
ar
X

iv
:2

11
1.

12
02

3v
2 

 [
he

p-
th

] 
 1

6 
M

ar
 2

02
2

Local spin base invariance from a global differential-geometrical point of

view
Claudio Emmrich

1

Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena,

Germany

(*claudio.emmrich@uni-jena.de)

(Dated: March 17, 2022)

This article gives a geometric interpretation of the spin base formulation with local spin base invariance of spinors

on a curved space-time and in particular of a central element, the global Dirac structure, in terms of principal and

vector bundles and their endomorphisms. It is shown that this is intimately related to Spin and SpinC structures in

the sense that the existence of one of those implies the existence of a Dirac structure and allows an extension to local

spin base invariance. Vice versa, as a central result, the existence of a Dirac structure implies the existence of a

SpinC structure. Nevertheless, the spin base invariant setting may be considered more general, allowing more physical

degrees of freedom. Furthermore, arguments are given that the Dirac structure is a more natural choice as a variable for

(quantum) gravity than tetrads/vielbeins.

PACS numbers: 02.40.-k, 04.20.Gz, 04.60.-m

I. INTRODUCTION

The starting point of local spin base invariance is the el-

ementary observation concerning spinors that the relation

defining the γ matrices and the corresponding Clifford alge-

bra: {γµ ,γν} = −2gµ,ν11 is invariant under similarity trans-

formations. Local spin base invariance is the extension of

this global symmetry to a local symmetry for spinors on arbi-

trary (curved) space-times: Since no derivatives are involved,

the choice of similarity transformations may be extended to

transformations varying over space-time in a rather straight-

forward way. The natural variables for this formulation are

space-time-dependent Dirac matrices subject to the Clifford-

algebra constraint. No vielbeins are needed as opposed to the

standard approaches to spinors on curved space-times used in

most physics literature.

This idea has a rather long history, going back to

Schrödinger1 and Bargmann2 in 1932. The formalism has

been applied later to quantization of fermions in a curved

background metric in Refs. 3–5. Though most literature on

spinors on curved space-times focuses on the vielbein ap-

proach, the theory has been further developed in the last

decades, see e.g. Refs. 6 and 7. An overall review of the for-

malism, including further literature, and also including spin

torsion may be found in Ref. 8. In particular, arguments why

the Dirac matrices might be considered more adequate vari-

ables for a quantization of gravity than vielbeins, both from a

conceptual and a pragmatic (simplicity) point of view may be

found in Refs 8–10 and an extension to arbitrary dimensions

in Ref. 11. One surprising feature of the whole approach is

that the local Lorentz or diffeomorphism transformations act-

ing on the space-time index of the γµ and the spin base trans-

formations acting on the “matrix part” by conjugation decou-

ple. Thus, in a proper sense, spinors behave as scalars under

Lorentz transformations.

Despite the benefits of this approach, some conceptual

questions have remained, partially because the approach is

formulated in a local, coordinate and spin base dependent way

(though a well-defined transformation behaviour under coor-

dinate and base changes is defined):

• Do the Dirac matrices correspond to a global geometric

object?

• Are there any global obstructions towards this formal-

ism? In particular, how does this formalism relate to

the global geometrical approaches using Spin or SpinC

structures (see e.g. Refs. 12 and 13).

• What does the statement “spinors transform like scalars

under Lorentz transformation” really mean? How does

it fit to the central role played by the Lorentz group for

spinors on flat space times in quantum mechanics and

quantum field theory?

• From a more pragmatic point of view: In Ref. 9 Gies

and Lippoldt showed that there is a global realization of

the Clifford algebra on a 2-sphere, which is not possible

within the vielbein formalism. Does this generalize? Is

there a geometric origin for this simplification?

In this article, we will answer those questions by giving a

global geometric description of the spin base formalism. It

will turn out that

• The Dirac matrices actually correspond to a geometric

object, namely a global section in a suitable bundle, de-

nominated “Dirac structure” in the following. It exists

in all cases where spinors are defined (Spin structure,

SpinC structure, and in the case of the spin base for-

malism as a basic requirement). This is different from

vielbeins, which are by definition local sections in the

bundle of (pseudo)-orthonormal frames, and which ex-

ist globally only iff this bundle is trivial, i.e. iff the

space-time is parallelizable (see also remark below).
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• The spin base formalism exists if and only if a SpinC

structure exists: If the latter is defined, one may de-

rive a corresponding Dirac structure, conversely, if a

Dirac structure is defined, one may construct from it

a SpinC structure essentially by reduction of structure

groups using the Dirac structure (in a physical language

by partial gauge fixing).

• Thus, the Lorentz transformations turn out to be inter-

twined with the local spin base transformations by the

mere existence of a Dirac structure in a rather subtle

way.

• The additional gauge freedom can be used to simplify

calculations as shown for the S2-example by Gies and

Lippoldt. We generalize this setting to arbitrary spheres

Sn and show that the enhanced spin base symmetry can

be used to trivialize the spinor bundle over this larger

group. It turns out that this is related to the fact that

the Whitney sum of the tangent bundle and the normal

bundle is trivial and that Clifford algebras in dimension

n and n+ 1 are closely connected.

Despite the fact that local spin base invariance does not

avoid the known obstructions to the existence of SpinC

structures12, the approach is nevertheless not redundant and

worth studying for at least two reasons:

• The global existence of a Dirac structure (whenever

spinors may be defined) is another indication that it may

be a better candidate for a variable in the quantization

of general relativity (GR) than vielbeins: The latter do

normally (unless space-time is parallelizable) only ex-

ist locally, the only “really existing” global objects be-

hind them are the bundle of orthonormal frames and

the metric itself, which always exist on any space-time,

completely irrespective of whether spinors may be de-

fined on this space-time or not. So the frequent claim

in physics literature that vielbeins are needed because

fermions exist in nature does turn out to be rather an ar-

gument in favour of Dirac structures, and not in favour

of vielbeins.

• Despite the fact that the involved bundles can be re-

duced to a SpinC structure, the more general setting of

Dirac structures with local spin base invariance allows

for generalizations of general relativity and additional

degrees of freedom, e.g. by inclusion of spin torsion as

in Ref. 8 and may have an impact for example on theory

space for a functional renormalization group approach.

Remarks.

• Geroch has shown in Ref. 14 that non-compact

Lorentzian manifolds in 4 dimensions are always paral-

lelizable. Hence, the whole discussion about global as-

pects, existence of global vielbeins,... is mandatory only

in more general cases: This includes non-Lorentzian

manifolds, in particular the seemingly simpler case of

Riemannian manifolds, compact Lorentzian manifolds

or Lorentzian manifolds of dimensions higher than 4,

widely studied in physics literature (e.g. for Kaluza-

Klein like theories or string theory). However, since

this parallelization is not canonical, and the proof

shows that this is loosely speaking a coincidence for

Lorentzian manifolds in dimension 4 or less, an ap-

proach avoiding global vielbeins and using this paral-

lelizability may be conceptually preferable even in the

four dimensional Lorentzian case. (The proof is based

on the coincidence of restrictions from obstructions to-

wards existence of Lorentzian metric on any manifolds,

and the fact that in 4 dimensions, concerning the ho-

motopy groups of SL(2,C), “The third homotopy group

fails to vanish, but at this point we are sufficiently close

to the dimension of the manifold that the obstruction to

extending a cross section can be made to vanish”14).

• It is well known that a Clifford bundle may be de-

fined globally without any additional structure and any

obstructions on any Riemannian or Lorentzian mani-

fold (see appendix A). Hence, the central structure here

is the Dirac structure which connects the (co)tangent

space of the manifold with endomorphisms in a com-

plex vector bundle in a way compatible with the Clifford

algebra (thus defining a representation of the Clifford

bundle on a spinor bundle, see appendix C).

• A related approach with a much further going general-

ization of spin bundles is considered in Ref. 15: In the

context of so called causal fermion systems even non

smooth generalizations of spin bundles are allowed.

Here, even in the smooth setting, where fibre bundles

are regained, the fibres have a (pseudo) scalar product

which a priori is independent of any (Riemannian or

Lorentzian) metric on the base manifold. However, if

one imposes additional constraints to achieve this con-

nection, a classic spin structure with it’s topological re-

strictions (vanishing second Stiefel-Whitney class) is re-

stored, with additional restrictions if the existence of a

Clifford section is required. However, those constraints

lead to a Spin structure and not to the more general

SpinC structures naturally arising in our approach.

• In the following, we will restrict ourselves to the case

of irreducible representations of the Clifford algebra,

so essentially to a single fermion. This excludes Käh-

ler fermions (Ref. 16–19), which are known to exist on

any (pseudo-)Riemannian manifold, but always come

as multiplets of e.g. four Dirac-fermions in four dimen-

sions.

The overall setting of this article is as follows: In the next

section we give a very short introduction to the spin base ap-

proach, focussing only on those aspects needed for a global

geometric view and to address the topics above. In particu-

lar, the central object, the Dirac structure, is given a global

geometric definition.

