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1 Introduction and Summary

In the past few years it is observed renewed interest in the study of non-relativistic
string theories in Newton-Cartan (NC) formulation [1, 2]. Basically, NC gravity
provides covariant description of Newton’s law. However it is very remarkable that
NC description can be extended also into more broader class of theories, as for
example field theory and string theory. In fact, non-relativistic string theory was
originally introduced in 2000 in two papers [3, 4]. These theories were defined
without Newton-Cartan formalism which was firstly introduced in the context of
string theory in the remarkable paper [5], for related works, see for example [34,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Different formulation of
non-relativistic string was presented in [6] that was based on T-duality of string
theory in the background with null isometry 2. In [34] new form of non-relativistic
string theory was proposed that has interesting property that non-relativistic string
naturally couples to two form fieldmMN in the similar way as non-relativistic particle
couples to mass form mM .

This new proposal of non-relativistic string was further studied in [40] where
canonical formulation of this theory was found. We also analysed the possibility to
impose uniform light-cone gauge on this theory and found Hamiltonian on reduced
phase space. Uniform light-cone gauge was used in [35, 37, 38, 39] 3 where it was
shown that it is very efficient for the study of dynamics of the relativistic string in
AdS5 × S5. We showed in [40] that such an uniform light cone gauge fixing can be
imposed in case of non-relativistic string as well at least at the formal level.

In this paper we continue the analysis of new non-relativistic string when we focus
on its explicit formulation as non-relativistic limit of AdS5 × S5 background. Our
starting point is an important paper [41] where non-relativistic strings in AdS5×S5

was defined by specific limiting procedure. We combine this procedure with the
definition of Newton-Cartan fields as was given in [34] and we will be able to find
Newton-Cartan background fields for non-relativistic limit of AdS5×S5. Explicitly,
we find 2× 2 twobein τ A

M together with field π A
M that was introduced in [34]. Then

we will be able to determine two form mMN and hence corresponding Hamiltonian.
As the next step we study gauge fixed form of the theory when we impose uniform
light-cone gauge. Solving Hamiltonian constraint we determine Hamiltonian on the
reduced phase space. We find that the structure of this Hamiltonian depends on
the free parameter that defines generalized uniform light cone gauge [35, 37, 38, 39].
Then we study equations of motion on the reduced phase space. We show that it is
possible to have configuration with all free fields to be equal to zero and concentrate
on the dynamics of the mode z1. However then we find that the equation of motion
for z1 is solved by arbitrary function and hence does not determine dynamics of z1
at all. We mean that this is a sign that the present form of uniform light cone gauge
is not suitable for the specific form of non-relativistic string studied in this paper.

Then in order to study properties of non-relativistic string in more details we

2For related works, see [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 15].
3For review, see for example [36].
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focus on its Lagrangian equations of motion. We determine their form for general
background. Since these equations of motion are rather complicated in the full
generality we restrict ourselves to an analysis of the dynamics of single coordinate
z1. We find solution that has formally the same form as solution found recently
in [42] however there is a crucial difference since we consider extended string along
non-compact coordinate and hence we should interpret this solution as the string
with infinite number of spikes.

Let us outline our results. The main goal of this paper was to find Hamiltonian
for new non-relativistic string in AdS5 × S5 background. Performing appropriate
limit we determined components of Newton-Cartan fields and then we obtained cor-
responding Hamiltonian. We studied its gauge fixed form and we argued that the
uniform light cone gauge could be too restrictive to obtain interesting dynamics. On
the other hand it is possible that different gauge fixing procedure, as for example
static gauge, could lead to non-trivial dynamics of free world-sheet fields on AdS2

background as was shown in [41]. We also studied Lagrangian equations of motion
and we found solution corresponding to string extended along one free spatial co-
ordinate and non-trivial dynamics along of z1 coordinate that agrees with solution
found in [42].

