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We investigate the Casimir effect in the systems that consist of parallel but misaligned finite-
size plates from the point of view of zero-point energy. We elaborate the zero-point energies of
the radiation field in the perfect conductor systems would generate a tangential Casimir force,
and explore the properties and consequences of this tangential force in various conductor systems.
Thereafter, we generalize our discussion to dielectrics. After calculating the total zero-point energies
of the surface modes in the multilayered systems, we show that the tangential force also exists
in dielectrics. We obtain the finite-conductivity corrections to the tangential force for imperfectly
conducting plates, and calculate the finite-temperature corrections to the force. The typical strength
of the tangential force suggests it might be observable.

I. INTRODUCTION

In quantum field theory, the equal-time commutation relations of the radiation field operators would result in
divergent constant in the free Hamiltonian, and the divergent constant is interpreted as the zero-point energy of the
quantum field or energy of the vacuum; it affects nothing but gravity, see, e.g., [1]. Nevertheless, the change of the
vacuum energy can be measurable if we disturb the vacuum by imposing special boundary conditions on the quantum
field. This is the established understanding for the Casimir effect [2] in particle physics, see, for example, [1, 5, 6].
Though there is a controversy about the origin of the Casimir effect in the literature [7], we shall consider the Casimir
effect mainly from viewpoint of the zero-point energy.

To explore the Casimir effect in the context of zero-point energy, we shall discuss the physical systems in which
the Casimir forces predicted by the zreo-point energies may have special properties. The systems considered by us
will be paralleled perfectly conducting plates, but the plates are finite-size and will be misaligned. In these systems
the zero-point energies of the radiation field would require that, besides the normal Casimir forces, the plates should
experience the tangential forces. Compared with the normal Casimir force, the tangential force may have interesting
properties. Thereafter, we shall generalize our study to dielectrics.

The Casimir physics is an active multidisciplinary research area and in recent decades theoretical and experimental
progresses has been made in different aspects of this field, see, for review, [8–16]. To our knowledge, focusing on the
edge correction to the Casimir effect, a similar situation has been studied in the multiple scattering formalism [17, 18]
for a massless scalar field, which does not involve the concept of the zero-point energy of the scalar field. Thus, the
present paper should not be considered as a work that generally remarks tangential interactions may occur in the
system that consists of flat plates. Instead, one part of our study may be considered as a specific investigation on
the various misaligned conductor systems from the point of view of the zero-point energy for the radiation field; the
approach would produce results in simple forms and in the meantime we shall show that they are sufficient to provide
valuable information on the systems, and the other part would be a generalization for dielectric systems.

FIG. 1. Some representative disconnected diagrams for the quantum electrodynamics vacuum fluctuations in perturbation
theory.

Due to the multidisciplinary feature of the Casimir physics, occasionally, the physical meaning behind a terminology
can be subtle for readers with different backgrounds. Thus, we would like to eliminate potential ambiguity at the
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beginning: We would stick to the standard description of the Casimir effect in quantum field theory. This means we
shall discuss the free Maxwell theory in confined configurations [1, 5, 6]. We may also mention that when we apply
perturbation theory to the interacting quantum fields, there is the other type of divergent vacuum energy emerging at
the loop-level: the “vacuum bubbles”, see Fig. 1. However, it is well known that these disconnected vacuum diagrams
contribute to neither the Casimir effect nor the S-matrix, see, e.g., [1, 5, 6]. Thus, we shall restrict ourselves to the
zero-point energy of the radiation field and discard the energy from the virtual particles fluctuations in the vacuum.

II. THE TANGENTIAL FORCES

Consider a physical system that consists of three macroscopic [19] parallel rectangular conducting plates, see Fig. 2.
There is a thin plate C lying partly in the middle of two identical plates A and B, and to facilitate the discussion, we
shall assume its dimension is smaller than plate A; its width is L and length is H. The overlapping area of plate C
and the adjacent plates is Lb, where L, b,H − b� d.

FIG. 2. The conducting plate C lies partly in the middle of two parallel plates. The small distance between the two larger
plates is d.

For this system, we can understand that the zero-point energy would predict the normal Casimir force experienced
by plate C is zero. However, let us consider the system more carefully and calculate explicitly the zero-point energy
of this system. Usually, a small modification of a simple configuration would increase considerably the difficulty in
calculating the zero-point energy of the radiation field. Though various theoretical methods were introduced to Casimir
physics for calculating the Casimir force, we shall consider the Casimir effect from the viewpoint of zero-point energy
and we may study this nontrivial configuration in the simple way: Dividing the configuration into sub-configurations,
see Fig. 3.

FIG. 3. We divide the configuration of the system into the sub-configurations, where the outside part of plate C is ignored,
and N,M −N − L, J − b � d.

First, we should justify here this intuitive division in case it is not well-defined. We know that the bare quantity of
the zero-point energy of the radiation field for the configuration I + II is

EI+II0 =
~c
2

∫
Lb

d2k‖

(2π)2

[
k‖ + 2

∞∑
n=1

(
k2‖ +

n2π2

d2

) 1
2

]
, (1)

where the symbol I + II represents the configuration integrated by the sub-configurations I and II when plate C
does not exist, and for the macroscopic scale parameters N and M −N − L, we have

EIII0 = EI+II0 (L −→ N) (2)
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and

EIV0 = EI+II0 (L −→M −N − L), (3)

where L→ N and L→ M −N − L indicate variable L is changed to the latter variables, k is the wavenumber, and
k2‖ + n2π2/d2 = k2. Then, the whole zero-point energy in the sub-configurations is

EI+II0 + EIII0 + EIV0

=
~c
2

∫
Mb

d2k‖

(2π)2

[
k‖ + 2

∞∑
n=1

(
k2‖ +

n2π2

d2

) 1
2

]
= EI+II+III+IV0 , (4)

where EI+II+III+IV0 represents the bare zero-point energy of the corresponding integrated configuration when plate
C does not appear. One can see that our division of the configuration will not change the vacuum energy of the
system. Thus, the intuitive division may be well-defined, and this approximation method for finding the zero-point
energy would be qualified to provide valuable information on the system.

