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Abstract

The high-frequency gravitons can be absorbed by the first and second viscosities of the post-inflationary
plasma as the corresponding wavelengths reenter the Hubble radius prior to big-bang nucleosynthesis.
When the total sound speed of the medium is stiffer than radiation the rate of expansion still exceeds
the shear rate but the bulk viscosity is not negligible. Depending on the value of the entropy density at
the end of inflation the spectral energy density of the relic gravitons gets modified in comparison with the
inviscid result when the frequency ranges between the kHz band and the GHz region. In the nHz domain the
spectrum inherits a known suppression due to neutrino free-streaming but also a marginal spike potentially
caused by a sudden outbreak of the bulk viscosity around the quark-hadron phase transition, as suggested
by the hadron spectra produced in the collisions of heavy ions.
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The relic gravitons are produced by the variation of the space-time curvature [1, 2] and their spectral
energy density is almost scale-invariant when the conventional inflationary epoch evolves into a radiation-
dominated stage of expansion [3, 4]. Since during radiation the bulk viscosity vanishes [5, 6] and the shear
viscosity is negligible [7], very little absorption is expected at high-frequency. Consequently the quasi-flat
plateau (corresponding to the wavelengths that leave the Hubble radius during inflation and reenter in the
radiation stage) should remain nearly unmodified except for the free-streaming of the neutrinos [8, 9] and
for some possible burst of viscosity, for instance associated with the quark-hadron phase [10, 11]. If the
post-inflationary expansion rate sharply deviates from radiation for temperatures higher than O(0.1) MeV,
the bulk viscous stresses are not bound to vanish and the ultra-high-frequency gravitons of inflationary
origin can be comparatively more absorbed than in the conventional (inviscid) case. This happens, in
particular, when the total sound speed cst is stiffer than radiation (i.e. c2

st = w > 1/3, where w = pt/ρt
denotes the barotropic index). The spectral energy density of the relic gravitons develops then a blue
slope and a broad spike [12, 13]. A primordial stiff phase (originally suggested in [14, 15]) is realized in
quintessential inflationary scenarios [16] as well as in a number of similar frameworks (see for instance
[17, 18, 19] for some recent suggestions). The purpose of the present analysis is to demonstrate that the
high-frequency gravitons (i.e. between the MHz and the GHz) are absorbed, at different rates, depending
on their typical wavelengths, on the entropy density of the fluid and on the total sound speed of the plasma.

After a stage of conventional inflationary expansion the energy-momentum tensor can always be ex-
pressed as the sum of an inviscid component supplemented by the viscous contribution2:

T ν
µ = (pt + ρt)uµu

ν − ptδνµ + T ν
µ (η, ξ), (1)

where uµ is the four-velocity, pt the total pressure and ρt the total energy density of the plasma. In Eq.
(1) the viscous contribution is collectively described by Tν

µ (η, ξ) and it depends on the shear and on the
bulk viscosities denoted, respectively, by η and ξ:

T ν
µ (η, ξ) = 2 η σ ν

µ + ξ θ P ν
µ , θ = ∇αuα. (2)

In Eq. (2) θ and σµν are, respectively, the total expansion and the shear tensor. The projection of
the covariant conservation of T ν

µ along the two orthogonal directions uν and Pα
ν leads, respectively, to

the second principle of thermodynamics and to the relativistic version of the conventional Navier-Stokes
equation:

∇µ[(pt + ρt)u
µ]− uα∂αpt + uβ∇αTαβ = 0, (3)

(pt + ρt)u̇
α − ∂αpt + uαuβ∂

βpt + Pα
ν∇µTµν = 0, (4)

where, by definition, u̇α = uβ∇βuα is the 4-acceleration and ∇µ denotes throughout the covariant deriva-
tive. Using the fundamental thermodynamic identity we obtain, after standard manipulations, the covariant
non-conservation of the entropy four-vector:

∇α[suα − µ να] + να∂αµ =
∇αuβTαβ

T
, µ =

µ

T
. (5)

where s denotes the entropy density, µ is the chemical potential and T is the temperature. Equation
(5) assumes the covariant conservation of the total particle current jµ = nt u

µ + νµ (i.e. ∇µjµ = 0)
where nt is the total concentration of the plasma and νµ is the diffusion current. To recover Eq. (5)

