and

future directions. In appendix A, we provide ADM mass formulae for AdS JT gravity and

CGHS gravity. In appendix B, we explain another method to construct glued spacetimes

approximately by using shock waves for AdS JT gravity, in appendix C we explain a similar

method for CGHS gravity.

2 Entanglement between two gravitating universes

In this paper, we are interested in the following setup discussed in [54]. First, we prepare

two disjoint gravitating universes, say A and B with the identical cosmological constant as in

figure 2. Furthermore we assume A and B are described by a two dimensional dilaton gravity

theory. For simplicity, we consider two dimensional AdS JT gravity

IAdS
grav = − φ0

16πGN

[∫
D
R+

∫
∂D

2K

]
− 1

16πGN

∫
D

Φ(R− Λ)− Φb

16πGN

∫
∂D

2K, (2.1)
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when the cosmological constant is negative, and CGHS gravity

IFlat
grav = − 1

16πGN

∫
M

(ΦR− Λ)− 1

16πG

∫
∂M

2ΦK, (2.2)

when these two universes are asymptotically flat. In these theories, only the dynamical degree

of freedom is the dilaton Φ, and we can always fix the metric part. We will especially discuss

situations where each universe contains a two-sided eternal black hole. The eternal black hole

in the universe A is specified by the dilaton profile ΦA and we also have ΦB for the black hole

in B.

As a matter degrees of freedom coupled to the gravity degrees of freedom, we take a

conformal field theory. We define it both of these universes A and B, so that the Hilbert

space of the matter degrees of freedom is bipartite. On this Hilbert space, we take the

following entangled CFT state,

|Ψ〉 =

∞∑
i=1

√
pi|ψi〉A|ψi〉B pi =

e−βEi

Z(β)
, (2.3)

where {|ψi〉A}∞i=1 are energy eigenstates. We can safely assume that CFTA on the universe A

and CFTB has the same spectrum {Ei}∞i=1, because this conformal field theory only couples

to the metric which is non-dynamical in theories of dilaton gravity.

This setup provides an ideal toy model to study the entanglement structure of evaporating

black holes emitting Hawking radiation. Imagine an observer keeps collecting the Hawking

quanta emitted from an evaporating black hole in some universe, say A. Then the observer

sends these quanta to another universe, say the universe B, which means that the universe B

plays a role of a bath collecting the Hawking quanta. This operation provides a concrete way

to prepare the state (2.3) in question. Specifically, increasing 1/β corresponds to increase

the entanglement in the radiation state (2.3). Thus, this identification makes it possible to

study the information loss problem of an evaporating black hole through the study of the

entanglement entropy between two universes in (2.3).

Since the universe B can be regarded as a bath collecting the Hawking quanta, it is often

assumed that the universe B is non-gravitating. In this case, the entanglement entropy of the

universe A is computed by the island formula (1.1). However, for an actual evaporating black

hole in our universe, the Hawking quanta are always located in the gravitating region. This

motivates us to study the setup where the universe B is also gravitating. This generalization

is not only for the sake of precision. Instead, in this generalization, we expect a new physical

effect, called ER=EPR [76] comes into play. This correspondence states that in a theory of

gravity, two entangled systems must have a geometric connection through a wormhole. One
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of the goals of this paper is to understand how ER=EPR affects the entropy of Hawking

radiation.

We are interested in the entanglement entropy S(ρA) of (2.3) on the universe A,

S(ρA) = −tr ρA log ρA, ρA = trB|Ψ〉〈Ψ|. (2.4)

In [54], this entropy S(ρA) was computed through the replica trick, and the result reads,

S(ρA) = Min{Sth(β), Sswap(ρA)}, Sswap(ρA) = min ext
C

[
ΦA/B(∂C)

4GN
+ Sβ/2(C)− Svac(C)

]
.

(2.5)

This expression is quite similar to a version of the island formula [28, 29, 49], which

computes the same entropy of the same state (2.3) defined on a gravitating universe A and

a non-gravitating universe B. However, there is one important difference between (2.5) and

the island formula. Namely the dilaton profile ΦA/B appears in (2.5) is neither the dilaton

profile ΦA on the universe A nor, ΦB on the universe B.

Instead, ΦA/B is the dilaton profile of a new spacetime A/B, which is constructed by

gluing two universes A and B. For example, when A and B are both asymptotically AdS,

the spacetime geometry of each universe ΦA,ΦB is specified by the boundary conditions at

the left and right conformal boundaries (see figure 3). The dilaton profile on A/B has the

boundary conditions for the universe A at its left conformal boundary, and the boundary

conditions for B at its right boundary. One of the goals of this paper is to construct this

glued geometry ΦA/B for a variety of examples.

Sβ/2(C) in (2.5) denotes the entanglement entropy of the thermal ensemble of the bulk

conformal field theory, with the inverse temperature β/2, and Svac(C) is the entanglement

entropy of the vacuum.

We compute the generalized entropy Sgen[C] = ΦA/B(∂C) + Sβ/2(C) − Svac(C) in the

right hand side of (2.5) for all possible intervals C in A/B (see the right panel of figure 3),

then extremize to obtain what we call the swap entropy Sswap(ρA). The minimum between

Sswap(ρA) and the thermal entropy Sth(β)→ 2π2c/3β, β → 0 gives the entanglement entropy

S(ρA) for the universe A. This rule for constructing ΦA/B was obtained by properly including

the wormhole saddle points of the corresponding Rényi entropy tr ρnA.
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A B
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Figure 3: Left: The Penrose diagram of the new spacetime A/B in AdS. The spacetime is

specified by the left and right conformal boundary conditions (red and blue vertical lines).

Right: The same Penrose diagram of the new spacetime A/B with the region C (green

region) on which we evaluate the generalized entropy Sgen[C].

Sketch of the derivation

For later convenience, let us sketch the derivation of the result (2.5) for AdS black holes [54].

