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Higher Derivative Scalar Tensor Theory in Unitary Gauge
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Ostrogradsky instability generally appears in nondegenerate higher-order derivative theories and
this issue can be resolved by removing any existing degeneracy present in such theories. We consider
an action involving terms that are at most quadratic in second derivatives of the scalar field and non-
minimally coupled with the curvature tensors. We perform a 3+1 decomposition of the Lagrangian
to separate second-order time derivative terms from rest. This decomposition is useful for checking
the degeneracy hidden in the Lagrangian and helps us find conditions under which Ostrogradsky
instability does not appear. We show that our construction of Lagrangian resembles that of a GR-
like theory for a particular case in the unitary gauge. As an example, we calculate the equation
of motion for the flat FRW. We also write the action for open and closed cases, free from higher
derivatives for a particular choice derived from imposing degeneracy conditions.

I. INTRODUCTION

Several studies have pointed out that there are many ways to explain the current accelerated expansion of the
universe[1–3]. The most popular approach involves the use of Einstein-Hilbert’s action with a cosmological constant
term, which unfortunately suffers from a fine-tuning problem that is purely theoretical in nature[4]. Another possible
way is to modify the stress-energy sector by introducing dynamical dark energy[5–7] or by introducing additional
scalar degrees of freedom (dof) along with two tensor dof of general relativity (GR) by modifying the gravity part of
the action. The latter can be realized as scalar-tensor theories. A generic scalar-tensor theory would contain higher
derivative terms in the scalar field as well as in metric tensor.
In this direction, higher derivative scalar-tensor theories have been explored extensively in recent times. These

theories can be classified as degenerate or nondegenerate. If a higher derivative theory is nondegenerate, there exists a
ghost-like instability known as Ostrogradsky instability[8] which can be identified with the Hamiltonian of the theory
containing unavoidable linear momenta terms[9, 10]. The canonical energy is expressed in phase space variables,
where linear momenta terms make the energy unbounded from below. Whereas, in a degenerate theory, the clever
cancellation among higher derivative terms provides second-order equations of motion, avoiding Ostrogradsky ghosts.
These theories include Horndeski theories[11–14], beyond Horndeski[15, 16] and other degenerate higher derivative
theories[17–19] (for a review, refer to[20, 21]). Mostly these theories include curvature tensor in linear order coupled
with higher derivatives of the scalar field.
Apart from these, theories with higher-order curvature terms are also studied in the context of Chern-Simons

gravity[22, 23], ghost-free Weyl gravity, and ghost-free parity violation theory[24]. Further, the class of theories which
are arbitrary nonlinear functions of fully degenerate Lagrangian, L=f(R,GB,P ), where R, GB and P represent
Ricci scalar, Gauss-Bonnet term and Pontryagin term, respectively, are studied in the context of partially degenerate
theories (for more details refer to[25]).
Generally, the theories in which scalar field is an arbitrary function of space and time coupled non-minimally with

gravity are known as general covariant gravity theories. If they are studied under a well known unitary gauge in which
scalar field is only a function of time, comes under spatially covariant theory (SCT) of gravity[26–32]. Some examples
of SCTs include Horava Lifshitz gravity[33, 34], Cuscuton theory[35, 36] and its generalization[37, 38]. The unitary
gauge appears naturally in the cosmological background (homogeneous space-time) by the assumption the scalar field
has only a time-like gradient. Hence it would be a useful exercise to check whether a particular theory is degenerate
under the unitary gauge or not. The class of theories degenerates in the unitary gauge dubbed as U-DHOST, which
defines the broader class of degenerate theories than DHOST. The degeneracy can be checked for the general structure
of Lagrangian but the unitary gauge dramatically reduces the effort of checking degeneracy conditions by simplifying
the structure of Lagrangian. Recently in [39, 40], it is shown that in a general coordinate system, the extra mode
appearing in U-DHOST theories is non-propagating called shadowy modes.
For the completeness we point out that the recent detection of gravity waves by LIGO observatory puts a constraint

on the speed of gravity wave and in turn this constraint can further restrict the parameter space of higher derivative
theories ref.[41–55]. This fact motivates us to include additional higher derivative terms in these theories, which may
obtain a larger allowed parameter space from the speed of gravity wave.
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In this work, we develop a model by considering the system of Lagrangians containing at most second-order
derivatives of the scalar field and their coupling with the linear curvature terms. We separate the second-order
time derivative terms in the total Lagrangian using (3 + 1) decomposition. First, we analyze by taking only the
linear curvature terms, but we cannot find any condition for which all the second-order time derivative terms vanish.
Therefore, we introduce additional quadratic terms in curvature coupled with a single derivative of the scalar field and
a combination of the quartic second derivative of the scalar field. For a general combination, higher-order derivative
terms are still present. Still, in the unitary gauge, we can show that we can get rid of these terms for a particular
combination of these terms. In other words, we can conclude that the total action is not free from Ostrogradsky
ghosts, but in the unitary gauge, it provides at most a second-order equation of motion for both metric and scalar
fields. As an application of our framework, we compute the equation of motion for flat FRW (Friedmann-Lemaitre-
Robertson-Walker) metric, which gives rise to an additional correction term in standard FRW equations.

The organization of this work is as follows: in section 2, we construct the general structure of Lagrangian. In
section 3, we review the basics of 3+1 decomposition. We analyze our Lagrangian in both general and unitary gauge
by using 3+1 decomposition in section 4. In section 5, we derive the action for working examples by taking flat, open,
and closed FRW metrics. In section 6, we summarize our results.

