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Abstract

The eigenvalues of the Laplace–Beltrami operator and the integrals of products of eigenfunc-

tions and holomorphic s-differentials satisfy certain consistency conditions on closed hyperbolic

surfaces. These consistency conditions can be derived by using spectral decompositions to write

quadruple overlap integrals in terms of triple overlap integrals in different ways. We show how to

efficiently construct these consistency conditions and use them to derive upper bounds on eigen-

values, following the approach of the conformal bootstrap. As an example of such a bootstrap

bound, we find a numerical upper bound on the spectral gap of closed orientable hyperbolic

surfaces that is nearly saturated by the Bolza surface.
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1 Introduction

Hyperbolic surfaces are important objects in several areas of physics and mathematics, including

quantum gravity, number theory, and topology. We can write the Riemann tensor on a hyperbolic

surface (M, ĝ) as

Rpqrs = κ (ĝprĝqs − ĝpsĝqr) , (1.1)

where the negative constant κ is the Gaussian curvature, which we henceforth normalise to −1. A

well-established approach to investigating closed hyperbolic surfaces is through the spectral theory

of the Laplace–Beltrami operator ∆—see, for example, Ref. [1] for an introduction to this subject.

The Laplace–Beltrami operator on a closed hyperbolic surface is a nonnegative elliptic operator

with eigenfunctions φi, i = 0, 1, 2, . . . , which satisfy the eigenvalue equation ∆φi = λiφi. The

discrete eigenvalues λi satisfy

0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞, (1.2)

where we assume that the surface is connected so that λ0 is the unique zero eigenvalue.

2



An important spectral quantity is the first nonzero eigenvalue λ1, which is called the spectral

gap. Various bounds are known on the spectral gap. For example, the Yang–Yau bound [2], with

an improvement pointed out in Ref. [3], implies that on a closed orientable hyperbolic surface of

genus g

λ1 ≤
2b(g + 3)/2c

g − 1
. (1.3)

In particular, this implies that λ1 ≤ 4, since g ≥ 2 for a closed hyperbolic surface. It has been

conjectured that the maximum value of the spectral gap is achieved by the Bolza surface [4], which

is a genus-2 surface with λ1 ≈ 3.839. This surface is the closed genus-2 surface with the largest

symmetry group and can be obtained by identifying opposite sides of a regular octagon in the

hyperbolic disk. The Bolza surface has been studied by physicists in the context of quantum

chaos [5] (see also Ref. [6] for recent results on chaos in the spectra of genus-3 Riemann surfaces).

Recently, a bound stronger than the Yang–Yau bound was obtained for closed hyperbolic surfaces

with g = 3 [7], while improved bounds were found for almost all other genera in Ref. [8]. It has

long been known that the spectral gap is bounded above by a constant that approaches 1/4 as

g → ∞ [9], but it was only recently shown that there exists a sequence of surfaces with λ1 → 1/4

and g → ∞ [10]. While λ1—and, more strongly, λ2g−3—can be arbitrarily small [11], there does

exist a nonzero lower bound on the generic value of λ1 as g →∞. For example, for any ε > 0, the

probability that a surface has λ1 > 3/16 − ε goes to one as g → ∞, according to the normalised

Weil–Petersson measure on moduli space [12, 13].

One way to obtain bounds on eigenvalues and integrals of products of eigenfunctions is using a

bootstrap approach [14, 15]. This approach is inspired by the conformal bootstrap for conformal

field theories (CFTs) [16, 17] (see Ref. [18] for a review of the numerical conformal bootstrap).1

These bounds have an interpretation as constraints on the masses and coupling constants of Kaluza–

Klein (KK) modes in theories with compact extra dimensions. As explained below, these bounds

are obtained from certain consistency conditions that can be derived by using spectral decomposi-

tions to write quadruple overlap integrals of derivatives of Laplacian eigenmodes in different ways.2

For Ricci-flat manifolds, these consistency conditions can also be obtained by considering ampli-

tudes of KK gravitons [22].3 In Ref. [15], consistency conditions for closed hyperbolic manifolds in

general dimensions were obtained from integrals of products of a scalar eigenfunction with up to 16

derivatives. In this paper, we show how to go much further by specialising to two dimensions. By

using helicity tensors, we can derive consistency conditions for closed hyperbolic surfaces coming

from quadruple overlap integrals with arbitrarily many derivatives and involving both eigenfunc-

tions and holomorphic s-differentials. These are analogous to the crossing equations for mixed

correlators and correlators of spinning bosonic operators in the conformal bootstrap [24–26].

Once we have a set of consistency conditions, we can use them to derive bounds on eigenvalues

1A different mathematical context in which bootstrap ideas are useful is sphere packing [19, 20].
2Spectral decompositions have also recently been shown to be useful in the context of the modular bootstrap [21].
3See also Ref. [23] for some recent bounds on Laplacian eigenvalues with motivation from Kaluza–Klein theory.
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and integrals of products of eigenfunctions by following the approach of the conformal bootstrap.

For example, in Ref. [15] we obtained the following bound for consecutive nonzero eigenvalues of

the Laplace–Beltrami operator on closed orientable hyperbolic surfaces:

λi+1 ≤ 1/2 + 3λi +
√
λ2
i + 2λi + 1/4, i ≥ 1. (1.4)

When we consider consistency conditions coming from integrals of products of holomorphic s-

differentials, it also becomes possible to find an upper bound on the spectral gap. For example, in

this work, we show that by considering consistency conditions coming from the quadruple overlap

integrals of two distinct holomorphic differentials we can obtain the nonrigorous numerical upper

bound

λ1 ≤ 3.8388977, (1.5)

which is remarkably close to the spectral gap of the Bolza surface λ1 ≈ 3.8388873 [4]. This

provides evidence for the conjecture that the Bolza surface has the largest spectral gap of any closed

hyperbolic surface [4]. As this work was nearing completion, we became aware of an upcoming paper

that has some overlap with ours [27], including a version of the bound in Eq. (1.5) that is derived

using more rigorous numerical methods. We recommend reading Ref. [27] as well.