To this end, we start from the replica trick for the entanglement entropy,

S(ρA) = lim
n→1

1

1− n
tr ρnA. (2.6)

We then compute the right hand side for positive integers n. From the definition of the

state (2.3), we have

tr ρnA =
1

Zn1

∞∑
{ik,jk}=1

n∏
k=1

√
pikpjk 〈ψik |ψjk〉Ak 〈ψjk |ψik+1

〉Bk , (2.7)

where Ak(Bk) denotes the k-th copy of the universe A(B), with the normalization factor Z1

defined by

Z1 =

∞∑
i,j=1

√
pipj 〈ψi|ψj〉A〈ψj |ψi〉B. (2.8)

The eternal black hole state in the universe A can be prepared by a Euclidean path

integral on a half disc with an appropriate boundary condition at the conformal boundary.

We collectively denote them by λA(u), where u is the coordinate for the boundary circle.

Similarly, we denote the boundary conditions for the black hole in B by λB(u). Since each

|ψi〉Ak is a small CFT excitation on top of the fixed black hole in A, we can prepare it

again by a path integral on the half disc with λA(u), but now with the insertion of a CFT

operator corresponding to the excitation on the south pole of the half disc. Similarly each

overlap 〈ψik |ψjk〉Ak appearing in (2.7) is computed by inserting two local operators of the bulk

CFT to the full disc. Altogether, the Rényi entropy (2.7) has a gravitational path integral
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expression, with 2n circle boundaries {∂Ak, ∂Bk} with 4n CFT local operator insertions (see

figure 4).

<latexit sha1_base64="eauxwAIYfs3yc8rgSWDmSC7zyXM="></latexit>

Figure 4: Schematic picture of the replica geometry M2n (n = 3 case). The n (n = 3)

red boundaries corresponds to the boundaries of the universe A, i.e., ∂A. The others (blue)

correspond to the boundaries of the universe B, i.e., ∂B. The cyan dots are the fixed points

of this replica geometry. Upon taking the quotient of the geometry by the replica symmetry

ZN , the orange lines become the branch cuts.

As was shown in [54], in the high entanglement temperature limit β → 0, the gravitational

path integral is dominated by a single gravitational saddle M2n where all the 2n boundaries

{∂Ak, ∂Bk} are connected by a single wormhole. One way to think about this manifold is

first introducing a wormhole connecting the disc Ak to the other Bk in the same replica to

make them a cylinder (or equivalently an annulus), then connect these n cylinders by a replica

wormhole. This manifold therefore has a replica symmetry Zn which shifts the k-th replica

to the (k + 1)-th.

The gravitational action of the saddle M2n is computed by the standard trick developed

in [77]. Since the saddle has a replica symmetry Zn, one can take its quotient M̃2n = M2n/Zn,

which has the topology of an annulus with a cut, whose two boundary circles can be identified

with the boundary of the universe A and B. Including the CFT operators, this path integral

on the annulus can be written as the thermal correlator

tr
[
e−βannH/2ψikψik+1

e−βannH/2ψjkψjk

]
(2.9)

where βann denotes the circumference of the annulus, which should be distinguished from the

entanglement temperature β (see figure 5). When the entanglement between A and B is strong

β → 0, it is natural to expect the renormalized length between two boundaries {∂Ak, ∂Bk}
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becomes shorter and shorter. This means that if we fix its spatial size, the circumference

gets longer, βann → ∞. In this limit, one can replace e−βannH/2 to the projection operator

|0〉〈0|, thus the annulus amplitude is split into two disc path integrals, one is with a cut,

and the other without. See again figure 5. The path integral on the disc without the cut

cancels with the path integral of Z1 (2.8) in the denominator of(2.7). Finally, the n→ 1 limit

the remaining path integral on the disc with the cut can be identified with the generalized

entropy on the left hand side of (2.5). This manifests the origin of the appearance of ΦA/B

in (2.5). As is clear from figure 5 on the half boundary of this disk, we impose the boundary

conditions of the universe A and on the other half we impose the condition for B.

<latexit sha1_base64="MFLbZPhc/v9k4Jmzw/nP9D5Riwc="></latexit>
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Figure 5: Left: Schematic picture of the annulus geometry M2n/Zn. This annulus geometry

has a cut (orange line) whose endpoints are the fixed points of the replica symmetry. Right:

Schematic picture of the two disc geometries, which are obtained from the annulus geometry

(left figure) by taking the β → 0 limit. One of the two disks contains a cut (orange line).

The green dots are boundary condition changing points between the two conditions of the

universes A and B.
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3 Entangled eternal black holes in AdS with two different masses

In this section, we discuss the construction of the glued geometry ΦA/B which computes the

entanglement entropy on two gravitating universes (2.5)2. We focus on the case where the

universe A is an eternal AdS black hole with the mass MA, and similarly the universe B

contains an AdS eternal black hole with MB. We work in the global coordinates (µ, τ), where

the AdS metric takes the following form,

ds2 =
−dτ2 + dµ2

cos2 µ
. (3.1)

In the coordinates, the conformal boundaries are located at µ = ±π
2 . The dilaton profile of

the universe A is given by

ΦA(µ, τ) = bA
cos τ

cosµ
, (3.2)

where the parameter bA is related to the black hole mass MA through

MA =
b2A

16πGφb
. (3.3)

We can see the above relation through the ADM mass formula (A.5). This dilaton profile

represents an eternal black hole. We have a similar dilaton profile ΦB for B.

The dilaton profile ΦA/B which appears in the entropy functional (2.5) satisfies the fol-

lowing boundary conditions,

ΦA/B → ΦA, µ→ π

2
, and ΦA/B → ΦB, µ→ −π

2
, (3.4)

thus ΦA/B is the dilaton profile of a two sided black hole with different left and right masses.