II. CONSTRUCTION OF THEORY

Let us start by discussing some important features of Horndeski theories, which are well described by the following
Lagrangian,

L = LH
2 + LH

3 + LH
4 + LH

5 , (1)

where,

LH
2 = G2(φ,X), (2)

LH
3 = G3(φ,X)�φ, (3)

LH
4 = G4(φ,X)R − 2G4,X(φ,X)(�φ2 − φabφ

ab), (4)

LH
5 = G5(φ,X)Gabφ

ab +
1

3
G5(φ,X)R − (�φ3 − 3�φφabφ

ab + 2φabφ
b
cφ

ac), (5)

with following symbols as, φa = ∇aφ, φab = ∇a∇bφ, X = ∇aφ∇aφ. and Gab is Einstein tensor.
The Lagrangian LH

2 is the collection of all possible combination scalar fields and its first derivative, and LH
3 is the

direct extension of LH
2 by multiplying a second-order derivative term �φ. However, the combination of LH

2 and LH
3

yields a second-order equation of motion. Further, LH
4 and LH

5 contain both first and second derivatives of the metric
and scalar field. We also obtain the second-order equation of motion by adding all four terms despite having higher
derivative terms, which is possible due to the degeneracy present in this structure.

Now we are interested in considering a particular form of action that contains derivatives of the scalar field at most
second order and curvature terms up to quadratic order. For this specific choice, the action can be written as,

S =

∫

d4x
√
−g Ã(∇µ∇νφ,∇µφ, φ) +

∫

d4x
√
−gB̃(gµν , Rµνρσ , φ,∇µφ) +

∫

d4x
√
−gC̃µν,ρσ∇µ∇νφ∇ρ∇σφ, (6)

S = S1 + S2 + S3,

where, Ã is a function of φ and its first and second derivatives, B̃ takes care of curvature terms upto quadratic
order as well as coupling terms between curvature and scalar field along with its first order derivatives, and C̃µνρσ

contains linear curvature terms along with φ and its derivatives. One can get the Horndeski Lagrangian from eq.(6)

by choosing, Ã = 0, B̃ as just a function of the Ricci scalar, and C̃µνρσ as only a function of gµν , φ and ∇µφ (refer
to [17] for more details).

In action eq.(6), we come across both second derivative in scalar field and metric, which is why we expect the
appearance of Ostrogradsky ghosts. However, in literature, there are various examples of such higher derivative
theories where one can avoid the appearance of Ostrogradsky ghosts by reducing the phase space non-trivially, which
leads to the degeneracy condition in these theories [17–19, 25, 56–60]. To find any existing degeneracy present in our
theory, first, we need to separate space and time derivatives by using 3+1 decomposition. In the next section, we
briefly review the basics of this technique.
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III. 3+1 DECOMPOSITION

We have a four dimensional space-time M with metric gab. This space-time is split into family of non-intersecting
space-like 3-surfaces characterized by metric hab (spatial 3-dimensional metric) and these 3-surfaces are connected
by defining a normal direction denoted by a vector na, satisfying the normalization condition nan

a = −1. For more
details, please refer to[61]. In this formalism the 4-dimensional metric can be written in terms of hab and normal
vector na,

gab = hab − nanb. (7)

Any vector Aa in (3+1) decomposition can be written as,

Aa = Aa −A∗na, (8)

where, Aa and A∗ are defined as,

Aa = hb
aAb, A∗ = Aan

a. (9)

Aa is purely spatial part of Aa, with the property naAa = 0. By using the property ∇aAb = ∇bAa, the 3+1
decomposition of derivative of Aa is given by,

∇aAb = DaAb −A∗Kab + na(KbcAc −DbA∗) + nb(KacAc −DaA∗) +

nanb(LnA∗ −Aca
c), (10)

where Na is the shift vector, N is the lapse function, Da denotes spatial derivative and Kab is extrinsic curvature
tensor related to first time derivative of spatial metric,

Kab =
1

2N

(

˙hab −DaNb −DbNa

)

, (11)

and LnA∗ which involves second time derivative of scalar field is,

LnA∗ =
1

N
(Ȧ∗ −N cDcA∗). (12)

Here we introduce a new set of variables {Uab, Yb, Ż∗} to further simplify the eq.(10), where Uab = (DaAb−A∗Kab),

behaves as a symmetric spatial tensor, Yb = (KbcAc−DbA∗), transforms like a spatial vector, and Ż∗ = (LnA∗−Aca
c),

contains second time derivative of scalar field. Therefore, in terms of these new variables, eq.(10) becomes,

(∇aAb) =
1

N
nanbŻ∗ − Uab − naYb − nbYa. (13)

Ricci scalar in (3+1) decomposition takes the form,

R = R+K2 − 3KabK
ab + 2habLnKab − 2Dba

b − 2aba
b, (14)

Where ab is acceleration, R is spatial curvature and LnKab is Lie derivative of extrinsic curvature tensor which
contains terms with second order derivative of induced metric hab,

LnKab =
1

N
(∂tKab −N cDcKab). (15)

Further, we introduce a scalar F1 which takes care of first derivative of spatial metric hab and purely spatial terms,
then eq.(14) can be simplified to,

R = 2habLnKab + F1, (16)

where,

F1 = R+K2 − 3KabK
ab − 2Dba

b − 2aba
b. (17)

A similar analysis of (3+1) decomposition of Ricci Tensor Rab can be expressed in the following way. The purely
spatial part of decomposition of Ricci tensor is,

⊥Rab = Rab +KabK − 2KasK
s
b + LnKab −D(aab) − 2aaab = LnKab + Fab, (18)
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where,

Fab = Rab +KabK − 2KasK
s
b −D(aab) − 2aaab, (19)

which contains only first order derivatives of hab and purely spatial terms.
One-normal projection of Ricci tensor denoted by a vector notation Vb is,

⊥Rbn = DsK
s
b −DbK = Vb. (20)