Now let us consider the zero-point energies of the sub-configurations I and II separately. Clearly,

EI0 = EII0 =
~c
2

∫
Lb

d2k‖

(2π)2

[
k‖ + 2

∞∑
n=1

(
k2‖ +

n2π2

(d/2)2

) 1
2

]
, (5)

where k2‖ + n2π2/(d/2)2 = k2.

Comparing with the zero-point energy of the configuration I + II when plate C does not exist, the vacuum energy
difference is

E = EI0 + EII0 − EI+II0 . (6)

To find the difference from the divergent quantities, numerous regularization methods can be employed, see, for
example, [5, 8]. We may find that the finite energy difference is

E = −π
2~c

48d3
Lb. (7)

Notice that if plate C moves along the x-direction, the motion will alter the original configuration and the vacuum
energy of the system will also be changed. Therefore, it turns out that the conducting plate in the system may
experience a net Casimir force F along the x-direction

F = FT = −∂E
∂b

=
π2~c
48d3

L. (8)

This Casimir force depends on the length L, not the overlapping area which would generally be a variable for the
Casimir forces of the other physical systems. It is an attractive force which will drag the plate into the space between
plates A and B. For the ideal boundary conditions of the sub-configurations, the force disappears when the plate
fully goes into the space, and the plate would maintain a constant velocity to reach the other side [20]. Thereafter,
an opposite Casimir force may be turned on, and the velocity of the plate goes to zero and then the plate will turn
around. Thus plate C oscillates in the plane.

We may also notice that unlike the normal Casimir force, due to the 1/d3-dependence on the small separation, the
strength of this Casimir force is weak in general. However, from a modern mechanics point of view, the force might
be large enough to be detected. For example, for a moderate setting d = 0.3 µm and L = 0.02 m, the strength of the
Casimir force experienced by plate C is

F = 4.8× 10−9 N. (9)

Before we further discuss the implications of this tangential Casimir force, however, a remark should be given
here. One may notice that to obtain the major physical properties of the system, in the above discussion we have
used the ideal boundary conditions for the parallel plates. This means there would be a dramatic change of the
sub-configurations for the vector field near the edges, i.e., two adjacent space points near an edge may belong to
different sub-configurations. While it can be an ideal model in our field-theoretical approach, can there be any hidden
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dangers in this assumption, which may greatly weaken our conclusion? The answer is negative. We may emphasize
that for this Casimir force, we focus on the change of the overlapping area, which would induce the change of the
vacuum energy. An infinitesimal change in the x-direction ∆b will not affect the physical boundary situation for the
frontal edge as long as J − b maintains a macroscopic scale, and then we can consider the change happens in the inner
region of the overlapping area [21]. And the potential corrections from the additional side edges may be ignored, since
the dominant contribution to the change of the vacuum energy comes from the interior zone of ∆bL, see Fig. 4(a).
Similarly, this analysis can also be applied to a plate with imperfect edges or the geometry shown in Fig. 4(b). An
estimation for the precision of Eq. (8) affected by the geometry may be given here. Since the transition region for the
energy density near an edge . d/2 [21], the precision of the analytic formula may reach ∼ 4 × d/(2L) = 2d/L. For
L ∼ 10−2 m and d ∼ 10−7 m, the precision ∼ 10−5. (It may be noted that when the distances between the plates are
d/2, R−d/2, and R, the condition L� min{d/2, R−d/2} would be sufficient for our ideal boundary approximation.)

However, it might be useful to note that if one wants to apply the analytic result to the system where |b| . d or
|H − b| . d, a non-negligible positive correction from the physical boundaries to the ideal-boundary formula should
be expected. In these two small geometric parameter regions, numeric methods should be employed. We here content
ourselves with the analytic expression, since for most accessible geometric parameter regions in experiments, the
analytic formula will provide reliable information on the system.

We should also note here that it is easy to notice the properties of this Casimir force experienced by the flat plate
may be different to the lateral Casimir force caused by the corrugated surfaces of the plates [22–25].

(a) The vertical view for plate C. For L ∼
10−2 m, Lin = L effectively, due to the fact
that the typical distance d ∼ 10−7 m.

(b) A conducting plate with an irregular edge.

FIG. 4. The vertical view for the conducting plates.

We have shown that the strength of the tangential Casimir force might be measurable, but one may worry about
the feasibility of this type of experiment, since the typical distance between two plates in Casimir physics is sub-µm
and it might be difficult to build a thin conducting plate which can be put in the middle of the two plates. However,
to measure the tangential force, a system that consists of two finite-size conducting plates may also be used (see also
[17]), see Fig. 5. This system can be considered as the situation that we move the conducting plate A or B in the
previous system to infinity, and following the discussion given above, we may find easily the tangential force between
the plates

F ′T =
π2~c
90d3

L. (10)

FIG. 5. The system consists of two parallel conducting plates separated by d/2. The upper plate may have an irregular edge.

But notice that in this system the normal Casimir force F ′N also exists, and for b = 0.01 m and d = 600 nm,
F ′N = 105F ′T for the case of two rectangular plates. Due to the appearance of this large normal force, one can



5

understand that measuring the tangential force in this system may still need cutting-edge experimental technologies.
Nevertheless, the situation that the directions of them are perpendicular may be in our favor, since we do not need
to use the large normal force as a baseline for extracting the information of the tangential force in this kind of
measurement. Notice also that the so-called tangential force here is the tangential component of the Casimir force,
and the Casimir force in this system is not independent of the overlapping area between the plates.