The dilaton profile satisfies the following equations of motion,

1

cos2 µ
∂+

[
cos2 µ∂+Φ

]
= −8πG 〈T++〉β,

1

cos2 µ
∂−
[
cos2 µ∂−Φ

]
= −8πG 〈T−−〉β,

2∂+∂−Φ− 1

cos2 µ
Φ = 16πG 〈T+−〉β,

(3.5)

with the CFT stress energy tensor evaluated on the state (2.3)

〈T++〉β = 〈T−−〉β =
c

24π

(
2π

β

)2

≡ 〈T 〉β, 〈T±∓〉β = 0, (3.6)

2See [78] for a related discussion.
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where the chiral coordinates x± are defined by

x± = µ± τ. (3.7)

As we increase the entanglement temperature 1/β, the eternal black hole (3.2) receives

the back reaction from the CFT stress energy tensor 〈T±±〉β. The result reads [28],

ΦA(µ, τ) =
bA
2

[(
b0 +

1

b0

)
− 2

π

(
b0 −

1

b0

)
(µ tanµ+ 1)

]
, (3.8)

where b0 is related to 〈T 〉β by

bA
π

(
b0 −

1

b0

)
= 16πG〈T 〉β. (3.9)

The mass MA of the black hole remains unchanged by this back reaction.

Now let us specify the dilaton profile ΦA/B which solves (3.5) and satisfies the boundary

conditions (3.4). First, we note that the general solution of (3.5) is given by

Φ(µ, τ) = Φ0(µ, τ)− 16πG〈T 〉β (µ tanµ+ 1)

=

(
a tanµ+ b

cos τ

cosµ

)
− 16πG〈T 〉β (µ tanµ+ 1) , (3.10)

where Φ0 denotes the “sourceless” part of the dilaton, satisfying (3.5) with the vanishing

stress energy tensor 〈Tµν〉 = 0, and this depends on two parameters a and b 3.

In the µ→ π
2 limit, the solution (3.10) approaches

Φ(µ, τ) = b
cos τ

cosµ
−
(
8π2G〈T 〉β − a

)
tanµ. (3.11)

This describes a black hole with the mass

MR =
1

16πGφb

(
b2 −

(
8π2G〈T 〉β − a

)2)
. (3.12)

This can be seen by directly using the ADM mass formula (A.5) or applying an SL(2,R)

transformation to the dilaton profile (3.11), which brings the event horizon to the center of

the space (µ, τ) = (0, 0). Then the profile of the right Rindler wedge is that of the usual AdS

Schwarzchild black hole.

3Although there is an additional term, sin τ
cosµ

for the general solution, we do not include such a term for

simplicity. In the absence of this term, bifurcation surfaces are located on the τ = 0 time slice, as explained

later.
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Similarly, by taking the µ → −π
2 limit of (3.10), we read off the mass of the left black

hole,

ML =
1

16πGφb

(
b2 −

(
8π2G〈T 〉β + a

)2)
(3.13)

We identify the left massML to be the mass of the black hole in the universe A,ML = MA,

and similarly MR = MB. These conditions fix the parameters a, b in the dilaton profile (3.10)

to be

a =
φb

2π〈T 〉β
(MB −MA)

b =

√
8πGφb(MA +MB) + 64π2G2〈T 〉2β +

φ2
b

4π2〈T 〉2β
(MB −MA)2

≈
β→0

√
8πGφb(MA +MB) + 64π2G2〈T 〉2β.

(3.14)

3.1 The Penrose digram of the glued geometry in JT gravity

Having specified the dilaton profile ΦA/B of the glued spacetime A/B, now let us study the

causal structure of the black hole. We are particularly interested in the high entanglement

temperature limit β → 0.

Let us first specify the locations of the bifurcation surfaces. These surfaces extremizes the

profile ∂τΦA/B = ∂µΦA/B = 0. It turns out that there are two such surfaces at µ = µR, µL

on the time slice τ = 0. First, let us consider the right horizon, at µ = µR, τ = 0. As we will

see, this horizon approaches the right boundary µR → π
2 in the limit of our interest β → 0, so

near the right horizon we can approximate the dilaton profile as (3.11), with the parameters

(3.14). Then we get

sinµR =
1

b

(
8π2G〈T 〉β − a

)
. (3.15)

In this limit, the value of the dilaton profile at this surface is

ΦA/B(µ = µR, τ = 0)→ bA, β → 0, (3.16)

where bA is defined in (3.3). This is expected, since ΦA/B → ΦA near the right conformal

boundary. Similarly in the high entanglement temperature limit β → 0, the left horizon

approaches the left boundary µL → −π
2 , and satisfies,

sinµL =
1

b

(
8π2G〈T 〉β + a

)
. (3.17)

thus the dilaton value at the horizon is Φ(µL, 0) = bB.
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Since these two horizons move toward different conformal boundaries µR → π
2 and µL →

−π
2 as we decrease β, the black hole develops a large interior region between the two horizons.

Since this is inaccessible from both left and right conformal boundaries, it is often called a

causal shadow region. Finally the singularity of the black hole is located at ΦA/B(µ, τ) = 0.

Taking into account these, we get the Penrose diagram (figure 6) for the glued geometry

A/B with the dilaton profile ΦA/B in JT gravity. A similar dilaton profile was discussed for

example in [28].

<latexit sha1_base64="FmeuVs1T1RrlBo1UQ0HZKn4OPmc="></latexit>

A B
µL µR

Figure 6: The Penrose diagram of the glued spacetime A/B with two distinct black hole

masses MA 6= MB in JT gravity.

4 Entangled eternal black holes in flat space with two different masses

In this section, we construct the dilaton profile ΦA/B in CGHS gravity, starting from two

asymptotically flat black holes in A and B with distinct masses MA, MB. We begin our

discussion from the following expression of the flat space metric,

ds2 =
dx+dx−

cos2 x+ cos2 x−
, (4.1)

related to the standard form ds2 = dX+dX− by the coordinate transformation X± = tanx±.