Finally, two-normal projection of Ricci tensor can be written as,

⊥Rnn = KstK
st − hstLnKst +Dsa

s + asa
s = F2 − hstLnKst. (21)

where,

F2 = KstK
st +Dsa

s + asa
s. (22)

Now the full expression of Ricci tensor by combining eq.(18), eq.(20) and eq.(21) becomes,

Rab = LnKab + Fab − 2n(aVb) + nanb(F2 − hstLnKst). (23)

Similarly all the (3+1) decomposition of Riemann tensor can be written as[61],

⊥Rabcd = Rabcd +KacKbd −KadKbc. (24)

⊥Rabcn = DaKbc −DbKac, (25)

and

⊥Ranbn = KauK
u
b − LnKab +D(aab) + aaab = Fab − LnKab, (26)

where,

Fab = KauK
u
b +D(aab) + aaab. (27)

The eq.(24), eq.(25) and eq.(26) are known as Gauss, Codazzi and Ricci relations respectively. Next we write various
possible terms of eq.(6) and their 3+1 deomposition forms.

A. Construction of C̃
µνρσ

The last term of action eq.(6) is,

S3 =

∫

d4x
√−g C̃µν,ρσ∇µ∇νφ∇ρ∇σφ. (28)

It is already mentioned earlier that C̃µνρσ contains only the linear curvature coupling terms, so its possible structure
is given by[62],

C̃µνρσ = (D1g
µρgνσ +D2g

µσgνρ)R+ (D3g
ηρgµνgβσ +D4g

µηgβρgνσ)Rηβ

+(D5g
µηgνβgγρgδσ +D6g

µηgσβgγρgδν)Rηβγδ, (29)

where Di(φ,X)s(i = 1, 2, ..6) are general function of φ and its first derivative. Using Lagrange multiplier λµ and
replacing ∇µφ to a new Aµ field, the eq.(28) can be rewritten as,

S3 =

∫

d4x
√−g C̃µν,ρσ∇µAν∇ρAσ + λµ(∇µφ−Aµ),

=

∫

d4x
√−g (L1 + L2 + L3 + L4 + L5 + L6) + λµ(∇µφ−Aµ),

(30)

where Lis (i=1,2...6) are defined as,

L1 = D1Rgcegdf∇cAd∇eAf ,

L2 = D2Rgcdgef∇cAd∇eAf ,

L3 = D3g
acgbegdfRab∇cAd∇eAf ,

L4 = D4g
aegcdgbfRab∇cAd∇eAf ,

L5 = D5g
cagdbglegmfRablm∇cAd∇eAf ,

L6 = D6g
cagfbglegmdRablm∇cAd∇eAf .

(31)
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B. Representation of action S3 in 3+1 decomposition

We decompose Lagrangians L1 to L6, by using 3+1 decomposed relation of ∇cAd in eq.(13), and the curvature
tensor provided in eq.(16), (23)-(26). Then we separate out second derivative of metric with corresponding coefficient
in each Lagrangian, which yields,

L1−4 = D1

[

(

2habLnKab + F1

)

(

Ż2
∗ − 2YcY

c + UcdU
cd
)]

+D2

[

(

2habLnKab + F1

)

(

Ż2
∗ − 2Ż∗U + U2

)]

+D3

[

(

−habLnKab + F2

)

(

Ż2
∗ + YdY

d
)

+ (LnKab + Fab) (32)

(

U b
dU

ad − Y aY b
)

+ 2Vb

(

Ż∗Y
b − U b

aY
a
)

]

+D4

[

(

−habLnKab + F2

)

(

Ż2
∗ + Ż∗U

)

+ (LnKab + Fab)

(

UUab − Ż∗U
ab
)

+ 2Vb

(

Ż∗Y
b − UY b

)

]

,

where L1−4 is the linear sum of Lagrangian’s L1 to L4 and throughout the paper we will use this type of notation for
denoting linear sum. L5 does not contribute due to antisymmetric properties of Riemann tensor. The 3+1 decomposed
form of Lagrangian L6 is given as,

L6 = D6

[

2LnKab

(

Ż∗U
ab − Y aY b

)

+ 2Fab(Y
aY b − Ż∗U

ab)− ⊥RabcdU
acU bd

+4U bcY a (DcKab −DaKbc)

]

. (33)

These families of Lagrangian are equipped with coupling between the first and second-order derivatives of both scalar
field and metric. The most problematic part is the coupling of the quadratic time derivative of the scalar field (Ż2

∗) to
others. To tackle this problem, we separate these types of terms with their corresponding coefficient, then the eq.(32)
and eq.(33) take the form,

L1−6 =
(

2habLnKab + F1

)

Ż2
∗ (D1 +D2) +

(

habLnKab + F2

)

Ż2
∗ (D3 +D4) + habLnKabYcY

c

(−4D1 −D3) + habLnKabŻ∗U (−4D2 −D4) + LnKabY
aY b (−D3 − 2D6)

+
(

2habLnKab + F1

) (

D1U
cdUcd +D2U

2
)

+ LnKabŻ∗U
ab (−D4 + 2D6)

+ (LnKab + Fab)
(

D3U
a
dU

bd +D4UUab
)

+ Y dYd (−2D1F1 +D3F2)

+Ż∗U (−2D2F1 +D4F2) + 2Vb

[

Ż∗Y
b (D3 +D4)−D3U

b
aY

a −D4UY b
]

+Y aY b(−FabD3 + 2D6Fab + Ż∗U
ab(−FabD4 − 2D6Fab)

−⊥RabcdU
acU bd + 4U bcY a (DcKab −DaKbc) . (34)

