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Abstract

We construct supersymmetric AdS4 × Σ solutions of D = 6 gauged supergravity,
where Σ is a two-dimensional orbifold known as a spindle. These uplift to solutions
of massive type IIA supergravity using a general prescription, that we describe.
We argue that these solutions correspond to the near-horizon limit of a system
of Nf D8-branes, together with N D4-branes wrapped on a spindle, embedded as
a holomorphic curve inside a Calabi-Yau three-fold. The dual field theories are
d = 3, N = 2 SCFTs that arise from a twisted compactification of the d = 5,
N = 1 USp(2N) gauge theory. We show that the holographic free energy associated
to these solutions is reproduced by extremizing an off-shell free energy, that we
conjecture to arise in the large N limit of the localized partition function of the d = 5
theories on S3 × Σ. We formulate a universal proposal for a class of off-shell free
energies, whose extremization reproduces all previous results for branes wrapped
on spindles, as well as on genus g Riemann surfaces Σg. We further illustrate
this proposal discussing D4-branes wrapped on Σ × Σg, for which we present a
supersymmetric AdS2 × Σ × Σg solution of D = 6 gauged supergravity along with
the associated entropy function.

http://arxiv.org/abs/2111.13660v2
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1 Introduction

A plethora of examples of AdS/CFT dualities have been constructed following the idea
of [3] of wrapping branes on supersymmetric cycles. On the field theory side, these
constructions realise supersymmetric lower-dimensional theories as “twisted” compacti-
fications of the theories living on the branes. Here the twisting refers to the coupling
of the field theory to a background R-symmetry gauge field that gets identified with a
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connection on the tangent bundle of the manifolds on which the theory is compactified, so
that supersymmetry can be preserved simply taking constant spinors. This is referred to
as a topological twist. On the gravity side, one generically expects to find supersymmet-
ric solutions incorporating the backreaction of the large number of branes wrapped, and
when the dual theory is a SCFT, the solutions will comprise an AdS factor. Focussing on
compactifications on two-dimensional manifolds, these constructions have been realised
for M2, D3, D4 and M5-branes wrapping constant curvature Riemann surfaces, which
include the round two-sphere as the genus g = 0 case. The references presenting these
solutions, along with a discussion of the field theory duals, are summarised in the first
row of Table 1.

These solutions usually have been constructed in some U(1)d gauged supergravity in
D = p + 2 dimensions, where p is the world-volume dimension of the brane, and then
lifted to D = 10 or D = 11 supergravities, which is a necessary step in order to compare
gravity computations with calculations performed in the dual field theory. An exception
to this is the solution corresponding to D4-branes wrapped on Σg, that was obtained
directly in massive type IIA supergravity [2]. Below we will show that, in fact, that
solution can also be obtained in a D = 6, U(1)2 gauged supergravity and uplifted to
massive type IIA, provided we take due care of the flux quantization conditions. The
case of M2-branes, corresponding to supersymmetric AdS2 ×Σg solutions, is particularly
interesting, because on general grounds it corresponds to the near-horizon limit of BPS
black holes in AdS4. In this case, one can also add rotation to the AdS2 × S2 solutions.
The black holes are interpreted as “flows” across dimensions, with the AdS4 conformal
boundary representing the parent three-dimensional SCFT in the UV and the AdS2 near-
horizon region corresponding to the one-dimensional IR theory. Such flows have also been
constructed for higher-dimensional AdS solutions, although usually they are known only
numerically.

M2 D3 D4 M5

Σg [4] [5] [2] [6]

Σ [7] [8] here [9]

Table 1: In the first row, the references discussing supersymmetric AdS×Σg solutions for
different branes, where Σg is a Riemann surface of genus g, equipped with a constant cur-
vature metric. In the second row, the references discussing the “simplest” supersymmetric
AdS× Σ solutions, where Σ is the spindle.

The solution presented in [8] opened up a new, unexpected, direction of exploration
in the landscape of AdS/CFT constructions. This comprises a supersymmetric AdS3 ×Σ

background of minimal D = 5 gauged supergravity, where Σ = WCP1
[n

−
,n+] is a weighted

projective space, also known as a spindle. This uplifts to an AdS3×M7 solution of type IIB
supergravity and it has been argued to be dual to a class of d = 4, N = 1 SCFTs
compactified on the spindle with a novel type of twist, different from the topological
twist, that was later dubbed “anti-twist”. A similar construction, for AdS2×Σ solutions of
minimal D = 4 gauged supergravity, was presented in [7]. These have been later extended
to spindle solutions of STU gauged supergravities in D = 5 [10, 11] and D = 4 [12, 13],
respectively. A supersymmetric AdS5 × Σ solution corresponding to M5-branes wrapped
on the spindle was constructed in [9] and, differently from the previous constructions,
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it realises supersymmetry by means of a “topologically topological twist”. Namely, the
background R-symmetry gauge field is identified with a connection on the tangent bundle
of the spindle, as for the topological twist, but the corresponding local curvatures are not
equal. It turns out that these local solutions comprising spindles contain, as interesting
degenerate limits, solutions corresponding to branes wrapped on disks or Riemann surfaces
with non-constant curvature [13–18].

In this paper we will construct an AdS4 × Σ solution, corresponding to D4-branes
wrapped on the spindle, thus filling the outstanding entry in Table 1. We will show
that our construction realises the topologically topological twist, as for the M5-brane
solution in [9], with which it shares some similarities. We will first present the solution
in a D = 6 gauged supergravity model and then we will discuss how to uplift this to a
globally consistent solution in massive type IIA supergravity. We will elucidate the global
structure of the Killing spinors, identifying the precise bundles of which they are sections
and showing how they differ from the Killing spinors of the previous constructions for
M2 [7] and D3-branes [8]. Our solution completes the panorama of the “basic” branes
wrapped on spindles.

While for the SCFTs compactified on Riemann surfaces with the standard topological
twist various supersymmetric partition functions have been computed and studied in the
large N limit, for compactifications on spindles similar results are not yet available. For
theories in d = 4 and d = 6 this lack of knowledge can be bypassed employing the
recipe of [8] for extracting the trial central charge of the (d − 2)-dimensional theories
from the anomaly polynomials of the parent theories. In d = 3 an entropy function was
obtained in [19], from the on-shell gravitational action of the suitably regularised black
hole solutions, employing the method of [20]. Extremizing this reproduces the entropy
associated to the AdS2 × Σ solution of [7]. An extension of this entropy function was
conjectured in [12] and shown to reproduce correctly the entropy of multi-charge spindle
solutions. Taking inspiration from that, in this paper we will propose a conjectural off-
shell free energy, whose extremization will, remarkably, reproduce the gravitational free
energy associated to our solutions.

In the last part of the paper we will propose a universal class of off-shell free energies
for various branes wrapped on spindles, analogous to the entropy functions, to which
these reduce in d = 3. Specifically, we conjecture that for a large class of SCFTs in
dimensions d = 3, 4, 5, 6, possessing large N gravity duals, when these are compactified
on a spindle Σ, the exact superconformal R-symmetry of the SCFTs in dimension d − 2
is determined extremizing the following off-shell free energies

F±(ϕi, ǫ; ni, n+, n−, σ) =
1

ǫ

(

Fd(ϕi + niǫ)±Fd(ϕi − niǫ)
)

, (1.1)

where the variables ϕi, ǫ and the magnetic fluxes ni satisfy the constraints

d
∑

i=1

ϕi −
n+ − σn−

n+n−
ǫ = 2 ,

d
∑

i=1

ni =
n+ + σn−

n+n−
. (1.2)

The form (1.1) is suggested by the idea of gluing universal contributions called grav-
itational blocks, advocated in [21] for the entropy functions of SCFTs compactified on
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different manifolds. The “building blocks” are the functions Fd above, which have differ-
ent interpretations in the different dimensions d, being proportional to either the central
charge or the sphere partition function of the SCFTs. They are also related to the prepo-
tentials of the various gauged supergravities in dimension D = d+ 1. Their precise form
will be given later, see Table 2. The sign σ = ±1 labels the different twists that may
occur on spindles. The sign σ = +1 corresponds to the topologically topological twist,
which includes the standard topological twist as a special case, while the sign σ = −1
corresponds to the anti-twist, realised by M2 [7] and D3-branes [8]. The sign ± depends
on the gluing, in the language of [21], and we shall comment below on its relation to the
sign of σ. For example, in d = 3, taking n+ = n− = 1 in the above formulas leads to
the entropy functions for the supersymmetric black holes with AdS2 × S2 near-horizon
geometry [21]. In this case, for σ = +1 we must take F− and this reduces to the entropy
function [22] of the supersymmetric AdS4 black holes with a topological twist [4]. On the
contrary, for σ = −1 we must take F+ and this reduces to the entropy function [23] for
the supersymmetric rotating Kerr-Newmann AdS4 black holes [24].

More generally, we will provide evidence that in D = 4, 6 the gluing sign ± coincides
with −σ, while in D = 5, 7 they appear to be independent. In D = 4, the fact that −σ
coincides with the sign ± may be understood as follows. The AdS/CFT correspondence
implies that, in the large N limit, the free energies F± should be identified with the
appropriately regularised gravitational on-shell action of the dual supergravity solutions.
In [25] it has been proved, in the context of minimal gauged supergravity, that the on-
shell action of any (Euclidean) supersymmetric solution takes the form of a sum over
contributions from fixed points of the canonical Killing vector field, defined as a bilinear
in the Killing spinors of the solution. The relative sign of these contributions is determined
by the chirality of the Killing spinors at the fixed points, and in all the known supergravity
solutions comprising spindle (including S2 as a special case) we have that the chiralities
at the north and south poles of the spindles are the same for the topologically topological
twist and opposite for the anti-twist. A general proof of this fact is given in [26].

Our proposal reproduces all the previously known results for AdS × Σ solutions, in-
cluding the AdS × S2 solutions as special cases1. Moreover, in d = 5, taking σ = +1,
corresponding to the topologically topological twist, we will show that the extremization
of the function F−(ϕi, ǫ; ni, n+, n−,+1) in (1.1) precisely reproduces the gravitational S3

free energy of our solution (see eq. (3.71)). We then conjecture that this should arise in
the large N limit of the localized partition function on S3 × Σ, with the topologically
topological twist. To add weight to our proposal, we will also discuss D4-branes wrapped
on the four-dimensional orbifold Σ × Σg. The effective field theory obtained from the
twisted compactification of the d = 5 SCFT is expected to be superconformal, at least in
some ranges of the magnetic fluxes. We will discuss the corresponding supersymmetric
AdS2×Σ×Σg solutions of D = 6 gauged supergravity and show that the entropy function
constructed from the “spindly” gravitational blocks correctly reproduces the geometric
entropy.

The rest of the paper is organised as follows. In section 2 we discuss the uplift of
solutions of a D = 6, U(1)2 gauged supergravity model to massive type IIA. As a warm-
up, we illustrate this obtaining the (global) solutions of [27] and [2] from known solutions

1As we shall discuss, for σ = +1, by formally replacing n+−n
−

n+n
−

7→ 0 and n++n
−

n+n
−

7→ χ(Σg), our

formulas cover also the AdS×Σg solutions.
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in D = 6. In section 3 we construct new supersymmetric AdS4 × Σ solutions and discuss
global properties of these both in D = 6 and D = 10. In section 4 we discuss aspects
of the field theory duals of these solutions. In particular, we conjecture a field-theoretic
large N off-shell free energy and show that extremizing this reproduces the holographic
free energy associated to our solutions. In section 5 we discuss how our proposal fits
in a general scheme of off-shell free energies for field theories compactified on spindles
(as well as on genus g Riemann surfaces), comprising and extending entropy functions
and trial central charges, previously discussed in the literature. In section 6 we begin
investigating D4-branes wrapped on four-dimensional orbifolds, focussing on a class of
supersymmetric AdS2 × Σ × Σg solutions. We conclude with a discussion in section 7.
Appendix A contains technical details useful for comparing known solutions, in different
conventions. In appendix B we demonstrate how the Killing spinors of the AdS4 × Σ

solutions encapsulate the OSp(2|4) superalgebra of the dual SCFTs.

2 Uplift of D = 6 solutions to massive type IIA

In this paper we discuss solutions of aD = 6 gauged supergravity with gauge group U(1)2,
comprising two gauge fields A1, A2, a two-form B and two real scalar fields ~ϕ = (ϕ1, ϕ2).
These can be uplifted locally to solutions of massive type IIA supergravity by means of
the consistent truncation formulas presented in [28]. However, we will see that globally
the solutions uplifted through this ansatz are incompatible with quantization of the fluxes
and need to be supplemented by an additional parameter that arises in D = 10.

2.1 The D = 6 gauged supergravity

The D = 6 supergravity model of interest can also be obtained as a sub-sector of an ex-
tension of Romans F (4) gauged supergravity [29], coupled to three vector multiplets [30].
The bosonic part of the action reads2

S6D =
1

16πG(6)

∫

d6x
√−g

(

R − V − 1

2
|d~ϕ|2 − 1

2

2
∑

i=1

X−2
i |Fi|2

)

, (2.1)

where Fi = dAi and the scalar fields ~ϕ are parameterised as

Xi = e−
1
2
~ai·~ϕ with ~a1 =

(

21/2, 2−1/2
)

, ~a2 =
(

−21/2, 2−1/2
)

. (2.2)

The scalar potential is

V = m2X2
0 − 4g2X1X2 − 4mgX0(X1 +X2) , (2.3)

with g the gauge coupling and m the mass parameter, and where for later convenience we
defined X0 = (X1X2)

−3/2. Here we consistently set B = 0 because in the first part of the
paper we will restrict to configurations with F1 ∧F2 = 0. We will restore the two-form B
in section 6.1. It is worth mentioning that locally the ratiom/g can be set to any non-zero

2Here and in what follows we define, for any p-form ω, |ω|2 = 1
p! ωµ1...µp

ωµ1...µp .
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value rescaling the scalar fields Xi and the field strengths Fi. In particular, m can be
absorbed in the coupling constant transforming

Xi 7→
(

m

lg

)1/4

Xi , Fi 7→
(

m

lg

)1/4

Fi , (2.4)

and defining the new gauge coupling as g̃ =
(

mg3

l

)1/4
, with l a positive constant. The

action (2.1) keeps the same form, with the scalar potential becoming

V = g̃2
[

l2X2
0 − 4X1X2 − 4l X0(X1 +X2)

]

. (2.5)

However, for the time being we will keep both parameters m and g.
A solution to the equations of motion of the model is supersymmetric if and only if it

satisfies also the following set of Killing spinor equations [30]:

Dµǫ
A +

1

8

[

g(X1 +X2) +mX0

]

Γµǫ
A

+
i

32

(

X−1
1 F1 +X−1

2 F2

)

νλ

(

Γ νλ
µ − 6δνµ Γ

λ
)

(σ3)ABǫ
B = 0 ,

(2.6)

1

4

(

X−1
1 ∂µX1 +X−1

2 ∂µX2

)

ΓµǫA − 1

8

[

g(X1 +X2)− 3mX0

]

ǫA

− i

32

(

X−1
1 F1 +X−1

2 F2

)

µν
Γµν(σ3)ABǫ

B = 0 ,
(2.7)

1

2

(

X−1
1 ∂µX1 −X−1

2 ∂µX2

)

Γµ(σ3)ABǫ
B − g(X1 −X2)(σ

3)ABǫ
B

− i

4

(

X−1
1 F1 −X−1

2 F2

)

µν
ΓµνǫA = 0 ,

(2.8)

where

Dµǫ
A ≡ ∂µǫ

A +
1

4
ω ab
µ Γabǫ

A − i

2
g(A1 + A2)µ(σ

3)ABǫ
B . (2.9)

These follow from setting to zero the supersymmetry variations of the fermionic fields
of the theory with three vector multiplets [30], that do not vanish automatically in the
sub-truncation that we are considering. Here (σ3)AB is the usual third Pauli matrix
and {Γa,Γb} = 2ηab. The SU(2) indices A,B are raised and lowered as ǫA = εABǫB
and ǫA = ǫBεBA, where εAB = −εBA and its inverse matrix εAB is defined such that
εABεAC = δBC . The supersymmetry parameter ǫA is an eight-component symplectic-
Majorana spinor, hence it satisfies the condition

εABǫ∗B = B6ǫA , (2.10)

where B6 is related to the six-dimensional charge conjugation matrix C6 by B6 = i C6Γ0.