In section III, the standard approach to spinors using Spin or

SpinC is briefly sketched as well in order to lay the foundation

to relate them to the spin base approach in the following sec-

tions. We show that the standard Spin/SpinC formalisms have
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a naturally defined Dirac structure and allow for the extension

of the structure groups to yield the local spin base invariant

setting.

In section IV, which is the central part of this paper, we

show that conversely, the existence of a global Dirac structure

over a pseudo-Riemannian manifold ensures the existence of a

SpinC structure. The whole construction is natural in the sense

that if one starts from a Dirac structure and constructs the

corresponding SpinC structure, then the Dirac structure cor-

responding to this SpinC structure is the original Dirac struc-

ture.

In section V, we show how the existence of a metric on the

spinor bundle and a γ compatible connection may be easily

derived, under some slight restriction, from the results of the

previous section and some elementary facts about Clifford al-

gebras over a fixed vector space.

In section VI, we generalize and make more precise the re-

sults of Gies and Lippoldt on the 2-sphere to arbitrary spheres

by using global geometric arguments without any tedious co-

ordinate computations, thus supporting the view that the spin

base approach does not only have conceptual, but also prag-

matic calculational advantages.

Finally in VII, we give some conclusions, and in the ap-

pendices we collect some useful facts about Clifford algebras

and principal bundles as a reference for readers without firm

background in those topics.

II. THE IDEA OF LOCAL SPIN BASE INVARIANCE IN
GEOMETRIC TERMS

A. The idea of spin base invariance in local coordinates

In most approaches to spinors on curved space time, the

central focus is on so called tetrads or vielbeins, a (smooth)

choice of local Lorentz (= pseudo-orthonormal) frames over

each space-time point. The spin group (the double cover of

the Lorentz/pseudo-orthogonal group SO(r,s)) acts both on

the vielbeins and on the spinors, which locally can be iden-

tified with complex vector valued functions (For a geomet-

ric formulation using principal and vector bundles see section

III A). Both are intertwined by the property of Dirac matrices

ρ(g)γaρ(g)−1 = (Λ(g)−1)b
aγb, (1)

where ρ(g) is a spin representation of a Lorentz transforma-

tion (more precisely, of an element g of the spin group cov-

ering this Lorentz transformation) and Λ(g) the vector rep-

resentation of the same group element. The right-hand side

transforms as a co-vector with respect to the space-time in-

dex, since we are using γ with a lower index. (By raising the

indices with the metric, and using the definition of Lorentz

transformations, an analogous relation holds for γa with up-

per index, transforming as a vector.)

The defining property for the Dirac matrices γa is the Clif-

ford relation:

{γa,γb}=−2ηab11, (2)

where η is diagonal with r elements 1 and s elements −1

(s = 1 in the Lorentz case), and 11 denotes the identity matrix.

As is well known, those matrices are unique up to similarity

transformations and (in the case of odd dimensions) a sign flip

and are of size dγ × dγ with dγ = 2⌊D/2⌋. (Here ⌊. . .⌋ denotes

the floor function, see appendix A).

Remark. We use the sign convention of Refs. 12 and 13 on

the right hand side used in most of the mathematical litera-

ture. The plus sign chosen in most of the physical literature

corresponds to exchanging r and s. This has no impact on

Spin(r,s), since Spin(r,s) and Spin(s,r) are isomorphic, how-

ever it has to be taken into account when considering the real

Clifford algebra Cl(r,s) where Cl(r,s) 6∼= Cl(s,r) .

To define spinors as physical fields, one needs a Dirac oper-

ator and hence a connection, which can be locally lifted from

the Levi-Civita-connection via the vielbeins, and γ matrices

fulfilling Eq. (2). The latter can be simply chosen as a fixed

set of constant matrices.

The spin base formalism is an extension and modification

of this formalism, where no vielbeins are needed in the local

coordinate formulation. It is based on the following observa-

tions:

• Whenever a set of Dirac matrices γa(x) fulfills Eq. (2)

for all x ∈ M, then S(x)γa(x)S(x)
−1 fulfills this relation

as well for any GL(dγ ,C)-valued function S(x).

• Hence, we may decouple the matrix transformation part

from the space-time index transformation part, allow-

ing for arbitrary local frames in the tangent space as

base, not only orthonormal ones. In particular, one may

choose a set of holonomic base vectors ∂µ = ∂
∂xµ if one

replaces ηab by gµν in Eq. (2).

• Since gµν is completely determined by γµ(x), the latter

may serve as degrees of freedom for quantum gravity as

long as the Clifford constraint is imposed.

Hence, the formalism is formulated in terms of space-time

dependent γ matrices fulfilling the Clifford condition

{γµ(x),γν (x)} =−2gµν(x)11 (3)

and transforming as a co-vector in the space-time index with

respect to arbitrary local coordinate transformations on M and

under the conjugation by S(x) for an arbitrary GL(dγ ,C)-
valued function S(x). For consistency, the spinors themselves

must transform under S(x) as well, whereas the local coor-

dinate transformations have no impact on the spinor (if con-

sidered as passive coordinate transformations). Hence, the

spinors are treated as scalars under coordinate transformation

in this sense.

The whole formalism may be extended by requiring the ex-

istence of a compatible (indefinite, but non-degenerate) met-

ric on the spinors and of a connection compatible with γµ . As

shown in detail in Refs. 7, 8, 10, and 11, this allows the formu-

lation of spinors and of general relativity in terms of the new

coordinates without using vielbeins. It allows to study exten-

sions of GR, e.g. by allowing for “spin torsion”. Furthermore,
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arguments based on path integral measures and renormaliza-

tion group considerations are given there to support the view

that those coordinates might be better coordinates than viel-

beins.

B. Spin base invariance and geometry

As already indicated in the introduction, the formulations of

the spin base formalism in the literature is based on a local co-

ordinate consideration (including transformation under coor-

dinate changes). Thus, questions on the global existence of the

formalism and its objects for arbitrary (pseudo)-Riemannian

manifold, potentially depending on global (topological) as-

pects cannot be easily addressed in this formalism. Further-

more, some of the proofs require rather involved computations

with γ matrices.

For this reason, we first translate the formalism into the lan-

guage of principal bundles and associated vector bundles20–24

(see also appendix D). This allows to answer those questions

and to show that the formalism is indeed globally well-defined

(under appropriate conditions). Furthermore, this will give ad-

ditional hints that the Dirac matrices may be indeed preferable

coordinates as compared to vielbeins.

The central component of the spin base invariance approach

are the γµ(x) forming a Clifford algebra, which transforms

in the space-time-index µ like a co-vector in T ∗M and as a

matrix by conjugation with a separate GL(dγ ,C).
We now translate this into a geometric language: Since

the space-time and the spin indices transform separately, this

means γµ must lie in the tensor product of two different vector

bundles. The first, corresponding to µ obviously is T ∗M (or

T M if we prefer to consider γµ instead of γµ , which can be

easily translated into one another using g). The second bun-

dle must be related to a complex vector bundle of dimension

dγ , but since γµ does not transform with the defining repre-

sentation of GL(dγ ,C), but by conjugation, this means it is

the bundle of endomorphism of a complex vector bundle E of

dimension dγ .

Hence, we are lead to the following definition:

Definition 1 (Dirac Structure). Let (M,g) be a pseudo-

Riemannian manifold of dimensions D and E a complex vec-

tor bundle over M of dimension dγ = 2⌊D/2⌋ . Let {,} de-

note the fibre-wise anticommutator of endomorphisms of E

and 11 ∈ Γ(End(E)) denote the identity isomorphism on each

fibre. A Dirac structure is a global section of T ∗M⊗End(E)
such that

{γ(X),γ(Y )}=−2g(X ,Y)11 (4)

for any two vector fields X ,Y ∈ Γ(T M).

Remarks.

• As stated before, we restrict ourselves to the case of ir-

reducible representations of the Clifford algebra.

• By a polarization argument, it is sufficient to request

γ(X) ◦ γ(X) = −g(X ,X)11 for all vector fields X ∈

Γ(T M), which is closer to the way Clifford algebras are

mostly defined in the mathematical literature.

With this definition, the central requirement of the spin base

formalism is the existence of a global object, namely the Dirac

structure, on which we will focus in the following two sec-

tions. The two additional structures needed to define a reason-

able physical theory, namely the spin metric and a compatible

connection, will turn out to exist globally whenever the Dirac

structure is defined, hence we defer those to section V.

Remark. One might argue that the local existence of a Dirac

structure might be sufficient. However, this is not the case:

It is a central component of the spin base formalism, in par-

ticular needed to define a compatible connection. As we will

show in V, the compatibility condition for the connection, de-

spite looking very similar to a seemingly corresponding equa-

tion in the vielbein formalism, the so called “vielbein postu-

late”, has a completely different meaning: whereas the latter

is a (still computational useful) triviality, namely the state-

ment ∇id = 0 (see e.g. appendix J of Ref. 25 or section V), the

former is an essential compatibility condition implementing

a slightly stricter condition than metricity. Furthermore, the

existence of a global Dirac structure is necessary for the exis-

tence of a complex vector bundle carrying a representation of

the Clifford bundle. Finally, since it exists whenever a SpinC

structure is defined, so in particular whenever a Spin struc-

ture is defined, the existence of a Dirac structure is a central

component of any approach to spin on curved manifolds.