This paper is organized as follows. In the next section (2) we review basics facts
about new non-relativistic string and its canonical formulation. Then in section
(3) we find its form in non-relativistic limit of AdS5 × S5. In section (4) we study
properties of this string in uniform light-cone gauge. In section (5) we determine
Lagrangian equations of motion and study correspoding solution. Finally in ap-
pendix (5) we perform non-relativistic limit in coordinates that were used [41] and
find corresponding Hamiltonian.

2 Review of New Non-Relativistic String and Its

Canonical Formulation

In this section we review basic facts about new non-relativistic string action as was
proposed in [34] and that has the form

S = −T

2

∫

d2σ
√
−τ [ταβhMN + ǫαβmMN ]∂αx

M∂βx
N . (1)

We firstly describe derivation of this action, following [34]. Let us introduce rela-
tivistic vielbein e a

M so that target space metric has the form

gMN = e
a
Me

b
Nηab , (2)

where we use the similar notation as in [34] so that frame indices are a, b = 0, . . . , 9
and where ηab = diag(−1, 1, . . . , 1). Note that space-time indices are M,N =
0, 1, . . . , 9. Following [34] we also introduce parametrization of NSNS two form
BMN as

BMN =
1

2
ηab(e

a
Mπ b

N − e a
N π b

M) . (3)
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To begin with let us write Nambu-Goto form of the action for relativistic string in
general background

S = −cTF

∫

d2σ
√

− det gαβ − cTF

∫

d2σ
1

2
ǫαβBαβ , (4)

where gαβ = gMN∂αx
M∂βx

N , Bαβ = BMN∂αx
M∂βx

N and where ǫ01 = 1 = −ǫ01
and TF is string tension. As in [34] we introduce indices a = (A, a) corresponding
to directions longitudinal and transverse to string world-sheet where A = 0, 1 are
longitudinal and a = 2, . . . , 9 are transverse. Then we have

e a
M = (cE A

M , e a
M) , π a

M = (cΠ A
M , π a

M) (5)

so that

gαβ = c2ηABE
A

α E B
β + δabe

a
α e b

β ,

Bαβ =
1

2
c2ηAB(E

A
α Π B

β − E A
β Π B

α ) +
1

2
δab(e

a
α π b

β − e a
β π b

α ) .

(6)

We further parametrize longitudinal components in the following way

E A
M = τ A

M +
1

2c2
π B
M ǫ A

B , Π A
M = ǫABτ

B
M +

1

2c2
π A
M ,

(7)

where ǫ A
B = ǫBCη

CA. Inserting (7) into (2) we finally get

gαβ = c2ταβ +
1

2
ηAB(τ

A
α π C

β ǫ B
C + τ B

β π C
α ǫ B

C ) + hαβ

+
1

4c2
ηABπ

C
α ǫ A

C π D
β ǫ B

D ,

(8)

where
ταβ = τ A

α τ B
β ηAB , hαβ = e a

α e b
β δab . (9)

Then it can be shown that the resulting non-relativistic action has the form

S = −T

2

∫

d2σ[
√
−τταβhαβ + ǫαβmαβ ] , (10)

where we introduced rescaled tension cTF = T and we have taken the limit c → ∞.
Finally we also introduced matrix ταβ = ταAτ

β
Bη

AB which is 2× 2 matrix inverse to
ταβ. We also introduced 2× 2 twobein ταA that obeys the condition

τ A
α τβA = δβα , τ A

α ταB = δAB . (11)

Note that mαβ = mMN∂αx
M∂βx

N that is written in (10) is defined as

mMN =
1

2
ηAB[τ

A
M π B

N − τ A
N π B

M ] +
1

2
δab[e

a
Mπ b

N − e a
N π b

M ] . (12)
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The canonical form of the action (10) was recently analysed in [40] where it was
shown that the Hamiltonian is sum of two first class constraints

H =

∫

dσ(N τHτ +NσHσ) , (13)

where

Hσ = pM∂σx
M ≈ 0 ,

Hτ = −2TΠMτMAη
ABǫBDτ

D
σ + T 2hσσ +ΠMhMNΠN ≈ 0 ,

(14)

where ΠM is defined as
ΠM = pM + TmMN∂σx

N . (15)

After the review of main properties of new non-relativistic string action we proceed
to its explicit form when we consider non-relativistic limit of AdS5 × S5.

