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What can CMB observations tell us about the neutrino distribution function?
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Cosmic Microwave Background (CMB) observations have been used extensively to constrain key
properties of neutrinos, such as their mass. However, these inferences are typically dependent on
assumptions about the cosmological model, and in particular upon the distribution function of
neutrinos in the early Universe. In this paper, we aim to assess the full extent to which CMB
experiments are sensitive to the shape of the neutrino distribution. We demonstrate that Planck
and CMB-S4-like experiments have no prospects for detecting particular features in the distribution
function. Consequently, we take a general approach and marginalise completely over the form of the
neutrino distribution to derive constraints on the relativistic and non-relativistic neutrino energy
densities, characterised by Neff = 3.0±0.4 and ρNR

ν,0 < 14 eV cm−3 at 95% CL, respectively. The fact
that these are the only neutrino properties that CMB data can constrain has important implications
for neutrino mass limits from cosmology. Specifically, in contrast to the ΛCDM case where CMB and
BAO data tightly constrain the sum of neutrinos masses to be

∑
mν < 0.12 eV, we explicitly show

that neutrino masses as large as
∑
mν ∼ 3 eV are perfectly consistent with this data. Importantly,

for this to be the case, the neutrino number density should be suitably small such that the bound
on ρNR

ν,0 =
∑
mνnν,0 is still satisfied. We conclude by giving an outlook on the opportunities that

may arise from other complementary experimental probes, such as galaxy surveys, neutrino mass
experiments and facilities designed to directly detect the cosmic neutrino background.

GitHub: Parameter files for MCMC analysis and code to reproduce all plots can be found here.

I. INTRODUCTION

Neutrino masses represent the only laboratory evidence
for physics beyond the Standard Model of Particle
Physics (SM) [1, 2]. Although neutrino oscillation ex-
periments have accurately measured the mass-squared
differences between the three active neutrinos [3–5], at
present, we still do not actually know what the abso-
lute mass of any neutrino is. Currently, the best labora-
tory bound on the neutrino mass comes from the KA-
TRIN experiment that reports mνe < 0.8 eV at 90%
CL [6, 7]. In addition, and also from the laboratory, we
know from the KamLAND-Zen experiment that the ef-
fective Majorana neutrino mass is bounded to be mββ <
(0.061 − 0.165) eV at 90% CL [8]. This implies that if
neutrinos are Majorana particles, they should likely have
a mass mν < 0.48 eV1 [8]. Here m2

νe ≡
∑
i |Uei|2m2

i ,
where Uei are leptonic mixing matrix elements and mi

are the masses of the neutrino mass eigenstates. In ad-
dition, mββ =

∣∣∑
imiU

2
ei

∣∣ is the effective Majorana mass
relevant to neutrinoless double beta-decay experiments.

Massive neutrinos have important cosmological im-
plications [11–13], and as such, cosmological observa-
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1 In several scenarios beyond the Standard Model, there are other

potential contributions to mββ , see e.g. [9, 10]. Such contribu-
tions could interfere destructively with the one arising from the
active neutrinos and lead to a situation where active Majorana
neutrinos have a mass mν & 0.48 eV.

tions have been used to set relevant constraints on their
properties. In particular, within the standard cosmo-
logical model (ΛCDM), the Planck collaboration re-
ports

∑
mν =

∑
imi < 0.12 eV at 95% CL [14] (see

also [15, 16]) by using very precise observations of the
Cosmic Microwave Background (CMB) together with
Baryon Acoustic Oscillations (BAO) data [17–19]. This
cosmological bound is very important, because i) it is
based on linear cosmology, namely, it is derived in a
regime for which the growth of cosmological perturba-
tions is under full theoretical control, see e.g. [20], and ii)
it is significantly more stringent than current laboratory
constraints on mν . However, it is important to emphasise
that cosmological constraints on the neutrino mass are
cosmological-model dependent. In particular, in order to
derive this Planck constraint, one assumes the standard
Big-Bang model expectation that neutrinos decoupled
from the rest of the primordial plasma at a temperature
of T ∼ 2 MeV, and that they follow a frozen Fermi-Dirac
distribution with Tν/Tγ ' (4/11)1/3 ' 0.71 [21, 22].
Given the elusive nature of neutrinos and the relevance
of cosmological constraints on the neutrino mass, it is
pertinent to explore alternatives to this assumption.

In this work, we revisit the idea that neutrinos may
not follow a Fermi-Dirac distribution and study the CMB
implications of such a scenario. Here, we take a general
perspective, and aim to understand the full extent to
which CMB observations are sensitive to features in the
neutrino distribution function. In fact, as we explicitly
demonstrate, current CMB observations are only really
sensitive to the energy density of neutrinos, both when
they are ultra-relativistic, as parameterised by Neff , and
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when they are non-relativistic, which we denote by ρNR
ν

(or equivalently Ωνh
2). Importantly, this data-driven re-

sult is directly relevant to cosmological constraints on the
neutrino mass. In particular, since current CMB data
are only sensitive to ρNR

ν =
∑
mνnν , where nν is the

neutrino number density, it follows immediately that cos-
mologies where the number density of neutrinos is smaller
than the one predicted in the Standard Model can lead
to a (substantial) relaxation of the cosmological neutrino
mass bound. This is particularly timely, as the KATRIN
experiment is running and should achieve a sensitivity of
mν < 0.2 eV at 90% CL within the next four years [23].
If a neutrino mass detection is reported by the KATRIN
collaboration, neutrinos with a distribution function that
deviates from the one in the SM would represent a clear
possibility to reconcile precise cosmological observations
and laboratory measurements that would appear contra-
dictory within the context of ΛCDM.

Before continuing, we note that several aspects of this
possibility have been studied in the literature [24–27].
In particular, back in 2005, Ref. [24] considered the
cosmological implications of Fermi-Dirac neutrinos sup-
plemented by an additional non-standard neutrino pop-
ulation. More recently, Ref. [25] examined neutrinos
with a distribution function that interpolates between
Fermi-Dirac and Bose-Einstein, Ref. [26] explored the
implications of scenarios with mild distortions to the
Fermi-Dirac spectrum, and Ref. [27] investigated scenar-
ios where neutrinos follow a Fermi-Dirac distribution but
with a lower temperature than the one expected in the
Standard Model. These references highlighted the role of
the neutrino distribution function on the neutrino mass
bound, but typically focused on individual examples that
are relatively close to the Fermi-Dirac one. In contrast,
in this work, we take a broader perspective and consider
a wider array of possible neutrino distribution functions,
and explicitly demonstrate that the CMB is not sensitive
to particular features of the distribution. We will focus
on the non-relativistic neutrino energy density as the key
quantity in this regard, since it is already well known that
constraints on Neff are insensitive to the precise form of
the neutrino distribution function [13].