The outline of the rest of this paper is as follows: in Section 2, we review a formalism for

describing tensors of definite helicity in two dimensions and discuss tensor spectral decompositions

and triple overlap integrals. In section 3, we show how this formalism makes it easier to derive

consistency conditions coming from quadruple overlap integrals involving multiple eigenfunctions

and holomorphic s-differentials. In Section 4, we give some examples of bootstrap bounds on the

spectral gap that can be derived using these consistency conditions. We conclude in Section 5.

2 Tensors in two dimensions

We begin by reviewing some properties of helicity tensors on two-dimensional closed hyperbolic

manifolds. See Refs. [28–30] for uses of this formalism in the context of string perturbation theory.

2.1 Topology and coordinates

We consider a closed hyperbolic manifold (M, ĝ) with curvature κ = −1, where ĝpq is the metric.

Our manifolds are also always assumed to be smooth, orientable, and connected. Topologically,

a closed surface is classified by its genus g ∈ Z≥0. Closed surfaces with g ≥ 2 admit hyperbolic

metrics and on a closed surface of genus g there is a moduli space of hyperbolic structures, i.e.,

hyperbolic metrics modulo diffeomorphisms, of real dimension 6(g − 1). By the Gauss–Bonnet

theorem, the volume of a hyperbolic surface of genus g is V = 4π(g − 1).

In a neighbourhood of every point, there exist isothermal coordinates xp, p = 1, 2, such that the

line element takes the form

ds2 = e2σδpqdx
pdxq. (2.1)
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The Ricci scalar in these coordinates is R = −2e−2σ(∂2
1 + ∂2

2)σ. We can define the complex

coordinates z = x1 + ix2, z̄ = x1 − ix2 and the derivatives ∂z = 1
2(∂1 − i∂2), ∂z̄ = 1

2(∂1 + i∂2). The

line element in these coordinates is

ds2 = e2σdzdz̄, (2.2)

and the Ricci scalar is R = −8e−2σ∂z∂z̄σ.

2.2 Symmetric tensors

Given a tensor component in complex coordinates, we can always trade it for a tensor component

with only z indices at the expense of introducing factors of ĝzz̄ and ĝzz̄. This means that we can

restrict to tensors with only z indices. The helicity of a tensor is then defined as the number of

upstairs z indices minus the number of downstairs z indices. Define the one-dimensional complex

vector bundle T s as the space of all smooth helicity-s tensors for s ∈ Z. We can define an inner

product on T s as

〈T, T ′〉 =

∫
M
dV (ĝzz̄)

s(T z...z)∗T ′z...z, (2.3)

where dV denotes the Riemannian volume form of (M, ĝ). For simplicity, we write 〈·, ·〉 rather

than 〈·, ·〉s, since the helicity of the arguments of the inner product should be clear whenever this

is important. The corresponding norm is denoted by ‖·‖.
Define Ss as the space of real, symmetric, traceless rank-s tensors on (M, ĝ) with s ≥ 1. The

nonvanishing components of a symmetric traceless tensor T ∈ Ss are

Tz...z =
1

2
(T1...1 − iT1...12) , (2.4)

Tz̄...z̄ = (ĝzz̄)
sT z...z =

1

2
(T1...1 + iT1...12) , (2.5)

and these components are related by complex conjugation, Tz...z = (Tz̄...z̄)
∗. Thus the complexifi-

cation of Ss is T s ⊕ T −s and the embedding of Ss in T s ⊕ T −s is given by

Tp1p2...ps 7→

(
(ĝzz̄)s(Tz...z)

∗

Tz...z

)
. (2.6)

Under this embedding, the canonical inner product on real symmetric tensors reduces to twice the

real part of the inner product (2.3),

(
T, T ′

)
:=

∫
M
dV T p1...psT ′p1...ps =

∫
M
dV (ĝzz̄)

s
[
(T z...z)∗T ′z...z + T z...z(T ′z...z)∗

]
(2.7)

= 2 Re 〈T, T ′〉, s ≥ 1. (2.8)
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2.3 Covariant derivatives and holomorphic s-differentials

We can define two covariant derivatives acting on each space of helicity tensors [28]

∇zs : T s → T s+1, T z...z 7→ ∇zsT z...z = gzz̄∂z̄T
z...z, (2.9)

∇sz : T s → T s−1, T z...z 7→ ∇szT z...z = (gzz̄)s∂z [(gzz̄)
sT z...z] , (2.10)

which agree with the components of the ordinary covariant derivative in complex coordinates. The

formal adjoint of ∇zs with respect to the inner product in Eq. (2.3) is (∇zs)† = −∇s+1
z . To simplify

notation, we will often drop the helicity labels on the covariant derivatives when it is clear what

bundles they act on. We also write ∇ and ∇̄ for the coordinate-free expressions of ∇z and ∇z,
respectively. A useful formula for the commutator of two covariant derivatives is

[∇z,∇z] : T s → T s, T z...z 7→ sT z...z. (2.11)

Let us mention the connection between symmetric, transverse, traceless tensors and holomorphic

s-differentials. This connects the approach of the present paper to that of Ref. [15]. A real, sym-

metric, traceless tensor T ∈ Ss is transverse if ∇p1Tp1...ps = 0. For s ≥ 2, the helicity components

of such a tensor satisfy

∇zTzz...z = ∇z̄Tz̄z̄...z̄ = 0 =⇒ ∂zTz̄...z̄ = ∂z̄Tz...z = 0, (2.12)

which implies that Tz...z is holomorphic and Tz̄...z̄ is anti-holomorphic. A holomorphic tensor

Tz...z ∈ T −s is called a holomorphic s-differential (or a holomorphic differential when s = 1 and a

holomorphic quadratic differential when s = 2). The Riemann–Roch theorem implies that the vec-

tor space of holomorphic s-differentials with s ≥ 2 has complex dimension (2s−1)(g−1) on a closed

surface of genus g ≥ 2. The helicity components of a real transverse vector satisfy ∇zT z+∇zTz = 0.