3 Non-Relativistic AdS × S5 Background

Following general prescription reviewed in the previous section we would like to find
Newton-Cartan fields for non-relativistic limit of AdS5 × S5. Let us now consider
AdS5 × S5 background in Cartesian global coordinates where line element has the
form

ds2 = gTTdT
2 + gZiZj

dZ idZj + gΦΦdΦ
2 + gYiYj

dY idY j , (16)

where

gTT = −
(

1 + Z2

4R2

1− Z2

4R2

)2

, Z2 ≡ ZiZi , gZiZj
=

1
(

1− Z2

4R2

)2
δij ,

gΦΦ =

(

1− Y 2

4R2

1 + Y 2

4R2

)2

, gYiYj
=

(

1

1 + Y 2

4R2

)2

δij , Y 2 ≡ YiY
i ,

(17)

where i, j = 1, 2, 3, 4 and where R is common radius of AdS5 and S5. It is convenient
to write this line element as ds2 = e āe b̄ηāb̄. Then, following [41], we define non-
relativistic limit as

T → ct , Z1 → cz1 , Zm → zm, Φ → φ , Yi → yi , R = cR0 , (18)

where m = 2, 3, 4 and where non-relativistic limit corresponds to c → ∞. We start
with the vielbein e 0 that after rescaling (18) takes the form

e 0 =
1 + Z2

4R2

1− Z2

4R2

dX0 = c
1 +

z2
1

4R2

0

1− z2
1

4R2

0

dt+
1

c

zmzm

2R2
0(1−

z2
1

4R2

0

)2
dt .

(19)
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Then comparing this expression with (5) and (7) we can identify

τ 0
t =

1 +
z2
1

4R2

0

1− z2
1

4R2

0

, π 1
t = − zmzm

R2
0(1−

z2
1

4R2

0

)2
.

(20)

In the same way we proceed with e 1

e 1 =
1

(

1− Z2

4R2

)dZ1 = c
1

1− z2
1

4R2

0

dz1 +
1

c

1

4R2
0

zmzm

(1− z2
1

4R2

0

)2
dz1

(21)

so that comparing with (7) we get

τ 1

z1
=

1

1− z2
1

4R2

0

, π 0

z1
= − zmzm

2R2
0(1−

z2
1

4R2

0

)2
. (22)

In case of the e m the situation is simpler

em =
1

1− Z2

4R2

dZm =
1

1− z2
1

4R2

0

dzm

(23)

and hence

e n
zm =

1

1− z2
1

4R2

0

δ n
m . (24)

In the same way we obtain

e Φ
φ = 1 , e j

yi
= δ j

i . (25)

It is important to stress that due to the fact that R = cR0 → ∞ the φ coordinate
is effectively non-compact since original variable Φ was periodic with period 2πR.

Now we are ready to proceed to find corresponding Hamiltonian. We firstly
determine components of mMN that, using (20) and (22) have following non-zero
elements

mtz1 =
(1 +

z2
1

4R2

0

)zmzm

4R2
0(1−

z2
1

4R2

0

)3
.

(26)

Further, from the relation τ A
M τMB = δAB we obtain that there are non-zero components

of matrix inverse τMA equal to

τ t0 =
1

τ 0
t

=
1− z2

1

4R2

0

1 +
z2
1

4R2

0

, τ z11 = 1− z21
4R2

0

.

