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We extend the double copy picture of scattering amplitudes to a class of matrix elements (so-called
form factors) that involve local gauge invariant operators. Both the Bern, Carrasco and Johansson
(BCJ) and the Kawai, Lewellen and Tye (KLT) formalisms are considered and novel properties are
observed. One remarkable feature is that through the double-copy construction, certain spurious
poles hidden in the gauge form factors become physical propagators in gravity. This mechanism
also reveals new hidden relations for form factors which can be understood as a generalization of
the BCJ relations.

INTRODUCTION

Despite the very different nature, gauge and gravity the-
ories are known to be intimately related. In paricular,
the perturbative amplitudes in gauge and gravity theo-
ries are related via the double copy as “gravity = (gauge
theory)2”, realized in various formalisms including the
Kawai, Lewellen and Tye (KLT) relations [1], the Cac-
hazo, He and Yuan (CHY) formula [2, 3] and especially
the Bern, Carrasco and Johansson (BCJ) double copy
stemming from the color-kinematics (CK) duality [4, 5]
(see [6] for an excellent review).

Apart from scattering amplitudes that only involve on-
shell asymptotic states, gauge invariant local operators
also play important roles in gauge theories, and it is nat-
ural to ask: does a consistent double-copy picture exist
for physical quantities involving local operators? Never-
theless, the answer is not obvious at all, since for exam-
ple, local operators in gravity would break the diffeomor-
phism invariance.

In this paper, we make a concrete step towards ad-
dressing this question, by realizing both BCJ and KLT
double copy for form factors. Form factors (FFs) are de-
fined as matrix elements between a gauge invariant oper-
ator O and n on-shell states [9–11] (see [12] for a recent
introduction and review),

FO,n =

∫

dDxe−iq·x〈1 2 . . . n|O(x)|0〉 , (1)

where q =
∑n
i=1 pi is the off-shell momentum associated

with the operator. Although CK duality has been applied
to compute high-loop FFs in gauge theories [13–17], it re-
mains open problems about how to “double-copy” those
results and what the interpretations are in gravity theo-
ries. In our new double-copy realization, a careful con-
sideration on the operator-induced relations is essential,
which reveals several novel features.

One intriguing feature is that special spurious poles

appear in the construction of CK-dual numerators in
gauge-theory FFs, and after double copy they become
new physical propagators in the gravity quantities, i.e.

spurious poles
double-copy−−−−−−−−→ physical propagators.

Besides, the factorizations on the new propagators in
gravity imply that the gauge-theory FFs satisfy hidden
relations shown schematically as

~v · ~Fn
∣

∣

ssp=0
= Fm ×An+2−m, (2)

where the special kinematics of spurious pole ssp = 0 is
considered. The ~v vectors are rational functions of Man-
delstams similar to the BCJ vectors in the BCJ relations
for amplitudes [4], and (2) may be also understood as
generalized BCJ relations for FFs.
In this letter, we explain these properties using tree-

level FFs Ftr(φ2) in the Yang-Mills-scalar (YMS) theory.
Similar mechanism also applies to a much wider range
of FFs, such as Fψ̄ψ in QCD which are equivalent to a
class of Higgs amplitudes. Therefore, our discussion also
provides for the first time a double copy for amplitudes
involving a color singlet particle. We will discuss various
generalizations at the end of the paper.

INVITATION: A THREE-POINT EXAMPLE

The new features of the form-factor double copy can be
mostly illustrated by considering the simple three-point
FF F 3(1

φ, 2φ, 3g) in YMS (see details of the theory in
Supplemental Materials). In this example, there are two
cubic Feynman diagrams Γa,b as given in Figure 1, and
the full-color FF can be written as

F 3(1
φ, 2φ, 3g) =

CaNa(ε3, {pi})
s23

+
CbNb(ε3, {pi})

s13
, (3)

http://arxiv.org/abs/2111.12719v2
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Γa Γb
φ(p1)

q

φ(p2)

g(p3)

φ(p1)

q

φ(p2)

g(p3)

FIG. 1. Feynman diagrams for the three-point gauge-theory
FF. The blue thick line represents operator insertion carrying
total momentum q. The black straight line and the wiggle
line are scalars and gluons respectively.

where Ca,b are color factors, and Na,b are kinematic nu-
merators depending on momenta pi, i = 1, 2, 3 and the
gluon polarization vector ε3. We emphasize that the op-
erator only couples to the scalar lines and Ca=Cb=f

123

since the color factor of the operator is a δ-function in
color space.
To obtain the double copy, one can square the kine-

matic numerators and propose the following quantity in
gravity:

G3(1
φ, 2φ, 3h) =

N2
a (ε3, {pi})
s23

+
N2
b (ε3, {pi})
s13

. (4)

If G3 is a well-defined quantity in gravity, it must
be invariant under the diffeomorphism transformation,
which acts on the graviton polarization tensor as

εµν3 →εµν3 +p
(µ
3 ξ

ν). Here εµν3 =ε
(µ
3 ε

ν)
3 with the brackets in-

dicating the symmetric-traceless part and and ξ is a ref-
erence vector satisfying ξ·p3=0. However, if naively plug-
ging in the numerators from Feynman rules for Na,b, one
easily finds that the diffeomorphism invariance is broken.
The key condition to restore the invariance is the color-

kinematics duality, as in the amplitude cases [4, 5]. Given
the aforementioned color relation Ca=Cb, one can require
the numerators to satisfy a parallel relation, defined as
operator-induced dual relations, and get