This does not imply that Tz is a holomorphic differential since, in addition to the holomorphic part,

such a vector can have a longitudinal component i∂zφ. On a closed surface of genus g, the complex

vector space of holomorphic differentials has dimension g.

2.4 Tensor decompositions

We now discuss some orthogonal decompositions for helicity tensors. Consider the covariant deriva-

tive ∇−s+1
z : T −s+1 → T −s for s ≥ 1. It has adjoint (∇−s+1

z )† = −∇z−s, whose kernel consists of

holomorphic s-differentials. Since ∇−s+1
z is a linear elliptic operator, we have the orthogonal de-

composition

T −s = ker((∇−s+1
z )†)⊕ Im(∇−s+1

z ) = ker(∇z−s)⊕ Im(∇−s+1
z ). (2.13)

This means that we can write any T (−s) ∈ T −s as

T (−s)
z...z = T̃ (−s)

z...z +∇−s+1
z T (−s+1)

z...z , (2.14)
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where T̃ (−s) is a holomorphic s-differential and T (−s+1) ∈ T −s+1. Applying this repeatedly gives

the orthogonal decomposition

T (−s)
z...z =

s−1∑
j=0

(∇z)j T̃ (−s+j)
z...z + (∇z)sT (0), (2.15)

where T̃ (−k) is a holomorphic k-differential, T (0) ∈ T 0 is a smooth function, and (∇z)j stands for

∇z applied j times.4

Similarly, for s ≥ 1 the linear elliptic operator ∇zs−1 : T s−1 → T s has the formal adjoint −∇sz,
whose kernel consists of tensors T z...z such that Tz̄...z̄ = (ĝzz̄)

sT z...z is antiholomorphic. From the

orthogonal decomposition

T s = ker((∇zs−1)†)⊕ Im(∇zs−1) = ker(∇sz)⊕ Im(∇zs−1), (2.17)

we can write any T (s) ∈ T s as

T (s)z...z = T̃ (s)z...z +∇zs−1T
(s−1)z...z, (2.18)

where T̃ (s) is in the kernel of ∇sz and T (s−1) ∈ T s−1. Applying this repeatedly gives the orthogonal

decomposition

T (s)z...z =

s−1∑
j=0

(∇z)j T̃ (s−j)z...z + (∇z)sT (0), (2.19)

where T̃ (k) is in the kernel of ∇kz and T (0) ∈ T 0.

2.5 Laplacians

We can define two Laplacians on helicity tensors,

∆(+) := −2∇z∇z, ∆(−) := −2∇z∇z, (2.20)

where we leave implicit the helicity of the tensors on which these operators act. When acting on

T s, Eq. (2.11) gives

∆(+) −∆(−) = 2s. (2.21)

Let us see how these Laplacians act on the terms appearing in the tensor decompositions con-

sidered above. Firstly, we can decompose any L2-normalisable function in terms of eigenfunctions

of the Laplace–Beltrami operator ∆. For an eigenfunction φi of ∆ with eigenvalue λi, we have

∆φi = ∆(±)φi = λiφi. (2.22)

4This should not be confused with ∇j
z, which is one of the covariant derivatives acting on T j . The expanded form

of Eq. (2.15) is

T (−s)
z...z =T̃ (−s)

z...z +∇−s+1
z T̃ (−s+1)

z...z + · · ·+∇−s+1
z ∇−s+2

z . . .∇−1
z T̃ (−1)

z +∇−s+1
z ∇−s+2

z . . .∇0
zT

(0). (2.16)
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This tells us how the Laplacians ∆(±) act on the scalar components of the tensor decompositions.

We take the eigenfunctions {φi}∞i=0 to be real and orthonormal, with the normalisation 〈φi, φj〉 = δij .

Now let
{
φ

(s)
i

}Ng,s

i=1
with s ≥ 1 be a finite-dimensional orthonormal basis of holomorphic s-

differentials, with the normalisation
〈
φ

(s)
i , φ

(s)
j

〉
= δij .

5 As already mentioned, on a genus-g surface

with g ≥ 2, the Riemann–Roch theorem gives the complex dimension of the vector space of holo-

morphic s-differentials as

Ng,s :=

{
g if s = 1

(2s− 1)(g − 1) if s > 1
. (2.23)

We can write any holomorphic s-differential T̃ (−s) ∈ T −s as a complex linear combination of these

φ
(s)
i . Using Eq. (2.21) and the fact that φ

(s)
i is in the kernel of ∇z, we get

∆(+)φ
(s)
i,z...z = 0, ∆(−)φ

(s)
i,z...z = 2sφ

(s)
i,z...z, (2.24)

i.e., holomorphic s-differentials are eigentensors of ∆(±) with eigenvalues λ
(±)
i,s = s∓ s.

Now let us define

φ̄
(s)z...z
i := (gzz̄)s

(
φ

(s)
i,z...z

)∗
. (2.25)

Any T̃ (s) ∈ T s in the kernel of ∇sz can be written as a complex linear combination of these φ̄
(s)
i .

Using Eq. (2.21) and the fact that φ̄
(s)
i is in the kernel of ∇z, we get

∆(−)φ̄
(s)z...z
i = 0, ∆(+)φ̄

(s)z...z
i = 2sφ̄

(s)z...z
i , (2.26)

i.e., tensors in the kernel of ∇sz are eigentensors of ∆(±) with eigenvalues λ̄
(±)
i,s = s± s.

It is convenient to define φ
(0)
i := φi and φ̄

(0)
i := φi for i = 1, 2, . . . , even though these eigenfunc-

tions are not holomorphic functions. It is similarly convenient to define Ng,0 :=∞, λ
(±)
i,0 := λi, and

λ̄
(±)
i,0 := λi. We can then write φ

(s)
i with s ≥ 0 to collectively denote nonconstant scalar eigenfunc-

tions and holomorphic s-differentials, where 1 ≤ i ≤ Ng,s, and similarly for φ̄
(s)
i . From now on,

when we write φ
(s)
i or φ̄

(s)
i , this can include the scalar eigenfunctions, unless explicitly indicated

otherwise. We also now take φi to have i ≥ 1 unless indicated otherwise, since the zero mode

φ0 = V −1/2 will be treated separately.