Note that we do not assume a priori any connection between

the vector bundle E and TM, in terms of local coordinates:

transition functions may be defined for E completely inde-

pendently from the transition functions in T M induced by the

respective coordinate mappings, thus implementing full spin

base invariance.

However, it turns out that the existence of the Dirac struc-

ture γ with its Clifford algebra condition are so strict that it

does intertwine the transition functions of E and T M to some

extent, so stating that spinors act like scalars under coordinate

transformations turns out to be correct only with some mild

caveat.

III. LOCALLY INVARIANT DIRAC STRUCTURE FROM
SPIN AND SPINC STRUCTURES

A. Spin and SpinC structures

For completeness and in order to fix notation, we briefly

recapitulate the standard definitions of Spin and SpinC struc-

tures as needed in the following (see e.g. Refs. 12, 13, and

22) before showing the existence of a Dirac structure in those

standard approaches to spin:

Let (M,g) be an orientable pseudo-Riemannian manifold

with signature (r,s). All manifolds are assumed to be con-

nected, orientable, smooth, paracompact, Hausdorff. We re-

strict the following considerations to the case D := dim(M) =
r + s ≥ 3 and keep r,s fixed. To avoid cluttered notation,
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the indices r,s are not explicitly added for most objects, so

for example SO(M) denotes the bundle of pseudo-orthogonal

frames with respect to g.

We define Spin(r,s) as the Lie group forming a double

covering Π : Spin(r,s) → SO(r,s) of SO(r,s) with Π(gh) =
Π(g)Π(h). It may be obtained as the even product of elements

of norm 1 of the underlying vector space of the Clifford alge-

bra (see appendix A). For the Riemannian and the Lorentzian

case, the component of the identity Spin0(r,s) is known to

be simply connected and thus to form the universal cover of

SO0(r,s),

Remark. This is equivalent to a definition by the exact se-

quence of group homomorphisms:

1 → Z2 → Spin(r,s)
Π
−→ SO(r,s)→ 1 . (5)

A spin structure on (M,g) is a principal Spin(r,s) bun-

dle Spin(M)
π̃
−→ M together with a bundle morphism Φ :

Spin(M) → SO(M) which restricts fibrewise over each point

in M to the covering homomorphism Π : Spin(r,s)→ SO(r,s),
or more explicitly: an equivariant bundle morphism Φ :

Φ(pg) = Φ(p)Π(g) ∀p ∈ Spin(M),g ∈ Spin(s, t) such that

π(Φ(p)) = π̃(p) for all p ∈ Spin(M), i.e., a point p in a fi-

bre of Spin(M) over a point x ∈ M is mapped to a point in a

fibre of SO(M) over the same point x:

Spin(M) SO(M)

M

Φ

π
π̃ (6)

The principal bundle π̃ : Spin(M) → M is also called the

bundle of spin frames over M. From a physical point of view,

this rather technical global formulation essentially means that

the ambiguity in sign, resulting from the fact that spinors

change sign under a rotation by 2π may be resolved for the

transition functions of local charts in a consistent way. This

need to choose consistently a branch in the double cover-

ing of SO(r,s) on an overlap of three coordinate neighbour-

hoods leads to the known obstruction that the second Stiefel-

Whitney class of M has to vanish in order for a spin structure

to exist.

This obstruction may be somewhat weakened by consid-

ering a more general structure, the SpinC structure. For its

definition, we first need the notion of the SpinC group:

It is the quotient SpinC(r,s) = (Spin(r,s)×U(1))/Z2 with

Z2 acting as (g,h) 7→ (−g,−h). Equivalently , it is defined by

the exact sequence:

1 → Z2 → SpinC(r,s)
ρ
−→ SO(r,s)×U(1)→ 1 . (7)

The mapping ρ may be explicitly defined as ρ([(g,u)]) :=
(Π(g),u2), where [(g,u)] denotes the Z2-equivalence class

of (g,u) ∈ (Spin(r,s)×U(1)). This is obviously well-defined

since the sign ambiguity in choosing a representative (g,h) ∈
[(g,h)] drops out on the right hand side.

A SpinC structure on SO(M) consists of a principal U(1)

bundle U1(M) over M and a principal SpinC(r,s) bundle

SpinC(M) with a SpinC(r,s)-equivariant bundle map

SpinC(M) SO(M)×U1(M)

M

ΦC

(8)

Intuitively, the additional U(1) bundle may be considered as

corresponding to a U(1) charge which leads to an additional

phase which in some cases can compensate the obstruction of

choosing “the right branch” in the double cover of SO(r,s).

However, even for SpinC structures there is a (weaker) ob-

struction preventing it from existing on all manifolds ( the

second Stiefel-Whitney-class w2(SO(M)) must be the mod 2

reduction of an integral class, see Ref. 12).

For a Spin structure we can define the associated vector

bundle, the spinor bundle, of dimension dγ := ⌊D
2
⌋:

E := Spin(M)×Spin(r,s)C
dγ =

(
Spin(M)×C

dγ

)
/∼ (9)

where the equivalence relation ∼ is defined by ∀g ∈
Spin(r,s) : (p,v) ∼ (pg,g−1v), with a completely analogous

definition for the SpinC case.

The main motivation for considering SpinC instead of Spin

is that the obstruction towards existence of such bundles is

much weaker. In particular, it is known that any 4 dimen-

sional manifold admits a SpinC structure, which is not true

for Spin. (Though in the non-compact Lorentzian case, any

4 dimensional manifold is parallelizable and hence admits a

spin structure14.)

B. Existence of a global Dirac structure for Spin- and SpinC

structures

Theorem 1. A Dirac structure γ exists, whenever a Spin or

SpinC structure over (M,g) is defined. It is naturally defined

and unique up to an overall global GL(dγ ,C) transformation

and, only in the odd dimensional case, a potential sign flip.

The proof is a geometric reformulation in the spirit of “lo-

cally spin base invariant Dirac structures” of the well known

fact that the Dirac matrices in the vielbein language trans-

form as co-vectors with respect to their space-time index un-

der Lorentz transformations:

Proof: For simplicity, we start with the Spin case and then

show that it almost trivially extends to SpinC. So we assume

we are given a Spin(r,s) bundle Spin(M) over M.

Now, it is well known (see appendix A) that C
⌊D

2 ⌋

carries an irreducible Pin(r,s) representation which re-

stricts to a Spin(r,s) representation. (For D even, this

Pin(r,s)representation is unique up to isomorphism, but re-

ducible as a Spin(r,s) representation, for D odd, there are two

inequivalent representations, both of which are irreducible as

Spin(r,s) representations).

Let E be the the associated vector bundle according to

Eq. (9).
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To define γ globally, we first choose a local section of

Spin(M), i.e. a smooth map χU : U → Spin(M) which maps

each x ∈U to an element of the fibre of Spin(M) over x for an

open subset U ⊂ M, define it there and then show that it does

not depend on the choice of the local section by considering

transition functions.

A local section χU over U of the principal bundle Spin(M)
defines a local trivialization ϕU : π̃−1(U)→U ×Spin(r,s) via

ϕU (χU(x)) = (x,e), ϕU(χU(x) ·g) := (x,g) (10)

for any x ∈ U,g ∈ Spin(r,s), where e is the identity in

Spin(r,s). This is well defined, since by definition of a prin-

cipal bundle, the structure group acts by a free and transitive

action from the right on each fibre.

By projection of principal bundles Φ : Spin(M)→ SO(M),
χU defines a local section in SO(M), i.e. a Lorentz frame

(vielbein) in TxM over each point in U . In addition, it defines

a local trivialization of the associated complex spinor bundle

E . Define γ|U by a fixed chosen standard representation of the

Dirac matrices as constant matrices on the vector space C
dγ

in the induced local trivializations U ×Cdγ of E over M and

U ×R
D of T ∗M .

Now, for another open neighbourhood V the transition

function ΨUV : U ∩V → Spin(r,s) is defined by ϕV (p) =
ΨUV (π̃(p)) · ϕU(p), where the group action “·” is the left

multiplication of the second factor g in (x,g) ∈ (U ∩V )×
Spin(r,s), leaving the base point x ∈ U ∩V invariant, or more

explicitly:

ΨUV : U ∩V → Spin(r,s)

ΨUV (x) := π2(ϕV ◦ϕ−1
U (x,e)),

where π2 : V ×Spin(r,s)→ Spin(r,s) is just the projection on

the second factor Spin(r,s). Equivalently, Ψ(x) may be ex-

pressed directly via the local sections as:

χV (x) = χU(x) ·Ψ
−1
UV (x), (11)

as may be easily derived from Eq. (10). Note that the transi-

tion functions act on the local trivializations from the left, but

on the section from the right with an inverse, as is needed for

consistency. Hence, the Dirac matrices γi transform as:

γ̃i(x) =
(
Π(ΨUV (x))

−1
)k

i
ΨUV (x) · γk ·ΨUV (x)

−1 = γi (12)

where we have used the property Eqs. (1) or (A3) of flat Dirac

matrices.