(27)
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Taking all these results into account we obtain that the Hamiltonian constraint of
non-relativistic string is equal to

Hτ = −2TΠtτ
t
0τ

1

z1
∂σz1 − 2TΠz1τ

z1
1 τ

0

t ∂σt+ pzm(1−
z21
4R2

0

)2pzm + T 2∂σz
m 1

(1− z2
1

4R2

0

)2
∂σz

m +

+p2φ + (py1)
2 + T 2(∂σφ)

2 + T 2(∂σyi)
2 ,

(28)

where
Πt = pt + Tmtz1∂1z1 , Πz1 = pz1 + Tmz1t∂1t . (29)

As the next step we would like to find uniform light-cone gauge fixing form of non-
relativistic string. Discussion of the general case was performed in [40] and here
we focus on the non-relativistic limit of AdS5 × S5. In order to impose uniform
light-cone gauge the background should possesses two abelian isometries where one
of them is t. From the form of the non-relativistic background it is clear that the
second one can be either φ or yi where now φ is non-compact. Without lost of
generality we select φ as the second coordinate with isometry.

As the next step we introduce light-cone coordinates and momenta [35, 36, 37]

x− = φ− t , x+ =
1

2
(φ+ t) + αx− ,

p+ = pφ + pt , p− =
1

2
(pφ − pt)− αp+ ,

(30)

with inverse relations

φ = x+ + x−(
1

2
− α) , t = x+ − x−(

1

2
+ α) ,

pt = p+(
1

2
− α)− p− , pφ = p− + p+(

1

2
+ α) ,

(31)

where α is free parameter. Let us insert these relations to the Hamiltonian constraint
given above and we get

Hτ = −2T ((p+(
1

2
− α)− p−) + Tmtz1∂σz1)τ

t
0τ

1

z1
∂σz1 −

−2T (pz1 + Tmz1t(∂σx
+ − ∂σx

−(
1

2
+ α)))τ z11 τ

0

t ∂σ(x
+ − x−(

1

2
+ α)) +

+pzm(1−
z21
4R2

0

)2pzm + T 2∂σz
m 1

(1− z2
1

4R2

0

)2
∂σz

m +

+(py1)
2 + T 2(∂σyi)

2 + (p− + p+(
1

2
+ α))2 + T 2(∂σx

+ + ∂σx
−(

1

2
− α))2 .

(32)
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Now we are ready to impose uniform light-cone gauge by introducing following gauge
fixing functions [35]

G+ ≡ x+ − τ ≈ 0 , G− = p− − T ≈ 0 , a =
1

2
+ α . (33)

Clearly G+,G− have non-zero Poisson brackets with Hτ ,Hσ and hence together
form set of second class constraints that vanish strongly. As a result constraints
Hτ = 0,Hσ = 0 can be explicitly solved. We firstly solve Hσ = 0 for ∂σx

− and we
get

T∂σx
− = −pyi∂σy

i − pzm∂σzm − pz1∂σz1 ≡ −H̃σ .

(34)

Further, Hamiltonian constraint Hτ = 0 can be solved for p+ which is related to the
Hamiltonian on the reduced phase space as Hred = −p+. To do this we insert ∂σx

−

given in (34) into (32) and using also (33) we get quadratic equation for p+

−2T (1− a)p+τ
t
0τ

1

z1
∂σz1 + 2T 2(1−mtz1∂σz1)τ

t
0τ

1

z1
∂σz1 −

−2(pz1 +mz1tH̃σa)τ
z1
1 τ

0

t (aH̃σ) +

+pzm(1−
z21
4R2

0

)2pzm + T 2∂σz
m 1

(1− z2
1

4R2

0

)2
∂σz

m +

+(py1)
2 + T 2(∂σyi)

2 + T 2 + 2Tp+a+ a2p2+ + H̃2

σ(1− a)2 = 0

(35)

that can be solved for p+ as

p+ =
T (1− a)τ t0τ

1
z1 ∂σz1 − Ta

a2
− 1

2a2

√
K ,

(36)

where we defined K as

K = [2T (1− a)τ t0τ
1

z1 ∂σz1 − 2Ta]2 − 4a2
(

2T 2(1−mtz1∂σz1)τ
t
0τ

1
z1 ∂σz1−

−2(pz1 +mz1tH̃σa)τ
z1
1 τ

0

t aH̃σ +

+pzm(1−
z21
4R2

0

)2pzm + T 2∂σz
m 1

(1− z2
1

4R2

0

)2
∂σz

m + (py1)
2 + T 2(∂σyi)

2 + T 2 + (1− a)2H̃2

σ



 .