Whilst the main focus of our study is the effect of the
neutrino distribution function on CMB observations, Big
Bang Nucleosynthesis (BBN) can also be used to place
constraints on the neutrino distribution function (albeit
in a different epoch). More explicitly, the synthesis of
the primordial light elements requires the presence of
neutrinos for two main reasons (see e.g. [28]). Firstly,
neutrinos are directly involved in the inter-conversion of
protons and neutrons in the primordial plasma (via e.g.
νe+n↔ p+e−), and secondly, the energy density in neu-
trinos impacts the expansion rate of the Universe in this
early epoch. As such, BBN has been used to place con-
straints on the neutrino distribution, see e.g. [25, 29–31],
and on the abundance of relativistic (neutrino) species
in the early Universe, see [32–34] for the latest anal-
yses. The key takeaway messages from these studies

are: i) that successful nucleosynthesis requires the pres-
ence of neutrinos at the time of proton-to-neutron freeze-
out (t ∼ 1 s, T ∼ 0.7 MeV), ii) that these neutrinos
should roughly interact at the same rate with protons
and neutrons as expected in the standard scenario, and
iii) that the number of ultra-relativistic neutrino species
contributing to the expansion of the Universe at the time
should be Neff ' 3 ± 0.3. In other words, BBN tells us
that neutrinos should have been present in the first few
minutes of the Universe with broadly the properties ex-
pected in the Standard Model.

However, there is a simple reason why, in spite of the
constraints from BBN, it is important to independently
consider the implications of non-standard neutrino dis-
tributions on the CMB. Specifically, it is the fact that
BBN probes the neutrino distribution at t . 3 min, leav-
ing plenty of time after which the neutrino distribution
could have changed significantly. This could have hap-
pened, for example, as a result of the interactions be-
tween neutrinos and other species beyond the Standard
Model [35]. Therefore, although BBN does offer a win-
dow to test the neutrino distribution function, there ex-
ists a period of time – after nucleosynthesis is complete
– where changes in the neutrino distribution may be in-
visible to observations of both the CMB and the light
element abundances. Therefore, in this analysis, we will
consider at face value the implications of alternative neu-
trino distribution functions for CMB observations.

The remainder of this paper is structured as follows:
Firstly, in Sec. II, we briefly review the cosmological im-
plications of massive neutrinos. Next, in Sec. III, we con-
sider a set of widely different neutrino distribution func-
tions to explicitly show that current CMB observations
are really only sensitive to the energy density of neutri-
nos when they are non-relativistic, and not directly to
their mass or distribution. Within the context of these
concrete examples, we also explore the optimal sensitiv-
ity of Planck and future CMB-S4 experiments to changes
in the neutrino distribution. We find that in both cases
there is no sensitivity to features in the neutrino distri-
bution function. In Sec. IV, we use a flexible parametri-
sation of the neutrino distribution, together with an ad-
ditional dark radiation component, to find marginalised
constraints on the energy density of ultra-relativistic and
non-relativistic neutrinos. We also summarise our main
results, include a discussion regarding the ability to relax
the neutrino mass bound in cosmology, and make a direct
comparison to previous works. In Sec. V, we explore some
of the model building implications from BBN and explain
how our bounds can be used to determine whether theo-
retical scenarios to produce non-standard neutrino distri-
bution functions are viable, given our limits. In Sec. VI,
we present our main conclusions. Finally, in Sec. VII, we
briefly comment on the potential implications of the neu-
trino distribution function for measurements of the mat-
ter power spectrum with future galaxy surveys. More-
over, we motivate the physics case of searches for non-
standard neutrino populations at future terrestrial neu-
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FIG. 1. Evolution of the energy density in neutrinos (red), photons, cold dark matter, baryons and dark energy (black) within
ΛCDM. The difference between the massive (solid) and massless (dashed) neutrino curves highlights that only the former makes
the transition from a relativistic, radiation-like species to a matter-like one. Note that we have assumed that the neutrino masses
are degenerate, mi = (

∑
mν)/3 in making this figure.

trino experiments, such as PTOLEMY, which we discuss
in depth in our recent paper [36]. Technical details and
supplementary results as part of our analysis are provided
in the Appendices A−C.

II. CMB IMPLICATIONS OF MASSIVE
NEUTRINOS

The anisotropies observed in the Cosmic Microwave
Background provide crucial information about a number
of physical processes, including those concerning neutri-
nos. A detailed description of the impact of (massive)
neutrinos on this picture is already well-established, for
which we refer the reader to the following reviews [11–
13, 37, 38]. Here, we will only briefly summarise this
story by introducing a simple timeline that highlights
why one should expect observations of the CMB to con-
strain both the relativistic and non-relativistic neutrino
energy densities. In particular, this timeline splits into
three separate epochs based on the neutrino equation of
state, see also Fig. 1.

• Relativistic neutrinos. After neutrino decoupling,
at T ∼ 2 MeV [11], neutrinos are highly relativistic
and their energy density contributes directly to the
effective number of relativistic species:

Neff ≡
8

7

(
11

4

)4/3(
ρrad − ργ

ργ

)
, (1)

where ρrad is the total radiation energy density, ργ
is the photon energy density and NSM

eff ' 3.044 [39–
44] within the SM. If neutrinos were massless, this
would indeed fix the evolution of their energy den-
sity for the rest of the cosmic history. On the other
hand, for massive neutrinos, they will transition to
being non-relativistic at later times, which at the
background level alters their contribution to the
expansion rate. In this work, we will allow for the
possibility that there is also massless dark radia-
tion present in the Universe, so that Neff is then
a sum of two terms, one coming from the neutrino
sector Nν

eff and the other from the dark radiation
NDR

eff , Neff ≡ Nν
eff + NDR

eff . The motivation for this
choice stems from the fact that very light species
that can act as dark radiation are present in many
extensions of the Standard Model, see e.g. [45] for a
review. As is well known [13], the CMB is only sen-
sitive to the sum of the two, since the two species
only interact gravitationally and therefore lead to
the same impact on the CMB spectra.

• Relativistic to non-relativistic transition. When the
average neutrino momentum drops below its mass,
neutrinos become a non-relativistic species. Ex-
plicitly, this occurs at a redshift zNR satisfying
p(zNR) = (

∑
mν) /3, which is given by (see Ap-

pendix C for a derivation):

1 + zNR =
8

21

(
11

4

)4/3 ρNR
ν,0

Nν
effργ,0

, (2)



4

where ργ,0 is the photon energy density and ρNR
ν,0 is

the non-relativistic neutrino energy density, both
evaluated today. The key observation here is that
the transition from a radiation component to a
matter one depends on the ratio between the en-
ergy density in non-relativistic neutrinos today and
Nν

eff . In the case of a Fermi-Dirac distribution,
this reduces to the well-known relation 1 + zNR ≈
1890

(
1
3

∑
mν/1 eV

)
, which can found in e.g. [13].

Of course, the transition between relativistic to
non-relativistic matter is not instantaneous and in
reality it happens over some redshift range, see also
the right panel in Fig. 6.

• Non-relativistic neutrinos. Once neutrinos are non-
relativistic, they simply contribute as a matter
component of the Universe. In contrast to cold dark
matter, however, neutrinos typically have large ve-
locities and therefore have a non-zero free stream-
ing length [46]. This effect, depending on the
amount that they contribute to the total matter
density Ωm = Ωb + Ωcdm + Ων , can have a signifi-
cant impact on structure formation. In particular,
for fixed Ωm, an increase in the energy density in
neutrinos tends to suppress the formation of struc-
ture at small scales compared to that of a pure cold
dark matter cosmology, see e.g. [13, 47].