We find here the interesting relation

F ′T >
1

2
FT , (11)

which indicates that conducting plate C feels the tangential force caused by one plate is not half the force caused by
two plates when the two plates maintain an exact spatial symmetry for plate C. From the general theory of van der
Waals force, we know that the Casimir force is not additive [26], which means the macroscopic Casimir force may not
be found by adding up all the microscopic van der Waals forces for the atoms or molecules in the plates. Similarly,
Eq. (11) shows the tangential Casimir force is not additive even for the macroscopic objects. From the perspective
of quantum field theory, the explanation for this inequality can be simple: It is illegal to consider that the tangential
force FT consists of two independent tangential forces caused separately by plates B and C; the force is inseparable,
since it is induced by the configuration of the system in a unified way.

III. THE TANGENTIAL FORCES IN OTHER CONDUCTOR SYSTEMS

The tangential force from the radiation field, in general, exists in the systems that consist of misaligned finite-size
plates, and we would like to further discuss the tangential Casimir force in other systems which might have instructive
properties.

We may consider an obviously misaligned conducting system shown in Fig. 6.

FIG. 6. The system consists of two parallel conducting plates separated by d/2, where the overlapping area between them is
a · b, and a, b, L− a, J − b � d.

In this system both of a and b are the variables for the zero-point energy of the radiation field. Thus, the tangential
force would have two nonzero components in Cartesian coordinates, and the tangential force experienced by the upper
plate is

FT =
π2~c
90d3

(aex + bey) . (12)

Notice that both of the direction and strength of this force will change if the plate can be driven by the tangential
force. (If we replace the rectangular plates with other parallelogram plates, the tangential force may also be easily
found.) In this place we might note that from the same arguments given in the last section, we may understand that
when the smaller plate is just draged into the upper space of the larger plate, the tangential force will not disappear
immediately. But the force would decrease rapidly if the tangential distances between the “external” edges of the
smaller plate and edges of the larger plate are increased. For the tangential distances which are bigger than d/2, one
may consider the tangential force is effectively zero [27].

Now let us consider a more complicated but interesting system, see Fig. 7, and without loss of generality, one may
assume the distances between the conducting plates are fixed.
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FIG. 7. The system consists of three parallel conducting plates. The geometries of the upper and bottom rectangular plates
are the same but they are misaligned in the x-direction. All d-irrelevant parameters in the system are greatly larger than the
small distance d.

To calculate the zero-point energy of the radiation field in this system, we may also divide the configuration into
sub-configurations and various regularization methods could be employed. We may find the vacuum energy difference
in this system is

E = −π
2~c

720

[
J − r
d3

M − b

d3
L+

b

f3
L+

b+ r

(d− f)3
L

]
. (13)

Then the tangential force felt by the bottom plate is

F bottomT = −∂E
∂r

=
π2~c
720

[
L

(d− f)3
− M

d3

]
. (14)

We can see that the direction of the force is changeable, and the equilibrium condition for the parameters is Ld3 =
M(d− f)3.

As we should expect, one may notice that the sum of the tangential forces of the three plates is zero, since the
tangential force experienced by the upper plate is

FupperT =
π2~c
720

[
L

f3
+
M − L
d3

]
, (15)

and the middle plate experiences the tangential force

FmiddleT =
π2~c
720

L

[
1

d3
− 1

f3
− 1

(d− f)3

]
. (16)

Circular plate is also an interesting object in Casimir physics, and it may be of interest to consider the misaligned
systems that consist of a rectangular plate and a circular plate or two circular plates. We consider here a representative
system in this context, see Fig. 8.

(a) Two circular plates separated by a
small distance d.

(b) The vertical view for the plates. The
radii of the plates are R1 and R2. The
distance between their centres is b and

R1 −R2 < b < R1 + R2.

FIG. 8. The misaligned system consists of two parallel conducting circular plates, where d ∼ 10−7 m and R1,2 ∼ 10−2 m.

For this conductor system, we may find that the tangential force generated by the zero-point energy of the radiation
field is

FT =
π2~c

720bd3

√
4b2R2

1 − (R2
1 −R2

2 + b2)2, (17)
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and the directions of the attractive tangential forces experienced by the two circular plates are along the straight line
connecting their centres. For R1 = 3 cm and R2 = 2 cm, the tangential force is plotted as a function of the distance
between the centres, see Fig. 9.
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FIG. 9. The tangential force between the circular plates, where the distance d = 500 nm.

IV. THE TANGENTIAL FORCES IN DIELECTRICS

From the viewpoint of quantum field theory, one might be inclined to consider that the Casimir effect may disappear
if the conducting plates are replaced with dielectric plates, since the plates may no longer impose an explicit boundary
condition on the quantum field. However, the Casimir force does exist in dielectrics [28], and in this context the Casimir
force is generally understood as the macroscopic nontrivial realization of the van der Waals forces between atoms or
molecules in the plates. But one can also discuss the Casimir effect in dielectrics from the viewpoint of zero-point
energy for the surface modes [9, 29].

In this section we generalize our discussion to dielectrics. The basic idea may be the same: We shall calculate the
zero-point energies in the misaligned systems with the ideal geometric boundary conditions, which will be a reliable
approximation for the situation considered by us, and show the energy difference would induce a tangential force
between the dielectric plates. Our discussion will follow closely the zero-point energy formalism developed in [9].

A. A zero-point energy approach

We now consider a variant system of Fig. 2(3), see Fig. 10. We assume L � min{d2, d3, d4}(∼ 10−7 m) and
that b,H − b are significantly larger than min{d2, d3, d4}. In general, these geometric conditions would be met
naturally by experiments in this type unless one designs an experiment to investigate the boundary effect. From the
arguments and the numerical simulations cited in [21], one may understand that even the infinitely thick plate would
not effectively alter the precision of ideal boundary conditions estimated before for a thin plate (For example, for the
perfect conductors, the situation of an infinitely thick plate would give around 23% correction to the edge-correction
contribution from a thin plate [21]).
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FIG. 10. The side view for the misaligned dielectric systems, where a smaller plate is partially inserted into the space between
two thick plates. All the horizontal parameters for this system are the same as in Fig. 2(3).