(37)

Previous form of the Hamiltonian density on the reduced phase space is valid for
a 6= 0. Explicitly, it is not valid for α = −1

2
, that, according to [35, 36, 37], defines

temporal gauge

φ = x+ + x− , t = x+ , pt = p+ − p− , pφ = p− . (38)
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In this case we should start again with the Hamiltonian constraint (32) that for
a = 0 has the form

Hτ = −2Tp+τ
t
0τ

1

z1 ∂σz1 + 2T 2(1−mtz1∂σz1)τ
t
0τ

1

z1 ∂σz1 +

+pzm(1−
z21
4R2

0

)2pzm + T 2∂σz
m 1

(1− z2
1

4R2

0

)2
∂σz

m +

+(pyi)
2 + (∂σyi)

2 + T 2 + (H̃σ)
2 = 0

(39)

that can be solved for p+ as

p+ =
1

2Tτ t0τ
1

z1 ∂σz1
[2T 2(1−mtz1∂σz1)τ

t
0τ

1

z1
∂σz1 +

+pzm(1−
z21
4R2

0

)2pzm + T 2∂σz
m 1

(1− z2
1

4R2

0

)2
∂σz

m + (pyi)
2 + T 2(∂σy)

2 + T 2 + H̃2

σ] .

(40)

Let us return to (32) and determine its explicit form for some special cases. For
α = 0 we get uniform light-cone gauge when

φ = x+ +
1

2
x− , t = x+ − 1

2
x− , pt =

1

2
p+ − p− , pφ = p− +

1

2
p+ , (41)

where p+ is equal to

p+ = 2[Tτ t0τ
1

z1
∂σz1 − T ]− 2

√
K ,

K = [Tτ t0τ
1

z1 ∂σz1 − T ]2 − [2T 2(1−mtz1∂σz1)τ
t
0τ

1

z1 ∂σz1 − (pz1 +
1

2
mz1tH̃σ)τ

z1
1 τ

0

t H̃σ +

+pzm(1−
z21
4R2

0

)2pzm + T 2∂σz
m 1

(1− z2
1

4R2

0

)2
∂σz

m + (py1)
2 + T 2(∂σyi)

2 + T 2 +
1

4
H̃2

σ] .

(42)

Finally we can consider special case when α = 1

2
corresponding to a = 1. In this

case we find

p+ = −T − 1

2

√
K ,

K = 4T 2 − 4(2T 2(1−mtz1∂σz1)τ
t
0τ

1

z1
∂σz1 − 2(pz1 +mz1tH̃σ)τ

z1
1 τ

0

t aH̃σ +

+pzm(1−
z21
4R2

0

)2pzm + T 2∂σz
m 1

(1− z2
1

4R2

0

)2
∂σz

m + (py1)
2 + T 2(∂σyi)

2 + T 2) .

(43)

We see that the case α = −1

2
is exceptional since in this case the Hamiltonian

density on the reduced phase space is quadratic in momenta while generally the
Hamiltonian has square root structure. In the next section we will analyse some
classical solutions of the equations of motion on the reduced phase space.
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4 Properties of Non-Relativistic String in Uni-

form Light-Cone gauge

In this section we will discuss properties of non-relativistic string theory on reduced
phase space. First of all we consider equations of motion for yi, pyi, zm, pm that due
to the fact that the background fields do not depend on them have the form