Na = Nb =
s13s23
s13 + s23

F3(1
φ, 3g, 2φ) , (5)

where F3 is the color-ordered three-point FF. Note that
the CK-dual numerators are uniquely determined and
manifestly gauge invariant. With this solution, the G3

proposed in (4) is given as

G3 =
s13s23
s13 + s23

(

F3(1
φ, 3g, 2φ)

)2
, (6)

which is indeed diffeomorphism invariant [18].
Getting G3 diffeomorphism invariant is not a free lunch

though. In particular, the numerators (5) contain a spu-
rious pole s13+s23. In the gauge-theory FF, this pole is
cancelled by summing up the two terms in (3); however,
after double copy it becomes a real pole in (6). Does this
pole have a physical meaning in gravity?
Remarkably, the pole s13+s23 = −(s12−q2) looks like

a massive Feynman propagator, and the residue of G3 on
this “spurious” pole can be nicely organized as

Res [G3]s12=q2 =
(

F2(1
φ, 2φ)

)2×(A3(q
S
2 , 3

g,−qS))2, (7)

Γa
φ(p1)

S(q)

φ(p2)

h(p3)
Γb

φ(p1)

S(q)

φ(p2)

h(p3)

Γc
S(q) φ(p1)

φ(p2)h(p3)

FIG. 2. Feynman diagrams in gravity for the double copy
of the three-point FF. The thick blue line in this case is the
massive scalar with mass m2 = q2. The doubled wiggle line
represents a graviton. Note that Γc is a new diagram required
by the factorization property (9) on the new pole.

where F2(1
φ, 2φ) = 1 is the minimal FF, and

A3(q
S
2 , 3

g,−qS) = 2ǫ3 · q , with q2 = p1 + p2, (8)

is the three-point planar amplitude of a gluon and one
pair of massive scalars S with mass m2=q2=q2

2, see
e.g. [19]. In this sense, (7) can be interpreted as a fac-
torization formula

Res [G3]s12=q2 = G2(1
φ, 2φ) M3(q

S
2 ,−qS , 3h) , (9)

where G2=
(

F2

)2
is the double copy of the minimal FF,

and M3(q
S
2 ,−qS , 3h)=

(

A3(q
S
2 , 3

g,−qS)
)2

is the three-
point amplitude of a graviton coupled to two massive
scalars (such amplitudes appear extensively in the grav-
itational wave studies via double copy, see e.g. [20]).
The factorization property (9) implies that the spuri-

ous pole s13+s23 in gauge theory should be understood as
a physical pole in gravity! Indeed, it represents the fac-
torization of the Feynman diagram Γc in Figure 2. The
appearance of this new diagram is natural since gravitons
couple to everything including the “operator” leg.
Furthermore, one can check that G3 matches the ex-

pression from summing up all the three Feynman dia-
grams of Figure 2 in gravity: Γa and Γb contribute to
the s13 and s23 poles while the s13+s23 pole is from Γc.
In addition, by taking the “square-root” of the double

copy factorization (7), one can get an intriguing relation
for the gauge-theory FF as the simplest example for (2):

s13F3(1
φ, 3g, 2φ)

∣

∣

s12=q2
= F2(1

φ, 2φ) A3(q
S
2 , 3

g,−qS) .
(10)

We can summarize the main features in the three-point
example as:

1. Diffeomorphism invariance requires that the nu-
merators satisfy complete CK-dual relations, in
particular those induced by the operator insertion;

2. Such numerators contain poles which are spurious
poles in gauge theory but can be interpreted as
physical poles in gravity, on which the double-copy
result factorizes as a product of double copies of
the lower-point FF and amplitude;

3. The gravity factorization implies an interesting re-
lation for the gauge-theory FF. While the three-
point example seems too simple, we show below
that the same features hold for higher-point cases.
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FIG. 3. Cubic diagrams for the four-point FF in F 4.

GENERAL DOUBLE COPY

To generalize the above discussion to higher points, we
develop a systematic way to obtain the CK-dual numer-
ators and the KLT-type double copy. We consider the
four-point FF F 4(1

φ, 2φ, 3g, 4g) as an explicit example,
and the generalization to n-point is straightforward.
As in the three-point case, we first express the four-

point FF in terms of eight cubic diagrams shown in Fig-
ure 3:

F 4(1
φ, 2φ, 3g, 4g) =

∑

Γi

CiNi
D(Γi)

, (11)

where D(Γi) is the propagators of Γi. Since the color
factor of the operator is a δ-function, the eight Cis take
only three different values, and we can classify the dia-
grams into three groups accordingly. For instance, the
first three graphs Γs:i, i=1, 2, 3 share the same color fac-
tor Cs=f

a1a3bf ba4a2 ; and Γt:i and Γu:i have color factors
Ct and Cu respectively. The three color factors satisfy
the Jacobi relation Cs=Ct+Cu like the four-point ampli-
tude.
For the purpose of double copy, the CK duality is re-

quired, which asks the numerators to satisfy

Ns:1 = Ns:2 = Ns:3 = Ns , Nt:1 = Nt:2 = Nt ,

Nu:1 = Nu:2 = Nu:3 = Nu , Ns = Nt +Nu . (12)

Consequently, the FF can be written as

F 4 =
CsNs
Ps

+
CtNt
Pt

+
CuNu
Pu

, (13)

with P−1
s ≡

∑3
i=1(D(Γs:i))