This means that the transformed γ has precisely the same

form and value (namely the same constant standard Dirac ma-

trices) in the new coordinates on V . Hence the procedure de-

fines a global well-defined section γ ∈Γ(T ∗M⊗End(E)) over

all of M independently of the local trivializing section ϕ .

The only choice is the choice of fixed constant Dirac ma-

trices which is known to be unique up to an overall global

GL(dγ ,C) transformation and a potential global sign flip (the

latter occurs only in the odd dimensional case).

For a SpinC structure, the same construction works with

a few minor modifications: The structure group is no longer

Spin but SpinC := (Spin×U(1))/Z2.

Since the U(1) factor is in the center of GL(dγ ) this factor

has no impact and drops out in Eq. (12) (Care must be taken

due to the quotient by Z2. However, since a factor of (−1) ∈
Z2 always appears twice and hence cancels as well).

C. Extension of Spin/SpinC to spin base invariant Dirac
structure

In this section we explicitly show the (almost obvious) fact

that, given a SpinC structure (or as a special case a Spin struc-

ture) we may always extend the structure group on the in-

volved bundles such that we end up with the “spin base in-

variant Dirac” structure:

Theorem 2. Let (M,g) be an orientable pseudo-Riemannian

manifold with a Spin or SpinC structure.

• The structure group of the complex vector bundle E may

be extended from Spin(r,s) or Spin(r,s)C to GL(dγ ,C)

defining a bundle EG with structure group GL(dγ ,C)
(which, as a manifold, is the same as E).

• T ∗M ⊗ End(EG) transforms under GL(D,R) ×
GL(dγ ,C) as structure group, i.e. space time index and

spinor indices transform separately (the endomorphism

part obviously transforming by conjugation with

GL(dγ ,C).

• γ naturally extends to a section in T ∗M⊗End(EG).

Proof. By choosing a fixed set of constant Dirac matrices,

Spin(r,s) has a corresponding unique representation on Cdγ .

Thus:

Spin(r,s)⊂ GL(dγ ,C), Spin(r,s)C ⊂ GL(dγ ,C). (13)

(Different choices of those matrices correspond to a fixed sim-

ilarity transformation and potentially, in the odd dimensional

case, an additional sign).

We now show that we may extend the symmetry on the vec-

tor bundle E from Spin(r,s) or Spin(r,s)C to a GL(dγ ,C) vec-

tor bundle EG (same set, but larger structure group) such that

γ is defined in T ∗M⊗End(EG).
The existence of EG is obvious, since the vector bundle may

be defined by an open cover {Vα} of subsets of M and transi-

tion functions Ψαβ : Vα ∩Vβ → Spin(r,s) (or Ψαβ : Vα ∩Vβ →

Spin(r,s)C in the SpinC case) such that the cocycle condi-

tion is fulfilled: Ψαβ ·Ψβ γ ·Ψγα = 11 on Vα ∩Vβ ∩Vγ . How-

ever, due to Eq. (13), those are valid transition functions for a

GL(dγ ,C) bundle as well. (Essentially, one simply “forgets"

the spin structure and thus allows more general base transfor-

mations). T ∗M may be considered a GL(D,R) vector bundle

in complete analogy by admitting arbitrary frames instead of

only orthonormal frames in the frame bundle. Now forming

the bundle T ∗M ⊗End(EG), this obviously transforms under

GL(D,R)×GL(dγ ,C) by construction.

Since ER and E are identical as sets and the identification

is linear in the fibres, γ is obviously well-defined as a section

of T ∗M⊗End(EG).
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All this is essentially very basic, the only subtlety being the

fact that in order to define γ as a global section, one needs

to transform space time index and spinor index at the same

time with the same element of the Spin or SpinC group as

shown above. However, as soon as γ is defined, we may con-

sider more general transformations transforming the T ∗M part

and the End(E) part separately, but consistently with the bun-

dle structure. Obviously, with those more general transfor-

mations, the coordinate expression of γ is no longer a set of

constant Dirac matrices.

IV. REDUCTION OF STRUCTURE GROUP FOR
ARBITRARY GLOBALLY DEFINED DIRAC STRUCTURE

In this section, we show the central result of this paper,

namely that the existence of a Dirac structure implies a SpinC

structure:

Theorem 3. For any spin base invariant Dirac structure on

an orientable pseudo-Riemannian manifold (M,g) i.e. an ar-

bitrary complex vector bundle E over M of dimension dγ with

a global section γ ∈ Γ(T ∗M⊗End(E)) such that the Clifford

condition (4) is fulfilled, there is a SpinC(r,s)- structure such

that γ is the Dirac structure corresponding to this SpinC(r,s)-
structure according to theorem 2. In particular, a Dirac struc-

ture exists iff a SpinC(r,s)- structure exists, i.e. the same topo-

logical obstructions apply.

So in a more physical language, we may partially gauge

fix the large gauge group GL(D,R)×GL(dγ ,C) to a smaller

group SpinC(r,s), reducing the whole structure to the SpinC

case.

Remark. It is interesting to note that the less intuitive group

SpinC(r,s) and not Spin(r,s) appears naturally for spin base

invariant structures, so this may be considered as a more natu-

ral setting for deriving this SpinC(r,s) structure instead of the

normal approach of “artificially” adding a U(1) gauge sym-

metry to alleviate the obstruction towards existence of Spin

structures.

Proof. Let γ be a Dirac structure as defined above. For two

arbitrary bundles B1,B2 over M we define B1 ×M B2 as the

pullback of the direct product B1 ×B2 via the diagonal map

d : M → M ×M, i.e. we only consider those points in the di-

rect product which have the same base point in M, thus again

forming a bundle over M (and not over M×M. This is the gen-

eral bundle analog of the construction of Whitney sum bundles

for vector bundles).

For the proof, we first consider the case of even dimensional

M:

Considering E as a general complex vector bundle, we con-

sider the bundle

P = L(M)×M LC(E), (14)

where L(M) denotes linear frames over M, LC(E) the com-

plex linear frames of E . P is a principal bundle over M with

structure group GL(D,R)×GL(dγ ,C). It consists of all pairs

of real linear frames on T M and of complex linear frames on

E over the same base point in M.

Using orientability and the (pseudo)-Riemannian metric g

we may restrict the frames in L(M) to positively oriented, or-

thonormal ones, leading to a principal bundle

P̃ = SO(M)×M LC(E), (15)

with structure group SO(r,s)×GL(dγ ,C).
Any point p ∈ P̃ defines a base of TxM and a base of Ex

for x = π(p) ∈ M, and hence a map p∗ : T ∗
x M ⊗End(Ex) →

(RD)∗⊗C(dγ) where C(n) denotes the set of complex n× n

matrices.

We choose a fixed “reference” set γ f
i ∈ C(dγ), i = 1, ...,D

of γ matrices fulfilling Eq. (2) and define

P f := {p ∈ P̃|p∗(γ)(ei) = γ
f

i }, (16)

where ei = (0, ..,0,1,0, ..) form the standard base of RD, i.e.

we restrict to those frames for which the Dirac structure γ ex-

pressed in the bases defined by p coincides with γ f
i . (This

is analogous to reducing the structure group of a Riemannian

manifold to O(N) by considering only frames which are or-

thogonal, i.e. where the metric g expressed in the base is a

standard metric diag(1, ..1,−1, ...,−1)). The choice of γ f
i de-

fines in addition a representation of SpinC(r,s) on Cdγ and

thus and embedding of SpinC as a subgroup of GL(dγ ,C).

We now show that a SpinC structure may be constructed

by taking the quotient P f /R+ where the multiplicative group

R+ acts by scaling the frames in E only. The reason for this

quotient is the fact that the Dirac structure does not define a

notion of scale on E since an overall scale drops out in the

transformation of γ .

First, we show that P f itself forms a Spin(r,s)C×R+ prin-

cipal bundle. We identify Spin(r,s)C with a subgroup of

SO(r,s)×GL(dγ ,C) by g 7→ (g̃,g) where g̃ is the image of

g in SO(r,s) in Eq. (7). It is important for the following that

Spin(r,s)C acts on both factors at the same time.

Let Fx = π−1(x)⊂ P f be the fibre of P f over the base point

x. We show that Spin(r,s)C×R+ acts via a free and transitive

action from the right on Fx:

• Fx is not empty: This follows since for a

(pseudo-)orthornomal frame, Eq. (3) reduces to

Eq. (1) and in even dimensions all representations

of the Clifford algebra are equivalent by a similarity

transformation.

• Spin(r,s)C × R+ action is well-defined: Since in

p∗(γ)(ei) the index i transforms as a co-vector under a

Lorentz transformation and the endomorphism part by

conjugation with Spin(r,s)C, it follows from the trans-

formation properties of the γ matrices Eq. (A3) that the

image of p ·g of p ∈ Fx under g ∈ Spin(r,s)C is again in

Fx, hence the action of the subgroup is well-defined on

P f .