2.2 Improved uplift to massive type IIA

Any solution to the equations of motion of this theory can be embedded in massive
type IIA supergravity by means of the dimensional reduction ansatz presented in [28]3,

3The original ansatz was written for a four-scalar system, but the model with two scalars can be
easily obtained setting to zero two of the four scalars in [28]. The consistency of this sub-truncation was
conjectured in [31].
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provided the gauge coupling and mass parameter are related as m = 2g/3. The metric in
the string frame and the dilaton are given by

ds2s.f. = µ
−1/3
0 (X1X2)

−1/4
{

∆1/2ds26

+ g−2∆−1/2
[

X−1
0 dµ2

0 +X−1
1

(

dµ2
1 + µ2

1σ
2
1

)

+X−1
2

(

dµ2
2 + µ2

2σ
2
2

)]}

,
(2.11)

eΦ = µ
−5/6
0 ∆1/4(X1X2)

−5/8 , (2.12)

where ds26 is the six-dimensional metric and we defined the one-forms σi ≡ dφi − gAi.
The angular coordinates φ1, φ2 have canonical 2π periodicities, and the warp factor is

∆ =

2
∑

a=0

Xaµ
2
a . (2.13)

The coordinates µa, with a = 0, 1, 2, satisfy the constraint
∑

µ2
a = 1, which can be solved

for example defining

µ0 = sin ξ , µ1 = cos ξ sin η , µ2 = cos ξ cos η , (2.14)

and taking η ∈ [0, π/2], ξ ∈ (0, π/2], where the range of ξ arises from the necessity
of having µ0 > 0. At any point in the six-dimensional space-time, the metric inside
the square brackets in (2.11) parameterises a four-dimensional hemisphere, that we will
denote by S

4. This metric is in general squashed and it reduces to the metric on “half the
round four-sphere” when X1 = X2 = 1. The only non-vanishing fields of the RR sector
are the ten-dimensional Romans mass

F(0) =
2g

3
(2.15)

and the four-form flux. This is conveniently written in terms of its Hodge dual as

⋆10F(4) = gU vol(M6)−
1

g2

∑

i

X−2
i µi(⋆6Fi)∧dµi∧σi+

1

g

∑

a

X−1
a µa(⋆6dXa)∧dµa , (2.16)

where vol(M6) is the volume form of the six-dimensional space and

U = 2

2
∑

a=0

X2
aµ

2
a −

[

4

3
X0 + 2(X1 +X2)

]

∆ . (2.17)

The Hodge star operator ⋆10 in (2.16) is computed using the string frame metric (2.11),
while ⋆6 is defined using the six-dimensional metric ds26.

Provided the equations of motion of the six-dimensional supergravity hold, the above
field configuration solves the equations of motion of massive type IIA supergravity, whose
action in the string frame reads4

SmIIA =
1

16πG(10)

{
∫

d10x
√−g

[

e−2Φ
(

R + 4|dΦ|2 − 1
2
|H(3)|2

)

− 1
2

(

F 2
(0) + |F(2)|2 + |F(4)|2

)

]

−1
2

∫

(

B(2) ∧ dC(3) ∧ dC(3) + 2F(0)B
3
(2) ∧ dC(3) + 6F 2

(0)B
5
(2)

)

}

, (2.18)

4Here Bn
(2) denotes the wedge product of B(2) with itself n times, divided by n!.
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where the field strengths are defined from the NS two-form B(2) and the RR potentials
C(1) and C(3) as

H(3) = dB(2) , F(2) = dC(1) + F(0)B(2) , F(4) = dC(3) −H(3) ∧ C(1) +
1

2
F(0)B(2) ∧B(2) .

(2.19)
It will be important to notice that the equations of motion of massive type IIA are

invariant if the fields are transformed as

dŝ2s.f. = λ2ds2s.f. , eΦ̂ = λ2eΦ , B̂(2) = λ2B(2) ,

F̂(0) = λ−3F(0) , Ĉ(n−1) = λn−3C(n−1) ,
(2.20)

with n = 2, 4, where λ is any strictly positive constant. However, this scaling symmetry
holds only at the classical level in supergravity and it is broken upon imposing the Dirac
quantization conditions on the fluxes. As we will discuss momentarily, this additional
parameter will be crucial for ensuring that six-dimensional solutions yield globally regular
solutions in D = 10, in particular that the fluxes are correctly quantized.

Notice that the reduction ansatz of [28] applies only after setting m = 2g/3 in the
six-dimensional theory and it implies that the Romans mass of the ten-dimensional theory
is fixed in terms of the gauge coupling constant g as in (2.15). It is natural to suspect
that there may exist a more general truncation ansatz that relates the six-dimensional
mass parameter m to the ten-dimensional parameter λ, so that the Romans mass F(0) is
an independent parameter. This would be a mechanism analogous to the ten-dimensional
origin of dyonic four-dimensional supergravity discussed in [32]. We leave this interesting
question for the future and proceed to discuss different globally regular solutions of massive
type IIA originating in D = 6.

In summary, our strategy will be as follows. We construct the solutions in D = 6 and
after setting m = 2g/3 we uplift these to local solutions in D = 10, using the formulas
in [28]. Then we introduce the parameter λ and proceed to quantize the fluxes, finding
globally consistent solutions of massive type IIA supergravity.

2.3 The AdS6 solution and its uplift

The equations of motion following from the action (2.1) admit the well-known super-

symmetric vacuum with constant scalars X1 = X2 =
(

3m
2g

)1/4
, vanishing gauge fields

A1 = A2 = 0 and metric

ds26 =
9

2 (6mg3)1/2
ds2AdS6

, (2.21)

where ds2AdS6
is the metric on AdS6 with unit radius. We now set m = 2g/3 and uplift this

solution to massive type IIA using the formulas in [28]. After introducing the parameter λ
using the local scaling symmetry (2.20), we obtain

ds2s.f. = λ2(sin ξ)−1/3L2
AdS6

[

ds2AdS6
+

4

9

(

dξ2 + cos2ξ ds2S3

)

]

,

eΦ = λ2(sin ξ)−5/6 ,

F(0) =
1

λ3LAdS6

, F(4) = −λ10 cos
3ξ sin1/3ξ

3g3
dξ ∧ vol(S3) ,

(2.22)
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where ds2S3 denotes the metric on a unit radius round three-sphere

ds2S3 = dη2 + sin2η dφ2
1 + cos2η dφ2

2 , (2.23)

and vol(S3) its associated volume form. The quantization conditions of the (non-zero)
fluxes in massive type IIA read

(2πℓs)F(0) = n0 ∈ Z and
1

(2πℓs)3

∫

S4

F(4) = N ∈ Z , (2.24)

where ℓs is the string length. In the solution (2.22) these imply that5

g8 =
1

(2πℓs)8
18π6

N3n0
, λ8 =

8π2

9Nn3
0

. (2.25)

It is clear from the second equation that setting λ = 1 leads to an inconsistent relation
between the integers N and n0. This problem arises because without introducing λ
there is only one free dimensionless parameter (gℓs) and two conditions to impose. Thus
the scaling symmetry (2.20) plays a crucial role in making the uplifted solution globally
consistent. After imposing (2.25) the uplifted solution (2.22) can be matched with the
solution of [27] identifying

L2
AdS6

=
9

4
ℓ2s

(

3(8−Nf )

4πC

)1/2

Q
3/4
4 , λ2 =

(

3(8−Nf )

4π

)−5/6

C1/6Q
−1/4
4 , (2.26)

with n0 = 8−Nf , where Nf is the number of D8-branes, and Q4 is related to the number
of D4-branes N by

N =
3Q4

8π

(

3(8−Nf)

4πC2

)1/3

. (2.27)

Note that the constant C is a trivial parameter which can be set to any non-zero value
redefining Q4 7→ C2/3Q4. Although both the six-dimensional vacuum and the ten-
dimensional solution of [27] are well-known, clarifying their relationship will allow us
to discuss the six-dimensional origin of more interesting solutions in the following.

As discussed in [33], the effective six-dimensional Newton constant that should be
proportional to the large N limit of the S5 free energy of the dual field theory is di-
vergent, due to the singularity of the ten-dimensional solution on the boundary of the
hemisphere S

4, i.e. for ξ → 0. This problem was circumvented in [33] by calculating the
holographic entanglement entropy across a three-sphere and then extracting from this the
free energy FS5 . We refer the reader to [33] for the details and here, for completeness, we
only quote the result

FS5 = − 35π6λ4

5(2πℓsg)8
= −9

√
2π

5

N5/2

√

8−Nf

. (2.28)

5For consistency, we need to identify the flux of F(4) with −N , where N is the number of D4-branes.
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2.4 The AdS4 × Σg solutions and their uplift

In this section we will discuss a class of supersymmetric solutions of the D = 6, U(1)2

supergravity comprising an AdS4 factor, that were constructed in [1] (see also [31]). We
will use these to illustrate our procedure for uplifting to solutions of massive type IIA
supergravity, showing that the uplifted solutions coincide with the solutions constructed
in [2], by directly solving the supersymmetry conditions of [34] in ten dimensions. The
solutions have the form of a product AdS4 × Σg, where Σg is a genus g Riemann surface
equipped with a constant curvature metric. As usual, we can distinguish three cases for
the curvature κ = ±1, 0. When κ = +1 we have the round two-sphere with g = 0, while
for κ = −1 locally we have the metric on the two-dimensional hyperbolic space H2, which
can be quotiented to obtain a constant curvature Riemann surface with genus g > 1. In
order to encompass both non-zero curvature cases6 we denote by ds2Σg

the metric on Σg

and define the one-form ωg such that dωg = vol(Σg). Explicitly, we can take

ds2Σg
= dθ2 + sin2θ dφ2 , ωg = − cos θ dφ (κ = +1) ,

ds2Σg
= dθ2 + sinh2θ dφ2 , ωg = cosh θ dφ (κ = −1) .

(2.29)

In our conventions, the metric, scalars and gauge potentials take the form

ds26 = L2
AdS4

ds2AdS4
+ e2G ds2Σg

,

X1 = k
1/8
8 k

1/2
2 , X2 = k

1/8
8 k

−1/2
2 ,

A1 =
p1
2g
ωg , A2 =

p2
2g
ωg ,

(2.30)

where

L2
AdS4

=
k
3/4
8

m2
, e2G =

[

p22k
3/2
2 − p21k

−1/2
2

16mg3(k2 − 1)

]1/2

,

k8 =
4m2k2

g2(1 + k2)2
, k2 = −3(p1 − p2) +

√

9p21 − 14p1p2 + 9p22
2p2

,

(2.31)

with p1, p2 two constant parameters obeying the supersymmetry constraint7

p1 + p2 = 2κ . (2.32)

The fluxes of the gauge fields through Σg are given by8

Pi =
g

2π

∫

Σg

Fi = piκ(1− g) ∈ Z , (2.33)

where the quantization condition above arises from the requirement that gAi be well-
defined connection one-forms on U(1) bundles over Σg. The six-dimensional solution is
therefore specified by the genus g and one integer, say p1(1− g).

6The case κ = 0 is straightforward to include, but we will not discuss this further.
7A sign ambiguity in the above formulas [1] has been fixed by noticing that the solution corresponding

to the opposite sign is obtained by changing both signs of p1 and p2.
8Recall that, for κ 6= 0, the integrated volume of the Riemann surface Σg is Vol(Σg) = 4πκ(1− g).
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We now set m = 2g/3 and, after uplifting to massive type IIA using the formulas
in [28], we introduce the parameter λ. The ten-dimensional metric and dilaton are

ds2s.f. = λ2k
3/4
8 g−2µ

−1/3
0

{

∆̃1/2

[

9

4
ds2AdS4

+ e2Gk
−3/4
8 g2 ds2Σg

]

+ ∆̃−1/2k−1
8

[

k
1/2
8 dµ2

0 + k
−1/2
2

(

dµ2
1 + µ2

1σ
2
1

)

+ k
1/2
2

(

dµ2
2 + µ2

2σ
2
2

)]

}

,

(2.34)

eΦ = λ2µ
−5/6
0 ∆̃1/4k

−1/8
8 , (2.35)

while the Romans mass and four-form flux read

F(0) =
2g

3λ3
, (2.36)

F(4) =
λµ

1/3
0

g3k
1/2
8 ∆̃

{

Ũ

∆̃

µ1µ2

µ0

dµ1 ∧ dµ2 ∧ σ1 ∧ σ2 (2.37)

− g
[

F1 ∧ dφ2 ∧
(

µ0µ2dµ2 − µ2
2

k
1/2
8

k
1/2
2

dµ0

)

+ F2 ∧ dφ1 ∧
(

µ0µ1dµ1 − µ2
1k

1/2
8 k

1/2
2 dµ0

)

]

}

.

We have σi = dφi − pi
2
ωg and we defined

∆̃ = k
−1/2
8 µ2

0 + k
1/2
2 µ2

1 + k
−1/2
2 µ2

2 ,

Ũ = −2

3

[

k
−1/2
8 µ2

0 + 3k
1/2
8

(

1− µ2
0

)

+ 2∆̃
]

.
(2.38)

We have checked that the above configuration satisfies the ten-dimensional equations
of motion and that dF(4) = 0. Imposing flux quantization (2.24) we obtain the rela-
tions (2.25), exactly as for the vacuum solution, showing that λ = 1 would be again
inconsistent. We have therefore obtained a globally regular (modulo the ever-present sin-
gularity at ξ = 0) ten-dimensional solution with an AdS4 factor, parameterised by the
genus g and the integers n0, N , p1(1 − g). This is precisely the solution presented in [2],
as we show in detail in appendix A.2.