The asymptotic spatial infinity is located at x+ = ±π
2 or x− = ±π

2 . The equations of motion

of CGHS gravity are given by

− 1

cos2 x+
∂+

[
cos2 x+∂+

]
Φ = 8πG 〈T++〉β ,

− 1

cos2 x−
∂−
[
cos2 x−∂−

]
Φ = 8πG 〈T−−〉β ,

2∂+∂−Φ = 16πG 〈T+−〉β −
Λ

2

1

cos2 x+ cos2 x−
,

(4.2)

where the expectation value of the stress energy tensor 〈Tµν〉β is again given by (3.6).
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When there is no entanglement in the state (2.3), i.e., β =∞, the dilaton profile for the

eternal black hole in A is

Φ0
A = φ0,A +

|Λ|
4

tanx+ tanx−. (4.3)

The mass of this black hole is given by

MA =

√
|Λ|

16πG
φ0,A, (4.4)

where we used the ADM formula (A.8). A similar profile for the black hole in the universe B is

obtained by the replacement φ0,A → φ0,B in (4.3). This black hole has the unique bifurcation

surface at x± = 0.

As we increase the entanglement temperature 1/β, these black holes receive back reaction

from the CFT stress energy tensor. From the equations of motion (4.2), we find the dilaton

profile with the back reaction is [49]

ΦA(x+, x−) = φ0,A +
|Λ|
4

tanx+ tanx− − 4πG〈T 〉β (x+ tanx+ + x− tanx−), (4.5)

where 〈T 〉β ≡ 〈T±±〉β is given by (3.6). Again we have a similar expression for the universe

B. The mass of this black hole is given by

MA =

√
|Λ|

16πG

(
φ0,A −

(
4π2G〈T 〉β

)2
|Λ|

)
. (4.6)

MA decreases as we increase the entanglement temperature 1/β. This is in contrast with the

similar black hole in AdS JT gravity (3.8) whose mass kept fixed under the increase.

Having specified the dilaton profiles ΦA and ΦB, let us construct ΦA/B in CGHS model.

The boundary conditions for ΦA/B are given by

ΦA/B → ΦA, x± → −π
2
, and ΦA/B → ΦB, x± → π

2
. (4.7)

This condition is analogous to the one in JT gravity (3.4). The general solution for (4.2) is

given by

ΦA/B(x+, x−) = Φ0(x+, x−)− 4πG〈T 〉β (x+ tanx+ + x− tanx−)

=

(
D0 +

|Λ|
4

tanx+ tanx− +D+ tanx+ +D− tanx−
)

− 4πG〈T 〉β (x+ tanx+ + x− tanx−)

(4.8)

where Φ0 is the “sourceless” part , which satisfies the equations of motion with 〈Tµν〉 = 0. The

parameters D0,± in Φ0 are determined from the conditions (4.7). We are mainly interested

– 15 –



in D+ = D− ≡ D cases, which correspond to the situations where two bifurcation surfaces of

the black hole are located on the t = 0 time slice4. To determine these parameters D0, D, we

focus on the asymptotic behaviors at x± → π
2 and x± → −π

2 . In the right asymptotic limit

x± → π
2 , the dilaton profile ΦA/B takes the form

ΦA/B → ΦR = D0 +
|Λ|
4

tanx+ tanx− +
(
D − π

2
· 4πG〈T 〉β

)
(tanx+ + tanx−) as x± → π

2
,

(4.9)

where we introduced the notation ΦR to distinguish it from the original one (4.5).

By using the ADM black hole mass formula (A.8), we can see that this dilaton profile

ΦR corresponds to a black hole with the mass

MR =

√
|Λ|

16πG

(
D0 − 4

|Λ|
(
D − 2π2G〈T 〉β

)2)
. (4.10)

On the other hand, in the left asymptotic limit x± → −π
2 , the dilaton profile ΦA/B

becomes

ΦA/B → ΦL = D0 +
|Λ|
4

tanx+ tanx− +
(
D +

π

2
· 4πG〈T 〉β

)
(tanx+ + tanx−) as x± → −π

2
,

(4.11)

where we again introduced the notation ΦL, and from the ADM mass formula (A.8) this

dilaton profile ΦL gives the black hole mass

ML =

√
|Λ|

16πG

(
D0 − 4

|Λ|
(
D + 2π2G〈T 〉β

)2)
. (4.12)

We identify these black hole masses ML, MR with MA defined in (4.6) and MB obtained

by the replacement φ0,A → φ0,B in MA respectively, i.e, ML = MA and MR = MB. These

identifications determine the parameters D0, D in terms of φ0,A, φ0,B and 〈T 〉β as follows

D0 =
φ0,A + φ0,B

2
+ |Λ|

(φ0,A − φ0,B)2

256π4G2〈T 〉2β

≈
β→0

φ0,A + φ0,B

2
,

D = |Λ|
φ0,B − φ0,A

32π2G〈T 〉β
.

(4.13)

4.1 The Penrose diagram in the CGHS gravity

Let us study the causal structure of the dilaton profile ΦA/B obtained by plugging (4.13) into

(4.8) in CGHS model. We are again interested in the high entanglement temperature limit

β → 0.

4The coordinates x± are related to t by x± = x± t.
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At first, we determine the locations of the bifurcation surfaces of the black hole, at which

the dilaton profile ΦA/B takes extremal values. From the extremality conditions ∂±ΦA/B = 0,

we get two distinct extremal surfaces x+
R = x−R ≡ xR, x+

L = x−L ≡ xL, which are located on

the t = 0 time slice.

In the limit β → 0, the extremality conditions take the following simple form

tanxR = − 4

|Λ|
(
D − 2π2G〈T 〉β

)
, tanxL = − 4

|Λ|
(
D + 2π2G〈T 〉β

)
. (4.14)

These equations imply that, in the limit β → 0, the right bifurcation surface approaches the

right spatial infinity x±R →
π
2 and the left one does the left spatial infinity x±L → −

π
2 .

In this limit, the dilaton values at the bifurcation surfaces are given by

ΦA/B(x± = xR)→D0 − 4

|Λ|
(
D − 2π2G〈T 〉β

)2
= φ0,B −

(
4π2G〈T 〉β

)2
|Λ|

,

ΦA/B(x± = xL)→D0 − 4

|Λ|
(
D + 2π2G〈T 〉β

)2
= φ0,A −

(
4π2G〈T 〉β

)2
|Λ|

.

as β → 0.