2The signature of the metric is mostly minus (i.e. [+, −, −−)]. The lowercase Greek indices are four-dimensional; the
lowercase Latin indices are three-dimensional. The standard four-dimensional projector is defined as P ν

β = (δ ν
β − uβuν) and

it is orthogonal to the direction of the four-velocity (i.e. uν P
ν
β = 0). The prefixes of the international system of units will

systematically employed (e.g. 1 nHz = 10−9 Hz, 1 GHz = 109 Hz and so on and so forth for the other typical frequencies
mentioned hereunder).
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the covariant gradient of the pressure has to be traded for the derivatives of the temperature and of the
chemical potential according to the relation ∂αpt = (s∂αT + nt∂αµ); this relation follows from the first
principle of thermodynamics together with the related fundamental identity (pt + ρt) = sT + µnt.

The bulk and the shear viscosity have complementary physical features: while the shear viscosity of
a relativistic and gravitating fluid is associated with the covariant gradients of the four-velocity, the bulk
viscous stresses arise because the expansion of the Universe is continually trying to pull the underlying fluid
out of thermal equilibrium. Consequently the shear viscosity never affects the homogeneous and isotropic
Friedmannian background while bulk viscous stresses vanish when the equation of state is pure radiation
but are otherwise present [5, 6] (see also [20]). Even though the shear viscosity is the primary source of
Silk damping (and affects the compressible modes of the pre-decoupling plasma) its impact on the tensor
fluctuations of the geometry is much less relevant. As originally argued by Hawking [7] also gravitational
waves are absorbed by a viscous medium at a rate Γg = 2`2P η where, within the present notations, `P =√

8πG = 1/MP . This conclusion concerns relativistic plasmas where the collision frequency of the medium
exceeds the Hubble rate but it does not apply, for instance, to the case of distant sources [21]. When
the collision frequency of the plasma is smaller than the Hubble rate the hydrodynamic approximation is
untenable and should be replaced by the Boltzmann hierarchy associated with the viscous medium: this
is what ultimately happens in the concordance paradigm where the low-frequency gravitational waves are
suppressed by the free-streaming of (nearly massless) neutrinos [8]. The explicit form of Eq. (5) has been
obtained by trading the term uν∇µTµν for (∇µuν)Tµν since, in the Landau frame, ∇µ(uνT

µν) = 0. We
remind that the viscous energy-momentum tensor can be evaluated either in the Landau-Lifshitz or in the
Eckart frames3. As a consequence, in agreement with Tµνuν = 0, the explicit expression of the shear
tensor implies uµ σ

µν = 0:

σµν = P α
µ P β

ν Wαβ, Wαβ = ∇αuβ +∇βuα − u̇αuβ − u̇βuα −
2

3
gαβθ, (6)

where, as usual, θ = ∇λuλ is the expansion scalar. Therefore, using Eq. (6) and neglecting the chemical
potential the expression of the second principle given in Eq. (5) is:

∇µsµ = ξ
θ2

T
+ η

σ2

T
, sµ = suµ, σ2 = σµνσ

µν . (7)

In a conformally flat background metric gαβ = a2(τ) ηαβ (where a(τ) is the scale factor and τ denotes the
conformal time coordinate) the contribution of the shear vanishes (i.e. σ2 = 0) so that Eq. (7) becomes:

s′ + 3Hs =
9 ξH2

a(pt + ρt)
s, H =

a′

a
, θ = 3

H

a
, (8)

where the prime denotes throughout a derivation with respect to τ ; in this respect the relation between
H and the standard Hubble rate is given, as usual, by aH = H. It is finally relevant to appreciate, for
immediate convenience, that at the right-hand side of Eq. (8) the temperature has been eliminated by
using the fundamental identity of thermodynamics in the absence of chemical potential [i.e. T s = (pt+ρt)].

The absorption of the relic gravitons by the viscosities of the post-inflationary medium is estimated by
combining Eqs. (3)–(4) with the homogeneous and inhomogeneous versions of Einstein’s equations whose
covariant form is usefully written as:

R ν
µ = `2P

(
T ν
µ −

T

2
δ ν
µ

)
, T = T µ

µ , (9)

3In the Eckart case the four-velocity uµ introduced in Eq. (1) denotes the velocity of the particle transport (see e.g. [20]).
The Eckart frame is fixed by requiring that jα uα = 0 while Tµνuν 6= 0. Conversely, in the Landau-Lifshitz approach (which is
the one adopted here) pure thermal conduction corresponds to an energy flux without particles: the four-velocity uµ coincides
with the velocity of the energy transport implying Tµνuν = 0.
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where R ν
µ is the Ricci tensor with mixed indices and T ν