This simple picture illustrates how the dynamics of the
expanding Universe depends on the neutrino energy den-
sity and its equation of state. This does not explain,
however, how Planck CMB data actually constrains the
relevant parameters. To do this, one should connect this
timeline with the physical quantities extracted from mea-
surements of the Cosmic Microwave Background – e.g.
the angular scales associated to the acoustic sound hori-
zon θs and the Silk damping scale θd, or the comoving
angular diameter distance to the CMBDA. With this, we
can then motivate why we are able to constrain, to some
degree, both the relativistic energy density – parame-
terised by Neff – as well as the non-relativistic energy
density ρNR

ν . The mechanisms by which each quantity
is measured differ significantly and can be understood as
follows.

• Relativistic Energy Density. There are a number
of ways to see the impact of the relativistic energy
density in neutrinos on the angular scales (θs, θd)
mentioned above. The most common approach in-
volves fixing θs [48]2, since it is very precisely de-
termined from CMB data. The dominant physical
effect of the relativistic energy density in neutri-
nos is that they contribute to the Hubble rate be-
fore recombination. The sensitivity of the CMB

2 Keeping all other cosmological parameters constant, except for
Neff , which then fixes the rest of the acoustic peak positions.

to Neff then arises from the different dependence of
the acoustic sound horizon rs and damping scale rd

on the Hubble rate [48]. In other words, since we
can measure the ratio θs/θd = (rs/DA)/(rd/DA) ∼
H−1/2 from the CMB, we are able to obtain in-
formation about the early-time Hubble rate, and
therefore Neff . Said differently, if we fix θs, then
any change from varying Neff will be restricted to
the damping tail through θd.3

• Non-relativistic Energy Density. In contrast to the
relativistic case, the leading-order effect of the non-
relativistic energy density in neutrinos is via the co-
moving angular diameter distance DA. This shifts
all angular scales measured in the CMB to lower
multipoles [12]. One might naively think that this
means that the effect of the non-relativistic neu-
trino energy density is highly degenerate with other
cosmological parameters, such as H0 or ΩΛ. As we
discussed in the timeline, however, a very impor-
tant property of neutrinos is that they have a non-
negligible free-streaming length, even after they be-
come non-relativistic. Depending on the value of
the ratio ρNR

ν /ρm ≡ fν , this may have a signifi-
cant effect on the matter power spectrum at small
scales. Importantly, the propagation of the CMB
photons from the time of last scattering until today
is affected by the presence, or absence, of struc-
ture along their path [49]. This results in a num-
ber of relatively small but important late-time ef-
fects on the CMB power spectrum, e.g. weak lens-
ing [55, 56] and the late Integrated Sachs-Wolfe ef-
fect [57, 58]. The fact that each of these effects has
a specific scale dependence allows one to (partially)
break the degeneracy between cold dark matter,
baryons, non-relativistic neutrinos and dark energy
that enters in the expression for DA. For example,
the suppression of the matter power spectrum due
to massive neutrinos acts to effectively reduce the
weak lensing experienced by CMB photons only on
angular scales θ . 1◦ [49].

In summary, measurements of the CMB on a wide range
of angular scales can probe both the early- and late-time
properties of neutrinos, with the key quantities that can
be constrained by CMB data being the relativistic and
non-relativistic neutrino energy densities. As a conse-
quence, this raises the question of whether we can di-
rectly access any information about the form of the neu-
trino distribution function after the BBN epoch, aside

3 Note that the CMB damping scale is also sensitive to the elec-
tron number density ne, which in turn depends on the primordial
helium abundance YP through ne ∝ (1 − YP). This results in a
degeneracy betweenNeff and YP, which we do not consider in this
work, as we fix YP = 0.245 [49] throughout our analysis. Never-
theless, given current measurements of YP [50–54], the impact of
variations in YP is negligible for Planck CMB observations (see
e.g. Fig. 41 in [14]).
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from these integrated properties. In the next section,
we will start to address this by considering a set of ex-
ample distributions which differ greatly in their aver-
age momentum and variance. Despite these differences,
they are constructed to have the same relativistic and
non-relativistic energy densities. We will explicitly show
that Planck CMB data cannot tell the difference between
these neutrino distributions, and that there are similar
prospects for future CMB missions such as CMB-S4. Ul-
timately, the aim of this exercise is to set up the expec-
tations for the full analysis in Sec. IV, where we place
constraints on Neff and ρNR

ν,0 , marginalising completely
over the neutrino distribution.

III. THE IMPACT OF THE NEUTRINO
DISTRIBUTION FUNCTION ON THE CMB

Having described the key cosmological implications of
massive neutrinos, in this section we will explicitly show-
case how inferences of cosmological parameters with cur-
rent Planck CMB data are insensitive to the specific
shape of the neutrino distribution function. To do this,
we consider five scenarios in which neutrinos have a dras-
tically different distribution4, i.e., their characteristic av-
erage momentum and variance differ greatly, but where
the total Neff = Nν

eff + NDR
eff and non-relativistic energy

density ρNR
ν,0 =

∑
mνnν,0 are the same. Given this setup

and the discussion in the previous section, we expect that
any effect on the CMB should be small, despite these dif-
ferences. We illustrate this in Fig. 2, along with the evo-
lution of the total energy density in neutrinos and dark
radiation, and the implications for the CMB TT power
spectrum. More quantitatively, by carrying out a full
MCMC analysis using Planck legacy data, we will show
that in each case the neutrino mass limit is altered in such
a way to give the same bound on the non-relativistic neu-
trino energy density. This will then highlight that Planck
CMB data cannot distinguish between widely different
distribution functions, provided that the non-relativistic
energy density ρNR

ν,0 and totalNeff are the same. With this
in mind, we will finally show that there are also only lim-
ited prospects for future experiments, such as CMB-S4,
to detect differences in the neutrino distribution function.

4 Note that these distributions are not meant to be necessarily
physically motivated, but instead chosen to precisely highlight
how widely different distribution functions can lead to the same
results at the level of current and future data.

III.1. Choice of Distributions

In practice, we use two specific parameterisations of the
neutrino distribution:

Fermi−Dirac =
{
fν(qν) = (eqν + 1)

−1
, (3)

Gaussian =

{
fν(qν |Nν

eff , y∗, σ∗) =

A(Nν
eff , y∗, σ∗) exp

(
− (qν−y∗)2

2σ2
∗

)
,

(4)

where qν = pν/Tν is the comoving momentum. We note
that in the Gaussian case, Tν is not a well-defined quan-
tity, and thus we fix it to Tγ/Tν = 1.39578 [40] without
any loss of generality. The variables y∗ and σ∗ are the
free parameters of the Gaussian distribution and have the
interpretation of the average momentum and momentum
variance, respectively (see Sec. IV for further details on
this aspect). In addition, the amplitude A in Eq. (4) is
tuned to give the correct input value of Nν

eff , which can
be computed using:

Nν
eff =

360

7π4

(
11

4

)4/3(
Tν
Tγ

)4 ∫ ∞

0

dqν q
3
νfν(qν) , (5)

where within the Standard Model this evaluates to Nν
eff =

3 (11/4)
4/3

(Tν/Tγ)
4

= 3.044. Similarly, the number den-
sity can be obtained from:

nν
nFD
ν

=
2

3ζ(3)

∫ ∞

0

dqν q
2
νfν(qν) , (6)

where nFD
ν,0 = 3ζ(3)T 3

ν,0/(2π
2) ' 114 cm−3 is the neutrino

number density for a single flavour, assuming a Fermi-
Dirac distribution. The five different scenarios we con-
sider are then as follows:

• ΛCDM The SM case, where neutrinos have a
Fermi-Dirac distribution with temperature Tν =
Tγ/1.39578. This gives Neff = Nν

eff = 3.044.