−1, and Pt,u are defined like-
wise. Alternatively, since Cs, Cu form a color basis, F 4

can be expanded using color-ordered FFs F4 as

F 4 = CsF4(1, 3, 4, 2) + CuF4(1, 4, 3, 2) , (14)

which is the Del Duca-Dixon-Maltoni (DDM) color de-
composition [21].
Matching (14) with (13), one finds the following rela-

tion:

~F4 = ΘF
4 · ~N4 , ~F4 =

(

F4(1, 3, 4, 2)
F4(1, 4, 3, 2)

)

, ~N4 =

(

Ns
Nu

)

,

(15)

where ΘF
4 is a matrix of propagators as

ΘF
4 =

( 1
Ps

+ 1
Pt

− 1
Pt

− 1
Pt

1
Pt

+ 1
Pu

)

. (16)

One can check that ΘF
4 has full rank [22] and thus by sim-

ply inverting (16) one obtains the CK-dual numerators
as

N4[α] =
∑

β∈S2

SF
4 [α|β]F4[β], SF

4 ≡
(

ΘF
4

)−1
, (17)

where α, β label the vector/matrix components in (15).
These CK-dual numerators contain spurious poles (such
as (21)) which are introduced by SF

4 , and we will discuss
more on this shortly.
Given the CK-dual numerators (17), one can perform

the double copy to get the gravitational quantity as [23]

G4 =
N2
s

Ps
+
N2
t

Pt
+
N2
u

Pu
=
∑

α,β∈S2

F4[α]S
F
4 [α|β]F4[β], (18)

which is manifestly diffeomorphism invariant. Such a bi-
linear form is very similar to the KLT form for ampli-
tudes, and SF

4 serves as the (four-point) KLT kernel.
Clearly, (18) can be easily generalized to n-points (2

scalars plus n−2 gluons) such that the double copy in the
KLT form is

Gn =
∑

α,β∈Sn−2

Fn[α]SF
n [α|β]Fn[β] , (19)

where SF
n ≡ (ΘF

n )
−1 is the n-point KLT kernel deter-

mined by the propagator matrix ΘF
n and Fn[α] are color-

ordered FFs in the DDM basis.
We have verified that the double copy construction is

consistent with physical requirements by considering all
factorization channels. The factorizations on “physical”
poles (appearing in the gauge FFs) are similar to ordi-
nary amplitudes, and the main concern here is about the
new “spurious”-type poles. Below we show that they in-
deed become physical propagators on which Gn has nice
factorization properties, as in the three-point case.

“SPURIOUS” POLES AND FACTORIZATIONS

The sign of the “spurious” poles first appear in the deter-
minant of the propagator matrices ΘF . In the four-point
example above, one finds

det(ΘF
4 ) =

(q2 − s12)(q
2 − s123)(q

2 − s124)

s13s14s23s24s34s134s234
. (20)

Importantly, the numerators of det(ΘF
4 ) is a product of

“spurious” poles such as s123−q2. Similar structures ex-
tend to higher-point cases, where the matrix ΘF

n can be



4

φ(p1)

φ(p2)

h(p4)

G2
h(p3)

M4

S(q) S(q)

(a) (b) (c)

G3
φ(p1)

h(p3)

φ(p2)

h(p4)
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h(p4)
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M3
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FIG. 4. Factorization of G4 on the three new poles.

rather complicated but its determinant remains strik-
ingly simple, and its numerator are composed of “spu-
rious” poles.
The information of poles of the KLT kernel SF is pro-

vided by the zeros of det(ΘF). Specified to SF
4 , there are

only simple poles {s12−q2, s123−q2, s124−q2} like massive
Feynman propagators [24]. For higher n-point cases, we
have explicitly checked that SF

n also exhibits only simple
poles like (s(12··· )−q2), where · · · represents gluon mo-
menta, up to highly non-trivial seven points.
Furthermore, the numerators N4 also have only the

spurious-type simple poles. For example, Ns in (15) can
be given as

Ns =− 2 (fµν3 f4,νρp1,µp
ρ
2)

(s12 − q2)
+

4 (fµν3 p1,µp2,ν) (f
µν
4 p2,µqν)

(s12 − q2)(s123 − q2)

+
4 (fµν4 p1,µp2,ν) (f

µν
3 p1,µqν)

(s12 − q2)(s124 − q2)
, (21)

where fµνi =εµi p
ν
i−ενi pµi . Consequently, the pole structure

of SF and N guarantees that the double copy G contains
the spurious-type simple poles.
It is necessary to check such new poles are well-defined

physical poles in Gn. For G4, the factorizations on the
three new poles are presented in Figure 4, e.g., on the
pole s123−q2 it can be written as

Res [G4]s123=q2 =G3(1, 2, 3) M3(q
S
3 ,−qS, 4h) , (22)

where q3=p1+p2+p3. As in the three-point case, these
factorization relations show that new Feynman diagrams
(with massive propagators) contribute.
For the generic n-point cases, we have

Res [Gn]q2m=q2 = Gm(1, ..,m)Mm′(qSm,−qS ,m+ 1, .., n) ,

(23)
where qm =

∑m
i=1 pi, m

′ = n+2−m and Mm′ is an m′-
point amplitude of gravitons coupled to a pair of massive
scalars. We have checked this up to seven points.

