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Abstract

We offer a novel perspective onN=4 supersymmetric Yang–Mills (SYM) theory
through the framework of the Nicolai map, a transformation of the bosonic
fields that allows one to compute quantum correlators in terms of a free, purely
bosonic functional measure. Generally, any Nicolai map is obtained through
a path-ordered exponential of the so-called coupling flow operator. The latter
can be canonically constructed in any gauge using an N=1 off-shell superfield
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Lie algebra su(4). This theory incorporates our two construction approaches as
special points in su(4) and defines a broad class of Nicolai maps for N=4 SYM.
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1 Introduction

1.1 History and overview

Gauge theories are our best candidates for describing Nature at elementary scales. Out of all such theories,
maximally supersymmetric Yang–Mills theory in four dimensions (N=4 SYM) takes on a special role. In
a sense it is the most simple (possibly integrable) gauge theory that can be formulated. Indeed it has been
a long standing goal of theoretical physicists to solve this particular theory analytically. While being a
toy model, it is expected that progress on this matter would have a drastic impact on our understanding
of more complex models of nature. It is therefore important to continue this pursuit and investigate
N=4 SYM from every possible angle.

A so far relatively unknown approach to supersymmetric field theories is referred to as the Nicolai
map. It is based on works from Nicolai, Dietz, Flume and Lechtenfeld [1–7] from the 1980s. The Nicolai
map is a transformation of the bosonic Yang–Mills fields that relates the interacting theory at some
coupling g to the free theory at zero coupling. It allows one to compute quantum correlators in terms of
a free, purely bosonic functional measure, entirely bypassing the use of any anticommuting (Grassmann)
variables. After a pause of roughly 35 years there has recently been renewed interest on this matter
starting with the papers [8–11]. Shortly after, a general formula for the Nicolai map in terms of the so-
called coupling flow operator Rg was found in [12]. For theories that have an off-shell superfield formalism
the coupling flow operator can be constructed canonically. In these cases, a general construction method
for the Nicolai map in arbitrary gauges was developed in [13] and independently in [14]. This framework
has potential applications in all kinds of supersymmetric theories, e.g. as recently investigated [15] in
supermembrane and matrix theory.

We should highlight that the Nicolai map and its coupling flow operator are (depending on the theory)
not necessarily unique. The original proof [1,2] by Nicolai only shows that there exists such a map. The
non-uniqueness was seen most strikingly in [11], where it was shown that there exist two distinct Nicolai
maps in N=1 D=6 SYM (at least to third order in the coupling). In fact, one of the main results of this
work is that in case of N=4 SYM, there is a 15-dimensional ambiguity in the coupling flow operator.
However, by definition of the map, correlators are independent of the particular choice of the Nicolai map
(or coupling flow operator).

To this date, most works on Nicolai maps were restricted to N=1 supersymmetry. Only in [9] a
Nicolai map for N=4 SYM was deduced by dimensional reduction from the map for N=1 D=10 SYM.
In our work, we develop a more extensive framework for dealing with N=4 supersymmetry1. Generally,
we distinguish two possibilities for obtaining Nicolai maps in N=4 SYM. The first one is dimensional
reduction from ten to four dimensions, while the second one makes use of an N=1 off-shell superfield
formalism for N=4 SYM. The former approach treats all four supersymmetries on an equal footing,
whereas the latter singles out one of the supersymmetries. This leads to an ambiguity in the coupling
flow operator and the corresponding Nicolai map. We explain this by an analysis of the R-symmetry
of Rg. Essentially, the operator is subject to SU(4) R-symmetry transformations and to a principle of
superpositions with weight one. This suggests a general description of the coupling flow operator in terms
of an su(4) R-symmetry freedom that incorporates the two before-mentioned results as special points in
the Lie algebra.

In Section 2 we compare two formulations of the N=4 SYM action and how they are actually equiv-
alent. We start with the N=1 superfield formalism and then consider dimensional reduction from N=1
D=10 SYM to N=4 D=4 SYM. In Section 3 we compare the two corresponding formulations of the
coupling flow operator and place them as special cases within a general R-symmetric understanding of
the operator. In Section 4 we investigate the resulting Nicolai maps. Finally, in Section 5 we give our
conclusions and an outlook to possible future directions that this work may point at.

1other theories with extended supersymmetry such as N=2 D=6 SYM could be described in an analogous fashion.

3



Due to the technical nature of this paper, we present many of the calculations in detailed appendices
A-E in order not to disrupt the common theme of our arguments.

1.2 Basics of the Nicolai map

To begin with, we recall the essentials of the Nicolai map, without specializing to a particular theory.
Any supersymmetric theory can be expressed in terms of bosonic and fermionic (potentially including
ghost) fields. Usually the latter appear quadratically so that they can be integrated out, giving a nonlocal
functional determinant. The resulting action can be written as

Sg[φ] = Sb
g [φ] + ~ Sf

g[φ] , (1.1)

with coupling constant g and local, nonlocal parts of the action Sb
g , S

f
g respectively. Here, φ stands for

the bosonic field content of the theory, i.e. for N=4 SYM we have φ=(Aµ, ϕi) with the gauge field Aµ

and six real scalars ϕi. Expectation values2 of bosonic observables X [φ] in the theory (1.1) are given by

〈X [φ]〉g =

∫
Dφ exp

{
i
~
Sg[φ]

}
X [φ] . (1.2)

The Nicolai map is a (nonlinear and nonlocal) field transformation

Tg : φ(x) 7→ φ′(x; g,φ) , (1.3)

invertible at least as a formal power series in g, with the defining property

〈X [φ]〉g = 〈X [T−1g φ]〉0 ∀X , (1.4)

that connects the interacting theory at coupling g with the free theory (g=0). We stress again that the
map Tg is not necessarily unique. However, since we construct all maps from the defining relation (1.4),
correlators do not depend on the choice of the particular map. Taking the derivative of (1.4) with respect
to the coupling gives

∂g〈X [φ]〉g = 〈(∂g +Rg[φ])X [φ]〉g , (1.5)

which defines the infinitesimal version of the Nicolai map, the so-called coupling flow operator

Rg[φ] =

∫
dx
(
∂gT

−1
g ◦ Tg

)
φ(x)

δ

δφ(x)
=:

∫
dx K[φ;x]

δ

δφ(x)
, (1.6)

with kernel K. By setting X [φ]=Tgφ in (1.4), one can quickly derive [16] the relation

(∂g +Rg[φ])Tgφ = 0 . (1.7)

This is a well-known differential equation solved by the path-ordered exponential

Tgφ =
−→P exp

{
−
∫ g

0

dh Rh[φ]
}
φ , (1.8)

which was first found in [12]. This shows that the knowledge of Rg completely captures the analytic
g-dependence of the Nicolai map, allowing its perturbative construction. It is the main objective of this
work to find the explicit and most general form of Rg for N=4 SYM.

Next, we note the characteristic properties3 of the Nicolai map and the corresponding infinitesimal
properties for the coupling flow operator. Writing (1.4) in terms of path integrals and collecting powers
of ~, one finds

Sb
0 [Tgφ] = Sb

g [φ] and Sf
0[Tgφ]− itrln

δTgφ

δφ
= Sf

g[φ] , (1.9)

2by the vanishing of the vacuum energy in supersymmetric theories, we have the normalization 〈1〉g=1.
3which were originally used as the defining conditions of the Nicolai map, but can be traded for the single relation (1.4).
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the ‘free-action’ and ‘determinant-matching’ conditions respectively. For gauge theories, we have the
additional property that the chosen gauge fixing function G(φ) is a fixed point of the Nicolai map. From
(1.5), it is straightforward to deduce [16] the corresponding infinitesimal conditions

(∂g +Rg[φ])S
b
g [φ] = 0 and (∂g +Rg[φ])S

f
g [φ] =

∫
dx

δK[φ;x]

δφ(x)
, (1.10)

as well as the gauge condition
(∂g +Rg[φ])G(φ) = 0 . (1.11)

For completeness, although it will not be relevant to the rest of this work, we include here a few
general remarks on regularization and renormalization. Since the Nicolai map itself only consists of tree
graphs, regularization is not required at this stage. Only in the end, when computing correlators in the
free theory with (1.4), one has to contract trees with each other. This generates loops (but interestingly,
none of them purely fermionic) that have to be regularized. In the case of N=1 SYM this technique
and the subsequent renormalization are successfully carried out in the paper [7] from 1985, for example
rederiving the universality of the gauge coupling to 1-loop order. The computational effort of this method
as opposed to the traditional Feynman diagram approach is practically comparable.

1.3 Conventions and notation

In this paper, we work in four- and sometimes ten-dimensional Minkowski space equipped with the mostly
plus metric

ηµν = diag(−1, +1, +1, +1) , ηΣΘ = diag(−1, +1, ... , +1) (1.12)

respectively, where lowercase Greek indices run from 0 to 3 and uppercase Greek indices run from 0 to
9. For the four-dimensional spinor algebra, we adopt the conventions from [17], including the chiral basis
for the gamma matrices

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 = γ0γ1γ2γ3 =

(
−i 0

0 i

)
, (1.13)

with sigma matrices

σ0 =

(
−1 0

0 −1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, (1.14)

and σ̄0=σ0, σ̄1,2,3=−σ1,2,3. The gamma matrices satisfy the Clifford algebra {γµ, γν}=−2ηµν. In this
basis, the chiral projectors P± take the form

P+ = 1
2 (1 + iγ5) =

(
1 0

0 0

)
, P− = 1

2 (1− iγ5) =

(
0 0

0 1

)
. (1.15)

We often use the standard Feynman slash notation

/a = γµaµ , (1.16)

with the exception that the slashed script letters /A and /D have a related but distinct meaning that is
defined in the main text. We additionally define the antisymmetric

γµν = 1
2 (γ

µγν − γνγµ) (1.17)

and generally antisymmetrize indices with weight one, indicated by square brackets, e.g.

a[µbν] = 1
2 (a

µbν − aνbµ) . (1.18)
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All of our fields are in the adjoint representation of the gauge group which we take to be SU(nc) with
real antisymmetric structure constants fabc such that

fabcfabd = ncδ
cd , (1.19)

where color indices run from 1 to n2
c − 1, which we often leave implicit. For example, we write the

non-abelian field-strength tensor Fµν in two equivalent notations

Fµν = ∂µAν − ∂νAµ + gAµ ×Aν ⇐⇒ F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (1.20)

and the covariant derivative

Dµ = ∂µ + gAµ× ⇐⇒ (Dµ...)
a = ∂µ(...)

a + gfabcAb
µ(...)

c . (1.21)

We sum over implicit color indices of products, e.g.

FµνF
µν = F a

µνF
aµν , (1.22)

except when we write an explicit cross product, e.g.

ϕ ψ×λ = fabcϕaψbλc . (1.23)

Further, e.g. when writing down Nicolai maps to second order, we often adopt from section 4 of [10] the
shorthand notations for multiplying quantities in color and position space. This means that all objects are
multiplied as color matrices or vectors, and integration kernels are convoluted with insertions of bosonic
fields Aµ or ϕi for µ=0,1,2,3 and i=1,...,6. For example, we would write in two equivalent notations the
expression

∂ρCϕi∂µCAρ×ϕi ⇐⇒
∫

d4yd4z ∂ρC(x − y)(fabcϕb
i )(y)∂µC(y − z)(f cdeAd

ρ)(z)ϕ
e
i (z) , (1.24)

with the scalar propagator C=✷
−1. We often summarize the bosonic fields in the symbol

AΓ = (Aµ, ϕi) . (1.25)

An overview over the various types of indices to be used in the following can be found in Table 1.

Table 1
Types of indices used in this paper. Color and spinor indices are often left implicit.

Name Representation Range Alphabet

R-symmetry 4 of SU(4) 1 to 4 1st half of uppercase Latin (A,B,C,...)

R-symmetry (broken) 3 of SU(3) 1 to 3 2nd half of uppercase Latin (I,J,K,...)

R-symmetry 6 of SU(4) ∼= SO(6) 1 to 6 2nd half of lowercase Latin (i,j,k,...)

Color Adjoint of SU(nc) 1 to n2
c − 1 1st half of lowercase Latin (a,b,c,...)

Lorentz (4-dim.) Spin 1 of SO(1,3) 0 to 3 2nd half of lowercase Greek (µ,ν,ρ,...)