For the misaligned system, we are interested in the difference of the zero-point energies caused by the appearance
and absence of plate C between slabs A and B. For this purpose, we need to calculate the zero-point energy of the
surface modes in five macroscopic-scale dielectric layers. Implications of the boundary conditions for the surface
modes in the five regions has been explored by [30]. However, the zero-point energy obtained in [30], see also [31], is
not suitable for the present study, since the energy of the system would go to zero if the thickness of the middle plate
approaches infinity (d3 →∞) and then it may not represent the total energy of the multilayered system.

The boundary conditions for the electromagnetic field required at (say) z = 0, d4, d3 + d4, d2 + d3 + d4 in the five
layers [30] would generate two systems of eight homogeneous linear equations, and it may be found that the existences
of non-trivial solutions of these equations require

Gλ(ω) ≡ 1−
4∑
i=2

rλi−r
λ
i+e
−2Kidi −

3∑
i=2

rλi−r
λ
(i+1)+e

−2Kidi−2Ki+1di+1

+rλ2−r
λ
2+r

λ
4−r

λ
4+e
−2K2d2−2K4d4 − rλ2−rλ4+e−2K2d2−2K3d3−2K4d4 = 0, λ = α, β, (18)

where

rαi+ =
Ki −Ki+1

Ki +Ki+1
= −rα(i+1)−, rβi+ =

εi+1Ki − εiKi+1

εi+1Ki + εiKi+1
= −rβ(i+1)−, K2

i = k2‖ − εi(ω)
ω2

c2
. (19)

These conditions coincide with the conditions in [30], but with different forms.
The zero-point energy of all the surface modes in the layers may be written as

E =
∑
n

1

2
~ωαn +

∑
n

1

2
~ωβn, (20)

where ωα,βn denotes the frequencies satisfying the corresponding conditions in Eq. (18), and the summation includes a
two-dimensional integral for the continuous variable k‖. By the residue theorem or, more specifically, the generalized
argument theorem, choosing the counterclockwise integration contour C as the whole imaginary axis with its right
infinite semicircle in the complex plane of ω, and by the fact that the poles of Gλ(ω) in the complex plane, if any, are
independent of the thicknesses of the layers and should be of no physical interest, one may formulate the zero-point
energy of the system as [9, 29, 30]

E =
~L2

4π

1

2πi

∫ ∞
0

dk‖k‖

∮
C

ω

[
G′α(ω)

Gα(ω)
+
G′β(ω)

Gβ(ω)

]
dω, (21)

where the overlapping area of the multilayered system is assumed to be L × L = L2. The integral along the infinite
semicircle drops out [9], and using integration by parts, we obtain

E(d2, d3, d4) =
~L2

4π2

∫ ∞
0

dk‖k‖

∫ ∞
0

dξ
∑
λ=α,β

lnGλ(iξ; d2, d3, d4), (22)

where we have used the substitution ω = iξ and rearranged the integral range of ξ by recognizing that, according to
the analytic properties of the dielectric constant, εi and Ki, and then Gλ, are even functions of ξ. In the following
we shall simply rewrite Gλ(iξ) as Gλ(ξ), and

K2
i = k2‖ + εi(iξ)

ξ2

c2
(23)
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is understood in the latter notation.
To claim Eq. (22) is the total zero-point energy of the multilayered system, we may analyze its immediate predictions

as follows.

1. d2,3,4 →∞:

In this limit the zero-point energy of the surface modes should be zero. Using Eqs. (18) and (22), we have

E(d2, d3, d4) = 0. (24)

The result also manifests that Eq. (22) does not include the distance-independent contribution.

2. d2,3 →∞:

In this limit the situation should be reduced to a three-layer problem. Applying Eqs. (18) and (22), we find

E(d2, d3, d4) =
~L2

4π2

∫ ∞
0

dk‖k‖

∫ ∞
0

dξ
∑
λ=α,β

ln
(
1− rλ4−rλ4+e−2K4d4

)
≡ E(d4), (25)

where E(d) represents the energy of a three-layer system in which the distance of the two corresponding dielectric
regions is d. For d2,4 →∞, E(d2, d3, d4) = E(d3), which reproduces the result of [30] under this circumstance.

3. d3 →∞:

In this limit the surface modes of the two surfaces of layer 3 should decouple from each other, and the situation
is reduced to two independent three-layer problems. Using Eqs. (18) and (22), we have

E(d2, d3, d4) =
~L2

4π2

∫ ∞
0

dk‖k‖

∫ ∞
0

dξ
∑
λ=α,β

[
ln
(
1− rλ2−rλ2+e−2K2d2

)
+ ln

(
1− rλ4−rλ4+e−2K4d4

)]
= E(d2) + E(d4). (26)

Note that due to the exponent suppression, in the circumstances that 1) the dielectric constants are of the same
order; 2) ε3 � ε2,4, d3 may be effectively treated as infinity if 1) d3 is much larger than the other distances; 2)
it is not small compared to d2,4.

4. ε2 = ε3 = ε4:

This special circumstance is equivalent to a three-layer problem. By Eqs. (18) and (22), the energy reads

E(d2, d3, d4) =
~L2

4π2

∫ ∞
0

dk‖k‖

∫ ∞
0

dξ
∑
λ=α,β

ln(1− rλ2−rλ4+e−2K2d2−2K3d3−2K4d4)

= E(d2 + d3 + d4), (27)

where K2 = K3 = K4.

We thus conclude that Eq. (22) represents indeed the total zero-point energy of the five-layer system. In the
appendix we shall discuss a way to find the total energy of n-number layers E(d2, d3, ..., dn−1). It should be noted
that from the total energy, we can find the normal force between two layers i− 1 and i+ 1 by

FNi−1i+1 =
∂E(d2, d3, ..., dn−1)

∂di
, (28)

where i = 2, 3, ..., n − 1. One may confirm that the normal force FN24 = ∂E(d2, d3, d4)/∂d3 is in agreement with the
force obtained in [30].