2.6 Spectral decompositions

We can combine the helicity tensor decomposition from Eq. (2.15) with the decompositions of

functions in terms of {φi}∞i=0 and holomorphic s-differentials in terms of
{
φ

(s>0)
i

}Ng,s

i=1
to write a

tensor T (−s) ∈ T −s with nonpositive helicity as

T (−s)
z...z =

s∑
n=0

Ng,n∑
k=1

Ck,n(∇z)s−nφ(n)
k,z...z + δs0C0,0V

− 1
2 , (2.27)

5Note that we use s rather than −s in the superscript for the basis of holomorphic s-differentials.
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where Ck,n are constants that can be determined by taking inner products of each side of this

equation with the pairwise orthogonal terms on the right-hand side. Similarly, using the helicity

tensor decomposition from Eq. (2.19), we can write a tensor T (s) ∈ T s with nonnegative helicity as

T (s)z...z =

s∑
n=0

Ng,n∑
k=1

C̄k,n(∇z)s−nφ̄(n)z...z
k + δs0C̄0,0V

− 1
2 , (2.28)

where C̄k,n are constants that can be determined by taking inner products of each side of this

equation with the pairwise orthogonal terms on the right-hand side.

2.7 Triple overlap integrals

We now define certain basic integrals of products of eigenmodes. Given three eigenmodes φ
(s1)
i ,

φ
(s2)
j , and φ

(s3)
k , with s3 ≥ s1 + s2, we define the following triple overlap integral:

c
(s1,s2,s3)
ijk :=

〈
φ

(s3)
k , φ

(s1)
i ∇s3−s1−s2φ(s2)

j

〉
=

∫
M
dV φ

(s1)
i,z...z(∇z)

s3−s1−s2φ
(s2)
j,z...zφ̄

(s3)z...z
k , (2.29)

where ∇ is the coordinate-free expression for ∇z. The complex conjugate of c
(s1,s2,s3)
ijk is denoted

by c̄
(s1,s2,s3)
ijk , so for s3 ≥ s1 + s2 we have

c̄
(s1,s2,s3)
ijk =

〈
φ

(s1)
i ∇s3−s1−s2φ(s2)

j , φ
(s3)
k

〉
=

∫
M
dV φ̄

(s1)z...z
i (∇z)s3−s1−s2 φ̄(s2)z...z

j φ
(s3)
k,z...z. (2.30)

These triple overlap integrals satisfy various relations. For example, we have

c
(s1,s2,s3)
ijk = (−1)s3−s1−s2c

(s2,s1,s3)
jik , (2.31)

which implies in particular that c
(s1,s1,s3)
iij vanishes when s3 is odd. The triple overlap integrals are

complex in general, but c
(0,s,s)
ijk satisfies

c
(0,s,s)
ijk = c̄

(0,s,s)
ikj , (2.32)

which implies that c
(0,s,s)
ijj is real. Bounds on the asymptotic growth of the scalar overlap integrals

c
(0,0,0)
iik as k → ∞ are known from analytic number theory [31–33]. Triple overlap integrals can

also be constrained using bootstrap methods [14, 15], as with the conformal bootstrap bounds on

operator product expansion coefficients [34].

The overlap integrals written so far do not exhaust all possibilities. There is an additional

independent triple overlap integral between three distinct scalar eigenfunctions that we write as

c̃ijk :=

√
−1

2
(〈∇φk, φi∇φj〉 − 〈∇φj , φi∇φk〉) =

√
−1

∫
M
dV φi∇zφ[j∇zφk], (2.33)

where we antisymmetrise with weight one. It is real and completely antisymmetric in its indices,

¯̃cijk = c̃ijk, c̃ijk = c̃[ijk]. (2.34)
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This overlap integral corresponds to the parity-odd interaction εmnφi∂mφj∂nφk. With this defini-

tion, we can write

〈∇φk, φi∇φj〉 = −
√
−1c̃ijk +

1

4
(λj + λk − λi) c

(0,0,0)
ijk . (2.35)

3 Consistency conditions

In this section, we show how to write down consistency conditions involving triple overlap integrals

and Laplacian eigenvalues. We start by discussing integrals of products of two eigenmodes and

work up to integrals of products of four eigenmodes.

3.1 Norms

Consider first the integral of a product of derivatives of two eigenmodes of the same rank,〈
∇αφ(s)

j ,∇αφ(s)
i

〉
=

∫
M
dV (∇z)αφ(s)

i,z...z(∇
z)αφ̄

(s)z...z
j , (3.1)

where α and s are nonnegative integers. We can simplify this using integration by parts and the

normalisations of the eigenmodes. A useful identity for this is

∇z(∇z)αφ(s)
i,z...z = −1

2

(
α(2s+ α− 1) + λ

(+)
i,s

)
(∇z)α−1φ

(s)
i,z...z, (3.2)

where α ≥ 1 and we recall that λ
(+)
i,s>0 = 0 and λ

(+)
i,0 = λi. This identity can be derived by repeatedly

using Eq. (2.11). We can use this identity to recursively solve for the norms. For s ≥ 1, we can

write the result as 〈
∇αφ(s)

j ,∇αφ(s)
i

〉
=

1

2α
Γ(α+ 1)Γ(2s+ α)

Γ(2s)
δij , (3.3)

and for s = 0 we can write

〈∇αφj ,∇αφi〉 = δijχα(λi), χα(λi) :=
1

2α

α−1∏
m=0

[λi +m(m+ 1)] . (3.4)

3.2 Triple products

We now consider integrals of products of derivatives of three eigenmodes of the form〈
∇α3φ

(s3)
k ,∇α1φ

(s1)
i ∇α2φ

(s2)
j

〉
=

∫
M
dV (∇z)α1φ

(s1)
i,z...z(∇z)