HIDDEN RELATION OF GAUGE-THEORY FFS

The double-copy factorization relations (23) imply new
relations for gauge FFs. For instance, (22) implies the
following relation for F4

(~v4 · ~F4)
∣

∣

s123=q2
= F3(1

φ, 3g, 2φ) A3(q
S
3 , 4

g,−qS) , (24)

where the (row) vector ~v4 and (column) vector ~F4 are

~v4 = (τ42, τ42 + τ43) , ~F4 =

(

F4(1, 3, 4, 2)
F4(1, 4, 3, 2)

)

, (25)

with τij=2pi · pj [25]. One may notice that this is remi-
niscent of the BCJ relation for four-point amplitudes [4]:

τ42A4(1, 3, 4, 2) + (τ42 + τ43)A4(1, 4, 3, 2) = 0 . (26)

Here the RHS of (24) is not zero; instead, it offers a
relation involving FFs with different numbers of external
legs and scalar-Yang-Mills amplitudes.

Similar relations exist for higher-point cases taking the
schematic form as (2). Such a general n-point relation is

n
∑

i=3

τn,(2+i+..+(n−1))Fn(1, 3, .., i− 1, n, i, .., n− 1, 2)
∣

∣

q2
n−1=q

2

= Fn−1(1, 3, .., n− 1, 2)A3(qn−1, n,−q), (27)

where qn−1 =
∑n−1
i=1 pi and τn,(j+..+k)=2pn ·(pj+ ..+pk).

A proof for this relation for MHV FFs and complete re-
lations for four and five-point FFs are given in Supple-
mentary Materials.

The bridge between the gauge theory relation (24) and
the gravity factorization (22) is a decomposition relation
of SF

4 , in which ~v4 also plays a central role. Concretely,
for the 2× 2 matrix SF

4 , we have

Res
[

SF
4

]

s123=q2
= ~vT

4 · (SF
3 ⊗ SA

3 ) · ~v4 , (28)

where SF
3 is a 1×1 matrix

(

s13s23
s13+s23

)

in (6) and SA
3 =

(

1
)

is the KLT kernel for three-point amplitudes. Thus, we
can derive (22) from (24)

Res [G4]q2
3=q

2 = F4 · Res
[

SF
4

]

· F4

∣

∣

q2
3=q

2 (29)

= (~v4 · F4)(S
F
3 ⊗ SA

3 )(~v4 · F4)
∣

∣

q2
3=q

2

= (F3A3)(S
F
3 ⊗ SA

3 )(F3A3)

= (F3 · SF
3 · F3)(A3 · SA

3 · A3) = G3M3.

For the generic n-point case, one has the similar decom-
position as (28), reading

Res
[

SF
n

]

q2
m=q2

= VT

n · (SF
m ⊗ SA

m′) ·Vn , (30)

where the matrix SF
n is not full-ranked when taking the

residue and can be factorized into SF
m⊗SA

m′ through the
(rectangular) matrix Vn. Here Vn is a matrix as a col-
lection of BCJ-like vectors ~v (like ~v4); and interestingly,
such ~v vectors are exactly those appearing in the hidden
factorization relation (2). As a direct consequence, sim-
ilar to (29), (23) can be derived assuming (2) and (30).
We explain these relations in more detail in Supplemen-
tary Materials.
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DISCUSSION

A wide range of generalizations for the above FF double
copy can be realized:

1. An important generalization is for the double copy
of amplitudes involving a color singlet particle. One
notable case is the FFs of a bilinear quark operator
ψ̄ψ, which are equivalent to the tree-level ampli-
tudes A(qH , 1ψ̄, 2ψ, 3g, . . . , ng) in QCD involving a
color singlet Higgs particle (m2

H=q2). The corre-
sponding double-copy quantities are the amplitudes
of Higgs plus two photons and an arbitrary num-
ber of gravitons. See Supplementary Materials for
further details.

2. Double copy for FFs with more than two exter-
nal scalar lines are also achieved. These FFs can
involve either high-length operators tr(φL) or the
tr(φ2) operator but with bi-adjoint-scalar interac-
tions in the theory. For instance, for three scalars,
the double copy of Ftr(φ3) and Ftr(φ2) with three
scalar states can be obtained which involve simple
spurious poles like (s123···−q2).

3. A double-copy prescription for the FFs of tr(F 2)
with pure gluons is possible and engages a gauge
invariant expansion and a mixture of different BCJ
numerators appearing in this expansion.

4. The CK-dual numerators, like (21), have interest-
ing structures reminiscent of the HEFT BCJ nu-
merators constructed from kinematic Hopf algebra
[26, 27]. Such a connection to the Hopf algebra
leads to an all-multiplicity closed formula for the
master numerators, see [28].

All these generalizations will be discussed in detail in
[29, 30].
We mention some other problems associated with the

observations made in this paper:

• An important natural question is to apply the
above tree-level picture to the loop level. In partic-
ular, the previous studies of CK-dual FFs [13–17]
considered only Jacobi relations, and further un-
derstanding about the operator-induced relations
will be crucial for the loop-level double copy.

• Our finding suggests that a more general class of
KLT matrices containing spurious poles can be
physically meaningful, and it would be interesting
to explore this using the KLT bootstrap method
[31].

• Our double copy is valid in D-dimension, and it is
interesting to pursue a CHY formula [2, 3](and the
corresponding double copy) for FFs, generalizing
the previous 4-dimensional connected description

of FFs [32, 33]. In this direction, noting that the
propagator matrix ΘF can be regarded as the FF
in bi-adjoint scalar theory [34–36] could be helpful.
See some recent progress in [37].

• As in the original KLT prescription [1], it would be
very interesting to have a string theory generaliza-
tion for the KLT-like formula (19) and also find a
Z-function [38, 39] that encodes the α′-expansion
for FFs.