• The action is transitive: By construction, the action

of SO(r,s)× GL(dγ ,C) is transitive on the fibres of
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P̃. Hence, if p,q ∈ Fx are two points in the same fi-

bre Fx, there are (g,h) ∈ SO(r,s)×GL(dγ ,C) such that

q= p ·(g,h). We have to show that (g,h) may be chosen

such that (g,h) ∈ Spin(r,s)C×R+. Let k ∈ SpinC(r,s)
be such that its corresponding Lorentz transformation

component of ρ(k) is g under Eq. (7). Then, q ·k−1 ∈ Fx

as well by the statement in the previous item, hence

r := p ·(g,h) ·k−1 = p ·(gg−1,hk−1) = p ·(e,hk−1) ∈ Fx

where e denotes the identity in SO(r,s). Hence, for all

i:

p∗(γ)(ei) = γ f
i = r∗(γ)(ei) = hk−1γ f

i (hk−1)−1, (17)

so the γ f
i are invariant under conjugation with hk−1.

Since the identity matrix 11 and products of the γ
f

i span

the whole set of complex matrices in C(dγ), hk−1 must

be in the center of GL(dγ ,C) and hence a multiple of

11: hk−1 = λ 11 with λ ∈ C∗ = C \ {0}. Hence, writ-

ing λ = |λ |u with u ∈ U(1), (g,h) = k ·λ 11 = k ·u|λ |11
maybe identified with an element of Spin(r,s)C ×R+

since (−1,−1) ∈ Spin(r,s)×U(1) acts trivially on P f .

• Free action: The fact that the action is free may be seen

easily: If p · g = p for (g,λ ) ∈ Spin(r,s)C ×R
+ then

obviously λ = 1 since it acts by scaling on the frame in

LC(E). Furthermore, the image of g in GL(dγ ,C) must

be the identity. This implies that g must be itself the

identity, since the kernel of the map Spin(r,s)×U(1)→
GL(dγ ,C) is exactly Z2 = {(1,1),(−1,−1)} which is

divided out in the definition of SpinC. (This is a main

reason to consider SpinC instead of Spin(r,s)×U(1).)

So P f indeed has the structure of a Spin(r,s)C×R
+ princi-

pal bundle. We define

SpinC(M) := P f /R+, (18)

where SpinC(M) for the moment is just a name for the quo-

tient, but we will show that this is indeed a SpinC bundle: The

groupR+ acts trivially on the quotient by construction. Going

through the previous steps one easily checks that Spin(r,s)C

acts freely and transitively on this quotient, so we have a

Spin(r,s)C principal bundle. The fact that this is indeed a

smooth bundle follows from the fact that P f is a smooth bun-

dle by its definition which allows smooth local trivializations

by the inverse function theorem, and the fact that the group

action of R+ on P f is free and smooth.

To finalize the proof that this is indeed a SpinC structure

we have to define a U(1) bundle over M such that there is an

equivariant mapping ΦC as in Eq. (8). The U(1) bundle may

be easily constructed as an associated bundle:

U1(M) := (SpinC(M)×U(1))/∼, (19)

where (p,h) ∼ (p · [(g,u)]−1,u2h) for arbitrary [(g,u)] ∈

SpinC and (p,h) ∈ (SpinC(M)×U(1)). Since U(1) acts on

U1(M) from the right, this is indeed a U(1)-principal bun-

dle and an equivariant mapping from SpinC(M) to U1(M) is

defined by: ΦC

U(1)(p) := (p,e)/ ∼, where e is the identity in

U(1).
Now, there is an obvious equivariant mapping from

SpinC(M) to SO(M), just mapping p ∈ SpinC(M) to the

SO(M) component of one of its representatives in the quo-

tient modulo R+. Since R+ only acts on the second LC(E)-
component, this is well-defined independently of the choice

of the representative.

Finally, combining both maps, we get a well-defined equiv-

ariant map ΦC : SpinC(M)→ SO(M)×U1(M), so SpinC(M)

indeed defines a SpinC structure on M, and the proof is fin-

ished for the even dimensional case.

The case of an odd dimensional manifold is only slightly

more complex: The only additional complexity is the fact that

there are two inequivalent representations of the Clifford alge-

bra Cl(r,s) which may be mapped to each other by γ
f

i 7→ −γ
f

i .

So in order to do the whole construction above, we have to

choose the right set of constant Dirac matrices. However, as-

suming that M is connected, this “right set” may not change

with the point x ∈ M chosen due to continuity of the Dirac

structure γ . Hence, everything works out completely analo-

gously.

Remark.

• According to Eq. (18), P f may be considered an R+

principal bundle over SpinC(M). However, since R
+

is contractible, any R+ principal bundle is trivial26,

hence P f may be identified (in a non-canonical way)

with SpinC(M)×R+. Hence, SpinC(M) may be em-

bedded as a submanifold of P f (For an elementary,

but less general and less elegant proof of triviality of

R+ bundles not using arguments from algebraic topol-

ogy, see appendix E) . However, this embedding is non-

canonical essentially due to the lack of the notion of a

scale on the bundle E, which would allow to gauge-fix

the R+ action. A scale may be introduced by introduc-

ing a metric or ”pseudo-hermitian” structure on E, i.e.

a non-degenerate but generally indefinite scalar prod-

uct on the fibres. However, this additional structure is

not needed for the proof.

• This lack of scale is the reason why we do not restrict

the group to SL(dγ ,C) instead of GL(dγ ,C) as used e.g.

in Ref. 8.

V. SPIN METRIC AND CONNECTION

In order to define a spin metric and a compatible con-

nection, we make one additional assumption on the man-

ifold (M,g) for the non-Riemannian case (r 6= 0 and s 6=
0): We assume that M is space and time-orientable, i.e.

there is a global orientation of ”space” and (potentially

multi-dimensional) “time” sub-frames separately, i.e., for

any pseudo-orthonormal frame f = (v1, . . . ,vr,vr +1, . . .vr+s)
with g(vi,vi) = +1 for i = 1, . . . ,r and g(vi,vi) = −1 for i =
r+ 1, . . . ,r+ s, there is a consistent assignment of “positive”

or “negative” orientation in (v1, . . . ,vr) and (vr+1, . . .vr+s)
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separately. Obviously, orientation and “time” orientation im-

ply “space” orientation and vice versa. In the special case

r = 1 or s = 1, this coincides with the standard notation of an

orientable, time orientable Lorentz manifold.

With this additional structure, we may reduce frames in

SO(M) to only those which are both positively “time” and

“space”-oriented. In this way, we reduce the structure group

from SO(r,s) to SO0(r,s), the identity component of SO(r,s).
This may now be transferred to the situation of a manifold

with Dirac structure: By restricting in the construction of P f

the space-time frames to only those which are both positively

“time” and “space”-oriented, yielding a SpinC0 (r,s)×R+ bun-

dle P
f

0 where SpinC0 (r,s) is the component of the identity of

SpinC(r,s).
Now, by choosing a section in the R+ bundle, we get a

SpinC0 (r,s) principal bundle. Its associated vector bundle E

now inherits an – up to a global scale – unique metric by

pulling the (up to a scale) unique metric on V = Cdγ <,>V

with

< ψ ,ψ >∗
V =< ψ ,ψ >V ,

∀v ∈V ⊂ Cl(V ) : < γ(v)φ ,ψ >V = (−1)s < ψ ,γ(v)φ >V

(20)

(see appendix B) by choosing for a vector X ∈ E a representa-

tive (p,x) of the ∼ equivalence class [(p,x)] = (p,x)/∼ in the

SpinC0 (r,s) analog of Eq. (9) and setting < X ,X >:=< x,x >V .

This is well-defined, since the metric <,>V is SpinC0 (r,s) in-

variant. By the standard polarization trick, we may define

from this < ψ ,φ > for arbitrary sections ψ ,φ in E , which

fulfills the obvious bundle analog of equation Eq. (20).

Remark. As soon as <,> is defined f ·<,> is a valid metric

for any f : M → R+. However, given <,> we may use it to

“fix the scale” (up to one global scale factor in R+ in the

previous paragraph. In this sense, choosing an embedding

of SpinC0 (M) in P
f

0 corresponds to choosing a scale and thus

fixing f .

Once <,> is defined, we may extend the structure group as

in section III C, thus obtaining a metric on E as vector bundle

with structure group GL(dγ ,C). (Obviously, whenever more

general local trivializations of E are used, the local expression

of <,> is no longer <,>V but has to be transformed consis-

tently with the trivialization).

To define a compatible covariant derivative or equivalently,

a compatible connection, we start with the Levi-Civita con-

nection on M.

As is well known, we may identify a connection with a

globally defined, equivariant Lie-algebra valued one-form on

SO0(M). (In the following, we will deliberately use the differ-

ent, but equivalent views on connections on vector and princi-

pal bundles to simplify the derivation. They are briefly sum-

marized in appendix D.)

This one-form can be pulled back from SO0(M) with the

double-cover projection to SpinC0 (M), defining a connection

on the SpinC0 (r,s) principal bundle SpinC0 (M), and thus a co-

variant derivative on E . Since the defining properties of a co-

variant derivative on a vector bundle do not relate to the struc-

ture group, but only to the vector space structure of each fibre

(and the F (M)-module structure of E), this defines a valid

covariant derivative if we consider E as a bundle with larger

structure group GL(dγ ,C) as well.