Lorentz (10-dim.) Spin 1 of SO(1,9) 0 to 9 uppercase Greek (Σ,Θ,Γ,...)

Spinor Spin 1
2 1 to 4 1st half of lowercase Greek (α,β,γ,...)

Lastly, we recall the definitions of the basic building blocks of the coupling flow operator in N=1
D=4 SYM [13], since these also appear in the more complicated N=4 case. The free gaugino and ghost
propagators S0 and G0 which will be used for the perturbative expansion of their full versions are given
by

S0 = /∂
−1

= −/∂C , G0 = (∂G(A )
∂Aµ

∂µ)
−1 , (1.26)
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respectively with the gauge fixing function G(A ). An object that appears often in the context of the
Nicolai map is the free projector

Π ν
µ = δ ν

µ − ∂µG0
∂G(A )
∂Aν

, (1.27)

which we often extend to capital greek indices

Π Σ
Γ = δ Σ

Γ − ∂ΓG0
∂G(A )
∂AΣ

, (1.28)

with the understanding that in the reduced four-dimensional theory ∂3+i=0 for i=1,...,6. Among all
possible gauges, the Landau gauge G(A )=∂µAµ takes on a special role, since in that case G0≡C so that
Π ν

µ equals the standard transversal projector

∐ ν
µ = δ ν

µ − ∂µC∂
ν . (1.29)

The latter splits the Yang–Mills fields into transversal and longitudinal components

Aµ = AT
µ +AL

µ , AT
µ = ∐ ν

µ Aν , AL
µ = (δ ν

µ −∐ ν
µ )Aν = ∂µC ∂ ·A , (1.30)

where we abbreviate ∂ · A=∂µAµ. In arbitrary gauges (or outside of the gauge hypersurface of the Landau
gauge), it is helpful to define the ‘conjugate’ Yang–Mills field

A∗µ := AT
µ − AL

µ = Aµ − 2∂µC∂ ·A , (1.31)

although for the most part in this work, we restrict ourselves to the Landau gauge hypersurface, where
A=A∗.

2 N=4 SYM action

A common formulation of the N=4 SYM invariant action (without a topological term4) is [18]

Sinv =

∫
d4x

{
− 1

4F
µνFµν − 1

2DµϕiD
µϕi − i

2 χ̄A /DP+χA − i
2
¯̃χA /DP−χ̃A

− ig tiAB
¯̃χAP+ϕi × χB + ig tiAB χ̄AP

−ϕi × χ̃B − g2

4 (ϕi × ϕj)
2
}
,

(2.1)

in terms of Weyl spinors χA, χ̃A where χ̃A=C(χ̄A)T with the charge conjugation operator C in four
dimensions. All fields are in the adjoint representation of the gauge group, with color indices left implicit.
Here, χA transforms as a 4 under the global SU(4) ∼= SO(6) R-symmetry, while χ̃A transforms as a
4̄. The indices i=1,2,...,6 label the six bosonic fields ϕi that transform as a 6. Furthermore, the
coefficients tiAB=(tiAB)∗ are the structure constants of the R-symmetry, or in other words Clebsch-
Gordon coefficients that couple two 4’s to a 6 [19]. They allow us to define anti-symmetric complex
scalars

ϕAB = tiABϕi , ϕAB = tiABϕi = (ϕAB)
∗ (2.2)

and will be specified explicitly when we construct the action below. In this work, we find it advantageous
to work with Majorana spinors instead of Weyl spinors. To that aim, we define

ψA = P+χA + P−χ̃A , ψ̄A = χ̄AP
− + ¯̃χAP+ . (2.3)

With Cγ5=γ5C, it is straightforward to check that ψA=C(ψ̄A)
T, which shows that ψA are indeed Ma-

jorana spinors. A slight complication with this definition is that we need to be careful with R-symmetry
transformations, since ψA transforms neither as a 4 nor a 4̄. We emphasize this point, because in
this Majorana formulation, the position of the R-symmetry indices does not indicate the transformation
properties of the corresponding quantities. When translating objects from the Weyl formulation to the

4which we neglect here for simplicity but could be included in a future analysis. It is expected to lead to an additional
chiral freedom in our theory.
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Majorana formulation, index positions on the two sides of the equation do not match up. Hence, one
generally has to remember the R transformation properties from the Weyl formulation. However, the
Majorana formulation allows us to write the action in the more compact form

Sinv =

∫
d4x

{
− 1

4F
µνFµν − 1

2DµϕiD
µϕi − i

2 ψ̄A(/Dδ
A
B + gΦA

B×)ψB − g2

4 (ϕi × ϕj)
2
}
, (2.4)

with
ΦA

B := 2
[
tiABP

+ − tiABP−
]
ϕi ≡ (ci)ABϕi , (2.5)

where we have defined a matrix-valued field ΦA
B that is obtained from the scalars ϕi through contraction

with matrix-valued coefficients (ci)AB. We further often use the shorthand

/DA
B := /DδAB + gΦA

B × . (2.6)

In the following two subsections, we show how the action (2.4) is obtained from an N=1 superfield
formalism and from dimensional reduction, respectively.

2.1 N=1 superfield formalism

It is well established that N=4 SYM does not have a formulation in which all four supersymmetries are
realized off-shell. However, it is possible to single out one of the supersymmetries to construct an N=4
action using an N=1 superfield formalism [19]. The field content resides in one vector superfield V and
three chiral superfields ΦI

V = (Aµ, λ, D) , ΦI = (φI , ψI , FI) with I = 1,2,3 . (2.7)

All fields are in the adjoint representation of the gauge group. The propagating degrees of freedom are the
vector field Aµ, four Weyl- (or equivalently Majorana-) spinors ψA (A=1,2,3,4, with λ=ψ4) and three
complex scalars φI . Further, there is one real scalar auxiliary field D and three complex scalar auxiliary
fields FI . In terms of superfields, the N=4 Lagrangian density in Weyl notation is the last component5

of a superfield:

L = 1
g2nc

tr
[

1
16

(
WαWα

∣∣
θθ

+ h.c.
)

+ e−2V Φ†Ie
2V ΦI

∣∣
θθθ̄θ̄

+ i
√
2

3!

(
ǫIJKΦI [ΦJ ,ΦK ]

∣∣
θθ

+ h.c.
)]
, (2.8)

where ...|θθ denotes the θθ-component of a given superfield and so on. The trace is over color space. We
have also introduced the non-abelian supersymmetric field strength Wα and its conjugate

Wα = − 1
4 D̄D̄e−2V Dαe

2V , W̄ α̇ = − 1
4DDe−2V D̄α̇e2V , (2.9)

in chiral superspace, with the superspace covariant derivatives Dα, D̄
α̇. Note that the coupling only

appears as an overall factor 1/g2 in front of (2.8). One recovers the usual dependence on the coupling
by rescaling V → gV and ΦI → gΦI . Given the various superspace expansions, it is straightforward to
obtain the Lagrangian explicitly in terms of components. The details on the computations that lead to
the following results can be found in Appendix A. We find for the Lagrangian in the Majorana basis

g2L = − 1
4FµνF

µν − i
2 λ̄γ

µDµλ+ 1
2D2 − 1√

2
ǫIJK

(
FIφJ×φK + F †I φ

†
J×φ†K

)

−Dµφ
†
ID

µφI − i
2 ψ̄Iγ

µDµψI + F †I FI +
1√
2
ǫIJK

(
φI ψ̄JP

+×ψK + φ†I ψ̄JP
−×ψK

)

−
√
2
(
ψ̄IP

−λ×φI + ψ̄IP
+λ×φ†I

)
− iφ†ID×φI ,

(2.10)

5recall that θ2θα=0 and θ̄2θ̄α̇=0.
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and for the supersymmetry transformations

δαφI =
√
2(ψ̄IP

+)α ,

δαφ
†
I =

√
2(ψ̄IP

−)α ,

δα(P
+ψI)β = −i

√
2(P+γµ)βα(DµφI)−

√
2(P+)βαFI ,

δα(P
−ψI)β = −i

√
2(P−γµ)βα(Dµφ

†
I)−

√
2(P−)βαF

†
I ,

δαFI = −i
√
2(Dµψ̄Iβ)(γ

µP−)βα − 2φI×(λ̄P−)α ,

δαF
†
I = −i

√
2(Dµψ̄Iβ)(γ

µP+)βα − 2φ†I×(λ̄P+)α ,

δαAν = −i(λ̄γν)α ,

δαD = −i(Dµλ̄β)(γ5γ
µ)βα ,

δαλβ = − 1
2 (γ

µν)βαFµν +D(γ5)βα .

(2.11)

The decisive advantage of the superfield formalism is that we can deduce the penultimate component6 of
the superfield in (2.8). It reads

∆̊α = 1
4

∫
d4x

{
−Dγ5λ− 1

2Fµνγ
µνλ+ 2ǫIJK

[
P+ψIφJ×φK + P−ψIφ

†
J×φ†K

]
+ 2iγ5φ

†
Iλ×φI

+ i
√
2
[
γµP−ψIDµφI + γµP+ψIDµφ

†
I

]
−
√
2
[
P+ψIF

†
I + P−ψIFI

]}
α
.

(2.12)

The superfield structure now enables us to write the invariant action as a supervariation

Sinv =

∫
d4x L = 1

2g2 δα∆̊α , (2.13)

which will be the central ingredient in the canonical construction of the coupling flow operator later on.
To find the on-shell invariant action, we first need to insert the equations of motion for the auxiliary
fields

D = −iφ†I×φI , FI = 1√
2
ǫIJKφ

†
J×φ†K , (2.14)

resulting in

Sinv = 1
g2

∫
d4x

{
− 1

4F
µνFµν −Dµφ

†
ID

µφI − i
2 ψ̄A /Dψ

A + 1√
2
ǫIJK

(
φI ψ̄JP

+×ψK + φ†I ψ̄JP
−×ψK

)

−
√
2
(
ψ̄IP

−λ×φI + ψ̄IP
+λ×φ†I

)
+ 1

2 (φ
†
I × φI)

2 − 1
2ǫIJKǫILM (φJ × φK)(φ†L × φ†M )

}
.

(2.15)
Note that in this expression, the scalars are represented by three complex fields φI . In order to get to
the formulation (2.4), we need to replace these by six real fields ϕi by a suitable identification

φI = 1√
2
(ϕI+3 + iϕI) , φ†I = 1√

2
(ϕI+3 − iϕI) , (2.16)

giving

Sinv = 1
g2

∫
d4x

{
− 1

4F
µνFµν − 1

2DµϕiD
µϕi − i

2 ψ̄A /Dψ
A

+ 1
2ǫIJK

(
ψ̄IϕJ+3×ψK − ψ̄IϕJγ5×ψK

)
+ ψ̄IϕI+3×λ+ ψ̄IϕIγ5×λ− 1

4 (ϕi × ϕj)
2
}
,

(2.17)
where for the potential term the Jacobi identity in color space was used. From this expression we can
read off the coefficients (ci)AB from (2.5)

(cI)J4 = iδIJγ5 , (cI+3)J4 = iδIJ14 , (cI)JK = iǫIJKγ5 , (cI+3)JK = −iǫIJK14 , (2.18)

6that is, the components with one less power of θ and θ̄ than maximal for the respective contributions.
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wich are anti-symmetric under exchange of A and B and all others are zero. We will show in Section 2.2
that these exactly match the coefficients obtained from dimensional reduction.