• Finally, conjectured closed formulae for the BCJ-
like relations (2) of FFs will be given in [30]. Having
a better understanding and proof, using the field
theory [40] or in particular the string theory meth-
ods [41, 42], should be fascinating.
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Supplemental material

I. Some details of the scalar-YM theory and the Higgs theory

For reader’s convenience, we provide some details about the theories we mentioned in the main text.

Scalar-YM theory

The action of the scalar-Yang-Mills theory can be chosen as

LφYM = −1

2
tr(FµνF

µν) +
1

2
tr(DµφDµφ) . (31)

The gauge field Aµ = AaµT
a and the scalar φ = φaT a are both in the adjoint representation, where T a are the

generators of gauge group satisfying [T a, T b] = ifabcT c. The covariant derivative acts as Dµ · = ∂µ ·+ig[Aµ, · ], and
[Dµ, Dν ] · = ig[Fµν , · ]. An n-point form factor of the operator tr(φ2) is defined as the following matrix element:

Fn(1
φ, 2φ, 3g, . . . , ng) =

∫

dDx e−iq·x〈φ(p1)φ(p2) g(p3) . . . g(pn)|tr(φ2)(x)|0〉 . (32)

The two-point minimal form factor is simply

F 2(1
φ, 2φ) = (2π)4δ(4)(q − p1 − p2)δ

a1a2 , (33)

which has a trivial kinematic part equal to one, and one can make a double-copy directly. Thus the first interesting
case is the three-point case as discussed in the main text. The Feynman diagrams for the three-point case is clearly
given as in Figure 1.
The form factor can be understood as a tree-level amplitude in the the following theory

LφYM-Higgs = −1

2
tr(FµνF

µν) +
1

2
tr(DµφDµφ) +Htr(φ2) +

1

2
∂µH∂µH − 1

2
m2
HH

2 , (34)

where φ = φaT a is a charged scalar while H is a color-singlet scalar, and

Fn ⇒ A
φYM-Higgs
n+1 (1φ, 2φ, 3g, . . . , ng, qH) = 〈φ(p1)φ(p2) g(p3) . . . g(pn)|H(q)〉 . (35)

Via double-copy, one has the gravitational theory

LφGra-Higgs =
√−g

( 1

16πG
R+

1

2
gµν∂µφ∂νφ+Hφ2 +

1

2
gµν∂µH∂νH − 1

2
m2
HH

2
)

, (36)

and the corresponding map is

Aaµ → hµν , φa → φ , H → H , (37)

where both φ and H are scalars in the gravitational theory. At tree-level, the double-copy of the form factor can be
understood as the amplitude in the gravitational theory as

Gn ⇒ MφGra-Higgs
n+1 (1φ, 2φ, 3h, . . . , nh, qH) = 〈φ(p1)φ(p2)h(p3) . . . h(pn)|H(q)〉 . (38)

Generalization to Standard Model Higgs amplitudes

As mentioned in the discussion section, our double copy procedure can be applied to amplitudes involving the
Standard Model Higgs particle. The related Lagrangian of the theory is given as

LQCD-Higgs = −1

2
tr(FµνF

µν) + iψ̄γµDµψ +Hψ̄ψ +
1

2
∂µH∂µH − 1

2
m2
HH

2 , (39)
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where H is the color-singlet Higgs, and ψ, ψ̄ are the quark and anti-quark in fundamental representation (here for
simplicity we consider the flavor number to be one). The Higgs amplitudes that contain two external quarks and n−2
gluons are equivalent to the n-point form factor of the operator O = ψ̄ψ:

A(qH , 1ψ̄, 2ψ, 3g, . . . , ng) = F ψ̄ψ(1
ψ̄, 2ψ, 3g, . . . , ng) . (40)

Since there are two fundamental quarks, it should be clear that the trivalent diagrams have the same structure as
that of F (1φ, 2φ, 3g, . . . , ng). Importantly, this implies that the propagator matrix ΘF

n of F ψ̄ψ(1
ψ̄, 2ψ, 3g, . . . , ng) is

also exactly the same as the latter. Like (19), we have

G̃n =
∑

α,β∈Sn−2

Fn[1ψ̄, α, 2ψ]SF
n [α|β]Fn[1ψ̄, β, 2ψ] . (41)

Consider the three-point case as an explicit example. There are two trivalent diagrams similar to that in Figure 1,
which also share the same color factor. The color-ordered three-point form factor can be obtained using e.g. Feynman
diagrams as

F3(1
ψ̄, 3g, 2ψ) =

1

2

(

1

s13
+

1

s23

)

u1,α ( /f3)
α
β v

β
2 +

2p1 · f3 · p2
s13s23

u1,αv
α
2 . (42)

The CK duality then requires the CK-dual numerator to be (same as (5))

NF
3 [1ψ̄, 3g, 2ψ] =

1

2
u1,α ( /f3)

α
β v

β
2 − 2p1 · f3 · p2

s12 − q2
u1,αv

α
2 . (43)

The corresponding gravitational quantity via double copy is

G̃3 =
s13s23
s13 + s23

(

F3(1
ψ̄, 3g, 2ψ)

)2

. (44)

We have checked this for higher-point cases. More details will be presented in another work.
Finally, we mention that the double-copy quantities at tree level can be understood as Higgs amplitudes

M(qH , 1g, 2g, 3h, . . . , nh) in the gravitational theory

LGra-Higgs =
√−g

( 1

16πG
R− 1

4
FµνF

µν +HFµνF
µν +

1

2
gµν∂µH∂νH − 1

2
m2
HH

2
)

. (45)

Here the double-copy map is

Aaµ → hµν , ψi → AU(1)

µ , H → H , (46)

where the double copy of a (massless) fermion becomes a photon while the operator HO = Hψ̄ψ representing the
Yukawa coupling becomes now HFµνFµν .