After obtaining the total energy of the multilayered system, we are prepared to calculate the energy difference
between the two situations that the appearance and absence of plate C between slabs A and B. One might realize
that there are two independent three-layer systems when plate C does not lie between the two slabs, and also that
the physical picture requires all the other places are occupied by the same medium (ε2 = ε4). Therefore, the energy
difference is
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E ≡ E(d2, d3, d4)− E(d2 + d3 + d4)− E(d3)

=
~Lb
4π2

∫ ∞
0

dk‖k‖

∫ ∞
0

dξ
∑
λ=α,β

[
lnGλ(ξ; d2, d3, d4)− lnGλ(ξ; d2 + d3 + d4)− lnGλ(ξ; d3)

]
, (29)

where Gλ(ξ; d2 + d3 + d4) = Gλ(ξ; d2, d3, d4)|ε2=ε3=ε4 and Gλ(ξ; d3) = Gλ(ξ; d2, d3, d4)|d2,4→∞.
The difference is in general not zero, and following the discussion given in section II, we obtain the tangential force

experienced by plate C in the misaligned system

FT (d2, d3, d4) = −∂E
∂b

= − ~L
4π2

∫ ∞
0

dk‖k‖

∫ ∞
0

dξ
∑
λ=α,β

[
lnGλ(ξ; d2, d3, d4)− lnGλ(ξ; d2 + d3 + d4)− lnGλ(ξ; d3)

]
.

(30)

Notice that the force is induced by the zero-point energies of the surface modes in the different configurations, and the
layer-thickness-independent or non-zero-point-energy contribution, if any, is not considered physical and not calculated
(We wish we could).

For convenience, one can also write the force in the form

FT (d2, d3, d4) = − ~L
4π2c2

∫ ∞
0

dξξ2ε4

∫ ∞
1

dpp
∑
λ=α,β

[
lnGλ(ξ; d2, d3, d4)− lnGλ(ξ; d2 + d3 + d4)− lnGλ(ξ; d3)

]
, (31)

where the variable p is introduced by [28]

k2‖ = ε4
ξ2

c2
(p2 − 1), (32)

and then

Ki =
√
ε4
ξ

c
si, si =

√
εi
ε4
− 1 + p2, rαi+ =

si − si+1

si + si+1
, rβi+ =

εi+1si − εisi+1

εi+1si + εisi+1
, (33)

where s4 = p. Though we generally assume the equivalence between a physically-motivated multiple integral and
its related iterated integrals, it is still worth noting here that for the improper integrals like the one in Eq. (22) or
Eq. (31), the order of integration is not important in the calculation, since any integrable improper double integral
would be absolutely integrable, and then, by Fubini’s theorem, in the iterated integrals we are allowed to exchange
the order of integration at will.

We next consider some special cases for the tangential force.
Let d2 →∞. The tangential force would be

FT (d3, d4) = − ~L
4π2

∫ ∞
0

dk‖k‖

∫ ∞
0

dξ
∑
λ=α,β

[
lnGλ(ξ; d3, d4)− lnGλ(ξ; d3)

]
= − ~L

4π2

∫ ∞
0

dk‖k‖

∫ ∞
0

dξ
∑
λ=α,β

[
ln

(
1−

4∑
i=3

rλi−r
λ
i+e
−2Kidi − rλ3−rλ4+e−

∑4
i=3 2Kidi

)
− ln

(
1− rλ3−rλ3+e−2K3d3

)]
,

(34)

where Gλ(ξ; d3, d4) = Gλ(ξ; d2, d3, d4)|d2→∞.
Assume also d3 is a (relatively) large distance and can be treated effectively as infinity [see the remark below

Eq. (26)]. Then the tangential force in Eq. (34), in terms of the variable p, is reduced to

FT (d4) = − ~L
4π2c2

∫ ∞
0

dξξ2ε4

∫ ∞
1

dpp
∑
λ=α,β

lnGλ(ξ; d4)

= − ~L
4π2c2

∫ ∞
0

dξξ2ε4

∫ ∞
1

dpp
∑
λ=α,β

ln
(

1− rλ4−rλ4+e−2
√
ε4ξpd4/c

)
. (35)

This is the force caused by two parallel but misaligned thick plates with distance d4.
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From now on, we assume ε1 = ε3 = ε5 ≡ ε (s1 = s3 = s5 ≡ s) and ε2 = ε4 = 1 (s2 = s4 = p), i.e., the situation that
three identical plates are separated by vacuum. We introduce Dλ by

Dλ ≡ rλ2−rλ2+ = rλ3−r
λ
3+ = rλ4−r

λ
4+ = rλ2−r

λ
4+ = −rλ2−rλ3+ = −rλ3−rλ4+, λ = α, β, (36)

where

Dα =
(s− p)2

(s+ p)2
, Dβ =

(s− εp)2

(s+ εp)2
. (37)

Then, for example, Eq. (35) reads

FT (d4) = − ~L
4π2c2

∫ ∞
0

dξξ2
∫ ∞
1

dpp
∑
λ=α,β

ln
(

1−Dλe−2ξpd4/c
)
. (38)

In the perfectly conducting limit ε→∞ (Dλ = 1),

FT (d4 = d/2) = − ~c
2π2d3

L

∫ ∞
0

dxx2 ln
(
1− e−x

)
=
π2~c
90d3

L, (39)

where x = ξpd/c, and we have exchanged the order of integration, i.e., using the substitution dx = pd/cdξ. One may
also calculate the integral by the original order, i.e., dx = ξd/cdp [see also the remark below Eq. (33)]. As expected,
this force coincides with Eq. (10).

B. Finite conductivity

In the real world, even for good conductors, one may need to consider the finite-conductivity correction to the
Casimir effect [9, 28, 32, 33]. As an application of Eq. (30), we shall calculate the finite-conductivity corrections for
imperfectly conducting plates.

To simplify the discussion, we consider still that one slab is moved to infinity (d2 → ∞ say), and assume that
the thickness of metal plate C is significantly larger than the effective skin depth approximated by c/ωp [34] [ωp =

(4πNe2/me)
1
2 is the plasma frequency and N is the number density of free electrons], which means plate C may

be considered as an infinitely thick plate (d3 → ∞). In practice, for a metal plate, d3 → ∞ would be a satisfied
approximation if d3 & 10d4 ∼ 10 µm.