(4.15)

These dilaton values at the horizons are also consistent with the discussion in the previous

section. From the above discussion plus the location of the singularity at ΦA/B(x+, x−) = 0,

we get the Penrose diagram (figure 7) corresponding to the dilaton profile ΦA/B in the CGHS

gravity.
<latexit sha1_base64="VM3sj/KcEc641N1bnPxE7hW0Rhs="></latexit>

A B
xL xR

Figure 7: The Penrose diagram of the glued spacetime A/B with two different black hole

masses in CGHS gravity.

5 Entropy calculation and its interpretation

In this section, we compute the entanglement entropy S(ρA) using (2.5), by plugging the

dilaton profile ΦA/B of the glued geometry into the formula. We take the following ansatz
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for C̄ on the reflection symmetric slice,

C̄ :
[
−π

2
− πy

2

]
∪
[πx

2
,
π

2

]
, 0 < x, y < 1, (5.1)

see figure 3 for the AdS case.

Let us assume the bulk CFT has a holographic dual. Then the bulk entanglement en-

tropies have the following simple expressions

Sβ/2[C̄] =
c

3
log

[
β

2π
sinh

π2

β

(
1− x+ y

2

)]
, Svac[C̄] =

c

3
log

[
2 sinπ

(
x+ y

2

)]
. (5.2)

The actual dilaton profile is given by (3.10) with (3.14) for AdS JT gravity, and (4.8)

with (4.13) for flat CGHS model. Then Sswap(ρA) in (2.5) is computed by taking the extrema

of the following function with respect to two variables x and y,

Sgen(x, y) =
ΦA/B(x)

4GN
+

ΦA/B(y)

4GN
+
c

3
log

[
β

2π
sinh

π2

β

(
1− x+ y

2

)]
− c

3
log

[
2 sinπ

(
x+ y

2

)]
.

(5.3)

In both cases, in the β → 0 limit, the bifurcation surfaces approach the asymptotic

boundaries (or spatial infinities). The value of the entropy is half of the sum of the entropies

of the original black holes,

Sswap(ρA) = SBHA + SBHB (5.4)
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Figure 8: Left: Plots of the entanglement entropy (2.5) of the AdS JT gravity case as a

function of the entanglement temperature T = 1/β. We set the parameters to be φ0,A =

300, φ0,B = 200, c = 10, 4GN = 1. Right: Similar Plots for flat CGHS model case as a

function of T = 1/β. We set the parameters to be φ0,A = 300, φ0,B = 200, |Λ| = 100, c =

10, 4GN = 1.
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We plot the resulting entanglement entropy (2.5) as a function of the entanglement tem-

perature 1/β in figure 8 for black holes in AdS JT gravity as well as in flat CGHS model.

In both cases, in the low temperature limit the results coincide with the thermal entropy of

the bulk CFT, which reproduce the Hawking’s result. In the high temperature regime where

the results are proportional to the area of the black holes, two cases show distinct behaviors.

Namely, whereas for the black holes in AdS JT gravity, the entanglement entropy saturates

to a constant value, for the black holes in flat CGHS model, the entropy is decreasing. This

difference can be understood from the fact that the black holes in flat space can evaporate by

emitting Hawking quanta and lose their masses, on the contrary to the black holes in AdS.

We emphasize that our result is not obtained by applying the island formula for the

universe A and B independently, then summing up their outcomes. Such a contribution would

come from the replica wormhole connecting n copies of A and the other replica wormhole

connecting Bs, without any further connection between A and B. However, as was argued in

[54] this does not yield the expected result, i.e., the sum of two island formulae for A and B.

This is because , in this saddle, the bulk CFT part of the path integral can not be interpreted

as a Rényi entropy, due to the alignment of the operators the numerator of (2.7). Also, if we

choose this saddle, then one can not kill the unbounded growth of the denominator. Thus

the resulting entropy increases without any bound as well, in the high temperature limit.

6 Approximate gluings

We have discussed exact solutions for ΦA/B for the asymptotically AdS black holes (3.2) and

those in flat space (4.5). This was possible because the original dilaton profiles in A and

B are simple enough to find such interpolating solutions ΦA/B. Then the question arises,

is there any way to approximately construct such an interpolating solution, especially when

it is difficult to find an exact solution. In this section we propose an idea in this direction,

using shock waves in these geometries. Again, let us take the AdS black hole with the mass

MA (3.2) and the one with MB for example, and think gluing them to obtain ΦA/B by an

approximate mean. We start from the dilaton profile (3.2), and then imagine inserting a left

moving shock wave in the black hole interior. The expectation value of the CFT stress energy

tensor is given by

〈T±±〉 = 〈T±±〉β + 〈T±±〉S , 〈T±∓〉 = 0, (6.1)

with

〈T++〉S = Eδ(x+ − x+
0 ), 〈T−−〉S = 0. (6.2)

Here we also added the thermal expectation value 〈T±±〉β coming from the entanglement

temperature. Now the set of equations of motion for the dilaton is given by (3.5) with the
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above stress tensor (6.1). The new geometry depends on two parameters, the energy E of

the shock wave, and its location x+ = x+
0 . As we show in appendix B, the mass of the black

hole to the right of the shock is changed to MAR = MAR(x+
0 , E) from its original mass MA.

On the other hand, the mass of the left black hole remains to be the same, MAL = MA. The

explicit form of the dilaton profile reads,

Φ = bA

(
cos τ

cosµ

)
− 16πG〈T 〉β(µ tanµ+ 1)

− 16πGE cos2

(
x+

0 + x−

2

)[
tanµ− tan

(
x+

0 + x−

2

)]
Θ(x+ − x+

0 ). (6.3)

To approximate the glued geometry ΦA/B by the dilaton profile with the shock (6.3),

we impose the condition that the right mass coincides with the mass of the black hole in

B, MAR(x+
0 , E) = MB. Let us denote the dilaton profile (6.3) with this condition by Φ̃A/B.