µ has been already introduced in Eq. (1). Since
the shear tensor of Eq. (6) vanishes in a Friedmannian background, the homogeneous evolution equations
deduced from Eqs. (1) and (9) are only affected by the bulk viscosity and they are:

2(H2 −H′) = `2P a
2(ρt + pt)− 3`2P a H ξ, 3H2 = `2P a

2ρt. (10)

The homogeneous version of Eq. (3) leads instead to the following expression:

ρ′t + 3H(ρt + pt) =
9 ξ H2

a
. (11)

If the source term at the right-hand side of Eq. (11) is eliminated with the help of Eq. (8), the following
explicit relation

ρ′t
ρt + pt

=
s′

s
⇒ d ρt

pt + ρt
= d ln s, (12)

connects the energy and the entropy densities to the total pressure. While Eqs. (10)–(11) and (12) are
not affected by the value of η, the opposite is true for the inhomogeneities since the first-order (tensor)
fluctuation of the shear viscosity does not vanish and it easily obtained from Eq. (6):

δ
(1)
t gij = −a2hij , δ

(1)
t σij = −ah′ij , δ

(1)
t σ j

i = h j ′
i /a, ∂ih

i
j = hii = 0, (13)

where δ
(1)
t denotes the first-order (tensor) fluctuation of the corresponding quantity. The evolution of hij

follows from Eq. (9) when the fluctuations of the Ricci tensor are combined with the ones of the viscous
sources so that the result (already anticipated above and originally derived in Ref. [7]) is:4:

h j ′′i + (2H + Γga)h j ′i −∇
2h ji = 0, Γg = 2`2P η. (14)

While Eq. (14) describes the tensor inhomogeneities after the end of inflation, in the past ξ has been
suggested as the driving source of quasi-de Sitter stage of expansion. If this is the case the scalar fluctuations
of ξ also dominate the scalar inhomogeneities by inducing a quasi-adiabatic solution which is however
strongly suppressed; this mode cannot be a substitute for the conventional adiabatic paradigm since it leads
to an anomalously large tensor to scalar ratio [23]. While the bulk viscosity cannot drive a conventional
inflationary stage of expansion, ξ may also affect the character of the cosmological singularity [25, 26]; in
this context the viscosities may lead to curvature bounces where the spectral energy density of the relic
gravitons has a blue slope [27, 28]. Viscosities are not regarded here as speculative early-time sources
potentially unrelated to the thermodynamical properties of the medium but rather as a specific physical
features of the late-time (post-inflationary) evolution.

In a relativistic plasma the total energy density ρt (already introduced in Eq. (1)) and the collision
frequency Γcoll determine the corresponding viscosities [5, 6, 20]:

η = bη
ρt

Γcoll
, ξ = bξ

ρt
Γcoll

(
c2
st −

1

3

)2

, (15)

where bη and bξ are two (dimensionless) numerical constants while, as anticipated, c2
st = p′t/ρ

′
t denotes the

total sound speed of the plasma. Based on Eq. (15) Γg and Γcoll are inversely proportional in a radiation-
dominated stage where the shear viscosity solely depends on the entropy density and the bulk viscosity
vanishes:

Γg
H
∝ H

Γcoll
, η ∝ s,

ξ

η
→ 0, (16)

4The propagation of gravitational waves in curved backgrounds can be notoriously treated either within the covariant
approach (analog to the one pioneered by Lifshitz [22] and employed in Ref. [7]) or in a non-covariant description which is
particularly suitable for cosmological applications. In the covariant approach the tensor mode is defined as uµf