To conclude this subsection, we note two results that will be used for the canonical construction of
the coupling flow operator in Section 3.1. The susy-transformations of the six real scalars are

δαϕi = −iψ̄J(c
i)J4 , (2.19)

and the penultimate superfield component in terms of the six real scalars and with the auxiliary fields
integrated out can be brought to the compact form

∆α = 1
4

∫
d4x

{
− 1

2Fµνγ
µνλ− (Φ4

A)
† /D

A

Bψ
B + 1

2 (Φ
4
A)
†ΦA

B×ψB
}
. (2.20)

2.2 Dimensional reduction

As an alternative to the construction via the N=1 superfield formalism, an on-shell action of N=4 D=4
SYM can be obtained by dimensional reduction from N=1 D=10 SYM [18]

S(10) = 1
g2

∫
d10x

{
− 1

4F
ΣΘFΣΘ − i

2 λ̄ ΓΣ DΣ λ
}
, (2.21)

where capital greek indices label the ten-dimensional representation of the Lorentz group and ΓΣ are the
ten-dimensional gamma matrices. We reduce the gauge field as

AΣ = (Aµ, ϕi) , (2.22)

which leads to the reduction of the Yang–Mills term

− 1
4F

ΣΘFΣΘ −→ − 1
4FµνF

µν − 1
2DµϕiD

µϕi − 1
4 (ϕi × ϕj)

2 . (2.23)

For the Dirac term, we write the gamma matrices as

Γµ = 18 ⊗ γµ , ΓAB =

(
0 ρAB

ρAB 0

)
⊗ iγ5 , A,B = 1,2,3,4 , (2.24)

with antisymmetric 4× 4-matrices

(ρAB)CD = δACδBD − δADδBC , (ρAB)CD = 1
2ǫABFG(ρ

FG)CD = ǫABCD . (2.25)

It is convenient to define antisymmetric

ϕI4 = 1
2 (ϕI + iϕI+3) , ϕAB = 1

2ǫ
ABCDϕCD = (ϕAB)

∗ . (2.26)

In the literature one often finds a factor 1√
2
in front of the first equation in (2.26). In order to match

the coefficients from our previous analysis, we prefer to chose a normalization 1
2 instead. Note that this

explicitly determines the Clebsch-Gordon coefficients tiAB from (2.2) to be

(tI)J4 = 1
2δIJ = (tI)J4 , (tI+3)J4 = i

2δIJ = −(tI+3)J4 ,

(tI)JK = 1
2ǫIJK = (tI)JK , (tI+3)JK = − i

2ǫIJK = −(tI+3)JK .
(2.27)

For a matching of the bosonic and fermionic degrees of freedom, the spinor λ has to be a Majorana-Weyl-
spinor, which can be realized in the structure

λ = (P+χ1,...,P+χ4,P−χ̃1,...,P
−χ̃4)

T , with χ̃A = Cχ̄AT , (2.28)

where C is the charge conjugation operator in four dimensions. We find that the Dirac term becomes

− i
2 λ̄ ΓΣ DΣ λ −→ − i

2 ψ̄A /D
A

B ψB , (2.29)

with the shorthand (2.6), the Majorana-spinors (2.3) and

ΦA
B = (ci)ABϕi =

[
(ρCD)ABP

+ − (ρCD)ABP
−]ϕCD = 2

[
tiABP

+ − tiABP−
]
ϕi . (2.30)

It is easy to verify that the coefficients (ci)AB defined this way are equivalent to those found in the
superfield formalism (2.18).
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3 Coupling flow operator

In this section we construct the coupling flow operator (1.5) first via the canonical construction 3.1 and
then via dimensional reduction 3.2. Reconciling the two approaches, we propose a unified framework for
the operator in 3.3.

3.1 From the canonical construction

The basic procedure of the following construction is exactly the same as in the N=1 case (see e.g. [13]).
We merely have more fields to take into account. In order to fix the redundant degrees of freedom of the
gauge theory, following the Faddeev-Popov procedure we add a gauge fixing term Sgf with gauge fixing

function G(Ã ) and ghost fields ˜̄C, C̃ to the full action SSUSY. We use the on-shell invariant action (2.17),
so that

SSUSY[Ã,ϕ̃,ψ̃,
˜̄ψ,C̃, ˜̄C] = Sinv[Ã,ϕ̃,ψ̃,

˜̄ψ] + Sgf [Ã,ϕ̃,C̃,
˜̄C] ,

Sinv = 1
g2

∫
d4x

{
− 1

4 F̃
µν F̃µν − 1

2 D̃µϕ̃iD̃
µϕ̃i − i

2
˜̄ψA

/̃DA
Bψ̃

B − 1
4 (ϕ̃i × ϕ̃j)

2
}
,

Sgf = 1
g2

∫
d4x

{
− 1

2ξG(Ã,ϕ̃)2 + g ˜̄C ∂G(Ã,ϕ̃)

∂Ãµ

D̃µC̃ + g ˜̄C ∂G(Ã,ϕ̃)
∂ϕ̃i

ϕ̃i × C̃
}
,

(3.1)

where we emphasize that the fields are in the (canonical or geometric) scaling where the coupling only
occurs as an overall factor 1/g2 (and one factor of g multiplying two ghost terms) by explicitly putting
tildes on all scaled quantities. The usual dependence on the coupling is recovered after rescaling all fields
with an appropriate power of g (i.e. Ã=gA, ϕ̃=gϕ). In this scaling we can write the g derivative of the
action as a supervariation up to a Slavnov variation7,

∂gSSUSY = − 1
g3

{
δα∆α −√

gs∆gh

}
, (3.2)

with the superfield component

∆α = 1
4

∫
d4x

{
− 1

2 F̃µνγ
µν λ̃− (Φ̃4

A)
† /̃D

A

Bψ̃
B + 1

2 (Φ̃
4
A)
†Φ̃A

B×ψ̃B
}
, (3.3)

the ghost contribution

∆gh =

∫
d4x

{˜̄C G(Ã,ϕ̃)
}
, (3.4)

the supervariations (2.11) and the BRST (or Slavnov) variations

sÃµ =
√
gD̃µC̃ , sλ̃ =

√
gλ̃× C̃ , s˜̄λ =

√
g ˜̄λ× C̃ ,

sD̃ =
√
gD̃ × C̃ , sC̃ = −

√
g

2 C̃ × C̃ , s ˜̄C = 1√
g
1
ξ
G(Ã,ϕ̃) ,

sϕ̃i =
√
gϕ̃i × C̃ , sψ̃I =

√
gψ̃I × C̃ , sF̃ =

√
gF̃I × C̃ .

(3.5)

An intermediate scaled coupling flow operator is given by [4, 6]

R̃[Ã ] = −i∆α[Ã ] δα + i√
g
∆gh[Ã ] s− 1√

g
∆α[Ã ]

(
δα∆gh[Ã ]

)
s , (3.6)

where we introduced the shorthand Ã =(Ãµ, ϕ̃i) and the contractions indicate either gaugino or ghost

propagators.8 The calculation can be found in Appendix B. After rescaling the fields Ã =gA according

7strictly, this should be written with the auxiliary fields still present, but since we can integrate them out after the
construction, we leave them implicit here.

8Note that the coupling flow acts on observables X[Ã ] and δαÃΣ contains a gaugino field, whereas sÃΣ contains a ghost
field.
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to the scheme developed in [12], the final expression for the coupling flow operator is

←
Rg [A ] = 1

8

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

4
AS

A
B
/A B

C × /A ∗C4

}
+
←−
δ

δAΓ

Π Σ
Γ AΣG

∂G(A )
∂Aν

AL
ν , (3.7)

acting to the left to comply with the implicit color index and position argument structure (adopting the
notation in section 4 of [10]). Note that this has the exact same structure as the result for N=1 D=4
SYM [13], only with the additional R-symmetry indices. We now give a detailed account of the various
quantities involved. First of all, an object that appears very frequently is

(CΣ)
A
B =

{
δABγµ for Σ = µ = 0,1,2,3

(ci)AB for Σ = 3 + i = 4,5,...,9
. (3.8)

With the shorthands

DΓ = (Dµ , gϕi× ) , /DA
B = D

Σ(CΣ)
A
B = /DδAB + gΦA

B× , (3.9)

we can compactly express the gaugino and ghost propagators SA
B , G, defined by

ψA(x)ψ̄B(y) = −SA
B (x,y;A ) , /DA

CS
C
B (x,y;A ) = δABδ(x− y) , (3.10)

and
iC(x)C̄(y) = G(x,y;A ) , ∂G(A )

∂AΓ

DΓG(x,y;A ) = δ(x− y) , (3.11)

respectively. Further we have

/A A
B = A

Σ(CΣ)
A
B = /AδAB +ΦA

B , /A
∗A

B := /A
∗
δAB + (ΦA

B)
† , (3.12)

where A∗ is the conjugate gauge field (1.31). The second term in (3.7) also explicitly contains the
longitudinal part of the gauge field AL

µ (1.30). Lastly, we have the natural generalization (c.f. [13]) of the
covariant projector

P Σ
Γ = δ Σ

Γ − DΓG
∂G(A )
∂AΣ

, (3.13)

and its free version
Π Σ

Γ = P Σ
Γ

∣∣
g=0

. (3.14)

3.2 From dimensional reduction

Since the ten-dimensional theory does not have an off-shell formalism, the operator cannot be constructed
canonically in any gauge. However, for the Landau gauge, an expression for Rg was derived and shown to
satisfy all necessary conditions in all the critical [18] dimensions D=3,4,6,10 [10]. Hence, in the following
we restrict to the Landau gauge hypersurface, so there will be no distinction between A and A∗ since
AL=0. We start with the formula for the coupling flow operator in N=1 D=10 SYM:

Rg[A ] = 1
32

←−
δ

δAΓ
P (10) Σ

Γ tr(32)
{
ΓΣS

(10) /A × /A
}
, (3.15)

where the trace is over 32× 32 spinor space and

/A = ΓΣ
AΣ . (3.16)

We now apply the same scheme for dimensional reduction that we have used to reduce the action in

Section 2.2. It is easy to establish that P (10) Σ

Γ −→P (4) Σ

Γ under dimensional reduction from ten to four
dimensions. We can relate S(10) and S(4)≡S by dimensional reduction. When leaving out the superscript
indicating the number of dimensions, we always mean the four-dimensional object. In ten dimensions,
the 32× 32 matrix S(10) is given by the contraction

S(10) = −λλ̄ . (3.17)
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With the dimensional reduction of the spinor λ (2.28) and our definition of the four-dimensional Majorana
spinors (2.3), we can decompose the 32× 32 matrix as

S(10) =

(
(P+SA

BP
−)αβ (P+SABP+)αβ

(P−SABP
−)αβ (P−S B

A P+)αβ

)
, (3.18)

where each block is a 16× 16 matrix with ‘inner’ indices A, B and ‘outer’ indices α, β, all ranging from
one to four. Due to the chiral projectors, the position of the indices A, B matches the R-symmetry
transformation properties, i.e. upper indices transform as a 4 and lower indices as a 4̄. We can interpret
S(10) as an 8× 8 matrix with 4× 4 matrix-valued entries and take a partial trace in the 8× 8 matrix
space so that we are left with a trace over 4× 4 matrices (over the outer indices). Using the representation
of Gamma matrices (2.24) and bosonic fields (2.26), we further write /A in the same block notation as

/A = ΓΣ
AΣ =

(
/Aαβδ

A
B (iγ5)αβϕ

AB

(iγ5)αβϕAB /Aαβδ
B

A

)
. (3.19)

When multiplying two block matrices, we simply have to contract inner with inner indices and outer with
outer indices. This leads to

/A × /A =

(
( /A× /A)αβδ

A
B + (14)αβϕ

AC×ϕCB 2( /Aiγ5)αβ × ϕAB

2(iγ5 /A)αβ × ϕAB ( /A× /A)αβδ
B

A + (14)αβϕAC×ϕCB

)
. (3.20)

In order to perform the partial trace, one multiplies the block matrices in (3.15) and then takes the trace
over the blocks. For example, a simple contribution would be

tr(32)
{
Γµ S

(10)
18 ⊗ ( /A× /A)

}

= tr(32)

(
(γµ)αγ(P

+SA
BP−)γδ( /A× /A)δβ (γµ)αγ(P

+SABP+)γδ( /A× /A)δβ

(γµ)αγ(P
−SABP

−)γδ( /A× /A)δβ (γµ)αγ(P
−S B

A P+)γδ( /A× /A)δβ

)

= tr(4)
{
γµP

+SA
AP
− /A× /A

}
+ tr(4)

{
γµP

−S A
A P+ /A× /A

}
= tr(4)

{
γµS

A
A
/A× /A

}
,

(3.21)

where in the last step we used the cyclicity of the trace to commute the chiral projectors. In the last step,
since the positions of the indices of the gaugino propagator in the first vs. second term do not match up,
the R-symmetry transformation properties become slightly nontransparent. This is a consequence of the
way we defined our Majorana spinors (2.3). Step by step, one establishes the relation

tr(32)
{
ΓΣS

(10) /A × /A
}
= tr(4)