Details of the expression of MAR(x+
0 , E) can be found in Appendix B. Of course, this is not

enough to entirely fix these two parameters x+
0 , E. However as we can immediately see, if we

plug the approximate dilaton profile Φ̃A/B into the generalized entropy (2.5) then extremize,

then it gives the correct swap entropy Sswap(ρA) in the β → 0 limit, as long as the constraint is

satisfied, because the resulting entropy is again given by the sum of two entropies of the black

holes in A and B. We can also see, the only the difference between the true dilaton profile

ΦA/B and the approximate one Φ̃A/B the presence of the term proportional to sin τ/ cosµ,

which only shifts the location of the horizon in the timelike direction.

We have a similar construction for CGHS model, and explain it in appendix C.

7 More general settings

So far, we have been discussing the cases where two horizons of the eternal black hole of

each universe have the same masses ML = MR. When they are different, we should carefully

construct the glued spacetime A/B on which we compute the generalized entropy.

As an example of such eternal black holes with ML 6= MR, let us again consider the

dilaton profile of the form (3.10), which we reproduce here,

ΦA(µ, τ) =

(
aA tanµ+ bA

cos τ

cosµ

)
− 16πGX(µ tanµ+ 1). (7.1)

In previous sections, we regard this as the dilaton profile of the glued geometry A/B,

which results from gluing two eternal black holes with the MAL = MAR, and MBL = MBR,
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but now we regard it as an example of the dilaton profile of the single universe, say the

universe A, with MAL 6= MAR. Also in this setup, we are regarding the parameter X as

merely a parameter, not related to the entanglement temperature 1/β and the corresponding

CFT stress tensor 〈T 〉β.

The masses of the left and right black holes MAL, MAR are given by

MAL =
1

16πGφb

(
b2A −

(
8π2GX + aA

)2)
, MAR =

1

16πGφb

(
b2A −

(
8π2GX − aA

)2)
.

(7.2)

We also have a similar dilaton profile for the universe B by the replacement (aA, bA) →
(aB, bB) in (7.1), while keeping X intact.

Now we would like to specify the dilaton profile of the glued geometry ΦA/B which

appears in the formula for the entanglement entropy (2.5). In this generalized case, there are

four candidates of the dilaton profile, namely ΦAL/BR, ΦAL/BL, ΦAR/BL,ΦAR/BR. Here for

example we denote by ΦAL/BR the dilaton profile which approaches ΦA near the left boundary

and ΦB near the right boundary, satisfies the following boundary conditions,

ΦA/B → ΦA, µ→ −π
2
, and ΦA/B → ΦB, µ→ +

π

2
. (7.3)

This dilaton profile ΦAL/BR contains the left horizon of the black hole in A and the right

horizon of the black hole in B. Other dilaton profiles are also defined in a similar way, according

to the choice of two horizons in A/B out of candidate horizons {AL,AR} in A and {BL,BR}
in B. They all satisfy the equations of motion (3.5) with 〈T++〉 = 〈T−−〉 = 〈T 〉β + X.

The difference between them is coming from the choice of the boundary conditions near the

conformal boundaries µ→ ±π
2 .

One may be puzzled by the fact that we are dealing with dilaton profiles obeying distinct

boundary conditions, for the reason that in a calculation of a semi-classical gravitational path

integral we always fix the boundary conditions. To clarify this point, let us come back to the

replica derivation of the formula (2.5) which was briefly reviewed in section 2, as in figure

4. The entanglement entropy is computed by evaluating the on shell action of the Euclidean

wormhole connecting two discs for the universes A and B, in the presence of a cut C. In

this description we have a unique boundary condition on ∂A and ∂B. When the masses of

the left and right horizons are not necessarily the same MAL 6= MAR,MAL 6= MAR, there

are four possible types of Euclidean wormholes. Such a wormhole is constructed first by

flipping the left and right of these discs, then connecting these two. For example, suppose

that we flip the disc of the universe B and then connect A and B. Its Lorenzian continuation

of the Euclidean cylinder gives two eternal black holes, one of which contains the cut C.
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Furthermore, as is explained in [54] these two eternal black holes gets disjoint in the high

entanglement temperature limit β → 0, as depicted in figure 5. This is because if we regard

the cylinder as an annulus, its circumference gets large in this limit. Therefore, for the

eternal black hole with the cut, when analytically continued, the dilaton is given by ΦAR,BR
5.

Similarly, if we flip both two universes we get a wormhole whose Lorenzian dilaton profile is

given by ΦAL,BR.

For each wormhole with the cut C, the gravitational action is proportional to its dilaton

profile −(n − 1)Φ[C] in the n → 1 limit. Upon taking the extremization, this picks up the

extremal surface ∂∂CΦA/B = 0, on which the dilaton value is equal to the area of the horizon

of the relevant black hole. The dominant saddle of the gravitational path integral can be found

by taking the minimum value among these four candidates {ΦAL/BR, ΦAL/BL, ΦAR/BL,ΦAR/BR}.
On the other hand the value of the denominator is independent from the choice of the worm-

hole, i.e., in the absence of the cut, their action values are always the same.

By combining these, we conclude that in the high temperature limit β → 0, the entan-

glement entropy is given by the sum of the two smallest black hole entropies. In our case, it

is given by

S(ρA) = Min[SAL + SBL, SAL + SBR, SAR + SBR, SAR + SBL]. (7.4)

We can also construct dilaton profiles describing general glued geometries in CGHS model

too. This construction is parallel to the one in the previous sections 4. In this case, we consider

the following dilaton profile

ΦA(x+, x−) = φ0,A +
|Λ|
4

tanx+ tanx− − 4πGX (x+ tanx+ + x− tanx−)

+DA(tanx+ + tanx−)

(7.5)

for the universe A, and similarly for the universe B. This dilaton profile ΦA corresponds to

a black hole with the masses

MAR =

√
|Λ|

16πG

(
φ0,A −

4

|Λ|
(
DA − 2π2GX

)2)
, MAL =

√
|Λ|

16πG

(
φ0,A −

4

|Λ|
(
DA + 2π2GX

)2)
,

(7.6)

and similarly for ΦB.