• Lν-DR A low-energy neutrino population with a
Gaussian distribution (where Nν

eff = 0.5, y∗ = 0.1
and σ∗ = 0.294218), complemented with massless
dark radiation (DR) to give a total Neff = Nν

eff +
NDR

eff = 3.044.

• Hν A high-energy neutrino population with a
Gaussian distribution, where Nν

eff = 3.044, y∗ = 30
and σ∗ = 4.82113.

• Hν-DR A high-energy neutrino population with a
Gaussian distribution (where Nν

eff = 1.5, y∗ = 3
and σ∗ = 8.82654), complemented with massless
dark radiation.

• LT+Mid A mid-energy neutrino population with
a Gaussian distribution (where Nν

eff = 2.3139,
y∗ = 3.5 and σ∗ = 0.508274), together with a low-
temperature population that has a Fermi-Dirac dis-
tribution with Tν = Tγ/2.
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FIG. 2. Upper-left panel: Differential non-relativistic energy densities as a function of comoving momenta for a common ρNR
ν,0

and Neff = 3.044. Note that the area under each curve in this panel is the same. Upper-right panel: Energy density evolution of
the neutrinos and dark radiation as a function of redshift. Lower-left panel: Relative difference in the TT CMB power spectrum
between the various cases. For comparison, note that the Planck statistical error bars at ` ∼ 1000 are ∆C`/C` ∼ 0.8% (for
a ∆` = 30 power band), so the magnitude of the effect shown here is significantly smaller for all angular scales resolved by
Planck. Lower-right panel: Marginalised constraints on ρNR

ν,0 from a full Planck legacy analysis for each of the cases. We can
clearly appreciate that Planck data cannot distinguish these rather different scenarios.

The differential non-relativistic energy density for all five
of these non-standard neutrino distributions are shown
in the upper-left panel of Fig. 2. From this panel, it
can clearly be seen that, while all five distributions give
the same non-relativistic energy density ρNR

ν,0 (found by
integrating over log qν in this figure), the neutrino popu-
lations are significantly different from the thermal Fermi-
Dirac distribution within the SM. This is important given
the context of previous works on non-standard neutrino
distributions in cosmology, where the departures from a
thermal Fermi-Dirac distributions were rather mild.

In addition to the distributions, the top-right panel
of Fig. 2 shows the evolution of the neutrino and dark-
radiation energy densities with respect to the one within

the SM. We see how both the Lν-DR and Hν-DR cases
cause an increase of the energy-density ratio, which is
simply because the dark-radiation energy density is still
relatively large, even at the time when neutrinos become
non-relativistic. On the other hand, in the LT+Mid and
Hν cases, the ratio decreases, which is due to the fact
that the neutrinos here have a higher average momentum
than in the SM case and become non-relativistic later.

Of course, since the precise energy density evolution
affects the Hubble rate, this change in the evolution of
the neutrino energy density does have an impact on the
CMB temperature power spectra, which we plot in the
lower-left panel of Fig. 2. On the other hand, given that
Planck errors bars range between 3%−0.7% for low ` and
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high `, respectively, we can immediately appreciate the
fact that the changes caused by the different distributions
are highly unlikely to have observational consequences, at
least at the level of current data. Plots for the neutrino
equation of state, unlensed TT power spectrum and evo-
lution of the non-relativistic neutrino energy density are
provided in App. A.

III.2. CMB Analysis for Fixed Distributions

Of course, we would like to explicitly test the hypoth-
esis that there is no real distinguishable feature in the
neutrino distribution function given current state-of-the-
art Planck CMB data. To do so, we implement each
of these distributions in the cosmological Boltzmann
solver CLASS [59, 60] and perform a baseline Planck 2018
TTTEEE+lowE + BAO analysis (the full details and
datasets are described in Sec. IV) using the MCMC sam-
pler MontePython [61, 62]. To understand the outcome of
this computation, one should bear in mind that in reality,
the parameter that is varied is the neutrino mass, how-
ever, the non-relativistic energy density can be directly
computed using ρNR

ν =
∑
mνnν , where nν is fixed (but

different) for each distribution. We use a very wide prior
on the individual neutrino mass of mν ∈ [0, 10] eV. Of
course, we know that from the laboratory mν < 0.8 eV,
but since the number density of neutrinos varies up to a
factor of 10 between the distribution functions, we need
to use a large prior in order to find meaningful cosmolog-
ical bounds on ρNR

ν,0 .
The 1D posteriors on the non-relativistic neutrino en-

ergy density are shown in the lower-right panel of Fig. 2.
We see that in all five cases we obtain the same limits on
ρNR
ν,0 , no matter how different the neutrino distributions

are, confirming our previous expectations regarding the
insensitivity of current CMB data to deviations in the
neutrino distribution function. This allows us to come
to our first main conclusion in this paper: At the level
of current Planck CMB data, the bounds on the non-
relativistic (and relativistic) energy density in neutrinos
are independent of the neutrino distribution function.

III.3. Future CMB Data

The previous analysis highlights the fact that current
CMB data does not have the constraining power to search
for particular features in the neutrino distribution func-
tion. This raises the question, however, of whether fu-
ture experiments, such as CMB-S4, could have sensitivity
where Planck does not. To try and answer this question,
we have performed the following exercise:

Step 1. Imagine that the actual CMB data ob-
served by an experiment (with either Planck- or
CMB-S4-like error bars) was that of a ΛCDM neu-
trino population with a specific value of the non-

relativistic energy density ρNR
ν,0 . The power spec-

trum of this type of scenario will act as a fiducial
data set in our exercise.

Step 2. Now, for each of the other four distribu-
tions described above, choose

∑
mν so that the en-

ergy density (and the total Neff) match the ΛCDM
case, and compute the CMB temperature power
spectrum.

Step 3. This computed power spectrum will likely
differ from that in Step 1, however given our expe-
rience from above, it is not likely to deviate much.
As such, one way to estimate the “optimal” sensi-
tivity of a Planck- or CMB-S4-like experiment is to
compute the likelihood L associated to this predic-
tion given the fiducial data generated in Step 1.
If the quantity −2 ln(L) is very small, then it sug-
gests that the given experiment cannot distinguish
between the different distribution functions for that
value of the non-relativistic energy density.

Before describing the analysis and the results, we should
clarify that this approach represents an “optimal” sensi-
tivity analysis in a very specific sense. In particular, a
rigorous analysis should marginalise this likelihood over
all other possible values of the cosmological parameters.
The result of doing this full computation will very likely
reduce the expected sensitivity, possibly by a significant
amount. On the other hand, if the sensitivity predicted
by the method described above is already very low, then
this “optimal” sensitivity can be regarded as a robust up-
per bound, and any marginalisation procedure can only
decrease it further.