∂τyi = {yi, Hred} =
1

2a2
√
K
(T 2pyi + (. . . )∂σyi) ,

∂τzm = {zm, Hred} =
1

2a2
√
K
((1− z21

4R2
0

)2pzm + (. . . )∂σzm) ,

(44)

where Hred =
∫

dσHred and where (. . . ) mean terms which are not important for
us. The equations above can be solved by the ansatz zm = pzm = yi = pyi = 0. In
fact, this ansatz also solves equations of motion for pzm and pyi . As a result we can
consider Hamiltonian density for z1 only that has the form

Hz1
red = −T (1− a)τ t0τ

1
z1
∂σz1 − Ta

a2
+

1

2a2

√
K ,

K = [2T (1− a)τ t0τ
1

z1
∂σz1 − 2Ta]2 −

−4a2(2T 2τ t0τ
1

z1 ∂σz1 − 2pz1τ
z1
1 τ

0

t apz1∂σz1 + T 2 + (1− a)2(pz1∂σz1)
2) .

(45)

In order to find equation of motion for z1 it is convenient to find Lagrangian from
(45). To do this we firstly determine canonical equation of motion using (45)

∂τz1 =
1

4a2
√
K
(8a2τ z11 τ

0
t a∂σz1 − 2(1− a)2(∂σz1)

2)pz1 .

(46)

Then Lz1
red is given by standard formula

Lz1
red = pz1∂τz1 −Hz1

red =
T (1− a)τ t0τ

1
z1 ∂σz1 − Ta

a2
−

−T

a

√

(1− a)2(τ t0τ
1

z1 ∂σz1)
2 − 2aτ t0τ

1
z1 ∂σz1 + a4(τ 1

z1 τ
t
0)

2(∂τz1)2 =

=
T (1− a)g∂σz1 − Ta

a2
− T

a

√
B ,

(47)

where we introduced g and B defined as

g ≡ τ t0τ
1

z1 , B = (1− a)2g2(∂σz1)
2 − 2ag∂σz1 + a2g2(∂τz1)

2 . (48)
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Note also that (47) is valid for a 6= 0. Then performing variation of (47) we get
following equation of motion for z1

− 1√
B
(1− a)2gg′(∂σz1)

2 + ∂σ[
1√
B
g2∂σz1]−

ag

2

1

B3/2
∂σB−

−a4
gg′√
B
(∂τz1)

2 + a4∂τ [
g2√
B
∂τz1] = 0 .

(49)

This is rather complicated equation and it is difficult to solve it in the full generality.
On the other hand we can certainly gain in sign into its form when we consider
some simpler ansatz as for example zz = zz(τ). However it turns out that this is too
restrictive since it is easy to see that the equation above is solved for any z1(τ). It is
possible that more general ansatz could be desirable but we are not going proceed
along this way.

we rather proceed to the more interesting situation when a = 0. It is easy to
see that as in general case a 6= 0 we can consistently set pm = zm = yi = pyi = 0 so
that the reduced Hamiltonian density has the form

Hz1
a=0 = − 1

2Tg∂σz1
[2T 2g∂σz1 + T 2 + p2z1(∂σz1)

2] .

(50)

Then the first canonical equation has the form

∂τz1 = {z1, Hz1
a=0} = − 1

Tg
pz1∂σz1 (51)

so that Lagrangian density has the form

Lz1
a=0 = pz1∂τz1 −Hz1

a=0 = − Tg

2∂σz1
(∂τz1)

2 + T∂σz1 .

(52)

It is easy to derive corresponding equation of motion for z1

− T

2

dg

dz1

(∂τz1)
2

∂σz1
− T∂σ

[

g

2

(∂τz1)
2

(∂σz1)2

]

+ T∂τ

[

g

∂σz1
∂τz1

]

= 0 .