For these masses, by repeating the analysis of the section 4, we get various dilaton

profiles ΦAL/BR, ΦAL/BR, ΦAR/BL,ΦAR/BL as in the case of JT gravity. Namely, each

5Notice that without any flip, we get the dilaton ΦAR,BL, because as in [54] we rotate the disc B by π

relative to the disc A, to adjust the locations of the CFT operators.
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dilaton profile can be constructed starting from the general solution (4.8) with the replacement

〈T 〉β → 〈T 〉β +X with the boundary conditions analgous to (4.7).

8 Conclusion and discussions

In this paper, we consider the entanglement entropy of states defined on two disjoint universes,

by generalizing the argument of [54].

Let us interpret the result we obtained. We started from the entangled state (2.3) on

two disjoint gravitating universes A and B. Since there is a black hole on the universe B, this

state can be regarded as an entangled state of the Hawking quanta in the universe A and

black hole microstates in the universe B. This interpretation is similar to the setup for the

island formula, where one takes the bath universe to be non gravitating. In the latter case,

although the number of the degrees of freedom in the non-gravitating universe is infinite, the

maximal entanglement that the system can accommodate is given by the entropy of the black

hole in the universe B in accord with the structure of the total Hilbert space.

In the current setup where both of these universes are gravitating, this scenario gets

modified. Namely, as is clear from the formula (2.5), the gravitational dynamics completely

changes the system. After the dominant saddle in (2.5) is changed, it becomes a system where

the Hawking radiation is entangled with the black holes in A/B, whose detailed properties

were studied in this paper. Thus we speculate the interior region of the new black hole belongs

to the entanglement wedge of the Hawking radiation. Such a gluing happens due to the back

reaction of the stress tensor induced from the entanglement between two universes, A and B.

This can be regarded as a concrete realization of ER=EPR [76], which relates entanglement

in presence of gravity to spatial wormholes.

It would be interesting to study this phenomenon further, with emphasis on its micro-

scopic origin. One consistent description of an evaporating black hole is in terms of a class

of states of the form

|Ψ〉 =
∑
α,i

Cα,i|ψα〉BH ⊗ |i〉R (8.1)

where Cα,i is a random matrix drawn from Gaussian ensemble, and |ψα〉BH , |i〉R are or-

thonomal basis of the Hilbert space of black hole microstates HBH , and the similar basis for

Hawking radiation HR respectively. This point of view of evaporating black holes was first

studied by Page [3]. The randomness of the coefficient matrix is coming from the chaotic

nature of the black hole dynamics. Averaging over these random matrices leads to a semi-

classical description, but consistent with the principles of quantum theory. For example the
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Page curve of the radiation entropy as well as the island formula follows from it. From this

point of view, the island region in the black hole interior can be regarded as a region accom-

modating random fluctuations in the entangled state (8.1). See [79] for a recent discussion

on this topic and its relation to baby universes. Since the system we studied in this paper

involves two such black holes, it is natural to expect that the microscopic description of the

setup has to do with two such random matrices. Related discussions toward this direction

can be found in [48, 80].
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A ADM Mass formula

In this appendix, we give ADM mass formulae in AdS JT gravity and CGHS gravity. We

also give the explicit ADM masses of general dilaton profiles in both cases.

A.1 ADM mass formula in AdS JT gravity

We consider the ADM mass of a dilaton profile in AdS JT gravity. The relation between

dilaton profiles and the ADM black hole mass is discussed in e.g. [81, 82]. To introduce the

ADM mass formula, we need to specify boundary conditions of the metric and the dilaton on

the asymptotic boundary. We assume that they are given by

Φ|bdy =
φb
ε
, (A.1)

guu|bdy = − 1

ε2
, (A.2)

where ε is the cutoff, φb is the renormalized dilaton value, which is a constant at the cutoff

surface, and u is a boundary time coordinate along the cutoff surface. Also |bdy implies that

we evaluate the expression at the boundary.

Then the ADM mass formula associated with one side of the two AdS boundaries is given

by

MADM = −
√
−guu
8πG

(∂nΦ− Φ)|bdy, (A.3)
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where n is the (outward) normal vector to the boundary, ∂n denotes the normal derivative to

the boundary.

For example, we consider a dilaton profile Φ satisfying the equations of motion (3.10)

with vanishing stress energy tensor. The general solution is given by

Φ = Q−1
cos τ

cosµ
+Q0

sin τ

cosµ
−Q1 tanµ, (A.4)

where Q−1, Q0, Q1 are constants.

For this general dilaton profile, the ADM black hole mass associated with one side of the

AdS boundaries becomes

MADM =
(Q−1)2 + (Q0)2 − (Q1)2

16πGφb
. (A.5)

This expression is manifestly invariant under the SL(2,R) rotation, which is a symmetry of

JT gravity.

A.2 ADM mass formula in Flat CGHS gravity

Next we consider the ADM black hole mass described by a dilaton profile in CGHS gravity.

For CGHS gravity, the relation between dilaton profiles and the ADM black hole mass is

discussed in e.g. [83, 84].

The ADM mass formula associated with one side of the two spatial infinities is given by

MADM =
1

16πG
√
|Λ|
(
−(∇Φ)2 + |Λ|Φ

)
|sp.inf., (A.6)

where |sp.inf. implies that we evaluate the expression at a spatial infinity.

As in the case of JT gravity, we consider a dilaton profile Φ satisfying the equations of

motion (4.2) with vanishing stress energy tensor. The general solution is given by

Φ = D0 +
|Λ|
4

tanx+ tanx− +D+ tanx+ +D− tanx−, (A.7)

where D0,± are constants.

This dilaton profile gives the ADM black hole mass associated with one side of the two

spatial infinities

MADM =

√
|Λ|

16πG

(
D0 − 4√

|Λ|
D+D−

)
. (A.8)
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B The black hole solution with a shockwave in its interior (AdS JT gravity)

In this appendix, we explain a method to construct a dilaton profile describing a glued

spacetime approximately by using shock waves for AdS JT gravity outlined in rection 6. This

is closely related to the exact construction in section 3, but the resulting geometry does not

have the time reflection symmetry τ ←→ −τ6.