With this caveat in place, we can now turn to the anal-
ysis and the results. To implement the scheme above, we
use the Planck bluebook likelihood and the CMB-S4 mock
likelihood provided by default with MontePython [61, 62]
and evaluate them across a grid of non-relativistic energy
densities ρNR

ν,0 . The results of this are shown in the left
(Planck) and right (CMB-S4) panels of Fig. 3, along with
a band indicating the current limit imposed by Planck
(which we will obtain in the next section). From this,
we can clearly see that in the region allowed by current
data – in other words, to the left of the shaded region
– Planck has little to no sensitivity to alternative forms
of the distribution function, reconfirming the analysis in
the previous section. More interestingly, however, we see
that for at least three of the example distributions (Hν,
LT+Mid and Hν-DR), CMB-S4 also has a sensitivity
below 2σ. The only stand-out case is that denoted Lν-
DR, which deserves particular attention, since it appears
that CMB-S4 potentially has sensitivity in this regime.
To understand whether this is indeed the case, we carried
out a full MCMC analysis with an energy density ρNR

ν,0

that saturated the Planck limit – i.e. we performed the
marginalisation procedure mentioned above. We found
that the actual sensitivity decreased to below 2σ, bring-
ing it in line with the other cases, and realising our cau-
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FIG. 3. Estimate of the optimal sensitivity of CMB experiments (Left: Planck, Right: CMB-S4) to the precise form of the
neutrino distribution as a function of the non-relativistic energy density in neutrinos today ρNR

ν,0 . We see that with Planck data
there are no prospects for detecting differences in the distribution for energy densities below the limit imposed by a full Planck
2018 analysis. Similarly, whilst the prospects appear somewhat better for CMB-S4, we emphasise that this is the optimal case.
Indeed, we have explicitly checked that a full parameter scan would reduce all sensitivities to at least below the 2σ level for
energy densities below the Planck bound. In addition, CMB-S4 experiments should improve the upper bound on ρNR

ν,0 , which
would further diminish the ability to distinguish between non-standard neutrino distributions.

tionary words above. With this check completed, how-
ever, it allows us to come to the second key conclusion
regarding the CMB and non-standard distribution func-
tions: Current and future CMB experiments will not be
able to distinguish between different neutrino distribution
functions, provided that they have the same Neff and ρNR

ν,0 .

IV. FULL ANALYSIS AND RESULTS

We have seen in the last section that five widely different
distribution functions cannot be distinguished by Planck
data provided that they possess the same Neff and ρNR

ν,0 .
In this section, we will carry out a full statistical anal-
ysis that samples among a large variety of neutrino dis-
tribution functions and where all relevant cosmological
parameters are varied independently. The aim of this is
to derive robust limits on the non-relativistic and rela-
tivistic neutrino energy densities that are marginalised
over the neutrino distribution function. As in Sec. III,
we will also allow for the possibility that there is addi-
tional dark radiation, parameterised by its contribution
to the energy density in relativistic species NDR

eff . Af-
ter presenting the data analysis strategy and the full set
of results, we will compare our approach to the ones in
previous literature that explored non-standard neutrino
distribution functions.

IV.1. Choice of Distribution Function

We first need to choose a suitably general form for the
neutrino distribution function that allows us to indepen-
dently vary Nν

eff , ρNR
ν,0 (or equivalently the number den-

sity nν,0) and the sum of the neutrino masses
∑
mν , in

addition to NDR
eff . Throughout this study, we consider de-

generate neutrinos as we are mostly interested in regions
of parameter space where

∑
mν is much larger than the

neutrino mass splittings. As we argued above, we expect
the constraints on Neff and ρNR

ν,0 to be insensitive to the
particular form of fν(qν). In order to carry out a con-
crete analysis, however, a choice must be made and we
make use of the Gaussian distribution shown in the pre-
vious section, where fν(qν), Neff and nν,0 are given in
Eqs. (4)−(6), respectively.

While other choices of distribution functions may cap-
ture certain physical scenarios more clearly, see e.g. [24–
27], there are two key benefits for this analysis that come
with our choice of a Gaussian distribution. Firstly, it al-
lows us to obtain full analytic expressions for Nν

eff and
the non-relativistic energy density ρNR

ν =
∑
mνnν . Sec-

ondly, the parameters y∗ and σ∗ can be easily interpreted
in terms of their impact on the average momentum and
number density of neutrinos. In this regard, for fixed
σ∗ and Nν

eff , an increase in y∗ directly corresponds to
an increase in the average momentum p of neutrinos
and subsequently a decrease in the number density, since
Nν

eff ∝ p nν . Likewise, σ∗ makes the distribution broader
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FIG. 4. The 1D and 2D confidence intervals for the sum of neutrino masses, relativistic degrees of freedom, and non-relativistic
neutrino energy density from our analysis. Note in particular that

∑
mν is effectively unconstrained, exploring the full prior

range, whilst ρNR
ν,0 < 14 eV cm−3 at 95% CL. Similarly, as expected, Neff = 3.0 ± 0.4, also at 95% CL, in line with the analysis

in ΛCDM.

and thus includes neutrinos with higher momenta. From
Eq. (5), it is clear that the higher momentum neutrinos
contribute more to Nν

eff than the lower momentum ones.
So again, if we fix Nν

eff and y∗, then an increase in σ∗ will
also lead to a decrease in the number density.

IV.2. Cosmological Data Analysis

To accurately account for the impact of massive neutri-
nos on the CMB, we use a slightly modified version of the
publicly available Boltzmann code CLASS [59, 60]. In par-
ticular, we model the neutrinos as a non-cold dark matter
component with a phase-space distribution of the form in
Eq. (4), providing Nν

eff ,
∑
mν , y∗ and σ∗ as input param-

eters. We also, in addition, consider massless dark radi-
ation contributing to NDR

eff in the sense described above.

We make use of the Planck legacy data, and in par-
ticular the TTTEEE+lowE likelihood [63], along with
BAO data from the 6dF survey [17], the MGS sample of
the SDSS survey [18], and the DR12 BAO data from the
BOSS survey [19]. We then utilise the Markov-Chain
Monte-Carlo code Monte Python [61, 62] to vary all
relevant cosmological and nuisance parameters as done
in the fiducial Planck analysis. This ensures that we
explore all relevant degeneracies between the parame-
ters at the level of the CMB fit. Finally, we take the
standard priors from the baseline Planck 2018 analy-
sis [63], as well as conservative priors on Nν

eff ∈ [0, 10],
NDR

eff ∈ [0, 10],
∑
mν ∈ [0, 6] eV, log10 y∗ ∈ [−1, 1.5] and

log10 σ∗ ∈ [−1, 1.5]. The logarithmic priors on y∗ and σ∗
ensure that we uniformly sample the number density ra-
tio nν/n

FD
ν , as opposed to biasing the sampling towards

values less than unity.
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IV.3. Results

The main results of our analysis are shown in Fig. 4,
where we confirm the expectations of Sec. III. In partic-
ular, we find the following constraints on the relativistic
and non-relativistic energy densities at 95% confidence
level:

Neff = Nν
eff +NDR

eff = 3.0± 0.4,

ρNR
ν,0 < 14 eV cm−3 . (7)

This latter bound can be recast in terms of other
commonly-used density parameters and fractions: Ων,0 <
0.0029, Ων,0h

2 < 0.0013 or fν,0 = Ων,0/Ωm,0 < 0.009.
It is interesting to note that the constraint on the non-
relativistic energy density is only an upper bound. This
is another way to illustrate the fact that Planck CMB
data is compatible with neutrinos being massless [14].
Also shown in Fig. 4 is the posterior distribution for
the sum of neutrino masses

∑
mν . We see that within

our setup, where we allow the number density of neutri-
nos to vary, the bound on the neutrino masses is natu-
rally relaxed as compared to the case where they have
a Fermi-Dirac distribution with the expected tempera-
ture in the Standard Model. Indeed, we see that in our
case the upper limit on the sum of the neutrino masses
extends all the way to the end of the prior range and
is therefore essentially unbounded. For comparison, in
the case of the Fermi-Dirac distribution with T SM

ν , this
limit instead reads (

∑
mν)FD < 0.12 eV [14]. Impor-

tantly, however, we can see that this limit is nonetheless
fully compatible with our bound on the non-relativistic
energy density by considering (

∑
mν)FD < ρNR

ν,0 /n
FD
ν,0 =

14 eV cm−3/114 cm−3 ∼ 0.12 eV. A larger triangle plot
with more parameters can be found in App. B.