{
(CΣ)

A
BS

B
C
/A C

D × /A
∗D

A

}
, (3.22)

with the same definitions (3.8), (3.9), (3.12) as in the canonical construction. Although the R-symmetry
indices in (3.22) cannot be strictly assigned to 4’s or 4̄’s, by construction through the above dimensional
reduction, this object is invariant under R-symmetry transformations for Σ=µ and transforms as a 6 of
SU(4) for Σ=3+ i.9

In total, we have shown that the coupling flow operator obtained from dimensional reduction on the
Landau gauge hypersurface is

←
Rg [A ] = 1

32

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

A
BS

B
C
/A C

D × /A
∗D

A

}
. (3.23)

9This can also be verified through explicit calculation by splitting the quantities in (3.22) into their chiral contributions
that have fixed transformation properties. Due to the ‘hidden’ chiral projectors, all the contributions that do not transform
appropriately are projected out of the trace.
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3.3 Unified R-symmetric framework

The goal of this subsection is to reconcile the two results (3.7) and (3.23), since they are clearly not
identical. For simplicity, we for now restrict to the Landau gauge, for which the two results read

←
Rg [A ] = 1

8

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

4
BS

B
C
/A C

D × /A
∗D

4

}
from canonical construction , (3.24)

←
Rg [A ] = 1

32

←−
δ

δAΓ
P Σ
Γ tr

{
(CΣ)

A
BS

B
C
/A C

D × /A
∗D

A

}
from dimensional reduction . (3.25)

We begin this discussion with two universal observations. Firstly, the general definition of the coupling
flow operator Rg[φ] (1.5) shows that it maps real observables to other real observables.10 Hence, we
require the kernel K of the coupling flow operator

Rg[φ] =

∫
dx K[φ;x]

δ

δφ(x)
(3.26)

to be real. Note that for our cases and notation above, the kernel carries a ten-dimensional index Γ, so
that

←
Rg [A ] =

←−
δ

δAΓ

KΓ , (3.27)

with implicit integration. Secondly, we recall the three conditions (1.10), (1.11) for a coupling flow
operator in a general gauge theory

(∂g +Rg[φ])S
b
g [φ] = 0 , (∂g +Rg[φ])S

f
g[φ] =

∫
dx

δK[φ;x]

δφ(x)
, (∂g +Rg[φ])G(φ) = 0 . (3.28)

It is easy to see that given two coupling flow operators R
(1)
g and R

(2)
g , the linear combination

R′g := pR(1)
g + qR(2)

g with p,q ∈ R and p+ q = 1 (3.29)

is again a coupling flow operator (i.e. satisfies (3.28)). Thus, the coupling flow operator obeys a principle
of superposition with real coefficients that add up to one.

The next ingredient is the fact that in the canonical construction we had to single out one of the
supersymmetries to obtain a working superfield formalism. In this work, we chose the ‘fourth’ one,
resulting in the index 4 at the beginning and the end of the trace in (3.24). This choice is of course
arbitrary. We could have equivalently chosen any of the three other supersymmetries. This, together
with the principle of superposition allows us (in the Landau gauge) to build a more general coupling flow
operator by inserting a diagonal matrix with trace four (or as we prefer, the identity plus a traceless
matrix L) in R-space in the trace in the kernel. In anticipation of the rest of this discussion, we write
down the general ansatz

←
Rg [A ] = 1

32

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

A
BS

B
C
/A C

D × /A
∗D

E(δ
E
A + LE

A)
}
. (3.30)

The two cases (3.24), (3.25) correspond to

L = diag(−1,−1,−1,+3) and L = 0 , (3.31)

respectively. From the discussion so far we know that we can reach any element of
{
L = diag(q1,q2,q3,q4) with

∑

i

qi = 0
}

=: h , (3.32)

the Cartan subalgebra of the Lie algebra su(4). By applying an SU(4) R transformation on the various
factors in (3.30), we can deduce how L effectively transforms under R transformations. One finds that the

10That is, modulo imaginary terms that vanish when taking the expectation value. For simplicity, we ignore the possibility
of such extra imaginary terms.
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underlying structure of the chiral projectors requires that just like the Majorana spinors (2.3), L splits
up into two chiral parts

L = L P− + L∗ P+ (3.33)

that are complex conjugate to each other. The matrix L transforms in the adjoint 15 of SU(4)

L −→ ULU † , with U ∈ SU(4) . (3.34)

We notice that (3.34) preserves zero trace and hermiticity L†=L so that the group action of SU(4) on h

(3.32) generates the entire Lie algebra su(4). Any L ∈ su(4) can be unitarily diagonalized such that we
can classify it in terms of its four eigenvalues qi. Invariants under the adjoint action are tr Lm for any
integer m≥1, but with only the first four

tr L =
∑

qi = 0 , tr L2 =
∑

q2i , tr L3 =
∑

q3i , tr L4 =
∑

q4i (3.35)

functionally independent. We can equivalently characterize a generic orbit by the eigenvalues
(q1, q2, q3, q4) with

∑
qi=0 or by (tr L2, tr L3, tr L4). This gives us three real parameters matching

the dimension of the Cartan subalgebra. For a generic L ∈ su(4) with all eigenvalues qi distinct, the
stabilizer of the adjoint action is the maximal torus S(U(1)4) ∼= U(1)3 and its orbit under the action is
the 12-dimensional flag manifold

SU(4)�U(1)3 . (3.36)

For singular L, i.e. some eigenvalues qi coinciding, the stabilizer is larger and the orbit smaller. Table 2
summarizes all cases.

Table 2
Stabilizer subgroups X of SU(4) acting on L ∈ su(4), depending on the degeneracy of the eigenvalues qi.
The last column indicates the number of free parameters for the coupling flow operator. It is computed
by adding the number of degrees of freedom (dofs) in the choice of the qi’s to the dimension of the orbit
SU(4)/X .

Degeneracy dofs Stabilizer X dim(X) # free param.

all qi distinct 3 S(U(1)4) 3 15

two qi equal 2 S(U(2)×U(1)2) 5 12

two equal pairs 1 S(U(2)×U(2)) 7 9

three qi equal 1 S(U(3)×U(1)) 9 7

all qi = 0 0 SU(4) 15 0

The fully degenerate case corresponds to L=0 (3.25). It is a fixed point under all SU(4) transforma-
tions. The canonical construction on the other hand led to a configuration where three of the qi’s were
equal, so that only an S(U(3)×U(1)) subgroup leaves the configuration invariant. This suggests that
for L with three degenerate qi’s, the points in its orbit under the adjoint action of SU(4) are those that
originate from an off-shell formalism and hence allow for an arbitrary choice of the gauge fixing function.
For these cases, when choosing gauges other than the Landau gauge, the second term in (3.7) has to be
added to the general formula (3.30).

In Appendix C, we directly check that (3.30) indeed satisfies the infinitesimal conditions of a coupling
flow operator.

4 Nicolai maps

In this section we use the notation of [13] to write down Nicolai maps to second order. We briefly recall
the most important aspects of this compact notation. Derivatives of the scalar propagator C are simply
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written as indices, so that e.g. ∂µ∂νC≡Cµν . Further, all objects are implicitly matrices in color space
with the exception that the last quantity in each term is a vector in color space. Moreover, implicit
integration kernels are convoluted with insertions of bosonic fields A or ϕ.

A Nicolai map for N=4 SYM to O(g2) in the Landau gauge was already found in [9] by directly
reducing the result from N=1 D=10

TgAΣ = AΣ − gCΘ
AΣAΘ + 3

2g
2CΘ

A
ΓC[ΣAΘAΓ] +O(g3) , (4.1)

down to four dimensions with the simple prescription A = (Aµ, ϕi) and ∂3+i≡0, which leads to

TgAµ = Aµ − gCρAµAρ +
3
2g

2CρAλC[µAρAλ] + g2CρϕiC[µAρ]ϕi +O(g3) , (4.2)

Tgϕi = ϕi − gCρϕiAρ + g2C [ρAλ]CλϕiAρ +
1
2g

2CρϕjCρϕjϕi +O(g3) . (4.3)

In this section, we want to explicitly show the ambiguity of the N=4 map by computing (Appendix D)
and testing (Appendix E) four different maps to second order in the Landau gauge corresponding to the
points

L = diag(+3,−1,−1,−1) , ... , diag(−1,−1,−1,+3) , (4.4)

in su(4) and denote the respective coupling flow operators as

←
Rg

(A)[A ] = 1
8

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

A
BS

B
C
/A C

D × /A
∗D

A

}
. (4.5)

with no sum over A=1,2,3,4. In general [12], the Nicolai map can be obtained from the perturbative
expansion

Rg[A ] =

∞∑

k=1

gk−1Rk[A ] = R1[A ] + gR2[A ] + g2R3[A ] + ... , (4.6)

via
TgA = A − gR1A − 1

2g
2
(
R2 − R2

1

)
A + O(g3) . (4.7)

When putting all the contributions together, we find the four distinct Nicolai maps

T (4)
g Aµ = Aµ − gCρAµAρ +

3
2g

2CρAλC[µAρAλ] + g2CρϕiC[µAρ]ϕi

− 1
2g

2Π ν
µ ǫνλρσ

3∑

J=1

[CλϕJC
ρϕJ+3A

σ − CλϕJ+3C
ρϕJA

σ + CλAρCσϕJ+3ϕJ ] +O(g3) ,
(4.8)

T (K)
g Aµ = Aµ − gCρAµAρ +

3
2g

2CρAλC[µAρAλ] + g2CρϕiC[µAρ]ϕi

+ 1
2g

2Π ν
µ ǫνλρσ

3∑

J=1

(−)δKJ [CλϕJC
ρϕJ+3A

σ − CλϕJ+3C
ρϕJA

σ + CλAρCσϕJ+3ϕJ ] +O(g3) ,

(4.9)
and

T (4)
g ϕI = ϕI − gCρϕIAρ + g2C [ρAλ]CλϕIAρ +

1
2g

2CρϕjCρϕjϕI

− 1
4g

2ǫµνρλ[C
µϕI+3C

νAρAλ + 2CµAνCρϕI+3A
λ]

− 1
2g

2Cρ

3∑

J=1

[ϕI+3CρϕJ+3ϕJ + ϕJCρϕI+3ϕJ+3 − ϕJ+3CρϕI+3ϕJ ] +O(g3) ,

(4.10)

T (K)
g ϕI = ϕI − gCρϕIAρ + g2C [ρAλ]CλϕIAρ +

1
2g

2CρϕjCρϕjϕI

+ 1
4g

2ǫµνρλ(−)δIK [CµϕI+3C
νAρAλ + 2CµAνCρϕI+3A

λ]

− 1
2g

2Cρ(−)δIK
3∑

J=1

[ϕI+3CρϕJ+3ϕJ + ϕJCρϕI+3ϕJ+3 − ϕJ+3CρϕI+3ϕJ ]

+g2Cρ[ϕI+3CρϕK+3ϕK + ϕKCρϕI+3ϕK+3 − ϕK+3CρϕI+3ϕK ] +O(g3) ,

(4.11)
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and the blue parts of T
(4)
g ϕI+3, T

(K)
g ϕI+3 are given by those of (4.10), (4.11) with I and I+3 exchanged

and an overall minus sign on the r.h.s., while the black terms are obtained by simply replacing I with
I+3. Note that the black parts of all four maps exactly equal each other and the result from dimensional
reduction (4.2), (4.3), whereas the blue parts differ in signs for the four choices A=1,2,3,4. By investi-

gating the explicit contributions (Appendix D) to the coupling flow operators R
(A)
g , it is easy to check

that the symmetric superposition

Rg := 1
4 (R

(1)
g +R(2)

g +R(3)
g +R(4)

g ) , (4.12)

exactly yields the result from dimensional reduction, as expected. Note that while we can superimpose
coupling flow operators, this is not the case for the Nicolai map (1.8), since it is not linear in Rg. In
Appendix E, we show through explicit computations that all four maps that we have found in this section
indeed satisfy the necessary conditions for a Nicolai map to second order.