Now, compatibility of this connection is obvious without

calculation:

For any associated vector bundle, the covariant derivative

∇X s(x) of a section s may be obtained by choosing a curve χ
in M, starting at x and tangent to X(x), lifting it to a horizontal

curve χ̃ in the frame bundle SpinC0 (M) and then taking the

ordinary derivative of the components of s in the base defined

by χ̃ .

Now, for the Dirac structure γ the coordinate expression us-

ing χ̃ of γ when considered as a section in T ∗(M)×End(E)
is constant as shown in sections III B and IV , thus ∇γ = 0.

Similarly, if <,> is considered a section of E∗⊗M E∗, its co-

ordinate expression using χ̃ is constant by the construction

above. Thus, we may conclude:

∇γ = 0, and ∇ <,>= 0,

where ∇ acts as the natural tensorial extension on the respec-

tive bundles. (The second condition, using the identification

of <,> with a section of a bundle, might look a bit strange, a

more intuitive representation is

∇ < ψ ,φ >=< ∇ψ ,φ >+< ψ ,∇φ >

for all φ ,ψ .)

Remark. Despite looking very similar, the “ontological” sta-

tus of the compatibility condition ∇γ = 0 in the local spin in-

variance setting is quite different form the vielbein postulate:

As already stated in section II B, the “vielbein postulate” is

just the condition ∇id = 0, where id is the identity on the

vector bundle TM. It is automatically trivially fulfilled for

any connection and only allows - as a computational tool -

to translate expressions in holonomic, coordinate indices, to

those in anholonomic vielbein indices. If we extend the struc-

ture group from SO(r,s) to GL(D,R), the corresponding viel-

beins are no longer orthogonal, the vielbein postulate formu-

lated as ∇id = 0 still trivially holds, but does not restrict the

connection to be metric compatible. An expression ∇(ei) = 0

for only orthogonal vielbeins does not make any geometri-

cal sense in this setting since the vielbeins are arbitrary, only

locally defined sections in the frame bundle - the geometric

meaningful condition being the standard Levi-Civita condi-

tion ∇g = 0.

For the condition ∇γ = 0, a similar statement seems to hold

at first sight, since it is automatically fulfilled in a SpinC0 (r,s)
setting. However, as soon as we extend the structure group to

GL(dγ ,C), the crucial difference between this condition and

the “vielbein postulate” becomes obvious: Since the Dirac

structure is a global object, the condition ∇γ = 0 is perfectly

well-defined in this setting and it automatically ensures that

∇g = 0 since g may be expressed by γ .

Starting from the covariant derivative ∇ on E , one can study

more general connections and formulate suitable compatibil-

ity conditions, as done e.g. in local coordinates in Ref. 8. The

difference between such a covariant derivative and ∇ has been
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denominated “spin torsion”. We will not study this here in

more detail and only hint that this allows for additional de-

grees of freedom in the formulation of a theory of gravity.

VI. AN EXAMPLE: THE SPHERE Sn

In the paper by Lippoldt and Gies (Ref. 9) it is claimed

that using suitable spin base transformations, a global trivial-

ization may be achieved for S2 despite the fact that S2 is not

parallelizable. However, since smoothness is only shown for γ
and the eigenvectors of the Dirac operator, it is not quite clear

what is meant by this statement from a geometric perspective,

in particular since, as shown above, the Dirac structure is al-

ways globally defined in case of a Spin structure, which is

known (as a Spin(2,0) structure, not Spin(1,1)) to exist for

S2, and hence its pullback via any smooth coordinates and lo-

cal sections is always smooth.

We show here, as a generalization to arbitrary dimensions,

that a stronger statement holds, namely the spinor bundle,

when considered as a bundle over the larger spin base trans-

formation group, is trivial for any Sn. (This does obviously

not hold when only considering Spin(n) transformations since

otherwise the tangent bundle would be trivial as well in con-

tradiction to the hairy ball theorem).

First, we assume that the dimension of the sphere is even,

since the argument is a bit more obvious in this case, and then

extend to the odd dimensional case. We are considering the

case of spin over a Riemannian manifold, since S2n does not

carry any Lorentz metric.)

We use the following facts:

• Denoting by N(S2n) the normal bundle of T S2n, the sum

bundle T S2n⊕N(S2n) is the trivial R2n+1 vector bundle

obtained by embedding S2n in R2n+1 and pulling back

the trivial bundle TR2n+1 =R2n+1 ⊕R2n+1 to S2n.

• The dimensions of the spinor bundles in 2n and 2n+ 1

dimensions are the same.

• Spin(2n+ 1)⊂ SU(dγ).

• S2n being simply connected, the Spin structure on S2n is

unique up to isomorphisms.

The first item is obvious from the definition of a normal bun-

dle, the second is a well-known fact about Clifford algebras,

the third item is well known for spinor representations over a

Riemannian manifold (no spin metric including γ0 needed).

We now consider the (necessarily trivial) Spin(2n + 1)
spinor bundle over R2n+1 and denote its pullback to S2n via

the inclusion map as Ẽ = S2n ×Cdγ and the corresponding

trivial principal bundle P̃ = S2n ×Spin(2n+ 1).
Denoting by Π the double covering map: Π : Spin(2n+

1)→ SO(2n+ 1), we consider the subbundle P ⊂ P̃:

P := {(x,g)∈ S2n×Spin(2n+1)|∀X ∈Nx(S
2n) : Π(g)X =X} ,

(21)

i.e., we restrict the Spin transformations to those whose corre-

sponding SO(2n+1)-projections under double covering leave

the normal and hence the tangent spaces invariant.

Now, by construction, the fibres of P are double covers of

the frame bundle of S2n and diffeomorphic to Spin(2n), hence

P is the (unique) spin bundle over S2n. Since P is a sub-bundle

of P̃ we may consider the spinor bundle Ẽ as as Spin(2n) bun-

dle E by reduction of structure group from Spin(2n+ 1) to

Spin(2n) (so both are the same as vector bundles).

Since Spin(2n+ 1) acts on Ẽ := E , its action is a subset

of the spin base transformations. Hence, E is non-trivial as

a Spin(2n) bundle, but allowing for the more general spin

base transformations, it may actually be trivialized, and we

are done for the even dimensional case.

For the case of odd dimensional spheres S2n+1, the only

difference is that the representations of Spin(2n + 1) and

Spin(2n + 2) resulting from the respective Clifford algebra

representations no longer have the same dimension, the di-

mension for Spin(2n+ 2) being twice that for Spin(2n+ 1),
and that there are two inequivalent Clifford representations in

the odd dimensional case. However, for the representations

of the Spin groups, which only consist of products of even

elements in the Clifford algebra, the even dimensional repre-

sentation is well known to be reducible (to the eigenspaces of

γ∗ for eigenvalues ±1).

Hence, we may restrict the bundle construction to one hand-

edness in the chiral representation. Thus, the dimension of the

representations do fit and we may use the same construction

as for the even dimensional case. Since the spin structure over

S2n+1 is known to be unique, it follows that the whole con-

struction does not depend on the choice involved. �

VII. CONCLUSION AND OUTLOOK

In this paper we have shown that a global differential-

geometric formulation of the spin base formalism is not only

possible, but beneficiary. It facilitates to answer global ques-

tions like possible obstructions and connections to other for-

malisms and simplifies some proofs which are rather tedious

in a local coordinate formulation.

The differential-geometric view on local spin base invari-

ance shows that the Dirac structure is indeed a global object

existing whenever spin may be defined. This is a strong hint

that the Dirac structure may indeed be a better variable than

vielbeins, which exist only as local sections of a frame bundle,

but have no global meaning. Furthermore, it turns out that the

argument “fermions exist in nature” is rather an argument in

favor of Dirac structures, and not in favor of vielbeins as vari-

ables for a quantum gravity theory with fermions. (Though,

obviously, the final decision must be made on the basis of ex-

periments and not of aesthetics and mathematical simplicity

and elegance.)

The fact that from a Dirac structure, we can always con-

struct a SpinC structure implies that the same topological ob-

structions apply to both approaches. Nevertheless, the spin

base approach is more general as it allows for additional de-

grees of freedom like spin torsion and extensions of standard

general relativity.

Apart from considering more general theories, it might be

worthwhile to study conventional approaches to quantizing
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gravity in those variables. In particular, besides studying

it from a path integral and functional renormalization group

view, it might be worthwhile to study the structure of the

constraints in a Hamiltonian/Dirac formalism approach us-

ing those variables and to check whether it may be beneficial

to formulate approaches like loop quantum gravity and spin

foams in this language.
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Appendix A: Some properties of Clifford algebras

We collect here some well known facts about Clifford alge-

bras (see e.g. Refs. 12, 13, and 27):

• For a real vector space V with possibly indefinite, but

non-degenerate scalar product <,> there is a naturally

defined real Clifford algebraCl(V ) which is obtained by

taking the tensor algebra T (V ) =R+V +V ⊗V + . . .
and dividing it by the ideal I generated by elements

x⊗ x+ < x,x > ·1. This construction is functorial and

does not require the choice of any base of V . By con-

struction, elements of V may be naturally identified

with a subset of Cl(V ) due to the fact that there are

no elements of order 1 in the ideal Ix. For those el-

ements, the Clifford relation: x · x = − < x,x > or (by

a polarization argument) {x,y}= −2 < x,y > holds by

construction.