So far, all of our bounds have been based on cosmolog-
ical data alone, including the one on ρNR

ν,0 =
∑
mνnν,0.

On the other hand, oscillation experiments show that
there is a lower limit on the sum of neutrino masses of∑
mν ≥ 0.058 eV [3–5]. As such, by fixing the sum of

neutrino masses to this minimum value, the bound on
ρNR
ν,0 automatically translates into an upper limit on the

neutrino number density of nν,0 . 241 cm−3 for a sin-
gle neutrino species. Importantly, this constraint can be
considered as a robust upper bound on the number den-
sity, irrespective of the value of the neutrino mass, or the
form of the distribution function.

IV.4. Comparison with Previous Studies

The impact of non-standard neutrino distributions on the
CMB has been studied before in [24–27]. Here, we will
briefly discuss the approaches employed in each of these
references and compare results wherever possible. In all
cases, the comparison will be between the neutrino mass
bounds, as none of the references report constraints on
the non-relativistic neutrino energy density.

We start with Ref. [24], in which the authors consid-
ered a Fermi-Dirac distribution for neutrinos together
with a non-thermal component in the form of a Gaussian.
This reference used a combination of CMB (WMAP,
VSA, CBI and ACBAR), large-scale structure data (2dF-
GRS, SDSS) and type-Ia supernovae data. After per-
forming a standard Bayesian inference analysis, they
found that the neutrino mass bound would be relaxed
up to

∑
mν . 1.5 eV at 95% CL. This bound should

be compared with the one obtained within ΛCDM us-
ing the same data set,

∑
mν . 0.7 eV [24]. We believe

that following a similar approach with current data, one
would find a neutrino mass bound that is fairly similar to∑
mν . 0.12 eV, because Planck data roughly requires

Neff ' 3±0.3 and in their parameterisation they included
a Fermi-Dirac component for neutrinos with the temper-
ature expected in the Standard Model (which already
gives Nν

eff = 3.044).

In Ref. [25], the authors considered a neutrino distri-
bution function that interpolates between Fermi-Dirac
and Bose-Einstein with the temperature expected in the
Standard Model. In this context, the energy density of
both ultra-relativistic neutrinos and non-relativistic ones
does not differ by more than 30%, and consequently the
bounds they found for

∑
mν are fairly similar to those

in ΛCDM.

Next, the authors of Ref. [26] took a more general ap-
proach and considered a neutrino distribution function
formed by a Fermi-Dirac distribution plus a sum of or-
thonormal polynomials to the Fermi-Dirac distribution.
While in principle any distribution can be decomposed
with such polynomials, they restricted their analysis to
polynomials up to second order only. Importantly, in
each of their main analyses, the prefactors in the expan-
sion were fixed, which means that they did not vary the
number density of neutrinos (although it does deviate
from the Fermi-Dirac number density in the Standard
Model). As a result, using Planck 2015 CMB data and
BAO data, they find that the neutrino mass bound is
relaxed up to

∑
mν < 0.37 eV at 95% CL. This refer-

ence does remark that the neutrino mass bound may be
relaxed further, depending on the model under considera-
tion. In our work, we have taken a more flexible approach
and directly varied the number density of neutrinos nν,0,
in addition to

∑
mν and Neff . This has not only resulted

in a robust upper limit on the non-relativistic neutrino
energy density today, but also in a significantly looser
neutrino mass bound that can be at least as large as the
laboratory one

∑
mν . 3 eV.

Finally, the authors of Ref. [27] studied the possibility
of considering neutrinos following a Fermi-Dirac distri-
bution, but with a smaller temperature than in ΛCDM.
Since nν ∝ T 3

ν , this can lead to a substantial relaxation of
the neutrino mass bound. However, Tν also strongly con-
trols Nν

eff ∝ T 4
ν and therefore in order to keep consistency

with Neff ' 3, the authors considered a dark-radiation
component too. In this context, they showed that the
neutrino mass bound can be relaxed up to

∑
mν < 3 eV.
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Our results are therefore in full agreement with theirs,
but we highlight here that they hold for any neutrino
distribution function.

V. BBN AND MODEL BUILDING

In this study we have effectively considered the possi-
bility of the neutrino number density being significantly
different to the one expected in the standard cosmolog-
ical model. In practice, we have done this by choos-
ing a suitably flexible neutrino distribution function (see
Eq. (4)) for the purpose of studying the consequences
on CMB observations. However, in general, this distri-
bution function cannot be the resulting primordial dis-
tribution function of neutrinos after Big Bang Nucle-
osynthesis for two main reasons. Firstly, neutrinos were
tightly coupled to the thermal plasma for temperatures
T & 2 MeV [11], and secondly, the successful prediction
of the light element abundances require neutrinos to have
a Fermi-Dirac-like distribution at the time at which the
proton-to-neutron interactions freeze-out T ∼ 0.7 MeV,
see [25, 29–31]. On the other hand, for temperatures in
the range 0.07 MeV . T . 0.7 MeV, whilst the precise
form of the neutrino distribution function is largely un-
constrained – as neutrinos do not interact with baryons
anymore – there is at least a handle on the energy density
of neutrinos, which should be consistent with Neff ∼ 3.
In the context of these physical requirements, we have
therefore considered the non-standard neutrino distribu-
tion as arising from a mechanism that is only effective at
T . 0.07 MeV or, equivalently, z . 3×108. Furthermore,
in our CMB analyses we have fixed the primordial helium
abundance to the standard cosmological model predic-
tion YP = 0.245 [49], as CMB observations are sensitive
to YP too [48].

To summarise, in our setup we consider the neutrino
distribution function for z . 3 × 108 to be fixed, but
not necessarily thermal. In reality, however, the neu-
trino distribution should transition from being thermal
to non-thermal some time after BBN, and our analysis
does not cover scenarios in which such modifications oc-
cur arbitrarily late in the expansion history. Essentially,
current CMB observations are sensitive to multipoles `
up to `max ∼ O(103) [64, 65]. These angular scales probe
a wide range of redshifts but are sensitive to the neu-
trino distribution function only up to a maximum red-
shift of z ∼ 5 × 104, which corresponds to the time at
which such perturbation modes enter the horizon. Thus,
our results will only strictly apply to scenarios where
the neutrino distribution changes in the redshift window5

5× 104 . z . 3× 108.