5 Conclusions and outlook

In this work we have initiated a systematic study of the Nicolai map in N=4 supersymmetric Yang–Mills
theory in four dimensions. Our main result is the explicit form of the coupling flow operator in the
Landau gauge

←
Rg [A ] = 1

32

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

A
BS

B
C
/A C

D × /A
∗D

E(δ
E
A + LE

A)
}
,

with
L = L P− + L∗ P+ ,

and L any element in the Lie algebra su(4). Most importantly, it follows that the operator is subject to a
15-dimensional ambiguity. This can be traced back to the theory-intrinsic SU(4) R-symmetry. However,
by construction, correlators do not depend on the choice of L. Building up on previous results in N=1
SYM and with the help of very compact notation, the knowledge of Rg allows for an analogous perturba-

tive construction of the Nicolai map of N=4 SYM via the universal formula Tg=
−→P exp

{
−
∫ g

0
dhRh[A ]

}
.

These first steps suggest many future analyses. Natural open questions relate to the effect of including
a topological term in the theory, a better understanding of general gauges and a graphical representation
for the perturbative expansion. As a potential application of this work, one could compute explicit N=4
quantum correlators

〈
X [A ]

〉
g
=
〈
X [T−1g A ]

〉
0
with the inverse Nicolai map. Critical future investigations

concern how exactly the ambiguity in the coupling flow operator translates to the Nicolai map and, more
distantly related to that, whether the framework of the Nicolai map might hint at an integrable structure
of N=4 SYM.

Acknowledgments. It is a pleasure to thank Olaf Lechtenfeld for many helpful discussions. We
thank the referee for their comments on the initial submission, which have helped to further clarify
several important aspects of this paper. This work is supported by a PhD grant of the German Academic
Scholarship Foundation.
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A Details on the N=1 superfield formalism

In the conventions from [17]11 and in the Wess-Zumino (WZ) gauge, the vector superfield (V †=V ) takes
the form

V = θσµθ̄Aµ(x)− iθ2θ̄λ̄(x) + iθ̄2θλ(x) − 1
2θ

2θ̄2D(x)

= θσµθ̄Aµ(y )− iθ2θ̄λ̄(y ) + iθ̄2θλ(y )− 1
2θ

2θ̄2[D(y )− iDµAµ(y )]

= θσµθ̄Aµ(y
†)− iθ2θ̄λ̄(y†) + iθ̄2θλ(y†)− 1

2θ
2θ̄2[D(y†) + iDµAµ(y

†)]

(A.1)

where y=x+ iθσθ̄ and y†=x− iθσθ̄ parameterize (anti-)chiral superspace. The advantage of the WZ
gauge is that

V 2=− 1
2θ

2θ̄2AµA
µ , (A.2)

whereas all higher powers vanish such that the power series

e2V =1+ 2V + 2V 2 (A.3)

truncates at the second order. The non-abelian supersymmetric field strength Wα and its conjugate are
given by

Wα = − 1
4 D̄D̄e−2V Dαe

2V = +2iλα(y )− 2
[
δ β
α D(y )− iσµν β

α Fµν(y )
]
θβ − 2θ2 /Dαα̇λ̄

α̇(y ) ,

W̄ α̇ = − 1
4DDe−2V D̄α̇e2V = −2iλ̄α̇(y†)− 2

[
δα̇

β̇
D(y†) + iσ̄µνα̇

β̇
Fµν(y

†)
]
θ̄β̇ + 2θ̄2 /̄D

α̇α
λα(y

†) ,
(A.4)

in chiral superspace, with the superspace covariant derivatives Dα,D̄α̇. The chiral superfields (D̄α̇ΦI=0,

DαΦ
†
I=0) have the simple expansions

ΦI = φI(y) +
√
2θψI(y) + θ2FI(y) , Φ†I = φ†I(y

†) +
√
2θ̄ψ̄I(y

†) + θ̄2F †I (y
†) , (A.5)

in chiral superspace and the full superspace expansions

ΦI = φI(x) + iθσµθ̄∂µφI(x) +
1
4θ

2θ̄2✷φI(x) +
√
2θψI(x) − i√

2
θ2∂µψI(x)σ

µθ̄ + θ2FI(x) ,

Φ†I = φ†I(x) − iθσµθ̄∂µφ
†
I(x) +

1
4θ

2θ̄2✷φ†I(x) +
√
2θ̄ψ̄I(x) +

i√
2
θ̄2θσµ∂µψ̄I(x) + θ̄2F †I (x) .

(A.6)

For the construction of the coupling flow operator we also need the penultimate components of the various
contributions to (2.8). For the first part, we find

1
4W

αWα=−λ2 +
[
−2iDλ− 2Fµνλσ

µν
]
θ +

[
−2iλσµDµλ̄− 1

2F
µνFµν +D2 + i

4F
µνF ρλǫµνρλ

]
θ2 ,

1
4W̄α̇W̄

α̇=−λ̄2 +
[
+2iDλ̄− 2Fµν λ̄σ̄

µν
]
θ̄ +

[
+2iDµλσ

µλ̄− 1
2F

µνFµν +D2 − i
4F

µνF ρλǫµνρλ
]
θ̄2 .

(A.7)

Next, we evaluate

ǫIJK tr ΦI [ΦJ ,ΦK ] = iǫIJKf
abc
[
φaIφ

b
Jφ

c
K + 3

√
2θ ψa

Iφ
b
Jφ

c
K + 3θ2

(
F a
I φ

b
Jφ

c
K − φaIψ

b
Jψ

c
K

)]
, (A.8)

and the hermitian conjugate analogously. Lastly, we find

1
nc

tr e−2V Φ†Ie
2V ΦI = Φa†

I Φa
I +

2
nc

tr [T a,T b]T c Φa†
I V

bΦc
I +

2
nc

tr [T a,T b][T c,T d] Φa†
I V

bV cΦd
I

= ... +θ2θ̄
[
−i

√
2σ̄µψa

IDµφ
a†
I +

√
2F a

I ψ̄
a
I + 2fabcφa†I λ̄

bφcI
]

+θ̄2θ
[
−i

√
2σµψ̄a

IDµφ
a
I +

√
2F a†

I ψa
I − 2fabcφa†I λ

bφcI
]

+θ2θ̄2
[
−Dµφ

a†
I DµφaI + F a†

I F a
I + iDµψ̄

a
I σ̄

µψI

− fabc
(
iφa†I DbφcI −

√
2φa†I λ

bψc
I +

√
2ψ̄a

I λ̄
bφcI
)]

+ total derivatives ,

(A.9)

11up to a global sign to recover a plus sign in the field strength and covariant derivative instead of a minus sign.
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where we have left out terms of power 2 or less in θ and the traces over the SU(nc) generators were
evaluated with

[T a,T b] = ifabcT c , tr T aT b = ncδ
ab . (A.10)

From (2.8) and (A.7), (A.8), (A.9), we deduce that in Weyl notation the Lagrangian can be written as

g2L = − 1
4F

a
µνF

aµν − iλaσµDµλ̄
a + 1

2D2 − 1√
2
ǫIJKf

abc
(
F a
I φ

b
Jφ

c
K + F a†

I φb†J φ
c†
K

)

−Dµφ
a†
I DµφaI − iψa

I σ
µDµψ̄I + F a†

I F a
I + 1√

2
ǫIJKf

abc
(
φaIψ

b
Jψ

c
K + φa†I ψ̄

b
J ψ̄

c
K

)

−
√
2fabc

(
ψa
Iλ

bφc†I + ψ̄a
I λ̄

bφcI
)
− ifabcφa†I DbφcI ,

(A.11)

up to total derivatives. From the superspace expansions we read off the supersymmetry transformations

δφI =
√
2θψI , δψI = i

√
2σµθ̄DµφI +

√
2θFI , δFI = i

√
2θ̄σ̄µDµψI − 2φI×λ̄θ̄ ,

δAµ = −iλ̄σ̄µθ + iθ̄σ̄µλ , δλ = σµνθFµν + iθD , δD = −θσµDµλ̄−Dµλσ
µθ̄ .

(A.12)

For convenience, we translate the superfield formalism to a four-component Majorana basis using

λ(M) =

(
λα

λ̄α̇

)
, λ̄(M) = (λα, λ̄α̇) , α =

(
θα

θ̄α̇

)
, ᾱ = (θα, θ̄α̇)

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 = γ0γ1γ2γ3 =

(
−i 0

0 i

)
, etc. ,

(A.13)

so that

λ̄(M)λ(M) = λλ + λ̄λ̄ , λ̄(M)iγ5λ
(M) = λλ− λ̄λ̄ ,

λ̄(M)γµλ(M) = λσµλ̄+ λ̄σ̄µλ = 2λσµλ̄ ,
1

2
λ̄(M)γµνα = λσµνθ + λ̄σ̄µν θ̄ , etc. ,

(A.14)

where the l.h.s. are in the four-component Majorana basis and the r.h.s. are in the two-component Weyl
basis. Additionally, we need the chiral projectors

P± = 1
2 (1± iγ5) , λ̄(M)P+λ(M) = λλ , λ̄(M)P−λ(M) = λ̄λ̄ . (A.15)

This leads to the Lagrangian in Majorana notation (2.10) (leaving the superscript (M) implicit from now
on) and to the penultimate component

∆̊ = ᾱ
{
−Dγ5λ− 1

2Fµνγ
µνλ+ 2ǫIJKf

abc
[
P+ψa

Iφ
b
Jφ

c
K + P−ψa

Iφ
b†
J φ

c†
K

]
+ 2ifabcγ5φ

a†
I λ

bφcI

+ i
√
2
[
γµP−ψa

IDµφ
a
I + γµP+ψa

IDµφ
a†
I

]
−
√
2
[
P+ψa

IF
a†
I + P−ψa

IF
a
I

]}
.

(A.16)

For completeness, we note the following hermiticity properties for Majorana spinors χ,ξ:

χ̄ξ = ξ̄χ , χ̄γµξ = −ξ̄γµχ , χ̄γ5ξ = ξ̄γ5χ , χ̄γµγ5ξ = ξ̄γµγ5χ ,

χ̄γµνξ = −ξ̄γµνχ , χ̄γµνγ5ξ = −ξ̄γµνγ5χ , χ̄γρλγµξ = ξ̄γµγ
ρλχ .

(A.17)

Consistency checks. In order to cross-check the expressions above (in the Majorana basis), we per-
formed three consistency checks. Firstly, due to the superfield structure, the penultimate component ∆̊
has to generate the Lagrangian via its supervariation up to total derivatives

1
4δ∆̊

∣∣
ᾱα

= g2L , (A.18)

with ᾱ(...)α
∣∣
ᾱα

=− 1
2 tr(...). In practice, this requires the Fierz identity for Majorana spinors

4ξχ̄=−(χ̄ξ) + γµ(χ̄γ
µξ) + 1

2γµν(χ̄γ
µνξ) + γ5γµ(χ̄γ5γ

µξ) + γ5(χ̄γ5ξ) . (A.19)
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A second check is making sure that the Lagrangian transforms as a divergence, i.e.

δL = divergence . (A.20)

A third consistency check is verifying the generation of the susy-algebra

{Qα,Q̄β} = 2(γµ)αβPµ = −2i(γµ)αβ∂µ , (A.21)

up to a gauge transformation. With the supercharges δ(...)=ᾱαQα(...) this can be evaluated by computing
the commutator of two supervariations

[δ(1),δ(2)]=[ᾱ1αQα,Q̄βα2β ]=ᾱ1α{Qα,Q̄β}α2β , (A.22)

acting on each field. One finds that the susy-algebra reads

{Qα,Q̄β}=−2i(γµ)αβ∂µ − [ω,·]αβ +Gαβ(A), (A.23)

where ω=2i /A, [ω,·]a=fabcωb(·)c and Gαβ is a gauge transformation Aµ→Aµ + ∂µω as required in the
WZ gauge.

Stripping-off the susy parameter. Lastly, we find it convenient to strip-off the susy parameter by
setting δ≡δααα and ∆̊≡ᾱα∆̊α. This yields the supervariations (2.11) and the penultimate component
(2.12) (up to an overall normalization). We note that the fermionic supervariations have gained an extra
minus sign, since

χ̄δλ = χ̄βMβααα = χ̄βδαααλβ = −χ̄βδαλβαα ⇒ δαλβ = −Mβα , (A.24)

with some arbitrary spinor χ̄. In general, one has to be careful with sign-flips, because fermionic quantities
anti-commute with each other.