Clearly this equation has solution z1 = z1(σ) for any function z1. On the other hand
let us consider an ansatz z1 = f(σ − vτ) so that ∂τz1 = −vf ′ , ∂σz1 = f ′ and
hence the equation of motion has the form

−T

2

dg

dz1
v2f ′ − T

2
v2∂σg − Tv∂τg = −T

dg

dz1
v2f ′ + Tv2

dg

dz1
f ′ = 0 .

(53)

In other words this equation is obeyed by any function f(σ − vτ). This is again
interesting property of non-relativistic string in uniform light-cone gauge.
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5 Lagrangian Equations of Motion

In this section we find equations of motion of new-non-relativistic string with appli-
cation to the AdS5 × S5 case. Recall that the Lagrangian has the form

S = −T

2

∫

d2σ[
√
−τταβhαβ + ǫαβmαβ ] . (54)

From this action we derive following equations of motion for xM

1

2

√
−τ∂MτKL∂αx

K∂βx
Lτβατγδhγδ − ∂α[

√
−τταβτMN∂βx

Nτγδhγδ] +

+
√
−τταβ∂MhKL∂αx

K∂βx
L + ǫγδ∂MmKL∂γx

K∂δx
L −

−
√
−τταδ∂MτKL∂δx

K∂γx
Lτ δβhβα + 2∂α[

√
−ττγατMN∂βx

Nτβδhδγ ]−
−2∂α[

√
−τταβhMN∂βx

N ]− 2∂α[ǫ
αβmMN∂βx

N ] = 0 .

(55)

These equations of motion are very complicated in the full generality and we rather
proceed in different way when we try to analyse non-relativistic string in AdS5×S5

background. As in previous section we consider an ansatz zm = yi = 0 so that we
are interested in dynamics of t and z1 only. We further presume that world-sheet
time τ coincides with t and also that φ coincides with σ. Explicitly, we presume
following ansatz

t = κτ , φ = σ , z1 = f(σ − vτ) . (56)

Inserting this ansatz into action (54) we obtain

S =
T

κ

∫

d2σ

[

g
1

f ′
+

v2

g
f ′

]

, g =

√

− τtt
τz1z1

, f ′ ≡ df

dx
, x = σ − vτ . (57)

Performing variation of (57) with respect to f we get following equation

dg

df

1

f ′
+

d

dx

(

g

f ′2

)

− v2

g2
dg

df
f ′ − v2

d

dx

(

1

g

)

= 0

(58)

that can be simplified into the form

1

f ′

d

dx

(

g

f ′

)

= 0 .

(59)

The first integral of this equation is equal to

g

f ′
= K , (60)
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where K is constant. Then using the fact that g(f) = 1+ f2

4R2

0

we obtain final result

f = 4R0| tan
K(σ − vτ)

4R0

| . (61)

Note that this is similar solution as was discussed recently in [42] and that has phys-
ical interpretation as an infinite array of spikes on the world-sheet of non-relativistic
string that is extended along φ direction. Certainly it could be possible to consider
more general ansatz and analyse corresponding equations of motion in the similar
way as in [42].

Appendix: Non-relativistic string in AdS5 × S5 in
an alternative set of coordinates

In this appendix we present formulation of non-relativistic string in AdS5 × S5

background using coordinates that were introduced in [41]. In this formulation
the vector indices for AdS5 are labelled with m = 0, 1, 2, 3, 4 while for S5 we
have m′ = 1′, 2′, 3′, 4′, 5′ with the flat metric ηmn = diag(−1, 1, 1, 1, 1) and δm′n′ =
diag(1, 1, 1, 1, 1). Then vielbein has following form

e 0 = dT cosh ρ , ρ =

√

XaηabXb

R
, e 1 = dX1 cosh ρ cos

T

R
,

e a = dXa + dXb(η a
b − XbX

a

ρ2R2
)(
sinh ρ

ρ
− 1) ,

e m′

= dXm′

+ dXn′

(η m′

n′ − Xn′Xm′

r2R2
)(
sin r

r
− 1) , r =

√
Xm′δm′n′Xn′

R
,

(62)

where a = 2, 3, 4. Let us now take non-relativistic limit in the form

T = ωt , X1 = ωx1 , R = ωR0 , (63)

so that we obtain

e 0 = cdt(1 +
ρ̂2

2c2
) ,

(64)

from which we can deduce following components of τ A
M and π A

M

τ 0

t = 1 , π 1

t = −ρ̂2 , ρ̂ =
√
xaxa/R0 . (65)