Writing the ten-dimensional metric (2.34) in the form

ds2s.f. = e2A
(

ds2AdS4
+ ds2M6

)

, (2.39)

we have that ds2M6
is the metric on the internal space M6, that is the total space of an S4

bundle over Σg, namely
S
4 →֒ M6 → Σg . (2.40)

Recall that S4 is a hemisphere of the four-sphere due to the fact that the warp factor
is singular at µ0 → 0, corresponding to the location of the O8-plane [27]. However, we
can also think of the internal geometry as an S4 bundle over Σg, before the inclusion of
the O8-plane. Either way, there is a U(1) × U(1) ⊂ SU(2)R × SU(2)F symmetry acting
on S

4 and the gauge fields gAi are connections on the associated circle bundles, twisting
these over Σg, with Chern numbers Pi. The solution can be interpreted as follows [2]: one
starts with a geometry of the type R1,2 ×R× Y6, with Y6 a local Calabi-Yau three-fold of
the form

O(−p1)⊕O(−p2) →֒ Y6 → Σg , (2.41)
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where −gAi are Hermitian connections on the line bundles O(−pi). Then (2.32) implies
that the total space of Y6 has vanishing first Chern class and hence is a Calabi-Yau three-
fold. At the origin of R there are an O8-plane and Nf = 8 − n0 coincident D8-branes,
and in addition one wraps N D4-branes over the zero section Σg of Y6.

At low energies the effective theory on the D4/D8-system will be a d = 3, N = 2 field
theory, obtained from the compactification on Σg of the d = 5, N = 1 SCFT with gauge
group USp(2N) [27], with the standard topological twist. The supergravity solution above
strongly suggests that in the large N limit this is a SCFT and its S3 free energy can be
computed holographically, from the full ten-dimensional solution. Specifically, this can be
obtained using the formula presented in [32] adapted to the string frame, and it reads [2]

FS3×Σg
=

16π3

(2πℓs)8

∫

e8A−2Φ vol(M6) =
16πκ(1− g)N5/2 (z2 − κ2)

3/2 (√
κ2 + 8z2 − κ

)

5
√

8−Nf

(

κ
√
κ2 + 8z2 − κ2 + 4z2

)3/2
,

(2.42)

where the parameter z is related to our parameters as p1 = κ + z, p2 = κ − z. This
expression has been reproduced exactly by a direct field theory computation, using the
large N expansion of the localized partition function on S3 × Σg [35, 36].

3 The AdS4 × Σ solutions

3.1 Local form of the solutions

Our starting point are the following local solutions to the equations of the D = 6 gauged
supergravity model of section 2.1

ds2 =
(

y2h1h2
)1/4

(

ds2AdS4
+
y2

F
dy2 +

F

h1h2
dz2
)

,

Ai =

(

αi −
y3

hi

)

dz , Xi =
(

y2h1h2
)3/8

h−1
i ,

F (y) = m2h1h2 − y4 , hi(y) =
2g

3m
y3 + qi ,

(3.1)

where ds2AdS4
denotes the unit radius metric on AdS4 and q1, q2 are two real parameters.

The real constants αi are pure gauge and we have included them as they will play a crucial
role for understanding the global properties of the solution. These backgrounds can be
obtained by doing an analytic continuation [37] of a class of six-dimensional BPS black
holes [38]. A curvature singularity lies at y = 0, hence without loss of generality, in the
subsequent analysis we will make sure that the globally regular solutions will be restricted
to y > 0.

Before turning attention to the global structure of the solutions, we will demonstrate
that they are supersymmetric by constructing the local form of the Killing spinors solving
the equations (2.6) - (2.8). We employ the following orthonormal frame

eâ = y1/4(h1h2)
1/8 êâ , e4 =

y5/4(h1h2)
1/8

F 1/2
dy , e5 =

y1/4F 1/2

(h1h2)3/8
dz , (3.2)
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where êâ, â = 0, . . . , 3, is the vierbein on AdS4, whose coordinates are denoted as xµ̂.
Equation (2.6) then splits in the following equations

(

∂µ̂ +
1

4
ω âb̂
µ̂ Γâb̂

)

ǫA − i

2
êâµ̂ Γ

45
â (σ3)ABǫ

B = 0 ,

∂yǫ
A − 1

16y

[

(2 + yh̃′)ǫA − i
4y2

F 1/2
(4− yh̃′)Γ5(σ3)ABǫ

B

]

= 0 ,

∂zǫ
A − i

g

2

(

α1 + α2 −
2m

g

)

(σ3)ABǫ
B = 0 ,

(3.3)

where we defined h̃ ≡ log(h1h2). Equations (2.7) and (2.8) yield the same constraint

F 1/2Γ4ǫA +m(h1h2)
1/2ǫA + i y2Γ45(σ3)ABǫ

B = 0 . (3.4)

From the third equation in (3.3) we see immediately that setting

α1 + α2 =
2m

g
(3.5)

leads to Killing spinors independent of z and we will adopt this choice in the reminder of
this section. We consider the specific decomposition of the gamma matrices

Γâ = γâ ⊗ I2 , Γı̂+3 = γ5 ⊗ ρı̂ , (3.6)

where γâ are the (Lorentzian) gamma matrices in D = 4, γ5 = i γ0γ1γ2γ3 is the related
chiral matrix and ρı̂, ı̂ = 1, 2, are the (Euclidean) gamma matrices in D = 2. For ρı̂ we
choose the following representation

ρı̂ = σ ı̂ , ρ∗ = −i ρ1ρ2 = σ3 , (3.7)

and we take B2 = −σ2 so that B6 = B4 ⊗ B2. The ansatz for the symplectic-Majorana
Killing spinors ǫA is

ǫA = ϑ+ ⊗ ηA+ + ϑ− ⊗ ηA− , (3.8)

where ϑ = ϑ(xµ̂) is a Majorana Killing spinor on AdS4 and ϑ± are its chiral components,
i.e. γ5ϑ± = ±ϑ±. Thus we have ϑ∗± = B4ϑ∓ and ∇̂µ̂ϑ± = 1

2
γµ̂ϑ∓. The spinors η

A
± = ηA±(y)

are two-component Dirac spinors defined on the spindle9.
Adopting the decomposition (3.6), the symplectic-Majorana condition (2.10) and the

Killing spinor equations (3.3), (3.4) can be solved to give

η1+ = ξ y1/8(h1h2)
−3/16

(

f
1/2
1

−f 1/2
2

)

, η1− = −ξ y1/8(h1h2)−3/16

(

f
1/2
1

f
1/2
2

)

,

η2+ = i ξ∗ y1/8(h1h2)
−3/16

(

f
1/2
2

−f 1/2
1

)

, η2− = i ξ∗ y1/8(h1h2)
−3/16

(

f
1/2
2

f
1/2
1

)

,

(3.9)

where ξ is a complex constant and we have defined

f1(y) ≡ m(h1h2)
1/2 + y2 , f2(y) ≡ m(h1h2)

1/2 − y2 , (3.10)

9Notice that ηA± are not chiral spinors, despite the notation suggests otherwise. The index A = 1, 2
is an internal index and we will see below that these four Dirac spinors are actually not all independent.
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which satisfy F (y) = f1(y)f2(y). Notice that the four two-dimensional spinors above can
be expressed in terms of just one of them, say η1+, by means of the relations

η1− = −σ3η1+ , η2+ = −i σ1(η1+)
∗ , η2− = σ2(η1+)

∗ . (3.11)

Notice also that all the spinors never vanish, as it can be seen from their norm, given by

(η1+)
† η1+ = 2|ξ|2my1/4(h1h2)

1/8 . (3.12)

We can now count the number of supersymmetries preserved by our AdS4×Σ solution.
ϑ is a Majorana spinor, hence it has four real degrees of freedom, while the spinors ηA± are
fully determined by the complex constant ξ. Therefore, there are eight real independent
Killing spinors, that is half the number of supersymmetries of the six-dimensional N =
(1, 1) theory, hence the solution is 1/2-BPS. The eight Killing spinors correspond to four
Poincaré supercharges Q and four superconformal supercharges S in the d = 3, N = 2
SCFTs. The precise identification of the spinors with the supercharges is discussed in
appendix B. In particular, we show that ∂z is part of the superconformal R-symmetry,
namely the U(1) generator in the OSp(2|4) superalgebra.

3.2 Global analysis I: metric and magnetic fluxes

From now on we set m = 2g/3 without loss of generality. In order to have a well-defined
metric on the spindle Σ,

ds2Σ =
y2

F
dy2 +

F

h1h2
dz2 , (3.13)

and positive scalars Xi we need to take F > 0, h1 > 0, h2 > 0 in a closed interval not
containing the curvature singularity in y = 0, thus without loss of generality we restrict
to y > 0. Taking a look at the explicit form of F and its first derivative

F (y) =
4g2

9

[

y6 − 9

4g2
y4 + (q1 + q2)y

3 + q1q2

]

,

F ′(y) =
8g2

3
y2
[

y3 − 3

2g2
y +

q1 + q2
2

]

,

(3.14)

from the expression of F ′ we see that there exist at most three turning points, hence at
most four distinct real roots of F . Since the coefficient of y6 in F (y) = 0 is positive and
we restricted to y > 0, we need at least three positive roots and, to this end, Descartes’
rule of signs implies the necessary conditions

q1 + q2 > 0 and q1q2 < 0 . (3.15)

Without loss of generality we take q1 > 0, q2 < 0. Recalling that

F =
4g2

9
h1h2 − y4 , (3.16)

we have h1h2 > 0 when F > 0. Moreover, for positive y and q1, h1 > 0 and, accordingly,
h2 > 0 as well.
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The conditions for Σ to be a spindle are obtained studying ds2
Σ
in the neighbourhood

of the zeros of F . Denoting [yN , yS] the range of the coordinate y, as the latter approaches
one of the end-points of this interval, say yα, the metric becomes

ds2
Σ
≃ d̺2 + ̺2

g2F ′(yα)
2

9y6α
dz2 , (3.17)

where we defined ̺2 = |y− yα|. As a consequence, ds2
Σ
is a smooth orbifold metric on the

spindle if the following conditions hold

gF ′(yN)

3y3N
∆z =

2π

n−
,

gF ′(yS)

3y3S
∆z = −2π

n+

, (3.18)

where the minus sign in the second relation is due to the fact that F ′(yS) < 0. Here
n± are two co-prime integers and ∆z is the periodicity of the z coordinate. The Euler
characteristic of metric (3.13) can be computed noticing that

√
gΣRΣ =

d

dy

(

F ∂y(h1h2)− (h1h2) ∂yF

y (h1h2)3/2

)

. (3.19)

We then find

χ(Σ) =
1

4π

∫

Σ

RΣ vol(Σ) =
n+ + n−

n+n−
, (3.20)

where we employed F (yα) = 0 and the following identity:

gF ′(yα)

3y3α
=

4g3

9

[

3

2g2
− (q1 + q2)y

3
α + 2q1q2
y4α

]

. (3.21)

We now proceed to the quantization conditions for the magnetic fluxes of our AdS4×Σ

solution across the spindle. The integrated fluxes of Fi are given by

Pi =
g

2π

∫

Σ

Fi = −g qi
y3S − y3N

hi(yN)hi(yS)

∆z

2π
=

pi
n+n−

, pi ∈ Z , (3.22)

where the quantization of the pi arises from the requirement that gAi be well-defined
connection one-forms on U(1) bundles over Σ (c.f. appendix A of [7]). In particular, the
total flux reads

P1 + P2 =
4g3

9

[

(q1 + q2)y
3
S + 2q1q2
y4S

− (q1 + q2)y
3
N + 2q1q2
y4N

]

∆z

2π

=
n+ + n−

n+n−
= χ(Σ) ,

(3.23)

where we made used the relation (3.21) and F (yα) = 0. From (3.23) it follows that

p1 + p2 = n+ + n− , (3.24)

and therefore the two integers pi can be conveniently parameterised as

p1 =
n+ + n−

2
(1 + z) , p2 =

n+ + n−

2
(1− z) , (3.25)
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where z is an appropriate rational number10. The situation is analogous to that obtained
for M5-branes wrapped on the spindle [9] as here we also see that the “topologically
topological twist” is realised by the solution, in contrast to the “anti-twist” that was first
encountered for D3-branes and M2-branes wrapped on spindles. In [26] it is shown that
very generally on the spindle only these two types of twists are possible. As explained
in this reference, the occurrence of the twist case in our solution is correlated with the
behavior of the Killing spinors at the north and south poles of the spindle, which we will
discuss in section 3.4.

3.3 Solution of the regularity conditions

In this subsection we elaborate on the conditions worked out in the global analysis above.
Specifically, we will aim to derive expressions for yN , yS and ∆z in terms of the spindle
parameters n± and the flux parameter p1 (or z). Imposing F (yα) = 0 we obtain the sum
and product of q1 and q2 in terms of the roots yN and yS as

q1 + q2 = −(y3S + y3N) +
9

4g2
y4S − y4N
y3S − y3N

,

q1q2 = y3Sy
3
N

(

1− 9

4g2
yS − yN
y3S − y3N

)

,

(3.26)

while conditions (3.18) yield

n−

yN

(

y3N − 3

2g2
yN +

q1 + q2
2

)

= −n+

yS

(

y3S − 3

2g2
yS +

q1 + q2
2

)

. (3.27)

Plugging the first of the equations (3.26) into (3.27) and changing variables as

yN ≡ w(1− x) , yS ≡ w(1 + x) , (3.28)

we obtain the equation

2w2g2
(

x2 + 3
)2
(x− µ)− 3x

(

x2 + 5
)

+ 9µ
(

x2 + 1
)

= 0 , (3.29)

where we defined µ± ≡ n+ ± n− and µ ≡ µ−/µ+. From 0 < yN < yS it immediately
follows that w > 0 and 0 < x < 1. This quadratic equation for w can be easily solved,

w =
1

g(x2 + 3)

√

9µ(x2 + 1)− 3x(x2 + 5)

2(µ− x)
, (3.30)

giving the following expressions for the two roots in terms of the parameter µ and the
new variable x

yN =
1− x

g(x2 + 3)

√

9µ(x2 + 1)− 3x(x2 + 5)

2(µ− x)
,

yS =
1 + x

g(x2 + 3)

√

9µ(x2 + 1)− 3x(x2 + 5)

2(µ− x)
.