B Details on the canonical construction

In this appendix we give the detailed calculation for how to get from (3.6) to (3.7). We need

δαX [Ã ] = −i

∫
d4x

(˜̄ψ4γµ
δ

δÃµ

+ ˜̄ψJ(c
i)J4

δ
δϕ̃i

)
α
X [Ã ]

= −i

∫
d4x

(˜̄ψA(ĈΣ)
A
4

δ

δÃΣ

)
α
X [Ã ] ,

(B.1)

where we introduced the object

(ĈΣ)
A
4 =

{
δA4γµ for Σ = µ = 0,1,2,3

(ci)A4 for Σ = 3 + i = 4,5,...,9
, (B.2)

with matrix-valued entries. It is defined via

δ(4)α ÃΣ = −i(˜̄ψA(ĈΣ)
A
4)α , (B.3)

where the (4) indicates that we have singled out one of the four supersymmetries (the ‘fourth’ one).
Further we have

sX [Ã ] =
√
g

∫
d4x D̃ΓC̃

δ

δÃΓ

X [Ã ] , (B.4)

as well as the gaugino and ghost propagators, given by

ψ̃A(x)˜̄ψB(y) = −S̃A
B (x,y;Ã ) , /̃DA

C S̃
C
B (x,y;Ã ) = δABδ(x − y) , (B.5)
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and
iC̃(x) ˜̄C(y) = G̃(x,y;Ã ) , ∂G(Ã )

∂ÃΓ

D̃ΓG̃(x,y;Ã ) = δ(x− y) , (B.6)

respectively. The rescaled coupling flow operator then reads

←
R̃ [Ã ] =

←−
δ

δÃΓ

P̃ Σ
Γ R̃Σ +

←−
δ

δÃΓ

D̃ΓG̃ G(Ã ) , (B.7)

where we introduced the covariant projector

P̃ Σ
Γ = δ Σ

Γ − D̃ΓG̃
∂G(Ã )

∂ÃΣ

, (B.8)

and
R̃Σ = − 1

4 tr
{[

1
2 F̃µνγ

µν S̃4
C + (Φ̃4

A)
† /̃DA

B S̃
B
C − 1

2 (Φ̃
4
A)
†Φ̃A

B×S̃B
C

]
(ĈΣ)

C
4

}
, (B.9)

where the trace is over Majorana spinor space.

The original (unrescaled) coupling flow operator is given by [12]

Rg[A ] = 1
g

(
R̃[Ã ]− E

)
with E = ÃΓ

δ

δÃΓ

. (B.10)

To isolate the Euler operator E, we need the identities

γρλF̃ρλ = 2 /̃D /̃A+ 2∂ · Ã− /̃A× /̃A , (B.11)

/̃DS̃4
C = δ4C − Φ̃4

B × S̃B
C , (B.12)

which (next to other contributions) generate the Ãµ
δ

δÃµ

part of E. Further we use /̃DA
B S̃

B
C=δAC in

the second term of (B.9) and

(Φ̃4
A)
†(ĈΣ)

A
4 =





0 for Σ = µ

−14ϕ̃I − γ5ϕ̃I+3 for Σ = 3 + I

+γ5ϕ̃I − 14ϕ̃I+3 for Σ = 6 + I

. (B.13)

With tr γ5=0, this gives the second part of the Euler operator. Straightforward calculations lead to

R̃Σ = ÃΣ − 1
4 tr
{
(CΣ)

4
A

[
1
2 S̃

A
4(2∂ · Ã− /̃A× /̃A)− S̃A

B Φ̃B
4 × /̃A− 1

2 S̃
A
B Φ̃B

C × (Φ̃C
4)
†]} , (B.14)

where we flipped the order of the quantities in the trace for a more natural implicit color structure. To
do so, we have used that R̃Σ is real and identities such as

ψ̄ = ψ†γ0 , (γ0)
2 = 14 , (S̃A

B )† = γ0 S̃
B
A γ0 , (CΣ)

4
A := γ0 ((ĈΣ)

A
4)
† γ0 ,

γ†µ = γ0γµγ0 , γ†5 = γ0γ5γ0 = −γ5 , γ0Φ̃
A
Bγ0 = (Φ̃B

A)
† .

(B.15)

This leads to

(CΣ)
4
A =

{
δ4Aγµ for Σ = µ = 0,1,2,3

(ci)4A for Σ = 3 + i = 4,5,...,9
. (B.16)

Since R̃Γ=ÃΓ + ..., the Euler operator conveniently cancels and we find (after inserting Ã =gA ) for any
linear gauge

←
Rg [A ] = − 1

4

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

4
A

[
1
2S

A
4(

2
g
∂·A− /A× /A)− SA

BΦB
4 × /A− 1

2S
A
BΦB

C × (ΦC
4)
†]} .
(B.17)

Now that the coupling is restored, with

/DA
B = /DδAB + gΦA

B× , with Dµ = ∂µ + gAµ× , (B.18)
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and /DA
CS

C
B = δAB , the fermion propagators can be expanded perturbatively:

SA
B = S0δ

A
B − gS0 /A

A
CS

C
B =

∞∑

l=0

(
−gS0 /A

)lA
BS0 , (B.19)

with S0= /∂
−1

=−/∂C and
/A A

B = /AδAB +ΦA
B . (B.20)

In particular SA
4|g=0=0, so that the coupling flow operator Rg contains no term of order 1

g
. We use the

same procedure to get rid of the S0
2
g
∂ ·A|g=0 contribution as in the N=1 case [13] with

2S0∂ ·A = −2 /AL = /A
∗ − /A (B.21)

to rewrite the first term:

− 1
4

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

4
A

[
1
2S

A
4(

2
g
∂·A− /A× /A)

]}

= − 1
8

←−
δ

δAΓ
P Σ
Γ tr

{
(CΣ)

4
A

[ ∞∑

l=0

(
−gS0 /A

)lA
4S0(

2
g
∂ · A− /A× /A)

]}

= − 1
8

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

4
A

[
1
g

∞∑

l=0

(
−gS0 /A

)lA
4S0( /A

∗ − /A)−
∞∑

l=0

(
−gS0 /A

)l
A4
S0 /A× /A

]}

= − 1
8

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

4
A

[
1
g

∞∑

l=0

(
−gS0 /A

)lA
4S0( /A

∗ − /A)−
∞∑

l=0

(
−gS0 /A

)lA
BS0( /A

B
4 − ΦB

4)× /A
]}

= − 1
8

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

4
A

[
1
g

∞∑

l=0

(
−gS0 /A

)lA
4S0( /A

∗ − /A) + 1
g

∞∑

l=1

(
−gS0 /A

)lA
4 × /A+ SA

BΦ
B
4 × /A

]}

= − 1
8

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

4
A

[
1
g
δA4S0( /A

∗ − /A) + 1
g

∞∑

l=1

(
−gS0 /A

)lA
4 × /A

∗
+ SA

BΦ
B
4 × /A

]}

= − 1
8

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

4
AS

A
B

[
− /A B

4 × /A
∗
+ΦB

4 × /A
]}

− 1
g

←−
δ

δAΓ

P ν
Γ AL

ν

= − 1
4

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

4
AS

A
B

[
− 1

2
/A B

4 × /A
∗
+ 1

2Φ
B
4 × /A

]}
+
←−
δ

δAΓ

Π Σ
Γ AΣG

∂G(A )
∂Aν

AL
ν ,

(B.22)
containing no term of order 1/g. Putting everything together we find

←
Rg [A ] = 1

8

←−
δ

δAΓ

P Σ
Γ tr

{
(CΣ)

4
AS

A
B

[
/A B

4 × /A
∗
+ΦB

4 × /A+ΦB
C × Φ†C4

]}
+
←−
δ

δAΓ

Π Σ
Γ AΣG

∂G(A )
∂Aν

AL
ν ,

(B.23)
which after defining

/A
∗A

B = /A
∗
δAB + (ΦA

B)
† , (B.24)

takes the simple form (3.7).

C Infinitesimal free action condition

In this appendix we present a direct proof that the coupling flow operator in the Landau gauge (3.30)
satisfies the three infinitesimal conditions (1.10) (1.11). The determinant matching condition follows from
the other two conditions and the defining relation (1.4). The gauge condition (1.11) follows automatically
from the form of the covariant projector (3.13). Thus, we have only left to show the infinitesimal free
action condition

(∂g +Rg)S
b
g [A ] = 0 . (C.1)
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The basic procedure of the proof is equivalent to the one in A.3 of [10] for N=1 SYM in D=3,4,6,10,
but we have to take into account subtleties coming from the additional degrees of freedom in the N=4
case. We can write the bosonic action as

Sb
g [A ] =

∫
d4x

{
− 1

4FΣΘFΣΘ

}
, (C.2)

with

FΣΘ = ∂ΣAΘ − ∂ΘAΣ + gAΣ × AΘ , ∂3+i = 0 , Aµ = Aµ , A3+i = ϕi . (C.3)

From these expressions, it is easy to find

∂gS
b
g = − 1

2FΣΘ
AΣ×AΘ and

δSb

g

AΣ

= DΘFΘΣ , (C.4)

with implicit integration. We first show the statement for the particular choice of the coupling flow
operator (3.24) and afterwards generalize the result to the full Lie algebra su(4). Concretely, we first
prove that

(∂g +Rg)S
b
g [A ] = − 1

2FΣΘ
AΣ×AΘ + 1

8DΘFΘΣ tr
{
(CΣ)

4
BS

B
C
/A C

D × /A
∗D

4

}
(C.5)

vanishes. To do so, we use the identities

1
4 tr
{
(CΣ)

4
B(C̄Θ)

B
C(CΓ)

C
D(C̄Ψ)

D
4

}
= ηΣΨηΘΓ − ηΣΓηΘΨ + ηΣΘηΓΨ , (C.6)

(C Γ)ABDΓ S
B
C = /D

A

B SB
C = δAC , (C.7)

(C[Σ)
A
B(C̄Θ])

B
C(CΓ)

C
D = −2(C[Σ)

A
D ηΘ]Γ + (C[Σ)

A
B(C̄Θ)

B
C(CΓ])

C
D , (C.8)

that are similar to the ones used in [10]. Here we have introduced a ‘conjugate’ C̄ (in the Landau gauge),
so that

Cµ = 14γµ , C3+i = 2[(ti)∗P+ − tiP−] , /A A
B = A

Γ(CΓ)
A
B = /A+ΦA

B

C̄µ = 14γµ , C̄3+i = 2[tiP+ − (ti)∗P−] , /A
∗A

B = A
Γ(C̄Γ)

A
B = /A+ (ΦA

B)
† ,

(C.9)

with the Clebsch-Gordon coefficients tiAB as matrices in R-space. It should be noted that (C.6) is only
valid up to terms that vanish when contracted with fields in the adjoint representation of the gauge group
due to the Jacobi identity in color space. We explicitly check (C.6) at the end of this appendix. The
identity (C.8) follows from the analogous identity for the 10d gamma matrices

Γµ = 18 ⊗ γµ and Γ3+i = 2

(
0 ti

(ti)∗ 0

)
⊗ (P+ − P−) , (C.10)

as well as the anti-commutation relation for the Clebsch-Gordon matrices

{ti,(tj)∗} = − 1
2δ

ij
14 . (C.11)

With these identities at hand, we can rewrite the first term in (C.5) as

− 1
2FΣΘ

AΣ×AΘ
(C.6)
= 1

16FΣΘtr
{
(CΣ)

4
B(C̄Θ)

B
C(CΓ)

C
D(C̄Ψ)

D
4

}
A

Γ×A
Ψ

(C.7)
= 1

16FΣΘtr
{
(CΣ)

4
B(C̄Θ)

B
C(CΓ)

C
DD

Γ SD
E
/A E

F × /A
∗F

4

}

ibp
= − 1

16D
ΓFΣΘtr

{
(CΣ)

4
B(C̄Θ)

B
C(CΓ)

C
DS

D
E
/A E

F × /A
∗F

4

}

(C.8)
= − 1

16D
ΓFΣΘtr

{[
−2(CΣ)

4
D ηΘΓ + (C[Σ)

4
B(C̄Θ)

B
C(CΓ])

C
D

]
SD

E
/A E

F × /A
∗F

4

}

= − 1
8DΘFΘΣtr

{
(CΣ)

4
DS

D
E
/A E

F × /A
∗F

4

}
,

(C.12)
where in the last step we used the Bianchi identity D [ΓFΣΘ]=0. This concludes the proof for the special
case L=diag(−1,−1,−1,+3) (and permutations thereof). To reach the full Lie algebra we make use of
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the fact that we can superimpose coupling flow operators with weight one, giving the Cartan subalgebra
and that Sb

g [A ] is invariant under R-symmetry transformations A →A ′. From

0 = (∂g +Rg[A
′])Sb

g [A
′] = (∂g +Rg[A

′])Sb
g [A ] , (C.13)

we observe the transformed Rg[A
′] also satisfies the infinitesimal free action condition, reaching all

L ∈ su(4).