For our purpose, the dielectric constant may be approximated as

ε(ω) = 1−
ω2
p

ω2
. (40)

For Dλ the deviations to the perfectly conducting limit (Dλ = 1) are small for the distances ∼ 1 µm [33], and the
tangential force can be calculated by the perturbation expansion in ξ/ωp [9]:

Dα = 1− 4p
ξ

ωp
+ 8p2

ξ2

ω2
p

+ · · · , Dβ = 1− 4

p

ξ

ωp
+

8

p2
ξ2

ω2
p

+ · · · . (41)

Substituting Eq. (41) into Eq. (38), to the first order in ξ/ωp, one may find the tangential force

FT (d4 = d/2) =
π2~c
90d3

L− ~
π2c2ωp

L

∫ ∞
0

dξξ3
∫ ∞
1

dp(1 + p2)
1

eξpd/c − 1

=
π2~c
90d3

L(1− 8
c

ωpd
). (42)

The second-order correction to the tangential force may be found after simple calculation as

16π2~c3

25ω2
pd

5
L. (43)
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C. Finite temperature

The tangential force discussed above is the force at zero temperature. At finite temperature, the thermal contribu-
tion comes into play [28, 33, 35–37]. The significant contribution would come from high temperatures, which is also
relevant to the distance between the plates, and for the distances . 1 µm, the temperature correction for the Casimir
effect might be ignored, see, for example, [9].

It is simple to construct the zero-point energy for finite temperature by adding a thermal contribution [9]

coth
~ω

2kBT
= coth

i~ξ
2kBT

, (44)

where kB is the Boltzmann constant and T (6= 0) is the temperature (In this place T might not be confused with the
subscript T for the tangential forces). Then the energy difference in Eq. (29) with the variable p becomes

E(d2, d3, d4;T ) =
~Lb

4π2c2

∫ ∞
0

dξξ2
∫ ∞
1

dpp
∑
λ=α,β

[
lnGλ(ξ; d2, d3, d4)− lnGλ(ξ; d2 + d3 + d4)− lnGλ(ξ; d3)

]
coth

i~ξ
2kBT

,

(45)
where ε2,4 = 1 is assumed. There are poles in the thermal contribution at

2nπkBT

~
= ξn, n = 0, 1, 2, · · · , (46)

and we need to consider only the contributions from these poles (including the n = 0 term) [28] due to the observation
that the integrand in the analytic region will contribute a purely imaginary number which has no physical meaning.
In this treatment ξn=0 may be considered as some sufficiently small quantity. One can perform the integral below the
poles with infinitesimal quarter- or semi-circles in the complex plane, and the energy difference at finite temperature
is found as

E(d2, d3, d4;T ) =
kBTLb

2πc2

∞∑
n=0

′ξ2n

∫ ∞
1

dpp
∑
λ=α,β

[
lnGλ(ξn; d2, d3, d4)− lnGλ(ξn; d2 + d3 + d4)− lnGλ(ξn; d3)

]
, (47)

where Σ′ means that there is 1/2 weight for the n = 0 term.
We then obtain the tangential force in the misaligned system at finite temperature

FT (d2, d3, d4;T ) = −kBTL
2πc2

∞∑
n=0

′ξ2n

∫ ∞
1

dpp
∑
λ=α,β

[
lnGλ(ξn; d2, d3, d4)− lnGλ(ξn; d2 + d3 + d4)− lnGλ(ξn; d3)

]
.

(48)

Now we consider the systems of perfectly conducting plates. For the ideal conductors (ε → ∞, Dλ = 1), the
tangential force reduces to

FT (d2, d3, d4;T ) = −kBTL
2πc2

∞∑
n=0

′ξ2n

∫ ∞
1

dpp
∑
λ=α,β

[
lnGλ(ξn; d2) + lnGλ(ξn; d4)− lnGλ(ξn; d2 + d3 + d4)

]
. (49)

This formula can be applied to infinitely thin plates, and thus we here may consider similar configurations like Fig. 2(3)
in which d3 → 0. We have

FT = FT (d2 = d/2, d4 = d/2;T ) = −kBTL
πd2

∞∑
n=0

′
∫ ∞
ny

dxx ln
(1− e−x)2

1− e−2x
, (50)

and

F ′T = FT (d2 →∞, d4 = d/2;T ) = −kBTL
πd2

∞∑
n=0

′
∫ ∞
ny

dxx ln(1− e−x), (51)

where x = ξnpd/c and y = 2πkBTd/(~c). The forces in general need to be calculated numerically.
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However, the high-temperature contribution for perfectly conducting plates can be easily obtained. In the high-
temperature limit (y � 1) which may also be a large-distance limit, it is adequate to consider only the contribution
from the n = 0 term. We find

FT = 1.05
kBT

πd2
L, (52)

and

F ′T = 0.6
kBT

πd2
L, (53)

where the Riemann function ζ(3) = 1.2 is used. We see that the inequality in Eq. (11) still holds in this classical limit
(notice that ~→ 0 also implies y � 1).