5 Note that scenarios with a very low reheating temperature,
TRH ∼ 5 MeV, see e.g. [66, 67], or with sterile neutrinos with life-
times τ ∼ 0.1 s [68] could lead to a modification of the neutrino

With these clarifications in place, we can now discuss
the possible model building opportunities that arise. The
cosmological neutrino mass bound within our setup ef-
fectively scales as

∑
mν . 0.12 eVnFD

ν /nν , which means
that in order to substantially relax the cosmological neu-
trino mass bound, a mechanism allowing for a large re-
duction of the number density of neutrinos in the early
Universe should be invoked. In addition, such a mech-
anism should ensure that the contribution of neutrinos
and dark radiation in the plasma is compatible with
Neff = Nν

eff +NDR
eff ' 3.0± 0.4. As discussed above, this

must happen somewhere between 5× 104 . z . 3× 108,
in order not to spoil BBN or CMB observations. In this
context, there is already one such mechanism in the lit-
erature capable of fulfilling this, see [35]. The essence
of this idea is to consider massless dark radiation that
interacts with a keV scale boson. This boson then sub-
sequently couples to neutrinos and between BBN and re-
combination can dilute the number density of neutrinos
by effectively exchanging them with massless dark radia-
tion. Another interesting alternative is to consider a sce-
nario without any dark radiation. For this to be viable,
one would have to reduce the number density of neutrinos
whilst at the same time enhancing their mean momentum
since Nν

eff ∝ p̄νnν and Neff ∼ 3. Substantially relaxing
the neutrino mass bound in this way would require this
process to proceed non-thermally, because p̄� 3Tν . Al-
though building such a mechanism is beyond the scope
of the current paper, we believe it would be interesting
to explore it in light of the consequent relaxation of the
neutrino mass bound that could be achieved.

VI. SUMMARY

In this work, we have investigated the impact of a non-
standard neutrino distribution function on Cosmic Mi-
crowave Background measurements. In Sec. II, we have
argued that the relativistic and non-relativistic neutrino
energy densities are the key neutrino properties that one
could expect to constrain with CMB data. In Sec. III, to
explicitly illustrate this point, we chose five drastically
different neutrino distribution functions that nonetheless
shared the same non-relativistic and relativistic energy
densities, and showed that their impact on the CMB was
indistinguishable given the precision of current and fu-
ture CMB data (see Figs. 2 and 3). In Sec. IV, we then
took a suitably general parameterisation for the neutrino
distribution function which effectively allowed us to inde-
pendently vary the neutrino mass, number density, and

distribution function before BBN. However, in these cases the
number density of neutrinos is not too different from the Stan-
dard Model expectation, and consequently the neutrino mass
bound is not expected to be significantly altered. Similar consid-
erations also apply to distribution functions with non-negligible
neutrino chemical potentials, see e.g. [69, 70].
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relativistic energy density. Using Planck legacy data,
we derived bounds on the effective number of relativistic
species Neff and non-relativistic neutrino energy density
ρNR
ν,0 that are marginalised over the neutrino distribution

function (see Fig. 4). Finally, in Sec. V, we discussed
the implications of successful BBN on the setup and the
relation to the model building of non-standard neutrino
distribution functions. The main findings of this work
are the following:

• CMB Sensitivity – Current and future CMB ob-
servations are almost completely insensitive to par-
ticular features of the neutrino distribution func-
tion. Instead, CMB experiments are only capa-
ble of meaningfully constraining the relativistic and
non-relativistic neutrino energy densities. This fur-
ther establishes that for non-standard neutrino dis-
tributions, whose number density may differ from
that of a Fermi-Dirac distribution, CMB observa-
tions cannot directly constrain the neutrino mass.

• Bounds – We have considered a very flexible neu-
trino distribution function, that allowed us to in-
dependently vary the neutrino number density, rel-
ativistic energy density and mass. Given this set-
ting and using Planck 2018 TTTEEE+lowE and
BAO data, we obtained bounds on the relativis-
tic and non-relativistic neutrino energy densities of
Neff = 3.0 ± 0.4 and ρNR

ν,0 < 14 eV cm−3, respec-
tively, at 95% CL.

• Maximum neutrino number density – Neutrino os-
cillation experiments bound the sum of neutrino
masses from below to be

∑
mν ≥ 0.058 eV. Thus,

given our bound on ρNR
ν,0 , we can directly set a mass-

and distribution-independent upper bound on the
number density of a single neutrino species in the
cosmic neutrino background of nν,0 < 241 cm−3.

• Neutrino mass bound – By considering the neutrino
number density as an independent parameter, we
find that the neutrino mass bound is relaxed to
at least the end of our prior range – and to the
level of current laboratory limits –

∑
mν . 3 eV.

This should be compared to the standard case in
which neutrinos follow a Fermi-Dirac distribution,
and hence have a fixed number density, where the
bound is

∑
mν < 0.12 eV at 95% CL [71]. More

specifically, the neutrino mass bound scales like∑
mν . 0.12 eVnFD

ν /nν .

To summarise, the Cosmic Microwave Background is
a powerful probe of the energy density of neutrinos
when they are ultra-relativistic and when they are non-
relativistic. The neutrino distribution function precisely
controls these two quantities and is fixed to be Fermi-
Dirac in standard analyses. In this paper, we have
demonstrated the full extent to which the CMB is sen-
sitive to modifications to this assumption. In the next
section, we will close by discussing the phenomenological
consequences of the results presented above.

VII. OUTLOOK

The conclusions in the previous section provide us with
some interesting perspectives on current and future ex-
perimental (neutrino) programs, as well as on particle-
physics model building. Here, we will consider some pos-
sible future scenarios that could arise, and discuss their
interpretation in terms of neutrino properties. There are
a number of experiments that are improving or will im-
prove our current understanding of neutrinos. Those rel-
evant in the context of our study can be divided into three
categories: i) neutrino mass measurements (e.g. the KA-
TRIN [23] or Project 8 [72] experiments, see also [73]
for a review), ii) experiments that could directly detect
the Cosmic Neutrino Background (CNB) (e.g. the pro-
posed PTOLEMY [74, 75] experiment), and iii) galaxy
surveys and other complementary probes of the matter
power spectrum (e.g. DESI [76] and EUCLID [77]). A
full exploration of the interplay between these probes is
beyond the scope of this outlook, however, we discuss ex-
actly this aspect in our recent paper [36]. It should be
noted that PTOLEMY is currently in the research and
development phase and is therefore still deciding on a fi-
nal design specification. On the other hand, experiments
such as KATRIN or DESI/EUCLID are already either
currently taking data or about to begin their surveys.

Direct measurements of the absolute scale of the neu-
trino mass are perhaps the easiest to understand in terms
of the potential for seemingly inconsistent experimental
results. For example, imagine a scenario where the KA-
TRIN experiment — which is expected to reach a sen-
sitivity of mν ∼ 0.2 eV by the end of its planned op-
erational period — makes a positive neutrino mass de-
tection. This would seem to be inconsistent with the
cosmological limit derived within the ΛCDM framework,∑
mν < 0.12 eV. In the more general context highlighted

throughout this paper, however, we can immediately see
that a KATRIN detection and a CMB-based bound can
be in complete agreement provided that the neutrinos
have a number density that is lower than that in ΛCDM.
This plausible experimental scenario would have impor-
tant implications for neutrinos in cosmology, see [36].