It is easy to see that we can tune the coefficients D1 − D6 in such a way that coupling of Ż2
∗ to other terms is

removed. Consequently, we obtain the following conditions,

D1 +D2 = 0,

D3 +D4 = 0,

−4D1 −D3 = 0,

−4D2 −D4 = 0,

−D3 − 2D6 = 0,

−D4 + 2D6 = 0. (35)

After solving these equations, we get

D1 = −D2 = −D3

4
=

D4

4
=

D6

2
. (36)
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After applying these conditions, L1−6 becomes,

L1−6 = D1

[

(

U cdUcd − U2
) (

2habLnKab + F1

)

+ 4
(

UUab − Ua
dU

db
)

(LnKab + Fab) (37)

+2Ż∗U (F1 + 2F2)− 4Ż∗U
ab(Fab + Fab)− 2Y dYd (F1 + 2F2) + +8Vb

(

U b
aY

a − UY b
)

+4Y aY b(Fab + Fab)− 2⊥RabcdU
acU bd + 8U bcY a (DcKab −DaKbc)

}]

.

After removing Ż2
∗ terms we are still left with the linear terms in second-order derivative of both scalar field and

metric. After putting the values of Uab, Yb and Ż∗, we obtain,

L1−6 =D1

[

(2habLnKab + F1)

{

A2
∗KcdK

cd −A2
∗K

2 −A∗ Kcd(DcAd) +A∗K(DcAc)−A∗Kcd(D
cAd)

+ (DcAd)(D
cAd) +A∗K(DdAd)− (DcAc)(D

dAd)

}

− 4(LnKbc + Fbc)

{

A2
∗Ka

cKab −A2
∗KKbc

−A∗K
ab(DaAc) +A∗K

bc(DaAa)−A∗Ka
c(DaAb) + (DaAc)(DaAb) +A∗K(DbAc)

− (DaAa)(D
bAc)

}

+ 2Ż∗

{

2(F ab + Fab)(A∗Kab − (DaAb)) + (F1 + 2F2)(− A∗K + (DaAa)

}

− 2

{

(F1 + 2F2)(KcaAc − (DaA∗))(K
a
dAd − (DaA∗)) + 2(F ab −Fab)(KcaAc − (DaA∗))(KdbAd

− (DbA∗)) + 4V a(Kb
dAd − (DbA∗))(−A∗Kab + (DaAb))− 4⊥R

bc
a n(K

a
dAd − (DaA∗))(−A∗Kbc + (DbAc))

− 4V a(KcaAc − (DaA∗))(−A∗K + (DbAb))−⊥Racbd(−A∗K
ab + (DaAb))(−A∗K

cd + (DcAd))

}

]

.

(38)

This expression includes Kab, A∗, Aa and their spatial derivatives with linear second-order derivatives of both metric
and scalar fields. We can not find a particular choice of D1 −D6 (unless all D1 −D6 are zero), which can cancel the
contribution of the linear second derivative of the metric as well as that of the scalar field.

C. Construction of B̃

To remove linear higher derivative terms of metric in eq.(38), here we introduce a structure for B̃ by allowing all
possible terms of quadratic curvature coupled with the first derivatives of the scalar field, which are

L7 = D7g
abgcdgefRabRcdAeAf ,

L8 = D8g
abgcegdfRabRcdAeAf ,

L9 = D9g
acgbdgefRabRcdAeAf ,

L10 = D10g
acgbegdfRabRcdAeAf ,

L11 = D11g
crgqbgdfgsegapRacbdRpqrsAeAf . (39)

Recall that the higher derivative of metric LnKab terms in the expression L1−6 eq.(38) appear with a combination
(Kab, A∗, A

a) and spatial derivatives. We would expect terms with such a combination to emerge from L7 − L11 by
which all terms with quadratic derivatives of the metric vanish. By performing 3+1 decomposition of Lagrangians
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L7−11, we obtain,

L7−11 =D7

[

{

4habhcd (LnKab) (LnKcd) + 4F1h
ab (LnKab) + F1F1

}

(

A2 −A2
∗

)

]

+D8

[

− 2A2
∗h

abLnKabh
cdLnKcd + 2AaAbhcdLnKabLnKcd +A2

∗h
abLnKab (−F1 + 2F2)

+ hcdLnKcd

(

AaAbFab − 4A∗AaVa

)

+ F1

(

AcAdLnKcd − 2A∗AcVc

)

+ F1AaAbFab + A2
∗F1F2

]

+D9

[{

habhcdLnKabLnKcd + habhcdLnKacLnKbd + 2F abLnKab − 2F2h
abLnKab

+ FabF
ab − 2habVaVb + F2F2

}

(

A2 −A2
∗

)

]

+D10

[

−A2
∗h

abLnKabh
cdLnKcd +AaAbhcdLnKacLnKbd + 2AaAbhcdFadLnKbc

− 2A∗AahcdVaLnKcd − 2AaA∗V
bLnKab + 2A2

∗F2h
cdLnKcd − (AaAb − hab)A2

∗VaVb

− 2A∗AahbcVcFab +AaAbhdcFadFbc + 2F2A∗AaVa −A2
∗F2F2

]

+D11

[

−A2
∗h

abLnKabh
cdLnKcd +AaAbhcdLnKacLnKbd − 2AaAbhcdFadLnKbc

+ 4A∗Aa
⊥Rbc

anh
d
cLnKbd + 2A2

∗FabLnKab +AaAb
⊥Racdp

⊥Rbdcp + 2A∗Aa
⊥Rbcdn

⊥Racbd

+ 2A∗Ab
⊥R cd

an ⊥Rcdbn +AaAbFc
aFbc +A2

∗RancbRabcn − 4A∗Aa
⊥Rbc

anFbc −A2
∗FabFab

]

.

(40)

L7−11 contains terms quadratic and linear in second derivative of metric. However, for this set of Lagrangians, we
are unable to find any nontrivial relation among different coefficients D7−D11 so that terms having quadratic second
derivative of metric vanish.