µ
ν = ∇µfµν =

gµνfµν = 0 where gµν denotes the background metric and fµν is the corresponding fluctuation; ∇µ is the covariant derivative
defined with respect to gµν . These two complementary approaches are fully equivalent and have been recently reviewed (at
length) in Ref. [24].
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where, as usual, H = H/a is the standard Hubble rate. As long as Γcoll � H, the first relation in Eq. (16)
explains why Γg can be neglected in Eq. (14) and the viscosities have a little impact on the gravitational
wave propagation during a radiation-dominated stage. When Γcoll < H the hydrodynamic approximation
fails and we must resort to the full Einstein-Boltzmann hierarchy as in the case of the damping induced by
the free-streaming of neutrinos [8] at low-frequencies O(nHz). Equation (16) also describes the more general
situation of a relativistic plasma where the particles interact by the exchange of gauge bosons (like in the
case of a generalized Coulomb plasma). Neglecting the Coulomb logs, the collision frequency is Γcoll ' α2T
while ρt = (π2/30)NT 4 where N denotes the effective numbers of relativistic degrees of freedom. As a
consequence Eq. (15) implies that ξ → 0 while η ∝ NT 3/α2. Recalling now Eq. (14) the shear rate, as
expected, will always be Γg � H whenever T < α2MP . Since the cross section for the interaction of two

gravitons is given by σg = `2P (T 2/M
2
P ) the interaction rate Γint ' σgT

3 is smaller than the Hubble rate
provided T < MP . All in all among Γcoll, Γg and Γint the following hierarchies exist:

η = bηs, Γint < H, Γg < H, Γcoll > H, (17)

where bη = bη/α
2 and s ∝N T 3. When discussing the the viscosity bounds5 ξ and η are measured in units

of s (see e.g. [11]) and the same strategy will be adopted here.
Let us now move to the physically interesting situation where the inflationary stage is followed by a

stiff epoch; for the sake of illustration it is useful to focus on the case c2
st → 1 implying, in the present

units, that the total sound speed coincides with the speed of light [12, 13, 14, 15, 16] (see also [17, 18, 19]).
According to Eq. (15) both viscosities are present in the plasma and they can be parametrized as:

η = bηs, ξ =
4bξ
9

s,
η

ξ
=

9 bη

4 bξ
, (18)

where the factor 4/9 comes from the term (w − 1/3)2 in the case c2
st = w = 1. As clarified in Eqs. (15)–

(16) and (17) it is always possible to parametrize ξ and η in terms of the entropy density however the
dependence of s on ρt will ultimately follow from Eq. (12). In the case of a stiff plasma where the sound

speed coincides with cst = 1 Eq. (12) demands that s ∝ ρ
1/2
t (since pt = ρt); furthermore thanks to Eq.

(18) we have

s = s1

(
ρt
ρ1

)1/2

, η = bη s1

(
ρt
ρ1

)1/2

, ξ =
4bξ s1

9

(
ρt
ρ1

)1/2

, (19)

where s1 and ρ1 denote, respectively, the entropy and the energy densities at the end of inflation while bη
and bξ are two numerical factors both O(1). If we now insert Eq. (10) into Eq. (11) and take into account
the result of Eq. (19) the viscous correction to the evolution of the stiff background are determined from
the following equation:

dG

dz
+ 6G =

4

3
δ G, δ =

bξ s1

H1M
2
P

, G =
ρt
ρ1

< 1, (20)

where z = ln a. The solution of Eq. (20) must then be inserted back into Eq. (10) with the purpose
of determining the explicit form of the scale factor. Since the regularity of the extrinsic curvature of the
background demands the continuity of aH across the inflationary boundary, the evolution of the scale
factor corrected by the viscosity effects reads:

av(τ) =

[
β

γ

(
τ

τ1
+ 1

)
+ 1

]γ
, τ ≥ −τ1, γ =

3

6− 2δ
, (21)

5It is often argued that in all gauge theories with Einstein gravity duals 4πη/s ≥ 1 so that strongly coupled QCD plasma
may even saturate this bound [29].
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where the subscript refers to the viscous stage. In Eq. (21) β = 1/(1− ε) and ε = −Ḣ/H2 is the standard
slow-roll parameter defined during the inflationary evolution. Equation (21) and its first time derivatives
are both continuous for τ = −τ1, i.e. ai(−τ1) = av(−τ1) and a′i(−τ1) = a′v(−τ1), where ai(τ) denotes
the inflationary scale factor. The relevant physical situation is the one where G < 1, the energy density
decreases and the scale factor expands; according to Eq. (21) this happens for δ < 9/2 even if, in practice,
this limit is never reached since the physical range of δ is always below 1 and it ultimately depends on the
upper bound on s1.