(3.31)

10We must take z < −1 to ensure that p1 < 0 , p2 > 0, as follows from (3.22) and the signs of qi.
Moreover z must be chosen such that p1 and p2 are integers
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Notice that in order for yN , yS to be real, there are two alternative set of conditions,
namely

3µ
(

x2 + 1
)

− x
(

x2 + 5
)

> 0 and µ− x > 0 , (3.32)

3µ
(

x2 + 1
)

− x
(

x2 + 5
)

< 0 and µ− x < 0 . (3.33)

Below we will turn attention to the variable x and we will check which of these two
conditions hold. From (3.22) and (3.18) we obtain the following useful relations

p1p2
(n+n−)2

=
16g6

81

q1q2(y
3
S − y3N)

2

y4Sy
4
N

(

∆z

2π

)2

, (3.34)

yN
n−

+
yS
n+

= −8g3

9

[

(y3S − y3N)−
3

2g2
(yS − yN)

]

∆z

2π
. (3.35)

Extracting ∆z from (3.34) and inserting it into (3.35), along with the expression for the
roots yN , yS from (3.31), we obtain

µ+

√

−x4 +
(

9µ2 − 5
)

x2 − 12µx+ 9µ2 − 4η
√

−2p1p2 x = 0 , (3.36)

where η = sign(µ − x). Recalling that x > 0, in order for this equation to have a real
solution we need η = +1, hence any solution will have to satisfy the conditions (3.32). In
particular, being x positive by construction, we need µ > 0 as well, hence µ− > 0 and
n− < n+. Bearing these existence conditions in mind and recalling that p1,2 = µ+(1±z)/2,
from (3.36) we find that x must be a root of the following quartic equation

P (x) ≡ x4 +
(

8z2 − 3− 9µ2
)

x2 + 12µx− 9µ2 = 0 . (3.37)

From (3.35) we can then obtain the periodicity of z, namely

∆z = χ
3π (x2 + 3) (µ− x)

8gx2
, (3.38)

and from (3.26) we can express q1 and q2 in terms of x as

q1,2 = w
3(1− x2)

g2(x2 + 3)2(µ− x)

[

3µ(1 + x2)− 2x∓ x(x2 + 3)z
]

. (3.39)

All the relevant quantities are now given in terms of a solution x of equation (3.37),
with 0 < x < 1 and meeting the constraints (3.32). We are left with the analysis of the
existence and uniqueness of such solution. Focussing on the second condition of (3.32),
namely x < µ, we know that, by definition, µ < 1, thus this constraint reduces the range
of existence of x to (0, µ). Recalling that z2 > 1 and µ2 < 1, we have

P (0) = −9µ2 < 0 ,

P (µ) = 8
(

z2 − µ2)µ2 > 0 .
(3.40)

Since P (x) is continuous, there must exist at least one zero in the interval (0, µ). Let us
now prove by contradiction that the first condition of (3.32) holds. Assuming that

3µ
(

x2 + 1
)

− x
(

x2 + 5
)

≤ 0 , (3.41)
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multiplying this by the positive quantity x, and using equation (3.37) to get rid of the
quartic term, we obtain

3µ
[

x
(

x2 + 5
)

− 3µ
(

x2 + 1
)]

+ 8
(

z2 − 1
)

x2 ≤ 0 , (3.42)

hence

3µ
(

x2 + 1
)

− x
(

x2 + 5
)

≥ 8
(

z2 − 1
)

x2

3µ
> 0 , (3.43)

in contradiction with the starting hypothesis, which must be false. In this way, we showed
that there exists at least one real solution to equation (3.37), lying inside the range
0 < x < 1.

We shall now prove that this root is unique inside the interval (0, µ). The first deriva-
tive of P (x) reads

P ′(x) = 4x3 + 2
(

8z2 − 3− 9µ2
)

x+ 12µ . (3.44)

When 8z2 − 3 − 9µ2 ≥ 0, P ′(x) > 0 for x ∈ (0, µ), hence P (x) is strictly increasing and
can thus have only one root inside the considered range. In the other case, we can focus
on the zeros of the polynomial, multiply the condition P ′(x) > 0 by x and remember that,
at these points, P (x) = 0, ending up with

−
(

8z2 − 3− 9µ2
)

x2 + 18µ(µ− x) > 0 . (3.45)

This inequality is true since 8z2 − 3 − 9µ2 < 0 for hypothesis and µ − x > 0. Hence, in
every zero of P (x) in the range (0, µ) the polynomial must be increasing, but being P (x)
continuous the root must be unique.

3.4 Global analysis II: gauge fields and Killing spinors

We shall now discuss global properties of the Killing spinors and the gauge fields Ai,
following closely the exposition in [7]. Recall that the Killing spinors that we wrote in
section 3.1 were obtained in the frame (3.2) and with the gauge fields in the gauge given
by the expressions (3.1), subject to

α1 + α2 =
4

3
, (3.46)

which was motivated by the fact in this gauge they are independent of z. However, both
the frame and the gauge fields are singular at the north and south poles of the spindle,
where the azimuthal coordinate z is ill-defined. In order to shed light on the global
properties of the spinors and of the gauge fields, we shall therefore cover the spindle by
two patches U± as usual, and check that spinors and gauge fields can be correctly glued
across the equator, where they overlap, identifying the correct bundles of which they are
sections and on which they are connections, respectively.

We begin introducing the angular coordinate ϕ defined as

ϕ =
2π

∆z
z , (3.47)

with canonical 2π periodicity, so that the two gauge potentials in (3.1) read

Ai =

(

αi −
y3

hi

)

∆z

2π
dϕ , (3.48)
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and we define the R-symmetry gauge field AR ≡ g(A1+A2). The open sets U± cover the
two hemispheres containing the south and north poles, respectively. Specifically, we have
yS ∈ U+ ≃ R/Zn+

and yN ∈ U− ≃ R2/Zn
−

. In these two patches independently we can
perform the gauge transformations

U± : A±
i = Ai + Λ±

i dϕ , (3.49)

so that the transformed gauge fields A±
i are non-singular in their respective patches pro-

vided that

Λ−
i =

1

4g

(

siχz
1 + x

x
+

2

n−

)

−
(

αi −
2

3

)

∆z

2π
,

Λ+
i =

1

4g

(

siχz
1− x

x
− 2

n+

)

−
(

αi −
2

3

)

∆z

2π
,

(3.50)

where s1 = +1, s2 = −1. We then have that A−
i |y=yN = 0 and A+

i |y=yS = 0, implying that
both gauge fields are non-singular at the poles, as required. The corresponding gauge
transformations for the R-symmetry gauge field AR are given by

Λ−
R = g(Λ−

1 + Λ−
2 ) =

1

n−
, Λ+

R = g(Λ+
1 + Λ+

2 ) = − 1

n+

, (3.51)

so that on the overlap U− ∩ U+ the gauge fields transform as

A−
i = A+

i +
(

Λ−
i − Λ+

i

)

dϕ = A+
i +

pi
gn+n−

dϕ ,

A−
R = A+

R +
(

Λ−
R − Λ+

R

)

dϕ = A+
R +

n+ + n−

n+n−
dϕ ,

(3.52)

meaning that gAi are connections on O(pi) bundles and AR is a connection on the O(n++
n−) bundle (which is the tangent bundle) on the spindle, respectively. From the covariant
derivative (2.9) we see that the R-symmetry charge of ǫ1 is 1/2, while that of ǫ2 is −1/2.
This implies that a gauge transformation AR 7→ AR + ΛRdϕ acts on the Killing spinors
as ǫ1 7→ eiϕΛR/2ǫ1 and ǫ2 7→ e−iϕΛR/2ǫ2, with the spinors η1± and η2± behaving accordingly.

We now move to the analysis of the global structure of the Killing spinors. Since the
frame spanning the spindle {e4, e5} in (3.2) is again singular at the poles, we consider
two distinct local frames in each of the two patches. We define ̺± the geodesic distance
between y and each root contained in U±, yS and yN respectively. We can thus write
(cf. (3.17))

U− : e4 ∼ d̺− , e5 ∼ ̺−
dϕ

n−
,

U+ : e4 ∼ −d̺+ , e5 ∼ ̺+
dϕ

n+

,

(3.53)

where the sign of e4 in U+ is due to the fact that approaching yS the coordinate y is
increasing, while ̺+ is decreasing. In the patch U− we introduce the complex coordinate
z− = ̺−e

iϕ/n
− = x− + i y−, which is non-singular in yN and, thus, defines a smooth one-

form dz− on the orbifold. This one-form, in turn, determines a non-singular frame, that
can be obtained rotating the initial frame as follows:

(

e4

e5

)

7→
(

cos ϕ
n
−

− sin ϕ
n
−

sin ϕ
n
−

cos ϕ
n
−

)

(

e4

e5

)

∼
(

dx−
dy−

)

. (3.54)
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This is an SO(2) ∼= U(1) rotation of the frame in the patch U−, which induces a transfor-
mation of the spinors given by the action of the exponential of the spinor representation
of the infinitesimal version of the SO(2) frame rotation. Explicitly, this is a U(1) rotation
of the components of the spinors by means of the matrix

exp

(

− ϕ

2n−
σ1σ2

)

=

(

e−iϕ/2n
− 0

0 eiϕ/2n−

)

. (3.55)

Performing in U− the frame rotation (3.54) and the gauge transformation (3.49) with
gauge parameter Λ−

R (3.51), the spinors undergo an R-symmetry rotation plus a U(1)
rotation. The total action on, e.g., η1+ is

U− : η1+ ≃
(

f
1/2
1

−f 1/2
2

)

7→ eiϕ/2n−

(

e−iϕ/2n
− 0

0 eiϕ/2n−

)

(

f
1/2
1

−f 1/2
2

)

=

(

f
1/2
1

−eiϕ/n−f
1/2
2

)

.

(3.56)
The ϕ coordinate is not well-defined in yN , however since f2(yN) = 0, the transformed
spinor is smooth and well-defined at this pole of the spindle and, thus, in the whole
patch U−. Of course the same is true for the spinors η1− and η2±. A similar analysis can be
performed in the patch U+ defining the non-singular coordinate z+ = −̺+e−iϕ/n+ , related
to the initial frame by the rotation

(

e4

e5

)

7→
(

cos ϕ
n+

sin ϕ
n+

− sin ϕ
n+

cos ϕ
n+

)

(

e4

e5

)

. (3.57)

This transformation is analogous to the frame rotation in U−, but is performed in the op-
posite direction, and the same happens to the spinors. The corresponding spinor rotation
and gauge transformation combine so that the spinor η1+ transforms as

U+ : η1+ ≃
(

f
1/2
1

−f 1/2
2

)

7→ e−iϕ/2n+

(

eiϕ/2n+ 0
0 e−iϕ/2n+

)

(

f
1/2
1

−f 1/2
2

)

=

(

f
1/2
1

−e−iϕ/n+f
1/2
2

)

,

(3.58)
giving, again, a well-defined spinor in U+.

In conclusion, we have shown that the Killing spinors on the spindle are smooth and
well-defined, in the appropriate orbifold sense, in line with all the previous constructions
of supersymmetric solutions involving spindles. The spinor transition function in going
from the path U+ to the patch U− reads

(

e−iϕ/2n
− 0

0 eiϕ/2n−

)

·
(

e−iϕ/2n+ 0
0 eiϕ/2n+

)

=





e
−iϕ

n++n
−

2n+n
− 0

0 e
iϕ

n++n
−

2n+n
−



 , (3.59)

where the sign of the rotation in U+ is reversed because we started with a non-singular
spinor in the patch U+. This identifies the positive and negative chirality spin bundles S(±)

on the spindle as the bundles O(∓1
2
(n++n−)), respectively. Recalling that our spinors are

also charged under AR and therefore they are sections of the bundles O(±(n++n−))
1/2 =

O(±1
2
(n+ + n−)), we conclude that, for example

1
2
(1 + ρ∗)η

1
+ is a section of O(−1

2
(n+ + n−))⊗ O(1

2
(n+ + n−)) = O(0) ,

1
2
(1− ρ∗)η

1
+ is a section of O(1

2
(n+ + n−))⊗O(1

2
(n+ + n−)) = O(n+ + n−) ,

(3.60)
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as it was indeed obvious from the explicit transition functions obtained from passing from
the expression in (3.56) to that in (3.58).

Notice that all the Killing spinors have definite chirality at the north and south poles
of the spindle, and this is the same at both poles. For example, at the poles the spinor η1+
reads

η1+ = ξ
√
2(myα)

3/8

(

1
0

)

for α = N, S , (3.61)

which have both positive chirality. The other spinors behave similarly. As discussed
in [26], this behaviour is indeed consistent with having a global topological twist.

3.5 Uplift to massive type IIA and holographic free energy

By means of the reduction ansatz of [28] we can uplift our six-dimensional AdS4 × Σ

background (3.1) to massive type IIA and subsequently introduce λ as in (2.20). The
metric and dilaton read

ds2s.f. = λ2µ
−1/3
0

{

y−1∆
1/2
h

(

ds2AdS4 + ds2Σ
)

+ g−2∆
−1/2
h

[

y3 dµ2
0 + h1

(

dµ2
1 + µ2

1σ
2
1

)

+ h2
(

dµ2
2 + µ2

2σ
2
2

)]

}

,
(3.62)

eΦ = λ2µ
−5/6
0 y−3/2∆

1/4
h , (3.63)

the Romans mass is

F(0) =
2g

3λ3
, (3.64)

while the four-form flux takes the form

F(4) =
λµ

1/3
0 h1h2
g3∆h

{

Uh

∆h

µ1µ2

µ0
dµ1 ∧ dµ2 ∧ σ1 ∧ σ2

− g
∑

i 6=j

Fi ∧ dφj ∧
(

µ0µj dµj − y3h−1
j µ2

j dµ0

)

+
y3

∆h

∑

i 6=j

hj(h
′
i − 3y−1hi)

hi
µ2
i dy ∧ σi ∧ σj ∧

(

µ0µj dµj − y3h−1
j µ2

j dµ0

)

}

.

(3.65)

For convenience, we defined the functions

∆h = h1h2 µ
2
0 + y3h2 µ

2
1 + y3h1 µ

2
2 ,

Uh = 2
[

(y3 − h1)(y
3 − h2)µ

2
0 − y6

]

− 4

3
∆h .

(3.66)

The quantization of the fluxes proceeds as in (2.24) and it yields again the rela-
tions (2.25), which fix the parameters g and λ in terms of the integers N and n0. There-
fore our ten-dimensional solution is characterised by five integers: the pair n0 and N ,
determining the dual five-dimensional theory, n± defining the spindle, and z related to
the magnetic charges threading this.

The ten-dimensional geometry has a form analogous to that of the solutions in sec-
tion 2.4. The internal six-dimensional space M6 has a fibration structure

S
4 →֒ M6 → Σ , (3.67)
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with the twisting of the bundle specified by the connection one-forms gAi with Chern
numbers

Pi =
g

2π

∫

Σ

dAi =
pi

n+n−
, pi ∈ Z , (3.68)

subject to

P1 + P2 =
n+ + n−

n+n−
= χ(Σ) . (3.69)

The solution can then be interpreted as follows: one starts with a geometry of the type
R1,2 × R× Y6, where Y6 is the total space of the vector bundle

O(−p1)⊕O(−p2) →֒ Y6 → Σ , (3.70)

and the condition (3.69) guarantees that the first Chern class of this bundle vanishes,
thus Y6 is a local Calabi-Yau three-fold. At the origin of R there are an O8-plane and
Nf = 8− n0 coincident D8-branes, and in addition one wraps N D4-branes over the zero
section Σ of Y6.

At low energies the effective theory on the D4/D8-system will be a d = 3, N = 2
field theory, obtained from the compactification on Σ of the d = 5, N = 1 SCFT with
gauge group USp(2N) [27], with the “topologically topological twist”. The supergravity
solution above strongly suggests that in the large N limit this is a SCFT and its S3 free
energy can be computed holographically as before [32]. Specifically, we have

FS3×Σ =
16π3

(2πℓs)8
3π2λ4

10g4
(y3S − y3N)∆z

= χ

√
3πN5/2

5
√

8−Nf

[3µ(x2 + 1)− x(x2 + 5)]3/2

x(x2 + 3)(µ− x)1/2
.

(3.71)

Notice that the dependence of x on the parameter z and µ could be made explicit by
writing out the solution to the quartic (3.37), however this is extremely cumbersome
and we will refrain from doing so. Alternatively, one could think of x and µ as the two
independent parameters, with z given in terms of these two by solving (3.37), which
is a simple quadratic equation. In any case, in the next section we will reproduce the
expression (3.71) analytically, starting from a conjectural large N free energy of the dual
field theories.