The phenomenology of the latter two experimental cat-
egories requires more work to understand the full impli-
cations for neutrino properties in cosmology. While the
existence of the cosmic neutrino background is indirectly
confirmed through observations of the CMB and BBN
abundance measurements, its direct detection is an ex-
tremely challenging measurement to make, mainly due to
the very low characteristic energy of CNB neutrinos and
their small interaction cross-section within the SM. One
of the currently existing proposals for a methodology of
detecting the CNB comes from the PTOLEMY experi-
ment, which looks for the capture of CNB neutrinos on
beta-decaying nuclei such as tritium. In the context of
this paper, the most important observation regarding this
type of experiment is that the sensitivity and detection
prospects depend crucially on the neutrino mass and local



13

10−4 10−3 10−2 10−1 100

k [Mpc−1]

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03
( P

(k
)
−
P

(k
)| Λ

C
D

M
)
/P

(k
)| Λ

C
D

M

z = 0

z = 1.2

z = 3.5

ΛCDM

Lν-DR

Hν

Hν-DR

LT+Mid

Ων,0/Ωm,0 = 0.009

Non− linear

FIG. 5. Impact of a non-standard neutrino distribution (de-
tailed in Sec. III) on the linear matter power spectrum com-
pared to the ΛCDM case with massive neutrinos. The dashed,
vertical line highlights at which scales non-linear corrections
are relevant. Inferences of the matter power spectrum might
provide for an alternative way to differentiate between neu-
trino distribution functions.

number density of neutrinos6, which affect the separation
from the large beta-decay background and the total rate
respectively. The neutrino distribution function directly
controls the latter of these, and so there is an intimate
link with our current study. As such, we could imag-
ine a PTOLEMY-like experiment being used as a sort of
model discriminator, in conjunction with facilities such as
KATRIN and DESI/EUCLID, looking for cosmologically
sound scenarios with large neutrino masses and/or non-
standard neutrino distribution functions. This is exactly
the sort of exciting experimental scenario we develop and
explore in our recent work [36], where we show that there
are improved detection prospects at a PTOLEMY-style
experiment for large neutrino mass cosmologies, fully
consistent with all current cosmological data.

Finally, we briefly comment on using the matter power
spectrum as a tool to search for features in the neutrino
distribution function. Current and upcoming experi-
ments, such as DESI and EUCLID, are aiming to directly
measure the sum of neutrino masses, typically with an es-
timated sensitivity of σ(mν) ∼ 0.02 eV [76, 77, 79, 80].
Given our experience with the CMB, however, we might
expect that this may not necessarily be a measure-
ment of the neutrino mass directly, but instead the non-
relativistic energy density in neutrinos ρNR

ν . The situa-
tion is more complicated than in the CMB case, however,

6 This is a combination of the cosmological number density and
the clustering enhancement induced by the gravitational pull of
the Milky-Way halo, see e.g. [78].

because the effect of neutrinos on the clustering arises as
a result of their non-zero free-streaming length and is
more pronounced at small scales, where non-linear cor-
rections become relevant. Nevertheless, it could be that
even at the linear level (k . 0.1 Mpc−1) there already ex-
ist some observational hints. We show this in Fig. 5 for
the five distribution cases considered in Sec. III, which by
construction have the same non-relativistic energy den-
sity. We can see that there are clear differences in the
matter power spectrum for scales k & 10−3 Mpc−1 in
each case. The question is then whether such changes are
detectable, and if so, what could we learn about the mass
and distribution of neutrinos in the early Universe? The
answer to this question would require a careful consid-
eration of up-to-date matter power spectrum predictions
– particularly at the non-linear level – and experimen-
tal uncertainties, see e.g. [81–87] for recent studies along
these lines within ΛCDM. Nevertheless, the prospect of
a cosmological determination of features in the neutrino
distribution function using this probe is a promising al-
ternative and merits further study.
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Appendix A: Supplementary Plots for Sec. III

In this appendix, we show supplementary plots to those
displayed in Sec. III. Specifically, in Fig. 6, we show how
the five discussed distribution functions affect the un-
lensed CMB TT power spectrum (left panel), the evolu-
tion of the neutrino energy density (middle panel), and
the neutrino equation of state (right panel).

Appendix B: Full Set of Posteriors

In this appendix, we show the full set of posteriors
as obtained in our main analysis in Sec. IV, see Fig. 7.
These include: the effective number of relativistic species
Neff , the non-relativistic neutrino energy density ρNR

ν,0 , the
average y∗ and width σ∗ of the Gaussian distribution in
Eq. (4), the Hubble constant H0, and σ8.

Appendix C: The Transition from Radiation to
Matter

An important characteristic of massive neutrinos in cos-
mology as compared to their massless counterparts is
that at some point in the Universe’s evolution, they tran-
sition from being a radiation component of the Universe,
with Pν/ρν ∼ 1/3, to a pressureless matter component.
In the main text, we estimated the redshift at which this
occurred, but did not show the full derivation. Here, we
outline the complete computation.

To begin, we note that the energy density of relativis-
tic neutrinos is given by ρν(z � zNR) = p̄(z)nν(z). So
we can compute the average momentum p̄(z � zNR) di-
rectly in terms of ρν , which is proportional to Neff at this
time, and nν(z) = nν,0(1+z)3, where nν,0 is the neutrino
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number density today. Using the fact that we can write

ρν(z � zNR) =
7

8

(
4

11

)4/3

Nν
effργ(z � zNR)

=
7

8

(
4

11

)4/3

Nν
effργ,0(1 + z)4 , (C1)

then we can compute the average momentum at some
high redshift via:

p̄(z � zNR) =
7

8

(
4

11

)4/3
Nν

effργ,0(1 + z)4

nν(z � zNR)

=
7

8

(
4

11

)4/3
Nν

effργ,0(1 + z)

nν,0
. (C2)

If we use the redshift relation that p̄(0)(1 + z) = p̄(z),
now for any redshift, then we can obtain the average
momentum of the neutrinos today as:

p̄(0) =
p̄(z � zNR)

1 + z
=

7

8

(
4

11

)4/3
Nν

eff

nν,0
ργ,0 . (C3)

We can then directly compute an estimate for the redshift
zNR by comparing the average momentum of the particles
to the mass of the neutrino p̄(zNR) ∼ mν ∼ 1

3

∑
mν .

Then, since p̄(zNR) = p̄(0)(1 + zNR), we find:

1 + zNR ∼
1
3

∑
mν

p̄(0)
=

8

7

(
11

4

)4/3
1

3

(∑
mνnν,0

ργ,0Nν
eff

)
.

(C4)

If we identify the non-relativistic energy density today
as ρNR

ν,0 =
∑
mνnν,0, then we obtain the result given in

Sec. III that the redshift at which neutrinos become non-
relativistic depends only the ratio between ρNR

ν,0 and Nν
eff :

1 + zNR =
8

7

(
11

4

)4/3
1

3ργ,0

(
ρNR
ν,0

Nν
eff

)

∼ 56
ρNR
ν,0

30 eV cm−3

3.044

Nν
eff

. (C5)
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FIG. 6. Impact of the neutrino distribution function on the unlensed CMB TT power spectrum (left), the neutrino energy
density with respect to the SM evolution (middle), and the neutrino equation of state (right).
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