α2φ
(s2)
j,z...z(∇

z)α3 φ̄
(s3)z...z
k , (3.5)

where αa and sa are nonnegative integers satisfying

α1 + α2 + s1 + s2 = α3 + s3. (3.6)
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Using integration by parts, we can write Eq. (3.5) in terms of the basic triple overlap integrals

defined earlier. A useful identity for doing this, which is valid when α1 + s1 > 0, α2 + s2 > 0, and

α3 > 0, is〈
∇α3φ

(s3)
k ,∇α1φ

(s1)
i ∇α2φ

(s2)
j

〉
=

(1− δα10)

2

(
α1(2s1 + α1 − 1) + λ

(+)
i,s1

)〈
∇α3−1φ

(s3)
k ,∇α1−1φ

(s1)
i ∇α2φ

(s2)
j

〉
+

(1− δα20)

2

(
α2(2s2 + α2 − 1) + λ

(+)
j,s2

)〈
∇α3−1φ

(s3)
k ,∇α1φ

(s1)
i ∇α2−1φ

(s2)
j

〉
. (3.7)

A useful identity when s1 = α1 = 0, which is valid for α2 > 1 and α3 + s3 > 1, is〈
∇α3φ

(s3)
k , φi∇α2φ

(s2)
j

〉
=

1

2

(
α2(2s2 + α2 − 1) + (α3 − 1)(2s3 + α3 − 2) + λ

(+)
j,s2

+ λ̄
(−)
k,s3
− λi

)〈
∇α3−1φ

(s3)
k , φi∇α2−1φ

(s2)
j

〉
− (1− δα31)

4

(
(α2 − 1)(2s2 + α2 − 2) + λ

(+)
j,s2

)(
(α3 − 1)(2s3 + α3 − 2) + λ̄

(−)
k,s3

)〈
∇α3−2φ

(s3)
k , φi∇α2−2φ

(s2)
j

〉
, (3.8)

where we recall that λ̄
(−)
i,s>0 = 0 and λ

(−)
i,0 = λi. By recursively using these identities and their

complex conjugates, plus Eq. (2.35), we can write Eq. (3.5) and its conjugate in terms of the

eigenvalues λa and the basic triple overlap integrals c
(sa,sb,sc)
abc , c̄

(sa,sb,sc)
abc , and c̃abc.

3.3 Quadruple products

Now that we know how to reduce double and triple overlap integrals, we can explain how to

obtain consistency conditions from quadruple overlap integrals. We consider integrals of products

of derivatives of four eigenmodes taking the form〈
∇α3φ

(s3)
k ∇α4φ

(s4)
l ,∇α1φ

(s1)
i ∇α2φ

(s2)
j

〉
=

∫
M
dV (∇z)α1φ

(s1)
i,z...z(∇z)

α2φ
(s2)
j,z...z(∇

z)α3 φ̄
(s3)z...z
k (∇z)α4 φ̄

(s4)z...z
l ,

(3.9)

where αa and sa are nonnegative integers satisfying

Js := α1 + α2 + s1 + s2 = α3 + α4 + s3 + s4. (3.10)

The idea is to write this quadruple overlap integral in terms of triple overlap integrals in multiple

ways using the helicity tensor decompositions discussed earlier.

One way to rewrite the quadruple overlap integral is to first use Eq. (2.27) to expand the product

∇α1φ
(s1)
i ∇α2φ

(s2)
j on a genus-g surface as

(∇z)α1φ
(s1)
i,z...z(∇z)

α2φ
(s2)
j,z...z =

Js∑
n=0

Ng,n∑
k′=1

〈
∇Js−nφ(n)

k′ ,∇
α1φ

(s1)
i ∇α2φ

(s2)
j

〉
∥∥∥∇Js−nφ(n)

k′

∥∥∥2 (∇z)Js−nφ(n)
k′,z...z

+
δijδJs,0
V

. (3.11)
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We can similarly expand ∇̄α3 φ̄
(s3)
k ∇̄α4 φ̄

(s4)
l using Eq. (2.28),

(∇z)α3 φ̄
(s3)z...z
k (∇z)α4 φ̄

(s4)z...z
l =

Js∑
n=0

Ng,n∑
k′=1

〈
∇α3φ

(s3)
k ∇α4φ

(s4)
l ,∇Js−nφ(n)

k′

〉
∥∥∥∇Js−nφ(n)

k′

∥∥∥2 (∇z)Js−nφ̄(n)z...z
k′

+
δklδJs,0
V

. (3.12)

Substituting these two expansions into Eq. (3.9) then gives the decomposition of the quadruple

overlap integral,〈
∇α3φ

(s3)
k ∇α4φ

(s4)
l ,∇α1φ

(s1)
i ∇α2φ

(s2)
j

〉
=
δijδklδJs0

V

+

Js∑
n=0

Ng,n∑
k′=1

〈
∇α3φ

(s3)
k ∇α4φ

(s4)
l ,∇Js−nφ(n)

k′

〉〈
∇Js−nφ(n)

k′ ,∇
α1φ

(s1)
i ∇α2φ

(s2)
j

〉
∥∥∥∇Js−nφ(n)

k′

∥∥∥2 . (3.13)

In physics terminology, this is called the s-channel decomposition of the quadruple overlap integral.

Alternatively, we could first write the same quadruple overlap integral as〈
∇̄α2 φ̄

(s2)
j ∇α4φ

(s4)
l ,∇α1φ

(s1)
i ∇̄α3 φ̄

(s3)
k

〉
(3.14)

and then expand the two products using the helicity tensor decompositions. This gives the t-channel

decomposition of the integral,

〈
∇̄α2 φ̄

(s2)
j ∇α4φ

(s4)
l ,∇α1φ

(s1)
i ∇̄α3 φ̄

(s3)
k

〉
=

〈
∇α3φ

(s3)
k ,∇α1φ

(s1)
i

〉〈
∇α4φ

(s4)
l ,∇α2φ

(s2)
j

〉
δJt,0

V

+

Jt∑
n=0

Ng,s∑
k′=1

〈
∇̄α2 φ̄

(s2)
j ∇α4φ

(s4)
l ,∇Jt−nφ(n)

k′

〉〈
∇Jt−nφ(n)

k′ ,∇
α1φ

(s1)
i ∇̄α3 φ̄

(s3)
k

〉
∥∥∥∇Jt−nφ(n)

k′

∥∥∥2 , (3.15)

where Jt := |s1 +α1− s3−α3| and we have written the expansion assuming that s1 +α1 ≥ s3 +α3.