It is of interest to find approximated analytic formulae for low temperatures. However, the low-temperature limits
for the expressions given above are obscure. For such a purpose the Poisson sum method may be used, i.e., the Poisson
sum formula [33, 36] can be used to resum the series in the expressions. We write

b(n) ≡
∫ ∞
ny

dxx ln(1− e−x)

= −1

2
n2y2 ln (1− e−ny)− 1

2

∫ ∞
ny

dxx2
1

ex − 1
, (54)

and then we combine the results from [33, 36] (see also [12])

∞∑
n=0

′b(n) = −π
4

45
y−1 +

1

720
y3 − 1

8π2
y2
∞∑
n=1

1

n3
1 + e−4π

2n/y

1− e−4π2n/y
− y

∞∑
n=1

1

n2
e−4π

2n/y

(1− e−4π2n/y)2
. (55)

For low temperatures (y � 1), we have

FT = FT (T = 0)

{
1 +

24ζ(3)

π3

(
kBTd

~c

)3

−

[
48

π2

(
kBTd

~c

)2

+
48

π3

(
kBTd

~c

)3
]
e−π~c/(kBTd)

}
, (56)

and

F ′T = F ′T (T = 0)

{
1 +

45ζ(3)

π3

(
kBTd

~c

)3

−
(
kBTd

~c

)4

+

[
180

π2

(
kBTd

~c

)2

+
90

π3

(
kBTd

~c

)3
]
e−2π~c/(kBTd)

}
, (57)

where the n = 1 exponentially-suppressed terms are retained. We note here that the finite-temperature corrections
to the perfect conductors may reinforce the nonadditivity for the tangential force, see Fig. 11.
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FIG. 11. The nonadditivity for the tangential force, characterized by 2F ′T /FT , would be reinforced by the finite-temperature
corrections.
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Before we end this subsection, we may discuss briefly our calculation of Eq. (45). In the standard treatment [28]
one considers the contribution from the residue caused by ξn=0(ξ = 0) in the thermal contribution while the integrand
seems to have no pole at ξ = 0, and subsequently we also use the substitutions x = ξnpd/c in the calculation and
ξn=0 is understood as some sufficiently small but non-zero quantity. We, of course, do not concern ourselves with the
rigorous mathematics, and however, it might be helpful to examine this situation. We note that the subtlety arising
in the situation may be due to the order of integration, since, for the iterated integral in Eq. (45), the different orders
of integration might lead to confusions about the actual divergent behaviors of the function of the frequency. To make
this point clear, we here calculate Eq. (45) by the different order. To simplify the calculation, we consider the ideal
conductor system in which d2,3 →∞. We then use the prescription that performing the integration over ξ in the last
step. Applying the well-defined x = ξpd/c and dx = ξd/cdp, we have

E(d4 = d/2;T ) = − ~Lb
2π2d2

∫ ∞
0

dξ

(
ξd

c

∞∑
m=1

e−mξd/c

m2
+

∞∑
m=1

e−mξd/c

m3

)
coth

i~ξ
2kBT

. (58)

Obviously, the integrand now includes a pole at ξ = 0 in a manifest way, and then the contribution from the n = 0
(ξ = 0) emerges naturally in this derivation. However, unfortunately it can be really involved to apply the procedure
to the real conductors. Nevertheless, to better understand the thermal behavior of ξ = 0 with the real metal, the
derivation is worthy to be examined for some specific models such as the plasma model and the Drude model [38].

V. SUMMARY

In this work we have discussed the systems that consist of parallel but misaligned finite-size plates from the
viewpoint of zero-point energy. We elaborated the zero-point energies of the radiation field in the perfect conductor
systems would induce a tangential Casimir force, and the properties and consequences of the tangential force in
various conductor systems were studied. For example, an oscillation effect was noticed in an interesting system and
a macroscopic nonadditivity for the tangential force was found. For perfect conductors, the precision of the analytic
results affected by the geometry was estimated, and it shows that though our approach is an approximation method,
the analytic results should be sufficient to provide reliable information on these systems in most accessible geometric
regions in experiments. Thereafter, we generalized our study to dielectrics by calculating the total zero-point energies
of the surface modes in multilayered dielectrics. The tangential force in the misaligned dielectric systems was found.
For imperfectly conducting plates we obtained the finite-conductivity corrections to the tangential force, and we
calculated the temperature corrections to the force. We illustrated that the temperature corrections would reinforce
the nonadditivity for the tangential force. The strength of the tangential force suggests that it might be observable
for moderate experimental settings.
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Appendix A: The total zero-point energy of any-number layers

In this appendix we outline the way to obtain the total zero-point energy of the surface modes in any-number layers.
Starting from Eq. (22), we let d4 → ∞ which reduces the energy of the system from five layers to four layers, and
then let d3 → ∞ which reduces the energy to the three-layer system. Thereafter, by inductive method, it may be
observed that the energy of the surface modes in the n + 1-layer system can be found from the energy of n-number
layers by the following substitution rules: 1) the terms including rλ(n−1)+: rλ(n−1)+ → rλ(n−1)+ + rλn+e

−2Kndn ; 2) the

other terms multiplied by 1 − rλn−rλn+e−2Kndn , where the new-added thick layer is located at the n + 1th place and
the original nth layer in this circumstance is assumed to be thin or the new-added finite-thickness layer is located at
the nth place and the original nth layer which is thick is renumbered as the n + 1th layer. By this procedure, one
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may obtain the total energy of any-number layers.

[1] S. Weinberg, The quantum theory of fields, Vol.1, Cambridge, 1995.
[2] H. B. G. Casimir, Proc. Kon. Ned. Akad. Wet. 51, 793 (1948). On the measurements of the Casimir effect, see, for example,

[3, 4].
[3] M. J. Sparnaay, Physica 24, 751 (1958).
[4] S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
[5] C. Itzykson and J.-B. Zuber, Quantum field theory, McGraw-Hill, 1980.
[6] A. Zee, Quantum field theory in a nutshell, 2nd ed., Princeton, 2010.
[7] R. L. Jaffe, Phys. Rev. D 72, 021301(R) (2005).
[8] G. Plunien, B. Müller, and W. Greiner, Phys. Rep. 134, 87 (1986).
[9] P. W. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrodynamics, Academic, 1994.

[10] M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999).
[11] K. A. Milton, The Casimir effect: Physical manifestations of zero-point energy, World Scientific, 2001.
[12] M. Bordag, U. Mohideen, and V. M. Mostepanenko, Phys. Rep. 353, 1 (2001).
[13] G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Rev. Mod. Phys. 81, 1827 (2009).
[14] M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Advances in the Casimir Effect, Oxford, 2009.
[15] D. A. R. Dalvit, P. W. Milonni, D. C. Roberts, and F. S. S Rosa, Eds., Casimir Physics, Springer-Verlag, 2011.
[16] L. M. Woods, D. A. R. Dalvit, A. Tkatchenko, P. Rodriguez-Lopez, A. W. Rodriguez, and R. Podgornik, Rev. Mod. Phys.