Next, we set a structure of quartic second-order derivative of φ with the hope that it may help us to remove all
linear second derivatives of the scalar field of the Lagrangian L1−6.

D. Construction of Ã

In order to obtain terms similar to linear second-order derivative of scalar field, as in eq.(38), we propose a structure
containing four double derivative terms which is,

L12−16 =L12 + L13 + L14 + L15 + L16,

L12−16 =

[

D12g
abgcdgefgpq +D13g

aegdpgcfgqb +D14g
acgbdgepgqf +D15g

abgcdgpfgqe

+D16g
abgcqgpfgde

]

∇aAb∇cAd∇eAf∇pAq.

(41)

It is obvious that here we will encounter terms with higher powers of Ż∗(Ż
4, Ż3, and Ż2) apart form linear terms

in Ż∗.

Using 3+1 decomposition L12−16 becomes,
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L12−16 = Ż4
∗ (D12 +D13 +D14 +D15 +D16) + 4Ż3

∗U (−4D12 − 2D15 −D16)

+ Ż2
∗U

2 (6D12 +D15)− 4Ż2
∗Ya Y a (−4D13 + 4D14 − 2D15 − 3D16)

+ 2Ż2
∗UbcU

bc (2D14 +D15) +D12

[

− 4Ż∗U
3 + U4

]

+D13

[

Ua
cUabUb

dUcd

+ 4Ż∗UabY
aY b − 4Ua

cUbcY
a Y b + 2YaY

aYbY
b

]

+D14

[

UbcU
bcUfpU

fp

− 4UcfU
cfYbY

b + 4YbY
bYcY

c
]

+D15

[

− 2Ż∗UUdeU
de + U2 UefU

ef

+ 4Ż∗U YbY
b − 2U2YbY

b

]

+D16

[

− Ż∗Ub
dU bcUcd + UUc

eU cdUde

+ 3Ż∗ U c
cYbY

b + 3Ż∗UbcY
bY c − 3Ubc Ud

dY
bY c

]

.

(42)

From the above equation, it is evident that, the Ż∗
4
and Ż∗

3
terms vanish if following conditions on the coefficients

from D12 to D16 are satisfied. Conditions are,

D12 +D13 +D14 +D15 +D16 = 0,

−4D12 − 2D15 −D16 = 0,

2D14 +D15 = 0,

6D12 +D15 = 0,

−4D13 − 4D14 − 2D15 − 3D16 = 0. (43)

From eq.(43), we get,

D15 = −6D12 = D13 = −2D14 = −3

4
D16. (44)

After imposing the conditions in eq.(43), L12−16 becomes linear in Ż∗ and takes the form,

L12−16 = D15

[

4Ż∗Ua
cUabUbc − 2Ż∗UUbcU

bc + Ua
cUab Ub

dUcd − 4
3UUb

dU bc Ucd

+2Ż∗U
3 − 1

2UabU
abUcdU

cd + U2 UcdU
cd − 1

6U
4 + 2UbcU

bcYaY
a

−2U2 YaY
a − 4Ua

cUbcY
aY b + 4UabU Y aY b

]

. (45)

Our main aim of introducing such quartic terms was to remove all Ż∗ and LnKab terms from L1−6, but for the
whole Lagrangian L1−16, we can observe from eq.’s (38),(40) and (45) that it is difficult to find a non trivial condition

in Di’s so that all Ż∗ and LnKab terms vanish. Finally, we are left with linear higher derivative terms in scalar field
and metric. Therefore, next, we shall analyze our action in a unitary gauge.

E. Unitary Gauge

Here, we look for hidden degeneracy (if any) present in the Lagrangian L1−16 in unitary gauge. Unitary gauge is
simply characterized by the condition,

φ(x, t) = φo(t). (46)

For more details about unitary gauge refer to [15–17]. It is clear that Aa vanishes in this gauge. Then, the structure
of variables that appeared in eq.(13) becomes,

Uab = −A∗Kab, Yb = 0, Ż∗ = LnA∗, (47)
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and by virtue of this, eq.(38) takes the following form,

L1−6 =D1

[

A2
∗

(

KcdKcd −K2
) (

2habLnKab + F1

)

+ 4A2
∗

(

KKab −Ka
dK

db
)

(LnKab + Fab)

− 2
(

R+K2 −KabK
ab
)

A∗K(LnA∗) + 4A∗(LnA∗)K
ab(Rab +KKab −KacK

c
b )

− 2A2
∗⊥RabcdK

acKbd

]

.

(48)

As we can see that L1−6, contains only linear double derivatives of the scalar field and metric. Similarly in this gauge
L7−11 eq.(40) takes the following form,

L7−11 = D7

[

− 4A2
∗h

abhcdLnKabLnKcd − 4A2
∗F1h

abLnKab −A2
∗F1F1

]

+D8

[

− 2A2
∗h

abLnKabh
cdLnKcd +A2

∗h
abLnKab (−F1 + 2F2) +A2

∗F1F2

]

+D9

[

−A2
∗h

abLnKabh
cdLnKcd −A2

∗h
abhcdLnKacLnKbd − 2A2

∗F
abLnKab

+2A2
∗F2h

abLnKab −A2
∗F

abFab + 2A2
∗h

abVaVb −A2
∗F2F2

]

+D10

[

−A2
∗h

abLnKabh
cdLnKcd + 2A2

∗F2h
abLnKab + 2A2

∗h
caVaVc −A2

∗F2F2

]

+D11

[

−A2
∗h

abhcdLnKacLnKbd + 2A2
∗h

bdhcaFbdLnKab −A2
∗FabFab

]

.