Finally, we can exchange 3↔ 4 in the t-channel decomposition to get the u-channel decomposition.

As mentioned previously, we can write the inner products appearing in these decompositions in

terms of the eigenvalues λa and the triple overlap integrals c
(sa,sb,sc)
abc , c̄

(sa,sb,sc)
abc , and c̃abc. Equating

the three decompositions, we then obtain two consistency conditions involving just eigenvalues

and the basic triple overlap integrals. As an example, for the s- and t-channel decompositions of〈
φi∇φ(1)

j , φi∇φ(1)
j

〉
we have

〈
φi∇φ(1)

j , φi∇φ(1)
j

〉
=
∞∑
k=1

(λk − λi + 2)2

λk(2 + λk)

∣∣∣c(0,0,1)
ikj

∣∣∣2 +
1

4

Ng,1∑
k=1

(λi − 2)2
∣∣∣c(0,1,1)
ijk

∣∣∣2 +

Ng,2∑
k=1

∣∣∣c(0,1,2)
ijk

∣∣∣2 ,
(3.16)〈

∇̄φ̄(1)
j ∇φ

(1)
j , φiφi

〉
=

1

V
+

∞∑
k=1

(
1− λk

2

)
c

(0,0,0)
iik c

(0,1,1)
kjj , (3.17)

and equating these expressions gives a consistency condition.
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4 Eigenvalue bounds

In this section, we illustrate how to use consistency conditions to derive bounds on the eigenvalues of

closed hyperbolic surfaces. This approach was used to derive bounds for closed hyperbolic manifolds

in general dimensions in Ref. [15], using consistency conditions coming from quadruple overlap

integrals of a fixed scalar eigenfunction with up to 16 derivatives (and with up to six derivatives

for closed Einstein manifolds in Ref. [14]). The approach closely follows that of the conformal

bootstrap [16–18]. To derive bounds, we use the arbitrary-precision semidefinite program solver

SDPB [35, 36]. We have not computed rigorous errors for our bounds, although we expect that they

are correct to the stated precision and that they could be made rigorous with additional effort.

4.1 Bootstrap equations

To derive bootstrap bounds, we consider real quadruple overlap integrals involving at most two

different eigenfunctions or holomorphic s-differentials and taking the form〈
∇αφ(s1)

i φ
(s2)
j ,∇αφ(s1)

i φ
(s2)
j

〉
=

∫
M
dV (∇z)αφ(s1)

i,z...zφ
(s2)
j,z...z(∇

z)αφ̄
(s1)z...z
i φ̄

(s2)z...z
j , (4.1)

where α, s1, and s2 are nonnegative integers with s1 ≤ s2. We also assume that s2 > 0 to avoid the

additional complications present for two distinct fixed scalar eigenfunctions, but similar formulae

can be written down for this case.

We can be reasonably explicit in writing down the different decompositions of Eq. (4.1). On a

surface of genus g, we have the s-channel decomposition

〈
∇αφ(s1)

i φ
(s2)
j ,∇αφ(s1)

i φ
(s2)
j

〉
=
δijδJs0

V
+

Js∑
n=s1+s2

Ng,n∑
k=1

Γ(2n)
[∏Js−n

m=1

(
(α+ 1−m)(2s1 + α−m) + λ

(+)
i,n

)]2 ∣∣∣c(s1,s2,n)
ijk

∣∣∣2
2Js−nΓ(Js + n)Γ(Js − n+ 1)

+ δs10

 ∞∑
k=1

[χα(λi)]
2
∣∣∣c(0,0,s2)
kij

∣∣∣2
2s1χJs(λk)

+

s2−1∑
n=1

Ng,n∑
k=1

2α+s2−nΓ(2n) [χα(λi)]
2
∣∣∣c(n,0,s2)
kij

∣∣∣2
Γ(Js + n)Γ(Js − n+ 1)

 , (4.2)

the t-channel decomposition〈
φ

(s2)
j φ̄

(s2)
j ,∇αφ(s1)

i ∇̄αφ̄(s1)
i

〉
=

1

V

∥∥∥∇αφ(s1)
i

∥∥∥2
+
∞∑
k=1

f (α)
s1

(
λ

(+)
i,s , λk

)
c

(0,s1,s1)
kii c

(0,s2,s2)
kjj , (4.3)

and the u-channel decomposition〈
∇αφ(s1)

i φ̄
(s2)
j ,∇αφ(s1)

i φ̄
(s2)
j

〉
=
δijδJu0δα0

V
+
∞∑
k=1

χJu(λk)
∣∣∣c(0,s1,s2)
kij

∣∣∣2 (4.4)

if s1 + α ≥ s2, or

〈
∇αφ(s1)

i φ̄
(s2)
j ,∇αφ(s1)

i φ̄
(s2)
j

〉
=

∞∑
k=1

∣∣∣c(0,s1,s2)
kij

∣∣∣2
χJu(λk)

+

Ju∑
n=1

Ng,n∑
k=1

2Ju−nΓ(2n)
∣∣∣c(n,s1,s2)
kij

∣∣∣2
Γ(Ju + n)Γ(Ju − n+ 1)

(4.5)
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if s1 + α < s2, where Js := s1 + s2 + α, Ju := |α + s1 − s2|, χα(λ) are the polynomials defined in

Eq. (3.4), and f
(α)
s

(
λ

(+)
i,s , λk

)
is the solution to the recursion relation

f (α)
s =

1

2

(
α(2s+ α− 1) + (α− 1)(2s+ α− 2) + 2λ

(+)
i,s − λk

)
f (α−1)
s

− 1

4

[
(α− 1) (2s+ α− 2) + λ

(+)
i,s

]2
f (α−2)
s , (4.6)

f (1)
s = s+

1

2

(
λ

(+)
i,s − λk

)
+
δs0
4
λk, f (0)

s = 1. (4.7)

We do not have a closed-form solution to this recursion relation or a solution to the corresponding

ODE for the generating function
∑∞

α=0 x
αf

(α)
s , although in practice the recursion relation itself is

useful for finding the consistency conditions to a given order, as in the conformal bootstrap [18].