88, 045003 (2016).
[17] J. Wagner, K. A. Milton, and P. Parashar, J. Phys.: Conf. Ser. 161, 012022 (2009).
[18] K. A. Milton and J. Wagner, J. Phys. A: Math. Theor. 41, 155402 (2008).
[19] The “macroscopic” means the length and width of the flat plates considered by us would & 10−4 m. It might be appropriate

to say that most of the Casimir experiments that have been performed for plate-plate or sphere-plate configurations belong
to this macroscopic scope. Incidentally, the typical distance between two plates in Casimir physics . 10−6 m.

[20] For the perfectly conducting plates separated by small distances, there is no quantum friction between them, see, for
example, J. B. Pendry, J. Phys.: Condens. Matter 9, 10301 (1997).

[21] This argument might need a careful explanation. We know that the Casimir energy between two plates may also be
considered as the interaction energy between the atoms in the plates, and thus the physical energy density near the edges
would be smoothly changed. From the theory of van der Waals force, we know that the retarded van der Waals (Casimir-
Polder) interaction energy between two atoms would behave as 1/r7-dependence, where r is the distance between the
atoms. Clearly, the interaction energy between two atoms decreases rapidly when the distance is increased. Hence, if the
distance between the atoms in the two plates is an order of magnitude larger than d/2, compared with the energy (change)
characterized by d/2, the interaction energy may be safely neglected. This implies that the noticeable transition region for
the energy density near the edges may not exceed ∼ 10 × d

2
= 5d. If a small change happens in b, the entire transition

region of the energy density near the edge will also move in the same direction, and thus for J − b � d we do not need
to worry about the difference between the ideal boundary assumption and the real boundary situation. This analysis can
also be applied to the other edges for the overlapping area. In fact this conservative estimation for the transition region is
supported by the numeric method (for scalar field): H. Gies and K. Klingmüller, Phys. Rev. Lett. 97, 220405 (2006); the
numeric simulations show the outside peak of the energy density affected by the edges of the finite plates . a, where a is
the distance between the plates.

[22] R. Golestanian and M. Kardar, Phys. Rev. Lett. 78, 3421 (1997).
[23] R. Golestanian and M. Kardar, Phys. Rev. A 58, 1713 (1998).
[24] F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev. Lett. 88, 101801 (2002).
[25] F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev. A 66, 032113 (2002).
[26] I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Advances in Physics 10, 165 (1961).
[27] Certainly, from the perspective of the van der Waals force, the tangential force cannot be exactly zero as long as the

edges of the two plates are still in an asymmetrical position. For example, Ref. [17] considered the asymmetrical edges
in such case with the semitransparent plates and noted that a tangential force can occur due to the asymmetrical edge
contributions, see the discussion on the configuration in Fig. 5 in the reference.

[28] E. M. Lifshitz, Sov. Phys. JETP 2, 73 (1956).
[29] N. G. van Kampen, B. R. A. Nijboer, and K. Schram, Phys. Lett. A 26, 307 (1968).
[30] F. Zhou and L. Spruch, Phys. Rev. A 52, 297 (1995).
[31] G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Phys. Rev. A 61, 062107 (2000).
[32] C. M. Hargreaves, Proc. Kon. Ned. Akad. Wet. B 68, 231 (1965).
[33] J. Schwinger, L. L. DeRaad, Jr., and K. A. Milton, Ann. Phys. (N. Y.) 115, 1 (1978).
[34] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Pergamon, 1981.
[35] F. Sauer, dissertation, Gottingen, 1962.
[36] J. Mehra, Physica 37, 145 (1967).
[37] L. S. Brown and G. J. Maclay, Phys. Rev. 184, 1272 (1969).

https://doi.org/10.1016/S0031-8914(58)80090-7
https://doi.org/10.1103/PhysRevLett.78.5
http://doi.org/10.1103/PhysRevD.72.021301
https://doi.org/10.1016/0370-1573(86)90020-7
https://doi.org/10.1103/RevModPhys.71.1233
https://doi.org/10.1016/S0370-1573(01)00015-1
https://doi.org/10.1103/RevModPhys.81.1827
https://doi.org/10.1103/RevModPhys.88.045003
https://doi.org/10.1103/RevModPhys.88.045003
https://doi.org/10.1088/1742-6596/161/1/012022
https://doi.org/10.1088/1751-8113/41/15/155402
https://doi.org/10.1088/0953-8984/9/47/001
https://doi.org/10.1103/PhysRevLett.97.220405
https://doi.org/10.1103/PhysRevLett.78.3421
https://doi.org/10.1103/PhysRevA.58.1713
https://doi.org/10.1103/PhysRevLett.88.101801
https://doi.org/10.1103/PhysRevA.66.032113
https://doi.org/10.1080/00018736100101281
https://doi.org/10.1016/B978-0-08-036364-6.50031-4
https://doi.org/10.1016/0375-9601(68)90665-8
https://doi.org/10.1103/PhysRevA.52.297
https://doi.org/10.1103/PhysRevA.61.062107
https://doi.org/10.1016/0003-4916(78)90172-0
https://doi.org/10.1016/0031-8914(67)90115-2
https://doi.org/10.1103/PhysRev.184.1272


16

[38] M. Boström and Bo E. Sernelius, Phys. Rev. Lett. 84, 4757 (2000).

https://doi.org/10.1103/PhysRevLett.84.4757

	On the Casimir effect from the zero-point energy: A tangential force and its properties
	Abstract
	I Introduction
	II The tangential forces
	III The tangential forces in other conductor systems
	IV The tangential forces in dielectrics
	A A zero-point energy approach
	B Finite conductivity
	C Finite temperature

	V Summary
	 Acknowledgments
	A The total zero-point energy of any-number layers
	 References