II. New factorization relations for four- and five-point form factors

In this appendix, we give complete generalized BCJ vectors for four- and five-point form factors and the related
identities. We use the notation qm =

∑m
i=1 pi, τij = 2pi · pj and τn,(j+..+k) = 2pn · (pj + ..+ pk).

The four-point case

The four-point case has two types of factorization relations, corresponding to (A) two-particle s12 = q2 and (B)
three-particle s123 = q2 spurious poles (the result for the s124 = q2 pole can be obtained by a trivial relabeling),

respectively. Introducing the form factor basis ~F4 as a (column) vector

~FT

4 = {F4(1, 3, 4, 2),F4(1, 4, 3, 2)} ,
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we have

(~vA4 · ~F4)
∣

∣

s12=q2
= F2(1

φ, 2φ) A4(q
S
2 , 3

g, 4g,−qS) , (47)

(~vB4 · ~F4)
∣

∣

s123=q2
= F3(1

φ, 3g, 2φ) A3(q
S
3 , 4

g,−qS), (48)

where

~vA4 =
{τ31τ42
τ3q2

,
τ32τ41
τ3q2

}

, ~vB4 = {τ42, τ42 + τ43} , (49)

with τij = 2pi · pj . The vectors ~v also appear in the decomposition of the KLT kernel as

Res
[

SF
4

]

s12=q2
= (~vA4 )

T
(

SF
2 ⊗ SA

4

)

~vA4
∣

∣

s12=q2
, (50)

Res
[

SF
4

]

s123=q2
= (~vB4 )T (SF

3 ⊗ SA
3 ) ~v

B
4

∣

∣

s123=q2
. (51)

Besides, we also give explict form of the four-point propagator matrix ΘF
4 and the KLT kernel SF

4 :

ΘF
4 =

( 1
s13s24

+ 1
s13s134

+ 1
s34s134

+ 1
s24s234

+ 1
s34s234

− 1
s34s134

− 1
s34s234

− 1
s34s134

− 1
s34s234

1
s23s14

+ 1
s14s134

+ 1
s34s134

+ 1
s23s234

+ 1
s34s234

)

, (52)

SF
4 =

(

s13s24s34(s134s234+s14s134+s23s234)
(s12−q2)(s123−q2)(s124−q2)

−∆t ∆t

∆t
s14s23s34(s134s234+s24s234+s13s134)

(s12−q2)(s123−q2)(s124−q2)
−∆t

)

. (53)

where ∆t =
s13s14s23s24
s12−q2

(

1
s123−q2

+ 1
s124−q2

)

.

The five-point case

The five-point case has three types of generalized BCJ vectors, corresponding to the (A) s12 = q2, (B) s123 = q2 and

(C) s1234 = q2 poles respectively. We introduce the form factor basis ~F5 as the following vector

~FT

5 = {F5(1, 3, 4, 5, 2),F5(1, 3, 5, 4, 2),F5(1, 4, 3, 5, 2),F5(1, 4, 5, 3, 2),F5(1, 5, 3, 4, 2),F5(1, 5, 4, 3, 2)} .

(A) For the factorization on the s12 = q2 pole, one has

(~vA,σ5 · ~F5)
∣

∣

s12=q2
= F2(1

φ, 2φ) A5(q
S
2 , 3

g, σ{4g, 5g},−qS) , (54)

where σ ∈ {1, σ2} = S2 and the two corresponding vectors are

~vA,15 =

{

τ31τ52
τ5q

(τ4,(1+3)

τ3q2

+ 1
)

,
τ31τ42τ5,(1+3)

τ3q2τ5q
,−τ32τ41τ52

τ3q2τ5q
,−τ32τ41τ5,(2+3)

τ3q2τ5q
,
τ31τ42τ51
τ3q2τ5q

,−τ32τ51
τ5q

(τ4,(2+3)

τ3q2

+ 1
)

}

,

(55)

~vA,σ2

5 =

{

τ31τ52τ4,(1+3)

τ3q2τ4q
,
τ31τ42
τ4q

(τ5,(1+3)

τ3q2

+ 1
)

,
τ31τ41τ52
τ3q2τ4q

,−τ31τ42
τ4q

(τ5,(2+3)

τ3q2

+ 1
)

,−τ32τ42τ51
τ3q2τ4q

,−τ32τ51τ4,(2+3)

τ3q2τ4q

}

.

(56)

One can combine the two vectors to form a 2×6 matrix:

VA
5 =

(

~vA,15

~vA,σ2

5

)

, (57)

and it appears in the decomposition of the KLT kernel as

Res
[

SF
5

]

s12=q2
= (VA

5 )
T ·
(

SF
2 ⊗ SA

5

)

·VA
5

∣

∣

s12=q2
. (58)

(B) For the factorization on the s123 = q2 pole, one has

(~vB5 · ~F5)
∣

∣

s123=q2
= F3(1

φ, 3g, 2φ) A4(q
S
3 , 4

g, 5g,−qS) , (59)
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where the generalized BCJ vectors are

~vB5 =

{

τ4,(1+3)τ52

τ4q3

,
τ42τ5,(1+3)

τ4q3

,
τ41τ52
τ4q3

,
τ41τ5,(2+3)