By equating these different channel decompositions for α = 0, 1, . . . ,Λ/2, where Λ is an even

integer corresponding to the maximum number of derivatives, we obtain real consistency conditions

that we can write in the following form:6

V −1 ~F ′′0 +
∞∑
k=1

~F ′0(λk)c
(0,s1,s1)
kii c

(0,s2,s2)
kjj +

∞∑
k=1

1

χJ(λk)
~F0(λk)

∣∣∣c(0,s1,s2)
kij

∣∣∣2
+

s2−s1−δs10∑
n=1

Ng,n∑
k=1

~Fn

∣∣∣c(n,s1,s2)
kij

∣∣∣2 +
J∑

n=s1+s2

Ng,n∑
k=1

~Fn

∣∣∣c(s1,s2,n)
ijk

∣∣∣2 = 0, (4.8)

where J := Λ/2 + s1 + s2 corresponds to the maximum exchanged spin (in physics terminology).

The quantities ~F ′0(λk) and ~F0(λk) are vectors of polynomials of λk, while ~F ′′0 and ~Fn are constant

vectors—all of these vectors also depend in general on the fixed integers sa and the eigenvalue λi

if s1 = 0.

A special case of the consistency conditions (4.8) is when there is a single fixed eigenmode, i.e.,

when s1 = s2 and i = j (we include here the case of a single scalar eigenfunction). We can combine

the mixed consistency conditions (4.8) with those for a single fixed eigenmode φ
(s1)
i or φ

(s2)
j to get

a larger system of consistency conditions of the following form:

V −1 ~F ′′0 +

∞∑
k=1

1

χJ(λk)

(
c

(0,s1,s1)
kii

c
(0,s2,s2)
kjj

)
~F ′0(λk)

(
c

(0,s1,s1)
kii c

(0,s2,s2)
kjj

)

+
∞∑
k=1

1

χJ(λk)
~F0(λk)

∣∣∣c(0,s1,s2)
kij

∣∣∣2 +

s2−s1−δs10∑
n=1

Ng,n∑
k=1

~Fn

∣∣∣c(n,s1,s2)
kij

∣∣∣2 +
J∑

n=s1+s2

Ng,n∑
k=1

~Fn

∣∣∣c(s1,s2,n)
ijk

∣∣∣2
+

J∑
n=2(s1+δs10)

n even

Ng,n∑
k=1

~F ′n

∣∣∣c(s1,s1,n)
iik

∣∣∣2 +
J∑

n=2s2
n even

Ng,n∑
k=1

~F ′′n

∣∣∣c(s2,s2,n)
jjk

∣∣∣2 = 0, (4.9)

6To get a complete set when s1 > 0, we start instead from α = 1 and add the consistency conditions from

decomposing
〈
∇φ(s1)

i φ
(s2)
j , φ

(s1)
i ∇φ(s2)

j

〉
.
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where ~F ′0(λk) is now a 2 × 2 matrix of polynomials of λk, ~F0(λk) is a vector of polynomials of

λk, and ~F ′′0 , ~Fn, ~F ′n, and ~F ′′n are constant vectors, with all of these vectors again depending on

the fixed quantities sa and λi (if s1 vanishes). In Eq. (4.9), we have included the consistency

conditions of a single fixed eigenmode φ
(sa)
a from quadruple overlap integrals with up to 2(J − 2sa)

derivatives, which ensures that J is the maximum exchanged spin for each contribution. This

system of consistency conditions is easily generalised to include any number of fixed holomorphic

s-differentials, and at most one scalar eigenfunction, by combining the single eigenmode consistency

conditions for each fixed eigenmode with the mixed consistency conditions (4.8) for each pair of

fixed eigenmodes; with N fixed eigenmodes, ~F ′0(λk) is an N ×N matrix.

4.2 Bounds on the spectral gap

To derive an upper bound on the spectral gap λ1, we assume that λ1 ≥ λ∗ for some fixed number

λ∗ and then, for example, look for a linear combination of the consistency conditions (4.9) with

s1 > 0 that leads to a contradiction. Specifically, if we have nJ consistency conditions for some

fixed positive integer J , then we look for a vector ~α ∈ RnJ such that the following conditions hold:

~α · ~F ′0(x) � 0, ∀x ≥ λ∗, (4.10a)

~α · ~F0(x) ≥ 0, ∀x ≥ λ∗, (4.10b)

~α · ~F ′′0 = 1, (4.10c)

~α · ~Fn ≥ 0, n ∈ {1, . . . , s2 − s1, s1 + s2, . . . , J}, (4.10d)

~α · ~F ′n ≥ 0, n ∈ {2s1, 2s1 + 2, . . . , J}, (4.10e)

~α · ~F ′′n ≥ 0, n ∈ {2s2, 2s2 + 2, . . . , J}, (4.10f)

where ~α · ~F ′0(x) � 0 means that ~α · ~F ′0(x) is a positive semidefinite matrix. If we can find such an

~α, then we reach a contradiction since ~α dotted into the left-hand side of Eq. (4.9) gives a positive

quantity, which cannot equal zero. We can then conclude that our assumption that λ1 ≥ λ∗ is

inconsistent and hence λ1 < λ∗ for any closed hyperbolic surface. We can repeat this procedure

with different values of λ∗ to find the optimal bound for a given J . The optimal upper bound is

nonincreasing with increasing J . A similar approach holds for a single fixed eigenmode or for more

than two eigenmodes. The problem of finding a vector ~α satisfying the conditions in Eqs. (4.10)

can be formulated as a semidefinite programming problem, following the approach of the conformal

bootstrap [24, 37]. In this work, we use SDPB to numerically solve these semidefinite programs

[35, 36], using the nondefault settings listed in Table 1.