Noticing that µ is a free “small” parameter11, it is useful to expand in series of µ near
to µ → 0 (holding χ fixed), which formally corresponds to reducing to a spindle with
equal conical deficits, and in particular it includes the two-sphere for n+ = n− = 1. The
root of the quartic equation (3.37) meeting the required constraints then has the following
expansion

x =
3

2 + t
µ+

27(1 + t)(3 + t)

2t(2 + t)4
µ3 +O(µ5) , (3.72)

where we have defined t ≡
√
8z2 + 1, with t > 3. Inserting this in the free energy (3.71)

we obtain the expansion

FS3×Σ = χ
πN5/2

5
√

8−Nf

[

(t− 3)3/2

(t− 1)1/2
+

6(t− 3)3/2

(2 + t)(t− 1)3/2
µ2

]

+O(µ4) , (3.73)

11Although µ ∈ Q, we can treat it formally as a real variable taking values in the interval (0, 1).
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which, after setting χ = 2, at leading order in µ agrees with the free energy (2.42) for
g = 0 and κ = 1 [2]. This suggests that it may be possible to recover the AdS4 × S2

solution in [2] by performing a suitable scaling limit of our solutions, but we will not
attempt to do so here. For future reference, let us also record the expansion for ∆z, that
reads

∆z = χ
π

8g

[

(t− 1)(2 + t)

µ
− 3(9 + 34t+ 25t2 + 4t3)

2t(2 + t)2
µ

]

+O(µ3) . (3.74)

4 Field theory

We conjecture that the solutions we have constructed in section 3 are holographically dual
to three-dimensional SCFTs obtained by compactifying on a spindle Σ the five-dimensional
SCFTs dual to the solution of [27]. In the reminder of this section we will provide evidence
for this by proposing an off-shell free energy whose extremization reproduces exactly the
holographic free energy (3.71). This is an extension of the entropy functions that have
been shown to provide an efficient method for reproducing the entropy of supersymmetric
AdS black holes in various dimensions. A priori, this function should be derived from
first principles, by computing (minus the logarithm of) the localized partition function of
the d = 5 SCFT, placed on the background of S3 ×Σ, and then taking the large N limit.
This strategy has been implemented in [35,36] for the background S3×Σg and, indeed, it
led to reproducing the holographic free energy (2.42) previously obtained in [2]. Instead,
we will follow a short-cut inspired by the “gravitational blocks” advocated in [21]. We
will infer from the supergravity description the main ingredients involved in the field-
theoretic construction and we will propose a large N off-shell free energy on S3 × Σ

obtained by suitably gluing the S5 free energy of the d = 5 theories. We will then show
that extremizing it will reproduce exactly the holographic free energy (3.71).

4.1 d = 5 SCFTs dual to the AdS6 solution

Let us begin by recalling the salient features of the five-dimensional theory that is holo-
graphically dual to the AdS6 × S

4 background of massive type IIA, arising in the near-
horizon limit of N D4-branes and Nf D8-branes, that we reviewed in section 2.3. This is
an N = 1 gauge theory with gauge group USp(2N), coupled to Nf massless hypermul-
tiplets in the fundamental representation and one hypermultiplet in the antisymmetric
representation of USp(2N) [39]. At low energies, this theory flows to an interacting
SCFT, with global symmetry SU(2)R × SU(2)F ×ENf+1, where the first two factors are
realised as symmetries of the AdS6 × S4 solution [40]. Placing this theory on a rigid S5

background, one can compute the exact localized partition function ZS5 and consider the
associated free energy, namely

FS5 ≡ − logZS5 , (4.1)

as a good measure of the degrees of freedom of the theory. This was computed in [33],
that also showed that in the large N limit it becomes

FS5 = −9
√
2π

5

N5/2

√

8−Nf

(4.2)

23



and is reproduced by a holographic calculation in the solution of [27]. The S5 free energy
may also be “refined”, promoting it to an off-shell free energy, regarded as a function of
the fugacities for the U(1) × U(1) Cartan subgroup of SU(2)R × SU(2)F , which we will
denote as ∆i, with i = 1, 2. A priori, the R-symmetry can mix with any flavour symmetry
and the ∆i parameterise this mixing. For the present theory this is actually not necessary,
as the R-symmetry is non-Abelian, nevertheless this will be useful in the sequel. We can
then write

FS5(∆i) = −9
√
2π

5

N5/2

√

8−Nf

(∆1∆2)
3/2 ≡ 27

4
F(∆i) , (4.3)

with the fugacities obeying, in a canonical normalization, the R-symmetry constraint

∆1 +∆2 = 2 . (4.4)

For later convenience we have defined the auxiliary function F(∆i). Extremizing FS5(∆i)
gives ∆∗

1 = ∆∗
2 = 1 and inserting these values back one reproduces the initial free energy

FS5 ≡ FS5(∆∗
i ) = −9

√
2π

5

N5/2

√

8−Nf

. (4.5)

Let us now move to discussing compactifications of this theory to d = 3 dimensions and
the corresponding off-shell free energies.

4.2 d = 3 SCFTs dual to the AdS4 × Σg solutions

We can obtain three-dimensional N = 2 theories by compactifying the above d = 5
SCFT on a Riemann surface Σg of arbitrary genus g, performing the standard topological
twist [2]. Specifically, we place the theory on Σg and couple it to two background gauge
fields Ai for the U(1) × U(1) Cartan subgroup of SU(2)R × SU(2)F , with appropriately
quantized magnetic fluxes12

ni =
1

2π

∫

Σg

Fi = piκ(1− g) ∈ Z . (4.6)

The topological twist implies that the R-symmetry gauge field AR = A1+A2 is identified
with a connection on the tangent bundle, thus

1

2π

∫

Σg

dAR = χ(Σg) = 2(1− g) = n1 + n2 , (4.7)

and the Killing spinors become just constant. It is then convenient to parameterise the
magnetic fluxes as

n1 = (1− g)(1 + κ z) , n2 = (1− g)(1− κ z) . (4.8)

12Here and in the following we shall rename the background gauge fields as gAi 7→ Ai, which is more
natural from the field theory point of view. The magnetic fluxes ni correspond precisely to the fluxes Pi

defined in (2.33). However, we denote these with different symbols to emphasise the fact that the Pi

were defined as integrals of supergravity fields, living in D = 6, while the ni are defined as integrals of
background gauge fields, living in d = 5.

24



The exact R-symmetry of the d = 3 theory will be determined by extremizing the off-shell
S3 free energy [41], viewed as a function of the fugacities ∆i. Equivalently, this quantity
may be thought of as the off-shell free energy of the d = 5 theory on S3 ×Σg. The latter
quantity was computed in [35,36] using localization, and in the large N limit it was shown
to reproduce the holographic free energy (2.42). Below we will show that it can also be
reproduced by a formula obtained by gluing two gravitational blocks. We begin defining
the following conjectural large N off-shell free energy13

F (∆i, ǫ; ni) ≡
1

ǫ

(

F(∆+
i )− F(∆−

i )
)

, (4.9)

where F(∆i) is defined in (4.3) and

∆+
i ≡ ∆i + niǫ , ∆−

i ≡ ∆i − niǫ , (4.10)

with ∆i satisfying (4.4).
Notice that in addition to the fugacities ∆i of the parent d = 5 theory and the magnetic

fluxes ni, (4.9) depends a priori also on the parameter ǫ, although we shall see below that
the extremization equations automatically set ǫ = 0. At least in the case g = 0, ǫ may be
interpreted as the fugacity associated to the U(1)J ⊂ SU(2)J rotational symmetry of the
two-sphere. Extremizing (4.9) with respect to ǫ and ∆i, subject to (4.4), we easily find
the critical values

∆∗
1 = 1 +

κ+
√
8z2 + κ2

4z
, ǫ∗ = 0 . (4.11)

For the two-sphere, the fact that ǫ∗ vanishes means that the R-symmetry of the compact-
ified theory does not have a component along U(1)J , as expected. In any case, inserting
the critical values in (4.9) we get

F (∆∗
i , 0; z) =

16π(1− g)κN5/2 (z2 − κ2)
3/2 (√

κ2 + 8z2 − κ
)

5
√

8−Nf

(

κ
√
κ2 + 8z2 − κ2 + 4z2

)3/2
, (4.12)

which agrees with (2.42). Since ǫ∗ = 0, we could have started setting ǫ = 0 in (4.9), thus
reducing to the known ǫ-independent off-shell free energy

lim
ǫ→0

F (∆i, ǫ; ni) = 2
2
∑

j=1

nj
∂F(∆i)

∂∆j

= −4
√
2π

5

N5/2

√

8−Nf

(∆1∆2)
1/2(n2∆1 + n1∆2) , (4.13)

corresponding to the standard topological twist [31, 35, 36, 43]. In particular, extremiz-
ing (4.13) reproduces (4.12) with ∆∗

1 given in (4.11).
We notice that ∆∗

1, ∆
∗
2 match with the scaling dimensions of two particular 1/2-BPS

operators, corresponding to D2-branes wrapped on calibrated surfaces, embedded in the
internal six-dimensional geometries, and sitting at the center of AdS4, described in [2].
For g > 1 we can set z = 0 so that ∆∗

1 = ∆∗
2 = 1 and the free energy (4.12) reduces to

the universal relation [44]

F (∆∗
i , 0; n1 = n2 = 1− g) =

16π(g− 1)N5/2

5
√
2
√

8−Nf

= −8

9
(g − 1)FS5 . (4.14)

13For g = 0, the form (4.9) has been recently proved in [42] for S3
b × S2

ǫ .
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4.3 d = 3 SCFTs dual to the AdS4 × Σ solutions

We now consider the compactification of the d = 5, N = 1 SCFT on a spindle, that we
expect to be dual to the solutions we constructed in section 3. In particular, we perform a
global topological twist, which means that we place the theory on Σ and couple it to two
background gauge fields Ai for the U(1) × U(1) Cartan subgroup of SU(2)R × SU(2)F ,
with appropriately quantized magnetic fluxes

ni =
1

2π

∫

Σ

Fi =
pi

n+n−
, pi ∈ Z . (4.15)

As for the standard topological twist, the R-symmetry gauge field AR = A1+A2 becomes
a connection on the tangent bundle, thus

1

2π

∫

Σ

dAR = χ(Σ) =
n+ + n−

n+n−
= n1 + n2 , (4.16)

but crucially, this does not imply that the metric on the spindle has constant curvature,
nor that the spinors are chiral and constant. Specifically, the rigid Killing spinors are
expected to behave precisely as the spinors ηA± arising in the supergravity solution. As
before in the paper, we will continue to parameterise the magnetic fluxes as

n1 =
χ

2
(1 + z) , n2 =

χ

2
(1− z) . (4.17)

Taking inspiration from the entropy function proposed in [12], we conjecture that the
large N off-shell free energy for these theories is given by

F (∆i, ǫ; ni, n+, n−) ≡
1

ǫ

(

F(∆+
i )− F(∆−

i )
)

, (4.18)

where F(∆i) is defined in (4.3) and

∆+
i ≡ ∆i + ǫ

(

ni +
1

2

n+ − n−

n+n−

)

, ∆−
i ≡ ∆i − ǫ

(

ni −
1

2

n+ − n−

n+n−

)

. (4.19)

The ∆i are the fugacities parameterising the R-symmetry within the U(1) × U(1) ⊂
SU(2)R×SU(2)F global symmetries of the d = 5 theory, and are therefore still subject to
the constraint (4.4), while ǫ is an equivariant parameter for the spindle, that is a fugacity
for the U(1)J rotational symmetry. In general, we expect that this will parameterise a
non-trivial mixing of the R-symmetry of the parent theory, with the U(1)J of the spindle.
The off-shell free energy (4.18) bares a close resemblance to the off-shell central charge for
D3-branes wrapped on spindle in [10] and we shall elaborate on this in the next section.

Employing the parametrisation (4.17) we see that upon redefining χǫ = ǫ̂, the off-shell
free energy (4.18) becomes F = χ · f(∆i, ǫ̂;µ, z), implying that the free energy at the
critical point must be a function of µ and z only, with an overall factor of χ. Notice that
setting n+ = n− = 1 the present setup reduces to the case of twisted compactification
on S2, that is the case g = 0 discussed in the previous subsection.

In order to implement the constraint (4.4) it is useful to introduce a Lagrange multiplier
and consider the extremization of the following function

S(∆i, ǫ,Λ; ni, n+, n−) = F (∆i, ǫ; ni, n+, n−) + Λ(∆1 +∆2 − 2) , (4.20)
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that is analogous to the entropy functions studied in the literature. The corresponding
extremality equations read

Λ +
1

ǫ

[

∂F(∆+
i )

∂∆+
j

− ∂F(∆−
i )

∂∆−
j

]

= 0 ,

F

ǫ
− 1

ǫ

2
∑

j=1

[

(

nj +
n+ − n−

2n+n−

)

∂F(∆+
i )

∂∆+
j

+

(

nj −
n+ − n−

2n+n−

)

∂F(∆−
i )

∂∆−
j

]

= 0 ,

∆1 +∆2 − 2 = 0 .

(4.21)

These are four equations for the variables ∆1, ∆2, ǫ, Λ and, in order to solve these, it is
convenient to process them further. Noticing that (4.18) is homogeneous of degree two
in ∆i and ǫ, by Euler’s theorem we have

2
∑

j=1

∆j
∂F

∂∆j

+ ǫ
∂F

∂ǫ
= 2F . (4.22)

The extremization equations for S written as

∂F

∂∆i
+ Λ = 0 ,

∂F

∂ǫ
= 0 , (4.23)

then immediately imply Λ = −F . We can therefore eliminate Λ from the system and
write the remaining two independent equations as

∂F(∆+
i )

∂∆+
1

− ∂F(∆−
i )

∂∆−
1

=
∂F(∆+

i )

∂∆+
2

− ∂F(∆−
i )

∂∆−
2

,

(

1 +
2ǫ

n+

)

F = 2
2
∑

j=1

nj
∂F(∆+

i )

∂∆+
j

,

(4.24)

where one has to use also the constraint ∆1 + ∆2 = 2. Notice that taking ǫ → 0 the
second equation reduces to the first equality in (4.13).

After some work, we determined the critical values

∆∗
1 = 1 +

2zx

(x2 + 3)(µ− x)
, ǫ∗ =

1

χ

4x2

(x2 + 3)(µ− x)
, (4.25)

in terms of the parameter x, that is the unique root in the interval (0, 1) of the quar-
tic (3.37) that we introduced in the discussion of the gravitational solution. Inserting
these values back into (4.18) we obtain

F (∆∗
i , ǫ

∗; z, χ, µ) = χ

√
3πN5/2

5
√

8−Nf

[3µ(x2 + 1)− x(x2 + 5)]3/2

x(x2 + 3)(µ− x)1/2
, (4.26)

which, remarkably, agrees exactly with the gravitational free energy (3.71)!
To arrive at the solution (4.25), we first solved the extremality equations perturbatively

in µ around µ = 0, obtaining agreement with the expansion (3.73), up to high powers
of µ. We then noticed that the result for ǫ∗ could be rewritten as

ǫ∗ =
3

4g

2π

∆z
, (4.27)
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which is a universal relation holding in all previous spindle solutions [7–13]. Using this,
we then obtained the result for ∆∗

1 in (4.25).
As discussed in section 3, in the limit n+ = n− = 1 (4.26) reproduces the free en-

ergy (4.12) for g = 0, corresponding to the compactification of the d = 5 theory on the
two-sphere, with the standard topological twist. Moreover, expanding ∆∗

1 in (4.25) in
series of µ around µ = 0 we find that

∆∗
1 = 1 +

1 +
√
8z2 + 1

4z
+O(µ2) , (4.28)

again in agreement with the two-sphere value given in (4.11). It would be interesting to
reproduce ∆∗

1, ∆
∗
2 by computing the scaling dimensions of some supersymmetric probe

D2-branes wrapped on calibrated two-cycles in the ten-dimensional geometry (3.62).