A lower bound on s1 is, approximately, NH3
1 (where N represents the total number of species). This

estimate follows from the particle production at the end of inflation when the post-inflationary expansion
rate is slower than radiation, as originally suggested by Ford [30] (see also [12]). Since (H1/MP ) = O(10−6)
and N = O(100) we can argue that, at least, δ ≥ bξN(H1/MP )2 ' 10−6. An upper bound on δ is instead
obtained by assuming that all the energy density at the end of inflation is suddenly transformed in thermal
energy density; in actual examples (mostly based on explosive pre-heating) this limit is never reached and
it would imply that T1 ∼ (H1MP )1/2. In this second case s1 = O(NT 3

1 ) so that δ ≤ bξN (H1/MP )1/2;
this means that, at most, δ � 1. Since 10−6 < δ � 1 the background evolution is slightly modified by
the viscosity, and, in particular the energy density of the produced particles will first thermalize and then
eventually dominate the background:(

a1

a∗

)
'N3/(6−4δ)

(
H1

MP

)3/(3−2δ)

,

(
a1

ath

)
' (α2N)3/(6−2δ), 10−6 ≤ δ � 1, (22)

where a∗ and ath are, respectively, the scale factors when radiation dominates and when the produced
fluctuations thermalize6. Since the shift induced by δ is visibly quite small it can be neglected, in the first
approximation, when discussing the estimates of ath and a∗.

The viscous corrections on the spectral energy density of the relic gravitons simply follow by evaluating
the impact of η and ξ on the evolution of the corresponding field operators:

ĥi j(~x, τ) =

√
2 `P

(2π)3/2

∑
λ=⊕,⊗

∫
d3k e

(λ)
ij (k̂)

[
Fk,λ â~k,λ e

−i~k·~x + F ∗k,λ â
†
~k,λ

ei
~k·~x
]
, (23)

where e
(λ)
ij (k̂) denote the two tensor polarizations and Fk,λ is the mode function. As usual we define the

two tensor polarizations as e⊕ij(k̂) = (m̂i m̂j− n̂i n̂j) and as e⊗ij(k̂) = (m̂i n̂j + n̂i m̂j) where m̂, n̂ and k̂ form
a triplet of mutually orthogonal unit vectors. For τ ≤ −τ1 the mode functions obey the same evolution for
each of the two polarizations so that the index λ can be dropped:

f ′′k +

[
k2 − 2− ε

τ2(1− ε)2

]
fk = 0, fk = aFk, gk = f ′k −Hfk. (24)

In Eq. (24) gk denotes the mode function associated with the canonical momentum conjugate to ĥij . The
solution of Eq. (24) with the appropriate boundary conditions for τ → −∞ is:

fk(τ) =
Nµ√
2k

√
−kτ H(1)

µ (−kτ), gk(τ) = −Nµ

√
k

2

√
−kτ H(1)

µ−1(−kτ), µ =
3− ε

2(1− ε)
, (25)

where H
(1)
µ (−kτ) is the Hankel function of the first kind [31] and the normalization factor is Nµ =√

π/2 eiπ(µ+1/2). For τ ≥ −τ1 the tensor amplitude obeys instead Eq. (14) where the scale factor is
given by Eq. (23) and the mode function obeys:

F ′′k + (2H + Γga)F ′k + k2Fk = 0. (26)

6Equation (22) follows since the particles are produced with typical energy density NH4
1 and with approximate concentration

given by n = NT 3, where now T ' H1(a1/a) is the kinetic temperature that eventually coincides with the thermodynamic
temperature after thermalization [30]. If the interactions occur via the exchange of gauge bosons the cross section is proportional
to σ ' α2/T 2 the thermalization time is defined as σn ∼ H; this observation leads to the second result of Eq. (22).

6



Even in the case cst =
√
w = 1 the shear rate can be neglected in comparison with the Hubble rate. In

fact, according to Eq. (18), η ∝ s. Furthermore Eq. (12) demands η ∝ s ∝ s1 (ρ/ρ1)1/2 so that the shear
viscosity scales exactly as H and it does not affect Eq. (26) as long as δ < 1:

Γg
aH

=
2 bη `

2
P s

H
= 2 bη δ � 1. (27)

Under the conditions established by Eq. (27) the mode functions for τ ≥ −τ1 are uniquely determined
from Eq. (25) in terms of fk = fk(−τ1) and gk = gk(−τ1):(

fk(τ)
gk(τ)/k

)
=

(
Af f (k, τ, τ1) Af g(k, τ, τ1)
Ag f (k, τ, τ1) Ag g(k, τ, τ1)