Lastly, we prove (C.6) by explicitly checking the various possibilities of the open indices. The easiest
case is the one with only gamma matrices

1
4 tr
{
(Cµ)

4
B(C̄ν)

B
C(Cρ)

C
D(C̄σ)

D
4

}
= 1

4 tr
{
γµγνγργσ

}
= ηµσηνρ − ηµρηνσ + ηµνηρσ . (C.14)

Next, we consider the case when there are three gamma matrices (modulo chiral projectors) in the trace,
i.e. one of the four indices in the range 4 to 9 and the three others in the range 0 to 3. In that case, the
trace vanishes since any trace over an odd number of gamma matrices vanishes and the r.h.s. of (C.6)
also clearly vanishes because in each term there is a Kronecker delta that is zero. The next case is the
one where two indices are in the range 0 to 3 and the other two indices are in the range 4 to 9. We have
to distinguish three arrangements of indices

1
4 tr
{
(C3+i)

4
B(C̄3+j)

B
C(Cµ)

C
D(C̄ν)

D
4

}
= 1

4 tr
{
(C3+i)

4
B(C̄3+j)

B
4γµγν

}

= (ti)4J (t
j)J4 tr

{
P+γµγν

}
+ (ti)4J (tj)J4 tr

{
P−γµγν

}

= −2[(ti)4J(t
j)J4ηµν + c.c.] = δijηµν ,

(C.15)

1
4 tr
{
(C3+i)

4
B(C̄µ)

B
C(C3+j)

C
D(C̄ν)

D
4

}
= tr

{
[(ti)4JP

+ − (ti)4JP−]γµ[(t
j)J4P

+ − (tj)J4P−]γν
}

= −(ti)4J (t
j)J4tr

{
P+γµγν

}
− (ti)4J(tj)J4tr

{
P−γµγν

}

= 2(ti)4J (t
j)J4ηµν + c.c. = −δijηµν ,

(C.16)

1
4 tr
{
(C3+i)

4
B(C̄µ)

B
C(Cν)

C
D(C̄3+j)

D
4

}
= tr

{
[(ti)4JP

+ − (ti)4JP−]γµγν [(t
j)J4P+ − (tj)J4P

−]
}

= (ti)4J (t
j)J4 tr

{
P+γµγν

}
+ (ti)4J (tj)J4 tr

{
P−γµγν

}

= −2[(ti)4J (t
j)J4ηµν + c.c.] = δijηµν ,

(C.17)

with all the other index configurations related to the three above by the cyclicity of the trace. The trace
with only one gamma matrix vanishes due to the same reason as for three gamma matrices. We are left
with the case

1
4 tr
{
(C3+i)

4
B(C̄3+j)

B
C(C3+k)

C
D(C̄3+l)

D
4

}
= 4(ti)4I(t

j)IC(tk)CK(tl)K4 tr P+

+4(ti)4I(tj)IC(t
k)CK(tl)K4 tr P−

= 8 (ti)4I(t
j)IC(tk)CK(tl)K4 + c.c.

= 8 [(ti)4I(t
j)I4(tk)4K(tl)K4

+ (ti)4I(t
j)IJ(tk)JK(tl)K4] + c.c.

(C.18)

The last expression can be evaluated with the explicit form of the Clebsch-Gordon coefficients (2.27) and
the identity

ǫIJMǫ
MKL = δ K

I δ L
J − δ L

I δ K
J . (C.19)

We do not quite find the desired result, because we obtain additional terms when two of the indices i,j,k,l
are in the range 1 to 3 and the other two are in the range 4 to 6. For example

1
4 tr
{
(C3+I)

4
B(C̄6+J )

B
C(C3+K)CD(C̄6+L)

D
4

}
= δILδJK − δIKδJL − δIJδKL , (C.20)

where only the second term on the r.h.s. would appear in the r.h.s. of (C.6). However, we contract (C.6)
with the ϕ’s in the adjoint representation of the gauge group. It turns out that the additional terms are
proportional to

(ϕI×ϕJ) (ϕI+3×ϕJ+3) + (ϕI×ϕJ+3) (ϕJ×ϕI+3) + (ϕI×ϕI+3) (ϕJ+3×ϕJ ) = 0 , (C.21)

i.e. vanish by the Jacobi identity in color space.
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D Explicit computation of the Nicolai maps

We first collect a number of useful identities

∑

B

ΦA
B × (ΦB

A)
† =

{
−2γ5

∑
JϕJ × ϕJ+3 for A = 4

2γ5
∑

J (−)δKJϕJ × ϕJ+3 for A = K
,

∑

B

ΦA
BS0Φ

B
A =

{ ∑
jϕjS0ϕj − γ5

∑
J(ϕJ+3S0ϕJ − ϕJS0ϕJ+3) for A = 4

∑
jϕjS0ϕj + γ5

∑
J(−)δKJ (ϕJ+3S0ϕJ − ϕJS0ϕJ+3) for A = K

,

∑

B

(cI)ABS0Φ
B
A =

{
S0ϕI + γ5S0ϕI+3 for A = 4

S0ϕI − γ5S0ϕI+3(−)δIK for A = K
,

∑

B

(cI+3)ABS0Φ
B
A =

{
−γ5S0ϕI + S0ϕI+3 for A = 4

γ5S0ϕI(−)δIK + S0ϕI+3 for A = K
,

(D.1)

and
∑

B,C,D

tr
{
(cI)4BS0Φ

B
CS0Φ

C
D × (ΦD

4)
†} = tr

{
−2S0

∑

j

ϕjS0ϕjϕI

−2S0

∑

J

[
ϕI+3S0ϕJϕJ+3 − ϕJS0ϕI+3ϕJ+3 + ϕJ+3S0ϕI+3ϕJ

]}
,
(D.2)

∑

B,C,D

tr
{
(cI)KBS0Φ

B
CS0Φ

C
D × (ΦD

K)†
}
= tr

{
−2S0

∑

j

ϕjS0ϕjϕI

−2S0

∑

J

[
ϕI+3S0ϕJϕJ+3 − ϕJS0ϕI+3ϕJ+3 + ϕJ+3S0ϕI+3ϕJ

]
(−)δIK

+4S0

[
ϕI+3S0ϕKϕK+3 − ϕKS0ϕI+3ϕK+3 + ϕK+3S0ϕI+3ϕK

]}
,

(D.3)
where in (D.2) and (D.3) half of the terms dropped out due to tr γµγνγ5=0. The analogous formulae
with (cI+3)AB are given by (D.2) and (D.3) with all indices I,J,K,... replaced by I+3,J+3,K+3,... and
vice versa so that e.g.

∑

B,C,D

tr
{
(cI+3)4BS0Φ

B
CS0Φ

C
D × (ΦD

4)
†} = tr

{
−2S0

∑

j

ϕjS0ϕjϕI+3

−2S0

∑

J

[
ϕIS0ϕJ+3ϕJ − ϕJ+3S0ϕIϕJ + ϕJS0ϕIϕJ+3

]}
.

(D.4)

To evaluate the traces, we need

tr γ5γ
µγνγργσ = −4ǫµνρσ ,

tr γµγνγργσ = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ) ,

tr γµγνγργσγλγη = −ηµν tr γργσγλγη + ηµρ tr γνγσγλγη ∓ ... .

(D.5)

We now give some intermediate results for the various contributions to the Nicolai maps.

First order: We have

←
R1

(A) = 1
8

←−
δ

δAΓ

Π Σ
Γ tr

{
(CΣ)

A
BS0 /A

B
C × /A

∗C
A

}
, (D.6)

where Π Σ
Γ = δ Σ

Γ − C Σ
Γ and ∂3+i≡0. Further expanding

←
R1

(A) = 1
8

←−
δ

δAΓ
Π Σ

Γ tr
{
(CΣ)

A
BS0

[
/A× /AδBA + 2ΦB

A × /A+ΦB
C × (ΦC

A)
†
]}

, (D.7)
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we find
R1

(A)Aµ = 1
8Π

ν
µ tr

{
γνS0 /A× /A

}
= CρAµAρ , ∀ A = 1,2,3,4 , (D.8)

where we used (Cν)
A
J = 0, as well as ΦA

J × (ΦJ
A)
† ∼ γ5 and tr γνγργ5 = 0. The remaining part is

R1
(A)ϕi = 1

4 tr
{
(ci)ABS0Φ

B
A × /A

}
= CρϕiAρ , ∀ A = 1,2,3,4 , (D.9)

where we used that a trace over an odd number of gamma matrices vanishes.

Second order: First, it is straightforward to obtain

(R1
(A))2Aµ = 2CρA[µC

λAρ]Aλ , ∀ A = 1,2,3,4 , (D.10)

(R1
(A))2ϕi = CρϕiCλA

ρAλ − CρA
ρCλϕiA

λ ∀ A = 1,2,3,4 . (D.11)

With the perturbative expansion of the covariant projector

P Σ
Γ = δ Σ

Γ − DΓG∂
Σ = Π Θ

Γ

{
δ Σ
Θ − gAΘ

∞∑

k=0

(−g∂·AC)kC∂Σ
}
, (D.12)

and the gaugino propagator (B.19), we further find

←
R2

(A) = − 1
8

←−
δ

δAΓ
Π Σ

Γ tr
{
(CΣ)

A
BS0 /A

B
CS0 /A

C
D × /A

∗D
A

}
− 1

8

←−
δ

δAΓ
Π Θ

Γ AΘS0∂
σtr
{
γσS0 /A

A
B × /A

∗B
A

}
.

(D.13)
It is easy to see that the second term gives no contribution using ΦA

B × (ΦB
A)
† ∼ γ5 and symmetry.

Evaluating the traces, one finds

R2
(4)Aµ = 3CρAλC[µAλAρ] + 2CρA[µC

λAρ]Aλ + 2CρϕiC[ρAµ]ϕi

+Π ν
µ ǫνλρσ

3∑

J=1

[CλϕJC
ρϕJ+3A

σ − CλϕJ+3C
ρϕJA

σ + CλAρCσϕJ+3ϕJ ] ,
(D.14)

R2
(K)Aµ = 3CρAλC[µAλAρ] + 2CρA[µC

λAρ]Aλ + 2CρϕiC[ρAµ]ϕi

−Π ν
µ ǫνλρσ

3∑

J=1

(−)δKJ [CλϕJC
ρϕJ+3A

σ − CλϕJ+3C
ρϕJA

σ + CλAρCσϕJ+3ϕJ ] ,
(D.15)

and
R2

(4)ϕI = CρϕIC
λAρAλ − CρA

ρCλϕIA
λ + 2C [ρAλ]CρϕIAλ + CρϕjCρϕIϕj

+ 1
2ǫµνρλ[C

µϕI+3C
νAρAλ + 2CµAνCρϕI+3A

λ]

+Cρ

3∑

J=1

[
ϕI+3CρϕJ+3ϕJ + ϕJCρϕI+3ϕJ+3 − ϕJ+3ϕI+3ϕJ

]
,

(D.16)

R2
(K)ϕI = CρϕIC

λAρAλ − CρA
ρCλϕIA

λ + 2C [ρAλ]CρϕIAλ + CρϕjCρϕIϕj

−1
2ǫµνρλ(−)δIK [CµϕI+3C

νAρAλ + 2CµAνCρϕI+3A
λ]

+Cρ(−)δIK
3∑

J=1

[
ϕI+3CρϕJ+3ϕJ + ϕJCρϕI+3ϕJ+3 − ϕJ+3CρϕI+3ϕJ

]

−2Cρ
[
ϕI+3CρϕK+3ϕK + ϕKCρϕI+3ϕK+3 − ϕK+3CρϕI+3ϕK

]
,

(D.17)

R2
(4)ϕI+3 = CρϕI+3C

λAρAλ − CρA
ρCλϕI+3A

λ + 2C [ρAλ]CρϕI+3Aλ + CρϕjCρϕI+3ϕj

−1
2 ǫµνρλ[C

µϕIC
νAρAλ + 2CµAνCρϕIA

λ]

−Cρ

3∑

J=1

[
ϕICρϕJ+3ϕJ + ϕJCρϕIϕJ+3 − ϕJ+3ϕIϕJ

]
,

(D.18)
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R2
(K)ϕI+3 = CρϕI+3C

λAρAλ − CρA
ρCλϕI+3A

λ + 2C [ρAλ]CρϕI+3Aλ + CρϕjCρϕI+3ϕj

+ 1
2ǫµνρλ(−)δIK [CµϕIC

νAρAλ + 2CµAνCρϕIA
λ]

−Cρ(−)δIK
3∑

J=1

[
ϕICρϕJ+3ϕJ + ϕJCρϕIϕJ+3 − CρϕJ+3ϕIϕJ

]

+2
[
ϕICρϕK+3ϕK + ϕKCρϕIϕK+3 − CρϕK+3ϕIϕK

]
,

(D.19)

for K=1,2,3.