τ4q3

,
τ42τ51
τ4q3

,
τ4,(2+3)τ51

τ4q3

}

, (60)

and it satisfies

Res
[

SF
5

]

s123=q2
= (~vB5 )T ·

(

SF
3 ⊗ SA

4

)

· ~vB5
∣

∣

s123=q2
. (61)

Similar results for the s124 = q2 or s125 = q2 pole can be obtained by a trivial relabeling.
(C) For the factorization on the s1234 = q2 pole, one has

(~vC,σ5 · ~F5)
∣

∣

s1234=q2
= F4(1

φ, σ{3g, 4g}, 2φ) A3(q
S
4 , 3

g,−qS) , (62)

where σ ∈ {1, σ2} = S2 and the two corresponding vectors are

~vC,15 = {τ52, τ5,(2+4), 0, 0, τ5,(2+3+4), 0}, (63)

~vC,σ2

5 = {0, 0, τ52, τ5,(2+3), 0, τ5,(2+3+4)}. (64)

One can combine the two vectors to form a 2×6 matrix:

VC
5 =

(

~vC,15

~vC,σ2

5

)

, (65)

and it appears in the factorization of the KLT kernel as

Res
[

SF
5

]

s1234=q2
= (VC

5 )
T ·
(

SF
4 ⊗ SA

3

)

·VC
5

∣

∣

s1234=q2
. (66)

We will not give the explicit form of ΘF
5 (and SF

5 ), but only give its determinant which has the following nice
structure as promised in the main text:

det(ΘF
5 ) =

[

(q2 − s12)
∏

3≤i<j≤5(q
2 − s12ij)

]2∏5
i=3(q

2 − s12i)
[

s1345s2345
∏

(ij) 6=(12) sij
]2
s345

∏

3≤i<j≤5(s1ijs2ij)
. (67)

We also point out that the power of the propagators have clear physical meanings and will be explained in [? ].

III. A proof for the general factorization relation (27) for MHV form factors

We consider the generalized BCJ relation (27) in the main text, which are reproduced here:

Fn−1(1, 3, . . . , n− 1, 2) A3(qn−1, n,−q) (68)

=

[

τn2Fn(1, 3, . . . , n, 2) +
n−1
∑

i=3

τn,(2+i+···+(n−1))Fn(1, 3 . . . , i− 1, n, i . . . , n− 1, 2)

]
∣

∣

∣

∣

q2
n−1=q

2

,

where qn−1 =
∑n−1

i=1 pi. We will give a recursive proof of this relation for the four-dimensional MHV form factors of
tr(φ2), expressed as

Fn(1φ, σ{3+, . . . , n+}, 2φ) = 〈12〉2
〈1σ(3)〉 · · · 〈σ(n)2〉〈21〉 . (69)

To prove (27), we perform a standard BCFW shift, that is the 〈21]-shift: |2̂〉 = |2〉 − z|1〉, |1̂] = |1] + z|2]. We first
focus on the LHS, in which only Fn−1(1, 3, . . . , n− 1, 2) is affected by the shift. We define

EL(z) =
1

z
Fn−1(1̂, 3, . . . , n− 1, 2̂; z)A3(qn−1, n,−q) , (70)



11

so that Res[EL(z)]z=0 gives the LHS of (27). Apart from z = 0, EL have only one other pole on the complex plane
zP = 〈2(n− 1)〉/〈1(n− 1)〉, on which the MHV form factors factorize as (here P = p2 + pn−1)

Res[EL(z)]z=zP = −Fn−2(1̂, 3, . . . , P̂ ; zP )
1

s2(n−1)
A3(2̂, n− 1,−P̂ ; zP )A3(qn−1, n,−q) . (71)

For the RHS of (27), we can define ER similarly as

ER(z) =
1

z

[

τn2̂Fn(1̂, 3, . . . , n, 2̂; z) +
n−1
∑

i=3

τn,(2̂+i+···+(n−1))Fn(1̂, 3, . . . , i− 1, n, i . . . , n− 1, 2̂; z)
]
∣

∣

∣

q2
n−1=q

2
. (72)

First we point out that the condition q2
n−1 = q2 will not be spoiled by the shift since p̂1 + p̂2 = p1 + p2. Next we

examine the possible poles of ER(z). For the form factors in the sum, only zP pole appears. For the first form factor
Fn(1̂, 3, . . . , n, 2̂; z), naively one may expect a pole 〈2n〉/〈1n〉; however, it is canceled by the τn2̂ = 〈2n〉[n2]−z〈1n〉[n2]
factor. Moreover, we need to be careful about the pole at infinity: although the MHV form factors themselves do
not contribute to the pole at infinity, the τ factors do. One can compute the corresponding residue for each term in
ER(z) as

Res
[

τn,(2̂+··· )Fn(1̂, σ{3, . . . , n}, 2̂)
]

z=∞
=

〈1n〉[n2]〈21〉
〈1σ(3)〉 · · · 〈σ(n)1〉 . (73)

where σ can be arbitrary permutations, and it turns out that the sum of the residues actually vanishes:

Res[ER(z)]z=∞ =

n
∑

i=3

〈1n〉[n2]〈21〉
〈13〉 · · · 〈(i − 1)n〉〈ni〉 · · · 〈(n− 1)1〉 = 0 , (74)

which is equivalent to an (n − 1)-point U(1) decoupling relation. Therefore, we find that ER have also only the zP
pole (apart from the z = 0 one). And the residue is

Res[ER(z)]z=zP = −
n−1
∑

i=3

τ
n,(P̂+i+···+(n−2))Fn−1(1̂, 3, . . . , i− 1, n, i . . . , P̂ ; zP )

1

s2(n−1)
A3(2̂, n− 1,−P̂ ; zP )

∣

∣

q2
n−1=q

2 .