(49)

It can be noticed from eq.(49) that we can separate quadratic second order derivatives of metric through a particular
combination of coefficients D7 − D11 in L7−11, unlike the previous analysis in the absence of unitary gauge. After
some rearrangement, eq.(49) yields,

L7−11 = A2
∗

[

− habhcd LnKacLnKbd(D11 +D9) + habhcdLnKabLnKcd(4D7 + 2D8 + D9 +D10)

+habLnKab

{

−F1 (4D7 +D8) + 2F2(D8 +D9 +D10)

}

+ 2hbdhcaLnKbc(−D9Fbd +

FbdD11)−D7F1F1 +D9FabFba +D8F1F2 −D10 F2F2 −D9F2F2 −D9Fa
cF abhbc +

D10 VaV
a + 2D9VaV

a −D9⊥Racbn ⊥Rabcn

]

. (50)

Next, we obtain the conditions under which all quadratic second order derivative term of metric disappear:

4D7 + 2D8 +D9 +D10 = 0,

D9 +D11 = 0. (51)

By using eq.(51), the eq.(50) reduces to,

L7−11 = A2
∗

[

− (4D7 +D8)A
2
∗h

abLnKab

{

F1 + 2F2

}

− 2D9h
bdhcaLnKbc(Fbd + Fbd)−

D7F1F1 +D9FabFba +D8F1F2 −D10 F2F2 −D9F2F2 −D9Fa
cF abhbc +

D10 VaV
a + 2D9VaV

a −D9⊥Racbn ⊥Rabcn

]

. (52)

After putting values of F1,F2, Fbd and Fbd as defined in §III, eq.(52) becomes,

L7−11 = (4D7 +D8)A
2
∗h

abLnKab

(

R+K2 −KabK
ab
)

− 2D9A
2
∗h

bdhcaLnKcd(Rab +KKab −KacK
c
b ) + L(I),

(53)
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where we introduce notation L(I) which takes care of all the terms containing spatial derivatives and first time
derivative of metric. Combining equations (48) and (53) and choosing the following conditions,

2D1 = −(4D7 +D8), and 2D1 = D9, (54)

L1−11 takes the form,

L1−11 = D1

[

A2
∗

(

KcdKcd −K2
)

F1 + 4A2
∗

(

KKab −Ka
dK

db
)

Fab + 2A2
∗h

abLnKabR

−4A2
∗h

bdhcaLnKcdRab − 2
(

R+K2 −KabK
ab
)

A∗K(LnA∗)

+4A∗(LnA∗)K
ab(Rab +KKab −KacK

c
b )− 2A2

∗⊥RabcdK
acKbd + L(I)

]

. (55)

It is also worth mentioning here that eq.(54) provide a relation 4D7 + D8 + D9 = 0, and from eq.(51) we find
D8 = D10. The terms with D7 can not be removed in any case. We write the final part of the Lagrangian eq.(45) in
this gauge as,

L12−16 = D15

[

(LnA∗)A
3
∗

(

− 4
3Ka

cKabKbc + 2K KbcK
bc − 2

3K
3
)

+A4
∗(Ka

cKabKb
dKcd

− 4
3 KKb

dKbcKcd − 1
2KabK

ab KcdK
cd +K2KcdK

cd − 1
6K

4)

]

. (56)

In order to ensure that our final action is free from mixed terms containing both the second derivative scalar field and
the first derivative of metric, we choose D15 = 3D1

X
, such that the total Lagrangian becomes,

L1−16 = D1

[

A2
∗

(

KcdKcd −K2
)

F1 + 4A2
∗

(

KKab −Ka
dK

db
)

Fab + 2A2
∗LnK

ab (habR− 2Rab)

−2 (habR− 2Rab)K
abA∗(LnA∗) +A2

∗(Ka
cKabKb

dKcd

− 4
3 KKb

dKbcKcd − 1
2KabK

ab KcdK
cd +K2KcdK

cd − 1
6K

4)

]

+ L(I). (57)

As we can see from eq.(57), all quadratic double derivative terms and mixed terms containing both double derivatives
of scalar field and single derivative of metric are missing from the total Lagrangian L1−16. Now, the remaining
problematic terms in L1−16 are linear in double derivative of both scalar field and metric. Next, we discuss a possible
way to construct a healthy theory in the presence of higher derivatives for our Lagrangian L1−16 as in eq.(57).

IV. ANALYSIS FOR GHOST FREE THEORY

In this section, we focus on the remaining higher derivative terms present in eq.(57). At the action level, these
higher derivative terms in eq.(57) can be written as,

SHD =

∫

d4xN
√
−h 2D1(φ,X)

1

N

[

A2
∗

˙Kab − (Ȧ∗)K
abA∗

]

(habR− 2Rab) . (58)

Ref.[17] shows a methodology to analyze such higher derivative terms by looking at the degeneracy structure of the
theory. First, we briefly recall the treatment described in [17]. They consider an action,

SL =

∫

d4x
√−g(f(φ)R + Cµν,ρσ∇µ∇νφ∇ρ∇σφ). (59)

where Cµν,ρσ satisfies the following symmetry condition,

Cµν,ρσ = Cνµ,ρσ = Cµν,σρ = Cρσ,µν . (60)

With this property, its general form can be expressed as,

Cµν,ρσ =
1

2
α1(g

µρgνσ + gµσgνρ) + α2g
µνgρσ +

1

2
α3(φ

µφνgρσ + φσφρgµν)

+
1

4
α4(φ

µφρgνσ + φνφσgµρ + φµφσgρν + φµφσgµρ) + α5φ
µφνφρφσ, (61)
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where, f(φ) is only a function of φ and φµ = ∇µφ. Using eq.(13), we can write the kinetic term for action eq.(59) as,

Lkin
φ = Cab,cdλabλcdA

2
∗ + 2Cab,cdΛef

abλcdȦ∗Kef + Λef
abΛ

gh
cdKefKgh. (62)

The different coefficients of kinetic matrix in unitary gauge can be expressed as,

A = Cab,cdλabλcd =
1

N2
[α2 + α1 − (α3 + α4)A

2
∗ + α5A

4
∗],

Bef = Cab,cdΛef
abλcd = β1h

ef ,

Kef,gh = Λef
abΛ

gh
cd = κ1h

a(chd)b + κ2h
abhcd,

(63)

where, β1 = A∗

2N (2α2 − α3A
2
∗), κ1 = α1A

2
∗, and κ2 = α2A

2
∗.