)(
fk
gk/k

)
, (28)

where the various entries of the matrix in Eq. (28) can be explicitly computed in terms of Bessel functions
of index ν:

Af f (k, τ, τ1) =
π

2

√
qx1

√
ky

[
Jν+1(qx1)Yν(ky)− Yν+1(qx1)Jν(ky)

]
,

Af g(k, τ, τ1) =
π

2

√
qx1

√
ky

[
Jν(qx1)Yν(ky)− Yν(qx1)Jν(ky)

]
,

Ag f (k, τ, τ1) =
π

2

√
qx1

√
ky

[
Yν+1(qx1)Jν+1(ky)− Jν+1(qx1)Yν+1(ky)

]
,

Af g(k, τ, τ1) =
π

2

√
qx1

√
ky

[
Yν(qx1)Jν+1(ky)− Yν+1(ky)Jν(qx1)

]
, (29)

where, thanks to the Wronskians of the Bessel function [31], (Af fAg g − Af gAg g) = 1 so that the matrix
of Eq. (28) is unitary. The variables y = y(τ, q), q = q(ε, δ) and ν = ν(δ) that appear in Eq. (29) are
defined, respectively, as:

y = y(τ, q) = τ + τ1

(
1 + q

)
, q = q(ε, δ) =

3(1− ε)
6− 2δ

, ν = ν(δ) =
δ

6− 2δ
, (30)

where the dependence on the various arguments has been explicitly indicated even if it will be dropped
hereunder to maintain a concise notation. There is in fact a hierarchy between the different contributions
appearing in Eq. (29); in particular it can be easily shown that:

|Af f (k, τ, τ1) fk| �
∣∣∣∣Af g(k, τ, τ1)

gk
k

∣∣∣∣, |Ag f (k, τ, τ1) k fk| � |Ag g(k, τ, τ1)gk|. (31)

The approximation of Eq. (31) holds when x1 = kτ1 � 1 and it always verified for the estimate of the
spectral energy density after the various wavelengths reenter the Hubble radius. For instance the spectral
energy density corresponding to the modes reentering during the stiff epoch is given by:

Ωgw(k, τ) =
k5 |fk|

2

6π2H2 a4M
2
P

[
|Af f (k, τ, τ1)|2 + |Af g(k, τ, τ1)|2

]
. (32)

By now inserting Eqs. (29)–(31) into Eq. (32) the final expression of the spectral energy density becomes:

Ωgw(k, τ) = C(δ, ε)

(
H1

MP

)2(a1H
2
1

aH2

)2( k

a1H1

)nT
,

C(δ, ε) =
2(3−ε)/[2(1−ε)] 23/(3−2δ)

3π3
Γ2
[

6− δ
2(3− δ)

]
Γ2
(

3− ε
2− 2ε

)[
3(1− ε)
4(3− δ)

]−2δ

, (33)
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Figure 1: The high-frequency spectral index nT reported in Eq. (34) is illustrated for different values of
ε = rT /16 (the slow-roll parameter), w (the barotropic index of the post-inflationary stage) and δ (the

entropy density at the end of inflation and in units of H1M
2
P ).

where we restored MP by recalling its relation with the reduced Planck mass MP = MP /
√

8π; the spectral
index nT appearing in Eq. (33) determines the high-frequency slope of the spectral energy density and it
is given by:

nT (ε, δ) =
1− 3ε

1− ε
− δ

3− δ
, nT (w, ε, δ) =

(1− 3ε)

(1− ε)
+

9(w − 1)− (3w − 1)2 δ

3(3w + 1)− (3w − 1)2 δ
. (34)

Both expressions of Eq. (34) coincide in the limit cst → 1 and w → 1. For δ → 0, ε → 0 and w → 1 we
have that nT → 1 as originally discussed in [12].