• The Clifford algebra is a Z2-graded algebra and a Z-

filtered algebra. As a vector space, it may be identified

with Λ(V ), the exterior algebra. This is obviously not

an algebra isomorphism.

• The Clifford algebras have been completely classified,

and, depending on the signature (r,s) of <,>, they

are of the form R(n),C(n),H(n),R(n)⊕R(n),H(n)⊕
H(n) for n some power of 2, where K(n) is the space of

n× n matrices over K, and H denotes the quaternions.

• The group Pin(r,s) is defined as the product of arbitrary

elements of vi ∈ V of “length squared” ±1 in Cl(V ) :

g = v1 · .... · vk with < vi,vi >=±1.

• The double covering of O(r,s) by Pin(r,s) is defined by

g 7→ L with

Ãdg(x̂) = L̂x, (A1)

where x̂ denotes the canonical image of x ∈V in Cl(V ),

(in a local basis: xµγµ ) and Ãdg =±Adg depending on

whether g is an even or odd product of elements of V .

It can be shown that Ãdv for v ∈ V with < v,v >= ±1

corresponds under this mapping to a reflection along the

hypersurface vertical to v. Since all elements in O(r,s)
may be written as a finite product of such reflections, it

follows that this mapping is indeed onto, has kernel ±1

and thus indeed defines a double cover.

• Spin(r,s) consists of all those elements of Pin(r,s)
which are an even product of vi ∈V . By the same con-

struction, it is a double cover of SO(r,s).

• For Spin(r,s) all elements are even by definition and

hence Ãdv = Adv for v ∈ Spin(r,s).

• Complex irreducible representations are of dimension

2dγ with dγ = ⌊dim(V )/2⌋.

• In the case of dim(V ) even, there is up to equivalence

(realizable by adjoining with a GL(dγ ,C) element) only

one irreducible representation of the Clifford algebra.

As a representation of the Spin group it is reducible

and decomposes into two irreducible representations,

the Weyl representations, corresponding to eigenvalues

of ±1 of γ∗ := ipγ1 . . .γdim(V ) (p is chosen depending on

r,s such that γ∗ is self-adjoint).

• In the case of dim(V ) odd, there are up to equivalence

two such irreducible representations of the Clifford al-

gebra. They can be transformed into each other by re-

placing γ by −γ . As a representation of the Spin-group

both representations are irreducible.

Choosing a base eµ of V with corresponding γµ ∈ Cl(V ),
we conclude from Eq. (A1):

Adg(x
µ γµ) = Lν

µ xµγν

⇒ xµ (gγµg−1) = xµLν
µγν

⇒ gγµg−1 = Lν
µ γν ,

(A2)

and hence

(L−1)
µ

ρ gγµg−1 = γρ . (A3)

Note that under a Lorentz transformation a co-vector xµ trans-

forms as x′′µ = (L−1)
µ

ρ xµ , so Eq. (A3) states that γ is invari-

ant under a Spin(r,s) transformations if the space-time index

is transformed as a co-vector under the corresponding Lorentz

transformation and at the same time the “endomorphism part”

by conjugation, as induced by the representation of Spin(r,s)
on a complex vector space.

Appendix B: Metric on Cdγ

We now show the existence and - up to a scale - uniqueness

of a “metric”, i.e. an non-degenerate, but possibly indefinite
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sesqui-linear form on Cdγ with the property:

< ψ ,ψ >∗ =< ψ ,ψ >

∀v ∈V ⊂ Cl(V ) : < γ(v)φ ,ψ >∗ = (−1)s < ψ ,γ(v)φ > .

(B1)

From those properties, it follows in particular that the met-

ric is invariant under Spin0(r,s), the identity component of

Spin(r,s):

• For the Riemannian case (r = 0 or s = 0), Spin(r,0) ∼=
Spin(0,r) is simply connected. Since Spin0(r,0) =
Spin(r,0) may be represented by even products of vi

with < vi,vi >= +1, a possible minus sign in Eq. (B1)

cancels when computing < gφ ,gψ > for g = v1 . . .v2k.

• For both r,s 6= 0, Spin(r,s) has two components,

which are mapped to each other by a combination

of (in physics language) “time reversal” and “parity”.

(for both r,s ≤ 2 “time” here has to be understood

as generalized, multidimensional mathematical time,)

Spin0(r,s) may hence be identified with products of vi

with < vi,vi >= ±1, where both the number of vi with

< vi,vi >= +1 and the number of vi with < vi,vi >=
−1 are even. Hence, the minus signs cancel again in

< gφ ,gψ >, and the metric is invariant under Spin0(r,s)
(but not under Spin(r,s)).

Those properties are needed to define a physical theory with

a real Lagrangian (see Refs. 8 and 11) If one considers the

fermionic fields as anti-commuting Grassmann variables as

needed e.g. for a path integral approach, the additional mi-

nus sign in the reality condition may be accommodated for by

a factor i in the metric. For the purpose of this paper, we con-

sider the fermionic fields simply as sections in a vector bundle

without additional algebraic properties.

Existence: We use the fact that there is an explicit represen-

tation of the Dirac matrices in arbitrary dimension as a tensor

product of Pauli matrics σi, see e.g. Ref. 27. We start with

such a representation for the Riemannian case. Here, all Dirac

matrices are hermitian matrices in this representation. (Since

Ref. 27 deals with the Lorentzian case, we have to replace

γ0 by γD := iγ0, which is hermitian as well, to get the Rie-

mannian representation). Hence, for the Riemannian case we

simply set

< ψ ,φ >:= ψ† ·φ ,

which obviously fulfills Eq. (B1).

We denote the chosen Riemannian γ matrices correspond-

ing to an orthonormal base by γR
i . Then, for the general case

of signature (r,s) we set

γi :=

{
γR

i , for i = 1, . . . ,r
iγR

i , for i = r+ 1, . . . ,r+ s
.

Then, the γi obviously fulfill the Clifford relation in an or-

thonormal base of signature (r,s). We set

< ψ ,φ >:= ic ψ† · γr+1 . . .γr+s ·φ , (B2)

then an easy calculation shows that c ∈N can always be cho-

sen such that Eq. (B1) holds for all v = ei, i = 1, . . .dim(V )
and hence for all v ∈V (Here, it is important that for all γi the

same sign occurs.)

Remark. h := γr+1 . . .γr+s is the spin metric in the sense of

Refs. 8 and 11 for this special case. The need to have a spin

metric is closely connected to the occurrence of anti-hermitian

γ matrices or, in a Lie-group view, to the non-compactness of

SO(r,s) for both r,s 6= 0, which prevents the existence of finite

dimensional unitary representations.

Uniqueness up to scale: Since the metric Eq. (B2) is

non-degenerate, any other metric must be of the form <
ψ ,φ >alt=< ψ ,m · φ > for some m ∈ GL(dγ ,C). From

Eq. (B1) we conclude: γ(v)m = mγ(v) for all v ∈ V , hence

gm = mg for all g ∈ GL(dγ ,C), so m must be in the center of

GL(dγ ,C), i.e. a multiple of 11.

Appendix C: Dirac structure and representations of Clifford
bundle

For any pseudo-Riemannian manifold (M,g) with signa-

ture (r,s) there is a Clifford bundle Cl(M) which is intuitively

defined by taking this construction for each tangent space

(TqM,<,>q) for all q ∈ M, where <,>q:= gq(·, ·). It can

be checked that this indeed forms a smooth bundle over M

with typical fibre Cl(r,s) which, as a vector bundle, but not

as a bundle of algebras, is isomorphic to Λ(M), the bundle

of exterior forms over M. In particular, the Clifford bundle

exists over any pseudo-Riemannian manifold, there is no spe-

cific obstruction (though, for clarity, there are obstructions for

an arbitrary manifold to carry a Lorentzian metric as opposed

to a Riemannian metric, which always exists on a paracom-

pact smooth manifold.)

We show that the existence of a Dirac structure is equivalent

to the existence of a (fibre-wise) irreducible representation of

the Clifford bundle on a complex vector bundle E:

So first we assume the existence of such a representation:

Since the Clifford bundle fibre over a point x ∈ M is

Cl(TxM), and TxM may be canonically identified with a subset

TxM ⊂ Cl(TxM) the representation of the Clifford bundle de-

fines a linear map from TxM to the endomorphism of E . Being

a Clifford representation, it fulfills Eq. (4).

Conversely, given a Dirac structure, this defines a map

from TxM to the endomorphisms of Ex. Again, using TxM ⊂
Cl(TxM), the fact that Cl(TxM)is generated by the product

of such elements and the property Eq. (4), this map may

be uniquely extended to a Clifford map from Cl(TxM) to

End(Ex), i.e. a representation of the Clifford algebra on E

(in more categorial mathematical terms this follows from the

universality property of Clifford algebras).
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Appendix D: Connections, covariant derivatives and principal
bundles

In this section, we give a short summary of some elemen-

tary constructions with principal bundles for easy reference

for readers with little background in principal bundles and

their associated vector bundles bundles. The exposition is

informal without proofs, giving only ideas. Details may be

found in Refs. 20–23.