E Testing the conditions of the Nicolai maps

We explicitly check the three conditions for the four distinct Nicolai maps (4.8)-(4.11).

Check of the gauge condition: The (Landau) gauge condition ∂µTgAµ=∂
µAµ +O(g3) follows from

symmetry and ∂µΠ ν
µ =0.

Check of the free-action condition: The maps have to satisfy

S0[A
′
µ,ϕ
′
I ,ϕ
′
I+3] = Sb

g [Aµ,ϕI ,ϕI+3] , (E.1)

with the bosonic action

Sb
g =

∫
d4x

{
− 1

4FµνF
µν − 1

2DµϕiD
µϕi − g2

4 (ϕi × ϕj)
2
}
,

Fµν = ∂µAν − ∂νAµ + gAµ ×Aν ,

Dµ = ∂µ + gAµ× ,

(E.2)

and Sb
0=S

b
g=0. Writing this condition out at second order gives

∫
d4x

{
1
2A
′
µ|O(g)

(
✷ηµν − ∂µ∂ν

)
A′ν |O(g) +Aµ

(
✷ηµν − ∂µ∂ν

)
A′ν |O(g2) +

1
2ϕ
′
i|O(g)✷ϕ

′
i|O(g) + ϕi✷ϕ

′
i|O(g2)

}

=

∫
d4x

{
− 1

4 (Aµ ×Aν)
2 − 1

2 (Aµ × ϕi)
2 − 1

4 (ϕi × ϕj)
2
}
,

(E.3)
after integrating by parts on the left hand side. The free-action condition (in the Landau gauge) was
previously shown for the map in N=1 D=10 SYM, i.e. before dimensional reduction. It is clear that the
condition remains valid for the reduced map (given by the black terms) and action. We therefore argue
that we only have left to show that the blue terms have no effect on the l.h.s. of (E.3). Further using
∂µA′µ=0 (at all orders), we can drop two terms on the l.h.s. of (E.3), so we are left with the condition

∫
d4x

{
Aµ✷A

′µ|O(g2) + ϕI✷ϕ
′
I |O(g2) + ϕI+3✷ϕ

′
I+3|O(g2)

}
blue terms

= 0 . (E.4)

Let us start with the map obtained from A=4. We refer to the three contributions as 1 , 2 , 3

respectively. Dividing by an overall factor of 1
2 and switching to a graphical notation, we find for the first

part

1 = ǫµνρλ

{ ∂νAµ

ϕJ

ϕJ+3

Aλ

Cρ

−

∂νAµ

ϕJ+3

ϕJ

Aλ

Cρ

+

∂νAµ

Aρ

ϕJ+3

ϕJ

Cλ

}
. (E.5)

The last diagram drops out since we can bring the ∂ν to the center through integration by parts and the
overall anti-symmetry under µ↔ρ (gaining a factor −1/2). Then, clearly ∂νCλ=Cνλ contracts to zero
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with the epsilon symbol as it is symmetric under ν↔λ. The second contribution is

2 = 1
2ǫµνρλ

{ ∂µϕI

ϕI+3

Aρ

Aλ

Cν

+ 2

∂µϕI

Aν

ϕI+3

Aλ

Cρ

}

+

{ ∂ρϕI

ϕI+3

ϕJ+3

ϕJ

Cρ

+

∂ρϕI

ϕJ

ϕI+3

ϕJ+3

Cρ −

∂ρϕI

ϕJ+3

ϕI+3

ϕJ

Cρ

}
(E.6)

and
3 = −

[
2 with (I↔I+3)

]
. (E.7)

The first respective terms of 2 and 3 cancel each other by means of integration by parts and symmetry.

The second term of 2 cancels the first term of 1 and the corresponding second term of 3 cancels the

second term of 1 . We are left with the second line of (E.6) and the corresponding terms from (E.7):

∂ρϕI

ϕI+3

ϕJ+3

ϕJ

Cρ

+

∂ρϕI

ϕJ

ϕI+3

ϕJ+3

Cρ −

∂ρϕI

ϕJ+3

ϕI+3

ϕJ

Cρ

−

∂ρϕI+3

ϕI

ϕJ+3

ϕJ

Cρ −

∂ρϕI+3

ϕJ

ϕI

ϕJ+3

Cρ

+

∂ρϕI+3

ϕJ+3

ϕI

ϕJ

Cρ

=:
∑

I,J

ZIJ
!
= 0 .

(E.8)

We can integrate by parts in the first diagram, which gives two contributions, one of them canceling the
fourth diagram. Similarly, the third and fifth diagram can be combined into one. In the second and last
diagram we can make use of the anti-symmetry under I↔J to also integrate by parts in both diagrams
(gaining a factor −1/2 in each) and then combine them into one contribution. This way the six diagrams
reduce to three:

−

ϕI

ϕI+3

ϕJ+3

ϕJ

−

ϕI

ϕJ+3

ϕJ

ϕI+3

−

ϕI

ϕJ

ϕI+3

ϕJ+3

!
= 0 , (E.9)

where we used ∂ρC
ρ=✷C=1. The condition (E.9) follows simply from the Jacobi identity (in color

space). In conclusion, the blue terms of the A=4 map indeed have no effect on the free action condition,
at least to the second order.

For the A=K case, most of the calculation can be done in the same way as for A=4 by simply carrying
around the sign factors (−)δKJ etc. However, the third and last line in (4.11) require special attention.
Referring to (E.8), the remaining condition for A=K can be written as

∑

I,J

(−)δKIZIJ − 2
∑

I

ZIK =
∑

J

(
−ZKJ − 2ZJK +

∑

I 6=K

ZIJ

) !
= 0 . (E.10)

In the following we will show that this condition is satisfied by demonstrating that

∑

J

ZJK = −
∑

J

ZKJ , for any K = 1,2,3 , (E.11)

and using our previous result
∑

I,JZIJ=0. In order to make clear that we are not summing over K, we
will set K=1 in the following, although the calculation works in the exact same way for K=2,3. We
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start with

∑

J

ZJ1 =

∂ρϕJ

ϕJ+3

ϕ4

ϕ1

Cρ

+

∂ρϕJ

ϕ1

ϕJ+3

ϕ4

Cρ −

∂ρϕJ

ϕ4

ϕJ+3

ϕ1

Cρ

−

∂ρϕJ+3

ϕJ

ϕ4

ϕ1

Cρ −

∂ρϕJ+3

ϕ1

ϕJ

ϕ4

Cρ

+

∂ρϕJ+3

ϕ4

ϕJ

ϕ1

Cρ

.

(E.12)

We can integrate by parts in the first diagram as previously. This gives two diagrams of which one cancels
with the fourth diagram. Further, we integrate by parts in all of the four other diagrams. This leaves us
with the 9 diagrams

∑

J

ZJ1 = −

ϕJ

ϕJ+3

ϕ4

ϕ1

−

ϕJ

ϕ1

ϕJ+3

ϕ4

−

ϕJ

ϕ4

ϕ1

ϕJ+3

+

ϕJ+3

ϕ1

ϕJ

ϕ4

−

ϕJ+3

ϕ4

ϕJ

ϕ1

−

ϕJ

∂ρϕ1

ϕJ+3

ϕ4

Cρ

+

ϕJ

∂ρϕ4

ϕJ+3

ϕ1

Cρ

+

ϕJ+3

∂ρϕ1

ϕJ

ϕ4

Cρ

−

ϕJ+3

∂ρϕ4

ϕJ

ϕ1

Cρ

,

(E.13)

of which the first three cancel through the Jacobi identity and the fourth and fifth can be combined into
one using the Jacobi identity once more. We find

∑

J

ZJ1 = +

ϕJ+3

ϕJ

ϕ1

ϕ4

−

ϕJ

∂ρϕ1

ϕJ+3

ϕ4

Cρ

+

ϕJ

∂ρϕ4

ϕJ+3

ϕ1

Cρ

+

ϕJ+3

∂ρϕ1

ϕJ

ϕ4

Cρ

−

ϕJ+3

∂ρϕ4

ϕJ

ϕ1

Cρ

.

(E.14)

We can use 1=Cρ
ρ , symmetry and integration by parts to modify the first diagram

ϕJ+3

ϕJ

ϕ1

ϕ4

=

ϕ1

ϕ4

ϕJ+3

ϕJ

=

ϕ1

ϕ4

ϕJ+3

ϕJ

∂ρC
ρ

= −

∂ρϕ1

ϕ4

ϕJ+3

ϕJ

Cρ −

ϕ1

∂ρϕ4

ϕJ+3

ϕJ

Cρ

(E.15)
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Using antisymmetry to flip the external lines appropriately, it is now easy to see that

∑

J

ZJ1 = −

∂ρϕ1

ϕ4

ϕJ+3

ϕJ

Cρ

+

∂ρϕ4

ϕ1

ϕJ+3

ϕJ

Cρ −

∂ρϕ1

ϕJ

ϕ4

ϕJ+3

Cρ

+

∂ρϕ4

ϕJ

ϕ1

ϕJ+3

Cρ

+

∂ρϕ1

ϕJ+3

ϕ4

ϕJ

Cρ −

∂ρϕ4

ϕJ+3

ϕ1

ϕJ

Cρ

= −
∑

J

Z1J ,

(E.16)
which concludes our check of the free action condition for A=K.

Check of the determinant matching: The map has to satisfy

log det
δA ′

δA
= log ∆MSS[A]∆FP[A] , (E.17)

which has been checked for the N=1 D=10 result (to fourth order). It is easy to convince oneself that
the condition is preserved under dimensional reduction to N=4 D=4. Hence, we will again only show
that the blue terms have no effect on the l.h.s. of the condition. Using log det=tr log, we see that they
first enter at the second order through the first term of

log det
δA ′

δA

∣∣∣
O(g2)

= tr
δA ′

δA

∣∣∣
O(g2)

− 1
2 tr

δA ′

δA

∣∣∣
O(g)

δA ′

δA

∣∣∣
O(g)

. (E.18)

More specifically, we have

tr
δA ′

δA
=

∫
d4xd4y δ(4)(x− y)δabδΣ∆

δA ′aΣ (x)

δA b
∆(y)

=

∫
d4xd4y δ(4)(x− y)δab

{δA′aµ (x)

δAb
ν(y)

δµν +
δϕ′aI (x)

δϕb
J (y)

δIJ +
δϕ′aI+3(x)

δϕb
J+3(y)

δIJ

}
.

(E.19)

We need to show that the contributions from the blue terms in (E.19) vanish. We again refer to the

three contributions as 1 , 2 and 3 respectively and start with the case A=4. It is easy to see that

1 =0, since every term contains ǫµλρση
µσ=0. For 2 , we note that the first line of the blue terms

in (4.10) contains no fields ϕI , i.e. drops out when varying w.r.t. ϕI . The second term in the last line
gives no contribution since faac=0, whereas the remaining two contributions cancel each other. In an

analogous fashion, one finds 3 =0, so that in total, the blue terms leave the determinant matching
condition (E.17) invariant. The A=K case works in almost the same way by carrying around the sign
factors and additionally taking care of the last line in (4.11).
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