Now, by using the identity na∇a (Kbc) =
1
N

˙Kab − Ni

N
DiK

ab (ignoring the spatial derivatives terms), and X = −A2
∗,

eq.(58) becomes,

SHD =

∫

d4xN
√
−h 2D1(φ,−A2

∗)
[

A2
∗ ne∇eK

ab − (ne∇eA∗)K
abA∗

]

(habR− 2Rab) , (64)

Integrating by parts, it yields,

SHD =

∫

d4xN
√
−h

[

−D1n
e∇e(A

2
∗)−A2

∗n
e∇e(D1)−D1A

2
∗K −D1(n

e∇eA∗)A∗

]

Kab (habR− 2Rab)

−
∫

d4xN
√
−h D1K

abne∇e (habR− 2Rab) .

(65)

To simply further, we use the following relation,

ne
(

∇eD1(φ,−A2
∗)
)

=
1

N

(

−∂(D1(φ,−A2
∗)

∂(−A2
∗)

2A∗Ȧ∗ +N
∂(D1(φ,X)

∂φ
A∗

)

− N i

N
DiD1. (66)

By inserting eq.(66) into eq.(65), we obtain,

SHD =

∫

d4xN
√
−h

[

A∗

N

(

−3D1 + 2A2
∗

∂(D1(φ,−A2
∗)

∂(−A2
∗)

)

Ȧ∗K
ab (habR− 2Rab)−D1A

2
∗KKab (habR− 2Rab)

+

{

− ∂(D1(φ,−A2
∗)

∂φ
A3

∗ +N iA2
∗DiD1 +

N i

N
D1Di(A

2
∗)

}

Kab (habR− 2Rab)

]

−
∫

d4xN
√
−h D1K

abne∇e (habR− 2Rab) .

(67)

Kinetic part of the corresponding Lagrangian is,

Lkin
HD = 2Bab

1−16Ȧ∗Kab +Kab,cd
1−16KabKcd, (68)

where,

Bab
1−16 =

1

N
A∗

(

−3D1 + 2A2
∗

∂(D1(φ,−A2
∗)

∂(−A2
∗)

)

(habR−Rab)

Kab,cd
1−16 = − 1

N
D1h

cdA2
∗

(

habR− 2Rab
)

.

(69)

Adding both Lkin
HD and Lkin

φ (kinetic parts of S and SHD respectively), we get

Lkin = Lkin
φ + Lkin

HD = AA2
∗ + 2B̃abȦ∗Kab + K̃ab,cdKabKcd, (70)

where,

B̃ab =Bab + Bab
1−16,

K̃ab,cd =Kab,cd +Kab,cd
1−16.

(71)

Now the kinetic matrix becomes,

M =

[

A B̃cd

B̃ab K̃ab,cd

]

. (72)

For this matrix, we find two possibilities for degeneracy conditions.
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1. Case I: The forms of Bab
1−16 and Kab,cd

1−16 indicate that for any metric whose intrinsic curvature of Ricci scalar R
and Ricci tensor Rij is zero, we do not expect any contribution from higher derivative terms. Hence the class
of theories with such metrics are free from the Ostrogradsky ghost. As an example, we will study the flat FRW
metric in the next section.

2. Case II: The condition
(

−3D1 + 2A2
∗
∂(D1(φ,−A2

∗
)

∂(−A2
∗
)

)

= 0 implies no contribution to kinetic matrix from higher

derivative terms. Solution to the above condition is D1 = C
A3

∗

. For this case, eq.(58) reduces to,

SHD =

∫

d4xN
√
−h

[

−2
1

N

d

dt

(

Kab

A∗

)

(habR− 2Rab)

]

, (73)

Further, using the relation na∇a

(

Kbc

A∗

)

= 1
N

d

dt

(

Kab

A∗

)

− Ni

N
Di

(

Kab

A∗

)

, we obtain

SHD =

∫

d4xN
√
−h

[

−2

{

na∇a

(

Kbc

A∗

)

+
N i

N
Di

(

Kab

A∗

)}

(habR− 2Rab)

]

. (74)

which can be further simplified to,

SHD = −
∫

d4xN
√
−h

[

−
(

Kab

A∗

)

na∇a (habR− 2Rab)

]

−
∫

d4xN
√
−hK

Kab

A∗
(habR− 2Rab) . (75)

Here, we have used the relation ∇an
a = K. It is clear from eq.(75) that our Lagrangian does not contain any

higher derivative terms and as a result we can show that our theory is free from Ostrogradsky instabilities in
the unitary gauge.