5 Gravitational blocks for branes on spindles

The off-shell free energy that we discussed in the previous section may be regarded as a
particular instance of a general class of off-shell free energies F±, for twisted compacti-
fications of d-dimensional theories on the spindle Σ. Below we will state our conjecture
and we will then illustrate how it encapsulates and generalises various extremal functions
discussed in the literature. From the constructions of M2, D3 and M5-branes wrapped on
a spindle and the results we discussed so far in this paper, it has emerged that supersym-
metry on a spindle can be preserved in two different ways, that can be referred to as twist
and anti-twist. These are characterised by two types of background R-symmetry gauge
field AR, with fluxes given by

1

2π

∫

Σ

dAR =
n+ + σn−

n+n−
, (5.1)

where σ = +1 for the twist and σ = −1 for the anti-twist. The sign σ = +1 corresponds
to the choice we made in section 4.3, and that was also realised for M5-branes wrapped on
the spindle in [9]. The sign σ = −1 has been realised by the supergravity solutions for D3-
branes [8,10,11] and M2-branes [7,12,13]. Below we will treat both cases simultaneously,
with the understanding that not all cases may have a counterpart as gravity solutions.
In [26] it is proved that these are the only two possible twists preserving supersymmetry
on the spindle.

A large class of SCFTs in different dimensions are expected to be characterised by
supersymmetric partition functions ZM, where M are rigid geometries comprising a met-
ric on an appropriate curved space, the background gauge fields for the R-symmetry and
possibly other flavour symmetries. The associated free energy is defined by

FM ≡ − logZM (5.2)

and it is regarded as a function of the fugacities ∆i associated to the Cartan subgroup
of the continuous global symmetry group of the theory. For theories with an Abelian R-
symmetry, that we are interested in, the fugacities obey a constraint that we can always
normalise to be

d
∑

i=1

∆i = 2 , (5.3)
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where d is the rank of the global symmetry group, of which the Abelian R-symmetry is
part. In general, these are complicated matrix models, which however simplify drastically
in special limits, such as the large N limit or Cardy-like limits, reducing to simple local
functions of the fugacities ∆i. For example, in four dimensions the partition function
corresponding to M = S1 × S3 is the (refined) superconformal index and in either limits
its logarithm is related to the trial central charge a4(∆i) of the theory. In all SCFTs
possessing an Abelian R-symmetry, it has been either proved or conjectured that the
exact superconformal R-symmetry is determined by extremizing these quantities.

We conjecture that for a general class of d-dimensional SCFTs compactified on the
spindle, with either the twist or the anti-twist, the exact R-symmetry is determined by
extremizing the following off-shell free energies

F±(∆i, ǫ; ni, n+, n−, σ) =
1

ǫ

(

Fd(∆
+
i )± Fd(∆

−
i )
)

, (5.4)

where the variables ∆+
i , ∆

−
i are defined as

∆+
i ≡ ∆i + ǫ

(

ni +
ri
2

n+ − σn−

n+n−

)

, ∆−
i ≡ ∆i − ǫ

(

ni −
ri
2

n+ − σn−

n+n−

)

, (5.5)

and the magnetic fluxes through the spindle, ni, satisfy the constraint

d
∑

i=1

ni =
n+ + σn−

n+n−
. (5.6)

The building blocks are the functions Fd(∆i) summarised in Table 2. They are propor-
tional to: the S3 off-shell free energy of the ABJM theory, the trial central charge of the
N = 4 SYM theory, the S5 off-shell free energy of the d = 5, N = 1 SCFT and the
trial central charge of the d = 6, (2, 0) SCFT, respectively. In the first two cases, it is
straightforward to replace these with the corresponding quantities for more general d = 3,
N = 2 theories and d = 4, N = 1 theories, but in this paper we will not pursue this.

d = 3 d = 4 d = 5 d = 6

Fd b3(∆1∆2∆3∆4)
1/2 b4(∆1∆2∆3) b5(∆1∆2)

3/2 b6(∆1∆2)
2

bd
−

√
2π
3
N3/2 −3

2
N2 −25/2π

15
N5/2√
8−Nf

− 9
256
N3

−FS3 −6a4
4
27
FS5 − 63

4096
a6

± −σ − −σ −

Table 2: Various Fd(∆i) in different spacetime dimension d. The constants bd are given
in terms of the free energy on Sd (d = 3, 5) or the central charge ad (d = 4, 6). In d = 6
and d = 5 the rank of the global symmetry group is d = 2, in d = 4 it is d = 3, while in
d = 3 it is d = 4. In the last row we summarised the relations between the gluing sign ±
and the sign σ, characterising the type of twist.

We expect that the form (5.4) arises, in the large N limit, from a fixed point formula,
with the “blocks” Fd(∆i) evaluated at the north and south poles of the spindle. The
superscripts in F± refer to the relative choice of sign ± in (5.4), corresponding to the
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type of gluing of the contributions of the two hemispheres of the spindle [21]. We will
give circumstantial evidence that in D = 4, 6 the type of gluing is correlated with the
type of twist, specifically that the gluing sign is −σ. On the other hand, in D = 5, 7 the
results of the explicit supergravity solutions are all reproduced by the minus gluing sign.
In the examples that we discuss below, we will explain which choice of twist and gluing
is relevant, but a more systematic understanding of these choices is clearly desirable.

The variable ǫ is a fugacity associated to the U(1)J rotational symmetry of the spindle
and the significance of the fact that at the critical point of (5.4) this takes a non-zero
value is that the R-symmetry of the parent d-dimensional theory mixes with U(1)J to
give the exact superconformal R-symmetry of the (d − 2)-dimensional theory arising in
the IR, when this flows to an SCFT. The constants ri are arbitrary, but subject to the
constraint

d
∑

i=1

ri = 2 , (5.7)

and parameterise the ambiguities of defining flavour symmetries [10]. In the previous
section we picked the most symmetric choice, corresponding to ri =

d

2
= 1. However, it is

simple to show that the functions (5.4) evaluated at the critical point are independent of
the choice of ri. Introducing a new set of variables defined as

ϕi ≡ ∆i +
ri
2

n+ − σn−

n+n−
ǫ , (5.8)

the off-shell free energies simply read

F±(ϕi, ǫ; ni) =
1

ǫ

(

Fd(ϕi + niǫ)± Fd(ϕi − niǫ)
)

, (5.9)

where, from now on, we will omit n+, n−, σ from the arguments of the function, in order
not to clutter the subsequent formulas. The variables ϕi, ǫ satisfy the constraint

d
∑

i=1

ϕi −
n+ − σn−

n+n−
ǫ = 2 , (5.10)

inherited from (5.3) and (5.7). Since (5.9) does not depend on the constants ri, it follows
that the critical values ϕ∗

i , ǫ
∗ and F±(ϕ∗

i , ǫ
∗; ni) do not depend on the ri either.

Our proposal unifies previous proposals concerning entropy functions [12, 21, 45, 46]
and central charges [10], extending these to compactifications of d-dimensional theories
on spindles with both twist and anti-twist. Below we shall illustrate this, recovering known
results and discussing some generalisations. The constrained extremization problem can
be carried out introducing a Lagrange multiplier. Defining

S±(ϕi, ǫ,Λ; ni, n+, n−) = F±(ϕi, ǫ; ni, n+, n−) + Λ

(

d
∑

j=1

ϕj −
n+ − σn−

n+n−
ǫ− 2

)

, (5.11)

and using the fact that (5.4) is homogeneous of degree14 h in ϕi and ǫ, by means of Euler’s
theorem we have that Λ = −h

2
F±, and we can therefore eliminate Λ from the system.

14h = 1 for d = 3, h = 2 for d = 4, 5 and h = 3 for d = 6.
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The resulting extremization equations can be written as

hǫ

2
F± =

∂Fd(ϕ
+
i )

∂ϕ+
j

± ∂Fd(ϕ
−
i )

∂ϕ−
j

, (j = 1, . . . , d)

(

1 +
σhǫ

n+

)

F± = 2

d
∑

j=1

nj
∂Fd(ϕ

+
i )

∂ϕ+
j

,

(5.12)

where ϕ±
i ≡ ϕi ± niǫ. Notice that the last equation can be replaced by

(

1− hǫ

n−

)

F± = ∓2

d
∑

j=1

nj
∂Fd(ϕ

−
i )

∂ϕ−
j

. (5.13)

5.1 M2-branes

Supergravity solutions describing M2-branes wrapped on the spindle were first constructed
in [7] in minimal D = 4 gauged supergravity and generalised to U(1)2 gauged supergravity
in [12, 13]. They realise the anti-twist, σ = −1. The corresponding dual field theory is
the ABJM model compactified on the spindle, with two background gauge fields with
magnetic fluxes

n1 + n2 =
n+ + σn−

2n+n−
, (5.14)

for σ = −1. However, it is straightforward to carry out the extremization leaving the
twist unspecified. Picking the plus gluing sign in (5.9) gives

F+(ϕi, ǫ; ni) = −2
√
2πN3/2

3

(

n1n2ǫ+
ϕ1ϕ2

ǫ

)

, (5.15)

with ϕi, ǫ satisfying the constraint

ϕ1 + ϕ2 −
n+ − σn−

2n+n−
ǫ = 1 . (5.16)

For σ = −1 this is exactly the entropy function proposed in [12], in the case of vanishing
electric charges and angular momentum. Performing the extremization of (5.15), subject
to (5.16), we get

ϕ∗
1 =

−n+ + σn− +
√

16n2
−n

2
+n1n2 + (n+ − n−σ)2

2
√

16n2
−n

2
+n1n2 + (n+ − n−σ)2

,

ǫ∗ = − 2n−n+
√

16n2
−n

2
+n1n2 + (n+ − σn−)2

,

(5.17)

and inserting these values back in (5.15) we find

F+(ϕ∗
i , ǫ

∗; ni) =

√
2πN3/2

3

−n+ + σn− +
√

16n2
+n

2
−n1n2 + (n+ − σn−)2

2n+n−
, (5.18)

which coincides with the entropy in [12] upon setting σ = −1. In minimal D = 4 gauged
supergravity the entropy function (5.15), for ϕ1 = ϕ2 and n1 = n2, was derived in [19],
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and its plus gluing sign is consistent with the fact that it indeed arises as the sum of
contributions from the north and south poles of the spindle, which are the fixed points of
the canonical Killing vector field [25].

The precise map between the variables here and those used in [12] is as follows

P there
i = 2ni, Qthere = 0 , ϕthere

i = ±πi
2
ϕhere
i , ωthere = ±2πiǫ , (5.19)

and using this, the constraint (5.16) becomes

2(ϕthere
1 + ϕthere

2 )− χ

4
ωthere = ±iπ . (5.20)

Note that with vanishing angular momentum and electric charges the entropy function is
purely real (or purely imaginary) and therefore the critical points are purely real.

For the other type of gluing we obtain (for either choice of σ) the function

F−(ϕi, ǫ; ni) = −2
√
2πN3/2

3
(n2ϕ1 + n1ϕ2) , (5.21)

whose extremization, however, leads to a degenerate result.
The entropy function for the general four-charge model, for either type of gluing and

either type of twist, reads

F±(ϕi, ǫ; ni) = −
√
2πN3/2

3ǫ

(

√

(ϕ1 + n1ǫ) (ϕ2 + n2ǫ) (ϕ3 + n3ǫ) (ϕ4 + n4ǫ)

±
√

(ϕ1 − n1ǫ) (ϕ2 − n2ǫ) (ϕ3 − n3ǫ) (ϕ4 − n4ǫ)

)

.

(5.22)

The magnetic fluxes obey

n1 + n2 + n3 + n4 =
n+ + σn−

n+n−
, (5.23)

and the variables ϕi, ǫ satisfy the constraint

ϕ1 + ϕ2 + ϕ3 + ϕ4 −
n+ − σn−

n+n−
ǫ = 2 . (5.24)

For n+ = n− = 1 these reduce to the entropy functions proposed in [21]. In particular,
for σ = +1, F− reduces to the entropy function of the supersymmetric AdS4 black holes
with a topological twist [4], whereas for σ = −1, F+ reduces to the entropy function for
the supersymmetric rotating Kerr-Newmann AdS4 black holes [24]. More generally, it
is natural to expect that the correct gluing for either type of twists is −σ, as reported
in Table 2. It would be nice to corroborate this proposal showing that extremizing the
entropy functions F−σ in (5.22) reproduces the entropy of the AdS2×Σ solutions of STU
gauged supergravity.
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5.2 D3-branes

Supergravity solutions describing D3-branes wrapped on the spindle were first constructed
in [8] in minimal D = 5 gauged supergravity and generalised to U(1)3 gauged supergravity
in [10, 11]. They realise the anti-twist, σ = −1. The corresponding dual field theory
is N = 4 SYM compactified on the spindle, with three background gauge fields with
magnetic fluxes satisfying

n1 + n2 + n3 =
n+ + σn−

n+n−
, (5.25)

for σ = −1. However, it is straightforward to carry out the extremization leaving the
twist unspecified. In this case we find that, for both types of twist, the correct gluing sign
that reproduces all known results is the lower sign in (5.9), which gives

F−(ϕi, ǫ; ni) = −3N2
(

n1ϕ2ϕ3 + ϕ1n2ϕ3 + ϕ1ϕ2n3 + n1n2n3ǫ
2
)

, (5.26)

with ϕi, ǫ satisfying the constraint

ϕ1 + ϕ2 + ϕ3 −
n+ − σn−

n+n−
ǫ = 2 . (5.27)

Extremizing (5.26) subject to the constraint (5.27) we find

ϕ∗
1 =

n1 (n1 − n2 − n3)

2
(

σ
n+n

−

− (n1n2 + n1n3 + n2n3)
) ,

ϕ∗
2 =

n2 (n2 − n3 − n1)

2
(

σ
n+n

−

− (n1n2 + n1n3 + n2n3)
) ,

ǫ∗ =

n+−σn
−

n+n
−

2
(

σ
n+n

−

− (n1n2 + n1n3 + n2n3)
) ,

(5.28)

and inserting these back in (5.26) we get

F−(ϕ∗
i , ǫ

∗; ni) =
3N2

n1n2n3
σ

n+n
−

− (n1n2 + n1n3 + n2n3)
. (5.29)

Setting σ = −1 this reduces to the a2 central charge obtained in [10, 11]. On the other
hand, setting σ = +1 we reproduce also the central charge for D3-branes wrapped on the
spindle with the twist, for which supergravity solutions were recently presented in [26].
Further setting n+ = n− = 1, (5.29) reduces to the result for D3-branes wrapped on S2

with the standard topological twist [5]. Equivalently, we can extremize over the variables
∆i, ǫ, with ∆1+∆2+∆3 = 2 obtaining the same result as in (5.29) for the critical central
charge. However, the variables ∆i are affected by the ambiguity related to the choice of
the constants ri.