In the plots of Fig. 1 the spectral index of Eq. (34) is illustrated for different values of rT , δ and w.
Since the current bounds on rT imply that rT < 0.06 [32, 33], according to the consistency relations (i.e.
rT = 16 ε) ε < 0.003. In the right plot of Fig. 1 rT has been fixed at a value compatible with the current
bounds while δ and w are allowed to vary in their respective physical ranges. The spectral index of Eq. (34)
corresponds to the high-frequency slope of Ωgw(ν, τ0) that has been computed numerically in Fig. 2 for a
fiducial set of parameters [32, 33] and by employing the numerical approach described in Ref. [13]. While
different sets of parameters do not crucially alter the results illustrated in Fig. 2, we see from both plots
that the high-frequency slope is modified, in practice, only if O(10−4) ≤ δ � 1. Depending on the value of
δ the suppression can be of the same order of the damping due to the free-streaming of neutrinos. Indeed,
the quasi-flat plateau (corresponding to the wavelengths that leave the Hubble radius during inflation and
reenter in the radiation stage) remains nearly unmodified except for the contribution of the neutrinos and
for some possible outbreak of viscosity: between these two effects the former is more prominent than the
latter. As Fig. 2 shows, below 100 nHz the nearly scale-invariant plateau of inflationary origin suffers a
10% suppression due to the neutrino decoupling for typical temperatures O(MeV) [8, 9]. Around the quark-
hadron phase transition a burst of ξ is compatible with the transverse momentum spectra and multiplicities
of charged hadrons produced in the collisions of heavy ions at the energies of the Large Hadron Collider
[10] (see also [11]). However, this effect does not seem sufficient to leave a clear imprint on the flat plateau
of the relic gravitons and, in short, the reason is the following. In the radiation stage a sudden outbreak
of the bulk viscosity implies that a′′/a 6= 0 during a limited conformal time interval around the epoch of
the phase transition. Since a′′/a also corresponds to the pump field of the tensor modes, to modify the
spectrum of the relic gravitons as the nHz frequencies cross the effective horizon we should have, at least,
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Figure 2: The spectral energy density of the relic gravitons is illustrated for different values of δ and w.
We interpret this effect as an absorption of high-frequency gravitons by bulk viscous stresses. At lower
frequencies the nearly scale-invariant plateau is suppressed by the free-streaming of the neutrinos which is
controlled by Rν (i.e. the neutrino fraction in the radiation plasma). Different values of ΩΛ and ΩM0 only
affect the overall normalization with an effect O(0.2). We illustrated here the comoving frequencies that
are related to the comoving wavenumbers as ν = k/(2π). Common logarithms are used on both axes.

ξ H/ρt = O(1). This condition follows by requiring that a′′/(ak2) ' a′′/(aH2) = O(1) since, at reentry,
k ' 1/τ ∼H. Indeed, from Eq. (10) the magnitude of the required jump is estimated as:

a′′

aH2
=

3

2

ξ `2P
H

=
O(sH)

ρt
≤ O(10−17), νξ = 4.6

(
N

10.75

)1/4( Tc
200 MeV

)(
h2

0ΩR0

4.15× 10−5

)1/4

nHz, (35)

where νξ denotes the comoving frequency that correspond to the Hubble radius at the time of the phase
transition. According to (35) the burst in the bulk viscosity across the critical temperature (typically
Tc = O(200) MeV) is, at most, of the order of ξ0sH/ρt. The value of ξ0 can be directly taken from the
analysis of Ref. [10] and it is, at most, O(10). Thus, from Eq. (35) we will have that ξH/ρt = 10O(Tc/MP ).
But since Tc/MP = O(10−20) the effect of the bulk viscosity amounts to a nearly invisible spike in the
graviton spectrum for a typical frequency O(nHz). We assumed here that the entropy does not change too
much across the phase transition but this effect marginally shifts the final estimate by one or two orders
of magnitude from 10−19 to 10−17.

The viscous absorption of high-frequency gravitons reentering during the radiation epoch is negligi-
ble except for the low-frequency modifications induced by neutrino free-streaming. However if the post-
inflationary sound speed is stiffer than radiation the spectral energy density can be modified in the ultra-
high-frequency domain if the entropy density at onset of the post-inflationary stage is larger than 10−4

in units of H1M
2
P where H1 denotes the (nearly constant) inflationary expansion rate. In the extreme

situation where the entropy density is O(0.1) H1M
2
P the suppression of the high-frequency spike is of the

order of 10% and it is roughly comparable with the damping induced by the neutrino free-streaming in the
nHz region. For the same frequency range an outbreak of bulk viscosity around the quark-hadron phase
transition leads to a comparatively minute spike in spectral energy density. The present considerations
suggest that the ultra-high-frequency gravitons, if ever detected, can be used to reconstruct not only the
expansion rate prior to nucleosynthesis but also the viscous history of the post-inflationary medium.

I wish to thank T. Basaglia, A. Gentil-Beccot, S. Rohr and J. Vigen of the CERN Scientific Information
Service for their usual kindness.
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