A. Working Examples

Here, we first calculate the equation of motion for the flat FRW metric. In this case, both intrinsic curvature R and
Rij vanish which makes our Lagrangian free from higher derivative terms. However, we will see that FRW equations
are modified and depend on the higher derivative terms nontrivially.
The FRW metric with lapse function N(t) is given by,

ds2 = −N(t)2dt2 + a(t)2(dx2 + dy2 + dz2), (76)

where, a(t) is the scale factor. Here, our action is,

S =

∫

d4x
√−g

[

R

2κ
− 1

2
gµν∇µφ∇νφ− V (φ) + L1−16

]

, (77)

where κ2 = 1
M2

p
, Mp is the four-dimensional Planck mass, and V (φ) is the scalar potential. For the metric eq.(76),

the action becomes,

SFRW =

∫

d4xa3N

[

ä− ȧ2

a2N2
+

φ̇2

2N2
− V (φ) +D

′

(φ,X)
ȧ4φ̇2

a4 N6

]

, (78)

where we have defined D
′

= −36D7 − 12D9 6= 0. Then, the equations of motion take the form,

−9D
′

H4φ̇2 +H3

(

8
∂D

′

∂X
φ̇3φ̈− 4

∂D
′

∂φ
φ̇3 − 8D

′

φ̇φ̈

)

− 12D
′

φ̇2H2Ḣ

+3

(

1

2
φ̇2 − V (φ)

)

+ 9
H2

κ
+ 6

Ḣ

κ
= 0,

−1

2
(V (φ) + φ̇2) + 3

H2

κ
+H4

(

2
∂D

′

∂X
φ̇4 − 5D

′

φ̇2

)

= 0,

H5

(

− 6
∂D

′

∂X
φ̇3 + 6D

′

φ̇

)

+ H4

(

4
∂2D

′

∂X2
φ̇4φ̈− 2

∂2D
′

∂X∂φ
φ̇4 − 10

∂D
′

∂X
φ̇2φ̈+

∂D
′

∂φ
φ̇2 + 2D

′

φ̈

)

+H3

(

−8
∂D

′

∂X
φ̇3Ḣ + 8D

′

φ̇Ḣ

)

− 3 φ̇H − ∂V (φ)

∂φ
− φ̈ = 0.

(79)
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Note that all the equations of motion are of second-order and FRW equations get modified in the presence of L1−16.
Such modification also considered by taking Gauss-Bonnet term in[64–67].
We can further extend the analysis described above to closed and open FRW universes, which can be expressed by

the metric,

ds2 = −dt2 + a(t)2
(

dr2

1−Kr2
+ r2dθ2 + r2sin2θdφ2

)

, (80)

written in spherical polar coordinates r, θ, φ, where K is the spatial curvature. It is clear that (hijR − 2Rij) 6= 0
for the open (K=-1) and the closed (K=1) metric. This leaves our analysis of section IV of finding degeneracy
condition irrelevant in these cases. Here, we simply consider the Lagrangian L1−16 to show how degeneracy conditions
(

D1 = 1

|X|
3

2

)

remove the higher derivative contributions at the action level.

For the form of L1−16 in eq.(57), SHD becomes,

SHD =

∫

d4x a3

[

(−36D7 − 12D9)
(ȧ+ K)2 φ̇2

a4

]

+ 12

∫

d4x K d

dt

(

ȧ

φ̇

)

. (81)

Here, we have shown that no higher derivatives terms appear in action for this case, which acts as an example of
degeneracy.

V. CONCLUSION

In the present work, we introduce a higher derivative scalar-tensor model in which both the double-time derivatives
of metric and scalar field appear. We have considered a most general curvature coupling (up to quadratic order) with
a scalar field. There are 16 different terms in our Lagrangian which are given by,

L1−16 =

(

D1Rgcegdf +D2Rgcdgef +D3g
acgbegdfRab +D4g

aegcdgbfRab +D5g
cagdbglegmfRablm

+D6g
cagfbglegmdRablm

)

∇cAd∇eAf +

(

D7g
abgcdgefRabRcd ++D8g

abgcegdfRabRcd

+D9g
acgbdgefRabRcd +D10g

acgbegdfRabRcd +D11g
crgqbgdfgsegapRacbdRpqrs

)

AeAf

+

(

D12g
abgcdgefgpq +D13g

aegdpgcfgqb +D14g
acgbdgepgqf +D15g

abgcdgpfgqe

+D16g
abgcqgpfgde

)

∇aAb∇cAd∇eAf∇pAq + λa(∇aφ−Aa.

(82)

While working with the general space-time metric, we cannot find any degeneracy present in our theory. However, in
unitary gauge, by choosing the following relations among different coefficients,

D1 = −D2 = −D3

4
=

D4

4
=

D6

2
,

D15 = −6D12 = D13 = −2D14 = −3

4
D16,

4D7 + 2D8 +D9 +D10 = 0, D9 +D11 = 0.

(83)

After employing the above relations, the remaining linear in double time derivative terms are removed by the conditions
which are,

2D1 = −(4D7 +D8), 2D1 = D9, D15 =
3D1

X
. (84)

Finally, it results in working with only D1. Further, we extend the analysis done in ref. [17] by adding the Lagrangian
L1−16 to their action.
Our primary focus here is to check the validity of this theory in a unitary gauge. In this context, we also find under

what condition these higher derivative terms do not appear in the kinetic matrix of total action SL+SHD. Degeneracy
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conditions give rise to two choices where the first one applies to metric for which the combination habR−Rab vanishes.
The second one would be more interesting, which works for a choice of D1 which is D1 = C

A3
∗

.

Under these degeneracy conditions, we have shown that our theory is free from the Ostrogradsky ghost. This
situation holds for a particular combination of 16 coefficients of different terms in Lagrangian L1−16, which shows
that our theory does not suffer from higher derivative terms in the unitary gauge. This can be considered as a theory
analogous to the class of U-DHOST theories[26–32, 39, 40].
Finally, we derive the action for background flat, closed and open FRW metrics as specific examples. In this

direction, we obtain a modified FRW equation for the flat case. The background cosmology of this model will be
taken as a future project. We plan to conduct a similar analysis for the most general choice of time-independent
symmetric and asymmetric space-time in the future.
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