Notice that for the other type of gluing we obtain (for either choice of σ) the function

F+(ϕi, ǫ; ni) = −3N2
[

(n1ϕ2n3 + ϕ1n2n3 + n1n2ϕ3) ǫ+
ϕ1ϕ2ϕ3

ǫ

]

. (5.30)

It may be possible that this corresponds to a different type of twisted compactification of
D3-branes on the spindle with a corresponding class of supergravity constructions.
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5.3 D4-branes

Let us return to the D4-branes and write down the main ingredients involved in considering
simultaneously the case of twist and anti-twist. The magnetic fluxes satisfy

n1 + n2 =
n+ + σn−

n+n−
. (5.31)

In terms of the variables ϕi, ǫ satisfying the constraint

ϕ1 + ϕ2 −
n+ − σn−

n+n−
ǫ = 2 , (5.32)

the off-shell free energies read

F±(ϕi, ǫ; ni) = −4
√
2π

15ǫ

N5/2

√

8−Nf

[

(

(ϕ1 + n1ǫ)(ϕ2 + n2ǫ)
)3/2 ±

(

(ϕ1 − n1ǫ)(ϕ2 − n2ǫ)
)3/2
]

.

(5.33)
As for the M2-branes, we expect that the correct gluing for either type of twists is

−σ, as reported in Table 2. Extremizing F−(ϕi, ǫ; ni), subject to the constraint (5.32),
we find (leaving σ unspecified)

ϕ∗
1 = 1 +

2x[(n+ − σn−)x+ n+n−(n1 − n2)]

(x2 + 3)[(n+ − σn−)− (n+ + σn−)x]
,

ǫ∗ =
4n+n−x

2

(x2 + 3)[(n+ − σn−)− (n+ + σn−)x]
,

(5.34)

where x is the only solution in the interval (0, 1) of the quartic equation

(n+ + σn−)
2x4 + 4

[

2n2
+n

2
−(n1 − n2)

2 − 3(n2
+ + n2

− − σn+n−)
]

x2

+ 12(n2
+ − n2

−)x− 9(n+ − σn−)
2 = 0 .

(5.35)

Inserting the values of ϕ∗
i and ǫ∗ back in (5.33) we get

F−(ϕ∗
i , ǫ

∗; ni) =

√
3π

5

N5/2

√

8−Nf

[3(n+ − σn−)(x
2 + 1)− (n+ + σn−)x(x

2 + 5)]3/2

n+n−x(x2 + 3)[(n+ − σn−)− (n+ + σn−)x]1/2
,

(5.36)
which reduces to the results of the previous section for σ = +1.

We expect the choice of minus gluing sign to be correlated to the fact that in our
solutions the Killing spinors on the spindle have the same chirality at the north and south
poles. It would be interesting to investigate the extremization of F+ and to find out
whether for σ = −1 it has a physical critical point, corresponding to AdS4 × Σ solutions
with the anti-twist, yet to be constructed.

5.4 M5-branes

Supergravity solutions describing M5-branes wrapped on the spindle were constructed
in [9] in a D = 7, U(1)2 gauged supergravity model. They realise the twist, σ = +1. The
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corresponding dual field theory is the d = 6, (2, 0) SCFT compactified on the spindle,
with two background gauge fields with magnetic fluxes

n1 + n2 =
n+ + σn−

n+n−
, (5.37)

for σ = +1. However, it is straightforward to carry out the extremization for either type
of twist. In this case we find that the correct gluing sign that reproduces the results of [9]
is the lower sign in (5.9), which gives

F−(ϕi, ǫ; ni) = − 9

64
N3 (n2ϕ1 + n1ϕ2)

(

n1n2ǫ
2 + ϕ1ϕ2

)

, (5.38)

with ϕi, ǫ satisfying the constraint

ϕ1 + ϕ2 −
n+ − σn−

n+n−
ǫ = 2 . (5.39)

Performing the extremization of (5.38), subject to the constraint (5.39), we find

ϕ∗
1 = 1 +

(s+ n1 + n2)[2n
2
+n

2
−(n

2
1 − n

2
2) + 3(n+ − σn−)

2 + n2
+n

2
−(n1 − n2)s]

12n+n−(σ − n+n−n1n2)[s+ 2(n1 + n2)]
,

ǫ∗ =
(n+ − σn−)(s+ n1 + n2)

2(σ − n+n−n1n2)[s+ 2(n1 + n2)]
,

(5.40)

where

s ≡
√

7(n21 + n
2
2) + 2n1n2 − 6

n2
+ + n2

−
n2
+n

2
−

, (5.41)

and inserting these values back in (5.38) we get

F−(ϕ∗
i , ǫ

∗; ni) =
3N3

8

n
2
1n

2
2 (s+ n1 + n2)

( σ
n+n

−

− n1n2)[s + 2(n1 + n2)]2
. (5.42)

Setting σ = +1 this reduces to the a4 central charge obtained in [9] integrating the M5-
brane anomaly polynomial on the spindle. However, in [9] the extremization was carried
out over the variables ∆i, subject to ∆1+∆2 = 2, and it was found that the critical values
are given by ∆∗

1 = ∆∗
2 = 1, while the critical ǫ∗ coincides with the one given in (5.40), up

to a convention-dependent factor, specifically, ǫ∗here = −1
2
ǫ∗there. One can check that the

variables ∆i utilised in [9] correspond (for σ = +1) to the choice of constants r1 = 2− r2
given by

r1 = 1 +
n2
+n

2
−(n1 − n2)[s + 2(n1 + n2)]

3(n+ − σn−)2
. (5.43)

It would be interesting to find out whether the critical points for σ = −1 correspond to
AdS5 × Σ solutions with the anti-twist, yet to be constructed.

We note that, as for the case of AdS4 × Σg solutions, the extremization of the off-
shell free energy (5.38) reproduces also the central charge15 of d = 4 SCFTs dual to the

15For g = 0, (5.38) can also be viewed as the off-shell free energy on S3 × S2
ǫ of N = 2 SYM in d = 5.

Using this, the form (5.38) has been recently proved in [42] for S3
b × S2

ǫ .
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AdS5 × Σg solutions [6]. As anticipated in footnote 1, in this case the variables ϕi and
the magnetic fluxes are subject to the constraints

ϕ1 + ϕ2 = 2 , n1 + n2 = 2(1− g) , (5.44)

and as usual the latter may be parameterised as

n1 = (1− g) (1 + zκ) , n2 = (1− g) (1− zκ) . (5.45)

The free energy (5.38) is extremized by

ϕ∗
1 = 1 +

κ+
√
κ2 + 3z2

3z
, ǫ∗ = 0 , (5.46)

to which corresponds the critical value [6]

F−(ϕ∗
i , 0; ni) = (1− g)N3 κ

2 − 9z2 + κ(κ2 + 3z2)3/2

48z2
. (5.47)

Since ǫ∗ = 0, we could have started setting ǫ = 0 in (5.38), thus reducing to the known
ǫ-independent off-shell free energy

lim
ǫ→0

F−(ϕi, ǫ; ni) = 2
2
∑

j=1

nj
∂F6(ϕi)

∂ϕj

= −9N3

64
ϕ1ϕ2 (n2ϕ1 + n1ϕ2) , (5.48)

corresponding to the standard topological twist. In particular, extremizing (5.48) repro-
duces (5.47). For g > 1 we can set z = 0 so that ϕ∗

1 = ϕ∗
2 = 1 and the free energy (5.48)

reduces to the universal relation [44]

F−(ϕ∗
i , 0; n1 = n2 = 1− g) =

9N3

32
(g − 1) =

63

512
(g − 1)a6 . (5.49)

Notice that for the other type of gluing we obtain (for either choice of σ) the function

F+(ϕi, ǫ; ni) = − 9

128
N3

(

n
2
1n

2
2ǫ

3 +
(

n
2
1ϕ

2
2 + n

2
2ϕ

2
1 + 4n1n2ϕ1ϕ2

)

ǫ+
ϕ2
1ϕ

2
2

ǫ

)

. (5.50)

It may be possible that this corresponds to a different type of twisted compactification of
M5-branes on the spindle with a corresponding class of supergravity constructions.

6 D4-branes wrapped on Σ× Σg

In this section we will begin investigating constructions corresponding to D4-branes
wrapped on orbifolds of dimension higher than two, focussing on a class of explicit so-
lutions that can be easily obtained uplifting to massive type IIA supergravity the AdS2

solutions of four-dimensional minimal gauged supergravity of [7]. Generically, for four-
dimensional orbifolds M4, the field theories are d = 1 SCQMs obtained from twisted
compactifications of the d = 5, N = 1 USp(2N) gauge theory. The off-shell free ener-
gies are in this case entropy functions, whose extremization determines the entropy of
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supersymmetric AdS6 black holes with AdS2 × M4 near-horizon geometry. As we have
discussed, we expect that these will take the form of a sum of gravitational blocks over
the set of fixed points of the canonical Killing vector, which includes also the non-orbifold
geometries as special cases. In particular, the entropy function for the product of two
constant-curvature Riemann surfaces Σg1 × Σg2 with the standard topological twist may
be recovered considering16

S = − 1

4ǫ1ǫ2

[

F5(ϕi + niǫ1 + siǫ2)−F5(ϕi − niǫ1 + siǫ2)

−F5(ϕi + niǫ1 − siǫ2) + F5(ϕi − niǫ1 − siǫ2)
]

,
(6.1)

subject to the constraints

n1 + n2 = 2(1− g1) , s1 + s2 = 2(1− g2) , ϕ1 + ϕ2 = 2 . (6.2)

Extremizing (6.1) with respect to ǫ1 and ǫ2 sets ǫ1 = ǫ2 = 0 so that the entropy function
reduces to [43]

lim
ǫ1,ǫ2→0

S(ϕi, ǫ1, ǫ2; ni, si) = −
2
∑

j,k=1

njsk
∂2F5(ϕi)

∂ϕj∂ϕk

=
4
√
2π

15

N5/2

√

8−Nf

2
∑

j,k=1

njsk
∂2(ϕ1ϕ2)

3/2

∂ϕj∂ϕk

.

(6.3)

Extremizing this with respect to ϕi reproduces the entropy of an associated class of
AdS2 × Σg1 × Σg2 supersymmetric solutions [31]. Below we will discuss the case of M4 =
Σ × Σg, leaving M4 = Σ1 × Σ2 and more general orbifolds for future work. Analogous
solutions, corresponding to M5-branes wrapped on Σ× Σg, were presented in [11].

6.1 AdS2 × Σ× Σg solutions

A class of supersymmetric AdS2 × Σ× Σg backgrounds may be easily obtained by lifting
the AdS2×Σ solutions of four-dimensional minimal gauged supergravity constructed in [7]
to D = 6 matter-coupled gauged supergravity, using the consistent truncation presented
in [46]. In our conventions, the bosonic part of the action reads

S6D =
1

16πG(6)

∫

d6x
√−g

[

R − V − 1

2
|d~ϕ|2 − 1

2

2
∑

i=1

X−2
i |Fi|2 −

1

8
(X1X2)

2|H|2

− m2

4
(X1X2)

−1|B|2 − 1

16

εµνρστλ√−g Bµν

(

F1 ρσF2 τλ +
m2

12
BρσBτλ

)

]

,

(6.4)

where Fi = dAi, H = dB and the scalar fields Xi with the scalar potential V are given
by (2.2) and (2.3), respectively. This model is the complete version of the truncation

16The overall factor of − 1
4 may be fixed by splitting the compactification on Σg1 × Σg2 in two steps,

first reducing from d = 5 to d = 3 and then from d = 3 to d = 1. This factor is then consistent with the
rules summarised in Table 2.
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presented in section 2.1, with non-vanishing two-form B. Below for simplicity we will
restrict our attention to the static solution, which in the notation of [7] corresponds to
setting j = 0. The six-dimensional solution then reads

ds26 = e−2CL2
AdS4

[

y2

4
ds2AdS2

+
y2

q(y)
dy2 +

q(y)

4y2
dz2
]

+ e2Cds2Σg
,

X1 = k
1/8
8 k

1/2
2 , X2 = k

1/8
8 k

−1/2
2 ,

B = a
9k

1/2
8

8g2
vol(AdS2) ,

F1 =
a

y2
3k

1/2
8 k

1/2
2

4g
dy ∧ dz +

κ+ z

2g
vol(Σg) ,

F2 =
a

y2
3k

1/2
8 k

−1/2
2

4g
dy ∧ dz +

κ− z

2g
vol(Σg) ,

(6.5)

where the function q(y) and the constant a are given by17

q(y) = y4 − (2y − a)2 , a =
n2
+ − n2

−
n2
+ + n2

−
. (6.6)

The constants k2 and k8 are those appearing in (2.31), namely

k2 =
3z+

√
κ2 + 8z2

z− κ
, k8 =

16k2
9(1 + k2)2

, (6.7)

while C reads

e−2C = m2k
1/4
8 k4 with k4 =

18

−3κ +
√
κ2 + 8z2

. (6.8)

As usual, the parameter g is fixed in terms of m, while LAdS4
is related to m by eq. (4.24)

of [46],

g =
3m

2
, LAdS4

=
k
1/4
8 k

−1/2
4

m2
. (6.9)

Notice that formally taking a = 0 the solution (6.5) reduces precisely to the AdS4 × Σg

solution discussed in section 2.4.
Let us now consider the quantization of the fluxes. For the fluxes through the Riemann

surface we have

s1 =
g

2π

∫

Σg

F1 = (1 + zκ) (1− g) ∈ Z ,

s2 =
g

2π

∫

Σg

F2 = (1− zκ) (1− g) ∈ Z ,

(6.10)

with s1 + s2 = 2(1− g). Recalling that [7]

(

1

y1
− 1

y2

)

∆z

2π
=

n2
+ + n2

−
n+n−(n+ + n−)

, (6.11)

17In order to be consistent with our notation we have exchanged n+ and n− with respect to [7].
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where y1, y2 are the two relevant roots of q(y), the fluxes through the spindle are given by

n1 =
g

2π

∫

Σ

F1 =
3

4
k
1/2
8 k

1/2
2

n+ − n−

n+n−
=

p1
n+n−

,

n2 =
g

2π

∫

Σ

F2 =
3

4
k
1/2
8 k

−1/2
2

n+ − n−

n+n−
=

p2
n+n−

,

(6.12)

where pi ∈ Z. We then note that

3

2
k
1/2
8 k

1/2
2 = ∆∗

1 ,
3

2
k
1/2
8 k

−1/2
2 = 2−∆∗

1 ≡ ∆∗
2 , (6.13)

where ∆∗
1 was given in (4.11), thus we have

ni = ∆∗
i

n+ − n−

2n+n−
≡ n∆∗

i , (6.14)

that will be important in the field theory extremization. The constraint ∆∗
1 + ∆∗

2 = 2
implies

n1 + n2 =
n+ − n−

n+n−
, (6.15)

showing that there is an anti-twist over the spindle. Note that from the relations (6.14)
we obtain

(

1 +
κ +

√
8z2 + κ2

4z

)

(n+ − n−) = 2p1 , (6.16)

which is a non-trivial Diophantine equation. One example of solution is given by the set of
values κ = −1, z = 6, n+ − n− = 6, p1 = 5 and we have checked that other combinations
exist. Moreover, when κ = −1 it is possible to smoothly take the limit z → 0, in which
case the equation reduces to n+ − n− = 2p1.