A principal bundle P is a smooth fibre bundle over a base

manifold M whose fibre is a Lie group G which acts by a

free and transitive group action from the right. (Smoothness

can be relaxed, but will be assumed throughout this article).

Intuitively, this means we are attaching a copy of the group G

to each point in M while “forgetting where the identity lies”,

i.e. there is no global section is this bundle. (It may be easily

seen from the definition that a global section exists iff P =
M×G, the trivial bundle).

Given a vector bundle E → M, a typical example for a prin-

cipal bundle is the bundle of frames F(E), where the fibre

over x consists of the set of all frames, i.e. of bases of the

fibre Ex. This is a principal bundle with group GL(d,R) or

GL(d,C), depending on whether the vector bundle is real or

complex. If there is an additional structure like a metric on

E , the set of frames may be restricted to orthogonal frames,

yielding a principal bundle of orthogonal/unitary frames with

structure group O(d,R) or U(d,C). If there is an orientation

defined on the fibres of a real vector bundle E , the structure

group may be further reduced to SO(d,R) by only admitting

positively oriented frames in the real. (Sligtly different con-

struction for SU(n) in the complex case.)

From the frame bundle, one may recover the original vector

bundle by constructing the adjoint vector bundle in the real

case as

E := (P×R
d)/ ∼, (D1)

where (pg−1,gv) ∼ (p,v) for all g ∈ GL(d,R). Intuitively,

this means we can define a vector in E by choosing a base and

the components of the vector in this base, but we have to iden-

tify those pairs of base and coordinates, where the coordinates

are transformed according to the base change.

For an arbitrary principal bundle P with structure group G,

a vector space V and a representation ρ of G on V , this con-

struction generalizes in an obvious way to:

E := (P×V)/∼, (D2)

with (pg−1,ρ(g)v)∼ (p,v) for all g ∈ G.

As is well known, a covariant derivative ∇ on a vector bun-

dle is a map

∇ : Γ(T M)×Γ(E)→ Γ(E), (X ,Ψ) 7→ ∇X Ψ, (D3)

such that

∇X (Ψ+ f Φ) = ∇X Ψ+ f ∇X Φ+(X · f ) Φ

∇(X+Y )Ψ = ∇X Ψ+∇Y Ψ,

for any vector fields X ,Y ∈Γ(T M), sections Ψ,Φ of the vector

bundle and function f ∈ F (M).

Less used in most of physics literature, but well known to

mathematicians, is the fact that this is essentially equivalent to

two geometric constructions on principal bundles, in particu-

lar the frame bundles:

• An invariant horizontal distribution over P, i.e. a

smooth assignment of horizontal spaces Hp ⊂ TpP to

all p ∈ P such that

TpP = Hp ⊕Vp, (Rg)∗(Hp) = Hgp.

Here, Vp is the vertical space, i.e. the tangent space to

the fibres, and (Rg)∗ means the push-forward of a vec-

tor by the right multiplication Rg by an element g ∈ G.

Note that Vp is spanned by the fundamental vector fields

ξP(p) corresponding to infinitesimal transformations on

P of the Lie algebra element ξ ∈ G of the Lie algebra

corresponding to G.

• A connection form ω on P, i.e. a globally(!) defined

one-form on P with values in the Lie algebra G such

that

ω(ξP(p)) = ξ for ξ in G, R∗
g(ω) = Adg−1ω ,

where Ad is the adjoint representation of G on G, R∗
g

denotes the pull-back of a one-form by the right mul-

tiplication Rg by an element g ∈ G, and ξP denotes the

fundamental vector field generated by ξ ∈G as above.

The connection form ω is closely related, but not identical

to the local connection form Γ on M found in most physics

literature: The latter is the pullback to M via a local section

of P, hence its coordinate expression in a local trivialization.

This explains why ω is a global object transforming tenso-

rially, whereas Γ is only locally defined and has the “weird”

transformation behaviour of connection forms under change

of local trivializing sections.

Both constructions are equivalent and uniquely define a co-

variant derivative on an associated vector bundle. A proof

may be found in Ref. 20. Essentially, the logic is as follows:

Given a horizontal distribution, we may uniquely decompose

any vector X ∈ TpP into its horizontal and vertical part. Now,

ω(Xp) is simply defined as the element ξ ∈ G such that its

fundamental vector field ξP(p) is just the vertical part of Xp.

It can be checked that ω defined in this way is indeed a con-

nection form.

Conversely, given ω , we simply define Hp := ker(ω(p)),
i.e. the horizontal vectors are precisely those Xp ∈ TpP which

are mapped to 0 by ω .

Finally, a covariant derivative on an associated E may be

defined from one of those two constructions, e.g. in a “physi-

cist’s fashion” by choosing a local section in P, pulling back

ω to M and using the standard formulas for a covariant deriva-

tive in terms of an ordinary derivative and a local connection

form and showing that this fulfills the definition of a covariant

derivative and is independent of the choice of section. Alter-

natively, the following more geometric approach may be used:

Let X be a vector field and Ψ be a section in the vector

bundle E , χ(t) an integral curve of X in M tangent to X ,
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i.e. a curve with tangent d
dt

χ(t) = X(χ(t)). Then, using the

horizontal distribution, we may define for any p ∈ P which

projects onto the curve origin χ(0) a unique horizontal lift

χ̃(t) for t ∈ [0,ε] for some ε > 0 such that the tangent vector

is horizontal (i.e. in Hχ̃(t)) for all t ∈ [0,ε].

Now, χ̃ picks a specific representative of the equivalence

class of ∼ in Eq. (D2), hence Ψ|χ may be identified with a

function ψ : t 7→ V . Now, to define the covariant derivative

at the point χ(0), we simply take the ordinary derivative in V

and the equivalence class module ∼ of (χ̃(0), d
dt

ψ(0)).

(Intuitively, what we have done is choosing a base which

is covariantly constant along the curve χ , decomposing Ψ in

this base where the coefficients now are just functions, and

using Eq. (D3) to express ∇X Ψ by an ordinary derivative in

this adjusted base.)

Hence, for an arbitrary principal bundle, a connection in

one of the two constructions uniquely defines a covariant

derivative on any associated vector bundle. In case the princi-

pal bundle is a frame bundle of E , the converse holds as well:

We may construct a horizontal distribution from ∇ defining a

connection on the principal bundle. This can be easily seen

by considering for p ∈ P a curve χ in M with starting point

x = π(p) ∈ M. Then, we may consider the horizontal lift γ̃ , a

curve in P defined by parallel transporting all basis vectors of

the frame according to ∇ along γ , thus defining a frame over

each point of γ , and its tangent vector at p (corresponding to

t = 0) is by definition horizontal. By considering a whole set

of curves χ such that its tangent span TxM, we may lift the

whole TxM to a horizontal subspace Hp ⊂ TpP. This fulfills

the requirement of a connection, hence covariant derivative

and connection on the frame bundle are equivalent. (This also

works if the structure group of the frame bundle is restricted

to some subgroup of GL(d,R).

We will use this general equivalence in section V to show

the existence of a compatible connection in a very straightfor-

ward way.

Appendix E: Elementary proof of triviality of R+ bundles

We consider an R+ principal bundle π : L → M over a para-

compact manifold M, where R
+ is a group under multiplica-

tion. Since R+ is contractible, it is a well known result from

algebraic topology that such a bundle is always trivial (see

e.g. Ref. 26). However, for easy reference we give here an

elementary proof using a partition of unity argument without

using arguments from algebraic topology:

First we note that by the group isomorphism R→R+, t 7→
et of the additive group R and the multiplicative group R,

we may equivalently consider L a principal bundle over the

additive group R. (Despite the additive structure, this is not a

priori a one dimensional vector bundle, but a principal bundle,

since the transition functions act via translations, i.e. there is

no preferred zero-section).

Let (Vi)i∈I be a locally finite covering of M and χi be a

partition of unity, i.e. a set of non-negative maps χi : M →

[0,1] such that the support of χi is contained in Vi and

∑
i

χi = 1 . (E1)

By refinement of Vi (if necessary) we may assume that L is

locally trivial over each Vi. Hence, we may choose for each i

a local section si in L.

Despite the fact that L is not a vector bundle, we may de-

fine a global section s := ∑ χis
i due to the fact that ∑i χi = 1:

This is defined on a neighbourhood U =Vi for a fixed i ∈ I as

follows:

sU(x) := ∑χi(x)(s
i)U (x), (E2)

where sU ,(si)U : U →R denote the real valued functions cor-

responding to the sections s,si under the chosen local trivial-

ization over U . This indeed defines a global section s ∈ Γ(L)
since, if W =Vk is another neighbourhood with non-empty in-

tersection with U and αUW : U ∩W → R the corresponding

transition function, then:

sW (x) := ∑χi(x)(s
i)W (x) =∑χi(x)

(
(si)U (x)+αUW (x)

)

= ∑χi(x)(s
i)U(x)+∑χi(x)αUW (x)

(E1),(E2)
= sU(x)+αUW (x),

so s transforms as a well-defined section under the transition

functions.
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