(75)
Comparing (71) and (75), one can see that Res[EL(z)]z=zP = Res[ER(z)]z=zP by using a (n−1)-point relation (68),

and the residue theorem guarantees that Res[EL(z)]z=0 = Res[ER(z)]z=0, so that (68) is valid for the n-point case.

IV. Further detail about n-point double copy and hidden factorization relations

Here we discuss detailed notations of the generic n-point form factor double copy and hidden factorization relations.
We start from the generalized factorization relations (2) for the generic n-point case which reads in a more precise

form as
∑

α∈Sn−2

~v(κ̄,ρ̄)[α]Fn[α]
∣

∣

q2
m=q2

= Fm[κ̄]Am′ [ρ̄] ≡ (FA)(m,m′) [κ̄, ρ̄] , (76)

with qm =
∑m

i=1 pi and m′ = n − m + 2. Here Fm[κ̄] and Am′ [ρ̄] are the color-ordered m-point form factors and
m′-point amplitudes defined explicitly as

Fm[κ̄] ≡ Fm(1, κ̄{3, . . . ,m}, 2), κ̄ ∈ Sm−2;

Am′ [ρ̄] ≡ Am′(qm,m+ 1, ρ̄{m+ 2, . . . , n},−q), ρ̄ ∈ Sm′−3 .
(77)

For the form factors, we use the DDM basis, and for amplitudes, we use the BCJ basis with qm, q and (m + 1)
(adjacent to qm) fixed. From (76), we see that the generalized BCJ vectors ~v(κ̄,ρ̄) depend on the ordering (κ̄, ρ̄) of the
basis amplitudes and form factors, and each of them is assigned a generalized BCJ relation.
To relate (2) to the gravitational factorization property as in (23), one observe that the same vectors ~v(ρ̄,κ̄)[α] also

induce a decomposition of the KLT matrix SF
n :

Res
[

SF
n [α1|α2]

]

q2
m=q2

=
∑

κ̄1,2∈Sm−2

ρ̄1,2∈Sm′
−3

~v(κ̄1,ρ̄1)[α1]
(

SF
m[κ̄1|κ̄2]⊗ SA

m′ [ρ̄1|ρ̄2]
)

~v(κ̄2,ρ̄2)[α2] . (78)
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This equation can be regarded as a matrix product, as shown in the schematic equation (30) in the main text, and
the collection of ~v(ρ̄,κ̄)[α] form a (m− 2)!(m′ − 3)!× (n− 2)! matrix denoted as V in (30). Explicit examples can be
found in the previous five-point examples such as (57) and (65).
A nice consequence of (76) and (78) is the factorization formula of the gravity theory (23):

Res [Gn]q2
m=q2 =

∑

α1,2

Fn[α1]Res
[

SF
n

]

[α1|α2]Fn[α2]
∣

∣

q2
m=q2

=
∑

κ̄,ρ̄

(FA)(m,m′) [κ̄1, ρ̄1]
(

SF
m[κ̄1|κ̄2]⊗ SA

m′ [ρ̄1|ρ̄2]
)

(FA)(m,m′) [κ̄2, ρ̄2]

=
∑

κ̄1,2

Fm[κ̄1]S
F
m[κ̄1|κ̄2]Fm[κ̄2]

∑

ρ̄1,2

Am′ [ρ̄1]S
A
m′ [ρ̄1|ρ̄2]Am′ [ρ̄2] = GmMm′ ,

(79)

which is a detailed n-point generalization of (29) in the paper.
We make a remark that the derivation (79) shows that once we acknowledge the validity of two properties: (1)

the generalized BCJ relation (76), which is practically easier to check in gauge theories, and (2) the decomposition
of the KLT kernel (78), which is irrelevant to the specific theory or operator, there is no need to worry about the
factorization on the new q2

m = q2 poles exposed by double copy. This is a crucial step to confirm that Gn is indeed a
physically meaningful quantity in gravity.
Other physical requirements are easier to address, such as the manifest diffeomorphism invariance and factorization

properties on the physical poles, i.e. those poles appearing already in gauge form factors. To argue the latter point,
it is more convenient to look at an alternative form of the KLT double copy

Gn =
∑

α,β∈Sn−2

Nn[α] Θ
F
n [α|β]Nn[β] . (80)

Since ΘF
n can be understood as the form factor in the bi-adjoint scalar theory, it also has a factorization on, say the

P 2
m = s(1i1...im) = 0 pole, so that Res

[

ΘF
n

]

P 2
m=0

= UT · (ΘA
m+2 ⊗ ΘF

n−m) ·U. Here U is the orthogonal complement

of BCJ vectors for amplitudes, relevant only to the ΘF block. The numerators can also factorize schematically
U · ~Nn

∣

∣

P 2
m=0

= Nm+2Nn−m. Thus, starting from (80) and performing some refinements similar to (79), we have

Res [Gn]P 2
m=0 =

(

Nm+2Θ
A
m+2Nm+2

)

×
(

Nn−mΘF
n−mNn−m

)

= M̃m+2Gn−m , (81)

here M̃ refers to gravity amplitudes with only massless scalar φ and gravitons. We finally comment that a similar
analysis with exactly the same U applies to amplitudes, which conversely increases our confidence on (81) for form
factors.