We further have

e1 = cdx1(1 +
ρ̂2

2c2
) cos

t

R0

(66)

that again implies

τ 1

1 = cos
t

R0

, π 0

1 = −ρ̂2 cos
t

R0

. (67)
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Finally we have

e a = dxa + dxb(η a
b − xbx

a

ρ̂2R2
0

)(1 +O(c−3)− 1) = dxa . (68)

Now we are ready to proceed to find corresponding Hamiltonian. As the first step
we determine following non-zero components of mMN

mt1 = ρ̂2 cos
t

R0

. (69)

Further, from the relation τ A
M τMB = δAB we obtain that there are non-zero components

τ t0 =
1

τ 0
t

= 1 , τ 11 =
1

cos t
R0

(70)

so that Hamiltonian constraint is equal to

Hτ = −2TΠt cos
t

R0

∂σx
1 − 2TΠ1

1

cos t
R0

∂σt+

+pxaδabpxb + T 2∂σx
aδab∂σx

b + pm′δm
′n′

pn′ + T 2∂σx
m′

δm′n′∂σx
n′

,

(71)

where
Πt = pt + Tmt1∂σx

1 , Π1 = p1 + Tm1t∂σt . (72)

Form of the Hamiltonian constraint implies that it is not possible to impose uniform
light-cone gauge due to its explicit dependence on t. Certainly it is possible to study
non-relativistic string in the background defined by (65) and (67) but the Lagrangian
formulation is the same as in [41] which is well known and hence we will not study
it in this paper.
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généralisée. (première partie) (Suite).,” Annales Sci. Ecole Norm. Sup. 41

(1924), 1-25

[3] J. Gomis and H. Ooguri, “Nonrelativistic closed string theory,” J. Math. Phys.
42 (2001), 3127-3151 doi:10.1063/1.1372697 [arXiv:hep-th/0009181 [hep-th]].

13

http://arxiv.org/abs/hep-th/0009181


[4] U. H. Danielsson, A. Guijosa and M. Kruczenski, “IIA/B, wound
and wrapped,” JHEP 10 (2000), 020 doi:10.1088/1126-6708/2000/10/020
[arXiv:hep-th/0009182 [hep-th]].

[5] R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo, “’Stringy’ Newton-
Cartan Gravity,” Class. Quant. Grav. 29 (2012), 235020 doi:10.1088/0264-
9381/29/23/235020 [arXiv:1206.5176 [hep-th]].

[6] T. Harmark, J. Hartong and N. A. Obers, “Nonrelativistic strings and lim-
its of the AdS/CFT correspondence,” Phys. Rev. D 96 (2017) no.8, 086019
doi:10.1103/PhysRevD.96.086019 [arXiv:1705.03535 [hep-th]].

[7] E. A. Bergshoeff, J. Lahnsteiner, L. Romano, J. Rosseel and C. Simsek, “Non-
Relativistic Ten-Dimensional Minimal Supergravity,” [arXiv:2107.14636 [hep-
th]].

[8] J. Hartong and E. Have, “On the Non-Relativistic Expansion of Closed Bosonic
Strings,” [arXiv:2107.00023 [hep-th]].

[9] C. D. A. Blair, D. Gallegos and N. Zinnato, “A non-relativistic limit of M-theory
and 11-dimensional membrane Newton-Cartan,” [arXiv:2104.07579 [hep-th]].

[10] E. A. Bergshoeff, J. Lahnsteiner, L. Romano, J. Rosseel and C. Şimşek,
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