Let us start with the case of a single fixed holomorphic s-differential. Taking J = 30, which

corresponds to 30 − 2s + 1 consistency conditions, we find the upper bounds on the spectral gap

shown in Table 2 for s ≤ 6. These bounds do not appear to be very competitive, since the Yang–

Yau bound gives λ1 ≤ 4 for any closed hyperbolic surface. The reason is that these bounds also

apply to more general spaces, such as quotients of surfaces by subsets of their discrete isometry
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detectDualFeasibleJump True

detectPrimalFeasibleJump True

precision 1024

dualityGapThreshold 10−80

primalErrorThreshold 10−100

dualErrorThreshold 10−100

initialMatrixScalePrimal 1010

initialMatrixScaleDual 1010

maxComplementarity 10100

Table 1: Our settings for SDPB version 2.5.1.

groups, since the consistency conditions are closed under the restriction to singlet eigenmodes.

For the bounds in Table 2 to apply to such a quotient, the original surface must admit a singlet

holomorphic s-differential. For example, the smallest nondegenerate, nonzero eigenvalue of the

Bolza surface is λ24 ≈ 23.07856 [4],7 which is consistent with Table 2 if the Bolza surface does

not have a holomorphic differential or holomorphic quadratic differential transforming in the trivial

representation of its isometry group. The proximity of λ24 to the s = 3 bound in Table 2 already

suggests that the Bolza surface might be close to saturating certain bootstrap bounds.

s Upper bound on λ1

1 8.47032

2 15.79144

3 23.07916

4 30.35432

5 37.62320

6 44.88836

Table 2: Upper bounds on the spectral gap from consistency conditions of quadruple overlap

integrals of a holomorphic s-differential with J = 30, i.e., with 60− 4s derivatives.

To obtain a stronger upper bound, we should input additional information to forbid quotients

with large gaps that are not closed surfaces. An approach that works well is to consider consistency

conditions coming from quadruple overlap integrals with multiple fixed holomorphic s-differentials.

Consider the mixed consistency conditions with two distinct holomorphic differentials, i.e., the

consistency conditions in Eq. (4.9) with s1 = s2 = 1 and i 6= j. This assumption is consistent with

any closed hyperbolic surface since a genus-g surface has g independent holomorphic differentials

7Although the first 23 nonzero eigenvalues appear to be degenerate eigenvalues to high numerical precision [4], in

principle there could be accidental near degeneracies. See Refs. [38, 39] for work towards proving that the first two

nontrivial eigenspaces have dimensions three and four, respectively.
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and g ≥ 2. For J = 50, which corresponds to 196 consistency conditions, we obtain the numerical

upper bound

λ1 ≤ 3.8388977. (4.11)

This should be compared to the spectral gap of the Bolza surface λ1 ≈ 3.8388873 [4]. Since the

bootstrap bound is almost saturated by the Bolza surface, this provides strong evidence for the

conjecture that the Bolza surface is the closed hyperbolic surface with the largest spectral gap [4].

By considering a system of consistency conditions with g0 distinct holomorphic differentials, we

can obtain bounds that are valid for closed hyperbolic surfaces with genera g ≥ g0. We obtain the

following results for g0 ≤ 7, which we compare to the best known bounds:

• For g0 = 3, we find λ1 ≤ 2.678483 with J = 30, corresponding to 261 consistency conditions.8

This is close to the spectral gap of the Klein quartic, which is the closed genus-3 surface with

the largest symmetry group and has λ1 ≈ 2.678 [6, 39].9 The rigorous bound of Ref. [7] gives

λ1 ≤ 2(4−
√

7) ≈ 2.71 for g = 3.

• For g0 = 4, we find λ1 ≤ 2.17 with J = 10, corresponding to 144 consistency conditions. This

is weaker than the Yang–Yau bound, which gives λ1 ≤ 2 for g = 4. The most symmetric

closed hyperbolic surface of genus 4 is Bring’s surface, which has λ1 ≈ 1.9 [39].

• For g0 = 5, we find λ1 ≤ 1.86 with J = 10, corresponding to 225 consistency conditions. The

rigorous bound of Ref. [8] gives λ1 ≤ (47−
√

977)/8 ≈ 1.97 for g = 5.

• For g0 = 6, we find λ1 ≤ 1.67 with J = 10, corresponding to 324 consistency conditions. This

is weaker than the Yang–Yau bound, which gives λ1 ≤ 1.6 for g = 6.

• For g0 = 7, we find λ1 ≤ 1.55 with J = 10, corresponding to 441 consistency conditions. The

rigorous bound of Ref. [8] gives λ1 ≤ (33−
√

543)/6 ≈ 1.62 for g = 7.

These results show that bootstrap methods can also produce strong bounds for surfaces of larger

genera.

5 Conclusions

We have shown how to derive consistency conditions for closed hyperbolic surfaces coming from

quadruple overlap integrals with arbitrarily many derivatives and involving holomorphic s-differentials.

These improve on the explicit consistency conditions for closed hyperbolic manifolds found in

Ref. [15], which had fixed scalar eigenfunctions and at most 16 derivatives, albeit at the cost

of restricting to two dimensions. With these additional consistency conditions, it is possible to

derive more powerful bootstrap bounds. One example we showed was a nonrigorous numerical

upper bound on the spectral gap of a closed orientable hyperbolic surface that is stronger than the

Yang–Yau bound for genus 2 and is nearly saturated by the Bolza surface.

8We were aware of the analogous result of Ref. [27] when we first derived this bound.
9The last digit here is deduced from results of the FreeFem++ code of Ref. [39], using meshes on the fundamental

polygon with up to n = 110 triangles along each side.
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There is much more that could be investigated in the future. In two dimensions, one could try to

learn more about the closed hyperbolic surfaces that are close to saturating bootstrap bounds, e.g.,

by using the extremal functional method from the conformal bootstrap [40]. It would be interesting

to try to develop analytic bootstrap techniques and to explore the large-genus regime. It would

also be interesting to consider consistency conditions coming from quadruple overlap integrals of

tensors in higher dimensions, especially in three dimensions.
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