At first, we consider the equations of motion (3.10) with the stress tensor given by

〈T±±〉 = 〈T±±〉β + 〈T±±〉S , 〈T±∓〉 = 0, (B.1)

where the first term 〈T±±〉β is defined by (3.6) and the second term 〈T±±〉S is coming from

the contribution of the shock wave,

〈T++〉S = Eδ(x+ − x+
0 ), 〈T−−〉S = 0. (B.2)

Here, the coefficient E characterizes the strength of the shock wave and x+
0 is the location of

the shock wave.

The general solution is given by7

Φ = b+

(
cos τ

cosµ

)
− 16πG〈T 〉β(µ tanµ+ 1)

− 16πGE cos2

(
x+

0 + x−

2

)[
tanµ− tan

(
x+

0 + x−

2

)]
Θ(x+ − x+

0 ). (B.3)

As we will check in the next subsection, this dilaton profile corresponds to a black hole

with two different masses. In other words, this dilaton profile describes a new glued spacetime

with its masses.

B.1 Black hole ADM Mass formula in the AdS Jackiw-Teitelboim gravity

Next we compute the black hole masses described by the dilaton profile (B.3) by using the

ADM mass formula (A.3).

6We can construct a dilaton profile describing a glued geometry which is not time reflection symmetric with

the method discussed in section 3 by including the additional term in (3.10). See footnote footnote 3.
7Although the full general solution includes terms sin τ/ cosµ and tanµ, we omit such terms for simplicity.
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To use the ADM black hole mass formula, we need to calculate the normal derivative of

the dilaton ∂nΦ. After some algebras, we get

∂nΦ =

[
Φ2 −

{
b+
(
b+ + 16πGE sinx+

0 Θ
(
x+ − x+

0

))
− 16πG〈T 〉β · 16πGE · µΘ

(
x+ − x+

0

)
− (16πG〈T 〉β)2 · µ2

}
+ 16πG〈T 〉β cosµ

{
2(b+ + 8πGE sinx+

0 Θ
(
x+ − x+

0

)
) cos t

− 16πGE cosx+
0 sin t− 16πG〈T 〉β cosµ

}
+ · · ·

] 1
2

,

(B.4)

where the dots · · · denotes terms containing the delta function, which comes from the deriva-

tive of the step function Θ
(
x+ − x+

0

)
, and the terms do not contribute to the black hole mass

and below we ignore such terms.

Therefore, from the ADM black hole mass formula (A.3) and the boundary conditions

(A.1), (A.2), the black hole masses associated with two AdS boundaries are

MADM,L = −
√
−guu
8πG

(∂nΦ− Φ)|Left bdy, µ→−π/2

=
1

16πGφb

{
b2+ −

(
8π2G〈T 〉β

)2} (B.5)

and

MADM,R = −
√
−guu
8πG

(∂nΦ− Φ)|Right bdy, µ→π/2

=
1

16πGφb

{
b+
(
b+ + 16πGE sinx+

0

)
− 128π2G2E〈T 〉β −

(
8π2G〈T 〉β

)2}
.

(B.6)

Since these ADS black hole masses associated with the dilaton profile (B.3) are clearly

different MADM,L 6= MADM,R unless E = 0, thus the dilaton profile (B.3) describes the glued

geometry with different black hole masses MADM,L,MADM,R.

C The black hole solution with a shockwave in its interior (Flat CGHS

gravity)

In this appendix, for CGHS gravity in flat spacetime, we explain a method to construct

a dilaton profile describing a glued spacetime approximately by using a shock wave. The
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discussion is parallel to the JT gravity case. This method is also closely related to the one

in section 4, and the resulting geometry also does not have the time reflection symmetry

t←→ −t as in the case of JT gravity8.

Firstly, we consider the equations of motion (4.2) with the stress energy tensor given by

the previous one (B.1).

The full solution is given by9

Φ = φ0 +
|Λ|
4

tanx+ tanx− − 4πG〈T 〉β(x+ tanx+ + x− tanx−)

− 8πGE cos2 x+
0

(
tanx+ − tanx+

0

)
Θ(x+ − x+

0 ).

(C.1)

This dilaton profile (C.1) corresponds to a black hole with two different masses in CGHS

gravity. In other words, this dilaton profile describes a new glued spacetime with its masses.

C.1 Black hole ADM Mass formula in CGHS gravity

Next we compute the black hole mass described by the dilaton profile (C.1) by using the

ADM mass formula (A.6).

To use the ADM mass formula (A.6), we need to evaluate the factor (∇Φ)2, which is

given by

(∇Φ)2 = 4

[
|Λ|
4

tanx− − 4πG〈T 〉β(cosx+ sinx+ + x+)

]
×
[
|Λ|
4

tanx+ − 4πG〈T 〉β(cosx− sinx− + x−)

]
− 32πGE cos2 x+

0

[
|Λ|
4

tanx+ − 4πG〈T 〉β(cosx− sinx− + x−)

]
.

(C.2)

Thus the black hole masses at the left and right asymptotic spatial infinity are given by

MADM,L = lim
x±→−π

2

1

16πG
√
|Λ|
(
−(∇Φ)2 + |Λ|Φ

)
=

√
|Λ|

16πG

{
φ0 −

(
4π2G〈T 〉β

)2
|Λ|

}
,

(C.3)

8In this case, we can also construct a glued geometry which is not time reflection symmetric with the

method discussed in section 4 by considering D+ 6= D− cases.
9The full general solution also includes terms tanx+ and tanx−, but we omit them for simplicity.
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and

MADM,R = lim
x±→π

2

1

16πG
√
|Λ|
(
−(∇Φ)2 + |Λ|Φ

)
=

√
|Λ|

16πG

{
φ0 −

(
4π2G〈T 〉β

)2
|Λ|

−
64π3G2E〈T 〉β cos2 x+

0

|Λ|
+ 8πGE cosx+

0 sinx+
0

}
.

(C.4)

In this case, since the black hole masses MADM,L,MADM,R are clearly different again,

the dilaton profile (C.1) describes the black hole with two different black hole masses.
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