We can now uplift the solution (6.5) to massive type IIA using the recipe described in
section 2.2. For simplicity, we will only present the relevant ingredients for the computa-
tion of the entropy, namely the metric and the dilaton, that read

ds2s.f. = λ2µ
−1/3
0

{

∆̃1/2

[

e−2CL2
AdS4

(

y2

4
ds2AdS2 +

y2

q(y)
dy2 +

q(y)

4y2
dz2
)

+ e2Cds2Σg

]

+ g−2∆̃−1/2k
−1/4
8

[

k
1/2
8 dµ2

0 + k
−1/2
2

(

dµ2
1 + µ2

1σ
2
1

)

+ k
1/2
2

(

dµ2
2 + µ2

2σ
2
2

)]

}

,

(6.17)

eΦ = λ2µ
−5/6
0 ∆̃1/4k

−1/8
8 , (6.18)

with σi = dφi − gAi and ∆̃ given in (2.38). Expressing the metric in string frame as

ds2s.f. = e2A
(

ds2AdS2
+ ds2M8

)

, (6.19)

the effective two-dimensional Newton constant is given by

1

G(2)

=
32π2

(2πℓs)8

∫

e8A−2Φ vol(M8) , (6.20)
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and therefore the entropy reads

S =
1

4G(2)

=
1

(2πℓ)8
9(3πλ)4k

1/2
8

20g8k4
4πκ(1− g)Ah , (6.21)

where Ah is the area of the horizon of the four-dimensional black hole with LAdS4
= 1,

specifically [7]

Ah =
1

2
(y2 − y1)∆z = π

−(n+ + n−) +
√
2
√

n2
+ + n2

−
n+n−

. (6.22)

Both the Romans mass F(0) and the part of the four-form flux F(4) along the four-
hemisphere S

4 remain unaltered with respect to (2.36) and (2.37), therefore the quanti-
zation of the fluxes in ten dimensions is unchanged, giving the relations (2.25). The final
expression of the entropy is

S =
8κ(1− g)N5/2(z2 − κ2)3/2(

√
κ2 + 8z2 − κ)

5
√

8−Nf(κ
√
κ2 + 8z2 − κ2 + 4z2)3/2

Ah . (6.23)

6.2 Entropy function

As before, we can deduce the main ingredients of the field theory construction from the
supergravity solution. In particular, the magnetic fluxes si show that there is a (standard)
topological twist on Σg, while from the form of the ni we see that there is an anti-twist
on Σ. Then applying our conjecture twice, we obtain the following entropy function

S(ϕi, ǫ1, ǫ2; ni, si) = − 1

4ǫ1ǫ2

[

F5(ϕi + niǫ1 + siǫ2) + F5(ϕi − niǫ1 + siǫ2)

− F5(ϕi + niǫ1 − siǫ2)− F5(ϕi − niǫ1 − siǫ2)
]

,
(6.24)

subject to the constraints

n1 + n2 =
n+ − n−

n+n−
, s1 + s2 = 2(1− g) , ϕ1 + ϕ2 −

n+ + n−

n+n−
ǫ1 = 2 . (6.25)

Extremizing this with respect to ǫ2 sets ǫ2 = 0 and after renaming ǫ1 7→ ǫ we obtain

S(ϕi, ǫ; ni, si) =
c

ǫ

[

√

(ϕ1 + n1ǫ)(ϕ2 + n2ǫ)(s1(ϕ2 + n2ǫ) + s2(ϕ1 + n1ǫ)) + (ǫ→ −ǫ)
]

,

(6.26)

where

c ≡
√
2π

5

N5/2

√

8−Nf

, (6.27)

which has to be extremized subject to the constraints (6.25).
So far we have not used the additional input (6.14) given by the supergravity solution

discussed above. This strongly suggests that the extremization of (6.26), without imposing
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(6.14), will give the entropy of a more general supergravity solution18. However, below we
will proceed enforcing (6.14). Doing so, it is convenient to introduce the rescaled variables

ϕ1 ≡ ∆∗
1λ1 , ϕ2 ≡ ∆∗

2λ2 , (6.28)

subject to the constraint

∆∗
1λ1 +∆∗

2λ2 −
n+ + n−

n+n−
ǫ = 2 , (6.29)

in terms of which the entropy function reads

S(λi, ǫ; z) =
c

ǫ

[

√

∆∗
1∆

∗
2(λ1 + nǫ)(λ2 + nǫ)(s1∆

∗
1(λ2 + nǫ) + s2∆

∗
2(λ1 + nǫ)) + (ǫ→ −ǫ)

]

.

(6.30)

Extremizing this we find the critical values

ǫ∗ = η
2n+n−

√

2n2
+ + 2n2

−
, λ∗1 = λ∗2 = 1 + η

n+ + n−
√

2n2
+ + 2n2

−
, (6.31)

where the sign ambiguity η = ±1 arises by solving the equations over the complex num-
bers19. Inserting these values back into the entropy function, we compute

S(λ∗i , ǫ
∗; z) = 2

√
2π

5

N5/2

√

8−Nf

√

∆∗
1∆

∗
2(s1∆

∗
2 + s2∆

∗
1)
−n+ − n− − η

√

2n2
− + 2n2

+

n+n−

=
8πκ(1− g)N5/2(z2 − κ2)3/2(

√
κ2 + 8z2 − κ)

5
√

8−Nf (κ
√
κ2 + 8z2 − κ2 + 4z2)3/2

−n+ − n− − η
√

2n2
+ + 2n2

−
n+n−

,

(6.32)

where we need to pick η = −1 in order to get a positive entropy that agrees with the one
computed from the ten-dimensional supergravity solution.

It should be straightforward to incorporate electric charge and rotation (along the
spindle), by promoting the extremization of (6.30) to the Legendre transform. The en-
tropy obtained in this way should match that of the supergravity solution obtained by
uplifting to massive type IIA the rotating AdS2 × Σ solution of [7]20.

7 Discussion

The work of [8] opened the way to a novel class of examples of the AdS/CFT corre-
spondence, by constructing a supergravity solution with an AdS3 factor, comprising the
two-dimensional orbifold Σ, known as the spindle. This was interpreted as the near-
horizon limit of D3-branes wrapped on the spindle with the corresponding field theory

18The recent paper [47] discusses AdS2 ×Σ×Σg supergravity solutions and it would be interesting to
understand the relationship to our work.

19Generically, in the presence of rotation, we are forced to work with the complex numbers [19, 20]
and we therefore continue to do so also in the static case.

20In the rotating solution, setting n+ = n− = 1 will reduce to a rotating AdS2 × S2
ǫ × Σg solution in

D = 6, whose entropy function has been recently discussed in [42].
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duals being a class of d = 4, N = 1 SCFTs compactified on the spindle, with a new type
of supersymmetry-preserving twist, that was dubbed anti-twist. Following this, over the
past year various extensions, including analogous constructions for M2 and M5-branes,
have appeared, realising either the anti-twist [8], or a global generalization [9] of the stan-
dard topological twist. These constructions have left out the notable class of solutions
describing D4-branes wrapped on the spindle, that we constructed in this paper. We
found these AdS4 × Σ solutions in D = 6 gauged supergravity and then uplifted them
to massive type IIA supergravity. The type of twist realised in our solutions is the one
previously found in [9] for M5-branes, which was referred to as a global topological twist.
Differently from the standard topological twist, the R-symmetry gauge field does not
cancel the spin connection, despite the fact that its integrated flux is equal to the Euler
characteristic of the spindle. As a consequence the Killing spinors are then non-trivial
sections (in particular, they are not simply constant) of the same bundles that occur in
standard topological twist.

There are several aspects of our solution that may be interesting to investigate in the
future. For example, it may be instructive to cast it in the form of the classification
of supersymmetric AdS4 solutions of massive type IIA supergravity [34], or to study
supersymmetric probe D-branes in our background in order to extract further information
about the dual field theories. Another question that arises from our work is whether there
exists a more general consistent truncation of massive type IIA supergravity to D = 6,
analogous to the dyonic consistent truncation to D = 4 supergravity found in [32]. It
is also intriguing to investigate whether there exist supergravity solutions corresponding
to D4-branes wrapped on the spindle with the anti-twist. Finally, as an important step
towards improving control on the dual field theories, it would be worthwhile computing an
appropriately regularised on-shell action, that should prove the validity of our conjectural
off-shell free energy (4.18). To do this, one may need to know the full “black two-brane”
solution, interpolating between AdS6 asymptotically and AdS4 × Σ in the near-horizon,
similarly to [19]. However, it may be possible to employ the strategy of [25] to prove that
the supergravity (Euclidean) on-shell action localises at the poles of the spindle, which
are the fixed points for the canonical Killing vector field associated to any (Euclidean)
supersymmetric solution of the theory [48].

There is also a number of assorted interesting questions in the field theory side. The
most direct one is to study the five-dimensional SCFTs in the background of S3 × Σ,
computing the localized partition function from first principles, and then showing that
in the large N limit the associated free energy reduces to (4.18). This is indeed an open
problem for SCFTs compactified on spindles in different dimension.

It is compelling that the five-dimensional off-shell free energy that we conjectured
here and the entropy function that was conjectured in [12] fit into a broader conjecture
for the free energies (i.e. minus the logarithm of partition functions) of SCFTs in various
dimensions, namely (5.9). These extend the idea of gravitational blocks put forward in [21]
in two directions. Firstly, from compactifications on smooth manifolds, to the realm of
compactifications on orbifolds. It is remarkable that compactifications on spindles can
be incorporated by a simple modification of the constraint obeyed by the fugacities (see
eq. (5.10)). This depends on the type of twist performed and it includes the standard
topological twist and the no-twist as special cases. Secondly, we have pointed out that
the form (5.9) should hold also for observables of higher-dimensional theories, beyond the
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entropy, associated to AdS2 solutions dual d = 1 SCFTs.
Using the AdS/CFT correspondence, the free energies (5.9) are generically expected to

arise as gravitational (Euclidean) on-shell actions, and their structure is suggested by the
fact that for supersymmetric solutions, this form should arise from summing contributions
at fixed points of the canonical Killing vector field, defined as a bilinear in the Killing
spinors of the solution [25, 49]. An immediate issue that would be nice to clarify is a
better justification of the ± signs in (5.9) and their relationship with the type of twist.
For example, while for field theories in odd dimensions we have proposed that the gluing
sign should be −σ, for field theories in even dimensions, the explicit examples indicate
that one should always pick the minus sign. It would interesting to find out whether the
functions that have not been considered so far, may have critical points that correspond
to new gravitational objects.

It is quite clear that the structure of (5.9) will extend to compactifications of SCFTs on
higher-dimensional21 orbifolds and in general we expect that the functions to extremize
will take the form of a sum of contributions from fixed points of the canonical Killing
vector on the compactification orbifold M. Assuming this is toric, for concreteness, there
will be as many equivariant parameters ǫI as the rank of the torus acting on M. One of
the simplest examples of this type of construction is given by twisted compactifications of
the d = 5 SCFT on M = Σ×Σg, that we discussed in section 6. We have shown that the
corresponding entropy function can be obtained iterating our conjecture for the off-shell
free energies twice and extremizing this reproduces the entropy of a corresponding class of
AdS2 × Σ× Σg supergravity solutions. More generally, we expect that there should exist
solutions of the type AdS2×Σ1×Σ2 inD = 6 supergravity and of the type AdS3×Σ1×Σ2 in
D = 7 supergravity, for which the corresponding entropy function and trial central charge
can be obtained following the rules we proposed in this paper. Interestingly, the former
case would be identified with the near-horizon limit of a novel class of supersymmetric
black holes in AdS6, that may be accelerating. Work along these lines is underway and
we hope to report in the near future.

As we continue to navigate the landscape of supergravity solutions corresponding
to branes wrapping orbifolds, it will be revealing to employ the approach developed in
[50–53], adapting it to situations with orbifold singularities. While this is already well
developed for solutions arising from M2 and D3-branes, it is tantalising to think that an
analogous geometric approach may be concocted for studying AdS5 solutions of D = 11
supergravity or other backgrounds with an AdS factor.
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Università degli Studi di Torino. DM would like to thank J. Gauntlett and J. Sparks for
insightful comments and enjoyable collaborations on related topics.

21The recent paper [42] discusses related setups, for compactifications of d = 5 and d = 6 SCFTs on
various smooth manifolds, including S2

ǫ × Σg and S2
ǫ1
× S2

ǫ2
.

43



A More details on the AdS4 × Σg solutions

A.1 Relation with the Lagrangian of [1]

Here we make contact between the D = 6 Lagrangian (2.1), that we use in the paper,
and the Lagrangian used in [1], given explicitly in [54]. In order to minimise confusion we
have relabelled some of the quantities in [54] as follows

ϕ1,2 7→ ϕ̂1,2 , F 3,6 7→ 1

2
F3,6 , m 7→ m1 , (A.1)

where the 1/2 factor is due to the unusual definition of the field strengths as, e.g., F3
µν =

1
2
(∂µA3

ν − ∂νA3
µ). Consistency between the equations of motion and the supersymmetry

equations requires ϕ̂1 = 0, and in this case the D = 6 Lagrangian in [54] reads

e−1L =
1

4
R− V̂ − |dσ|2 − 1

4
|dϕ̂2|2 −

1

16
e−2σ cosh(2ϕ̂2) |F3|2

− 1

16
e−2σ cosh(2ϕ̂2)|F6|2 + 1

16
e−2σ sinh(2ϕ̂2)F3

µνF6µν ,
(A.2)

where the scalar potential is

V̂ = −g21e2σ − 4g1m1e
−2σ cosh ϕ̂2 +m2

1e
−6σ . (A.3)

Defining the quantities

~ϕ = −
√
2
(

ϕ̂2, 2σ
)

⇐⇒ X1 = eσ+ϕ̂2 , X2 = eσ−ϕ̂2 ,

F1 =
1

2
(F3 + F6) , F2 =

1

2
(F3 − F6) ,

g = g1 , m = 2m1 ,

(A.4)

we obtain the Lagrangian given in (2.1), divided by 4.

A.2 Equivalence with the solutions of [2]

Below we show that the ten-dimensional background (2.34) - (2.37), obtained from the
uplift of the D = 6 solution of [1], is equivalent to the solution to massive type IIA
supergravity constructed in [2]. Let us start with the metric (4.14) of [2]

ds2s.f. =
L2
AdS4

(Hy)1/2F̂0

(

ds2AdS4
+ e2νds2Σg

+
H

4
ds2

S4

)

, (A.5)

where we restored the dimension-full AdS4 radius LAdS4 that was set to one in [2] and we
renamed the constant F0 in [2] as F̂0. The metric on the squashed hemisphere reads

ds2
S4 =

8

3
dµ2

0 + 2
(

dµ̂2
1 + µ̂2

1η
2
+ + dµ̂2

2 + µ̂2
2η

2
−
)

, (A.6)

where the coordinates µ0, µ̂1, µ̂2 satisfy the constraint µ2
0 + a+µ̂

2
1 + a−µ̂

2
2 = 1, and the

one-forms η± are η± = dφ± −m± ωg. The functions H and y are given by

H =
2

3µ2
0 + 4

(

a2+µ̂
2
1 + a2−µ̂

2
2

) , y3F̂ 2
0 =

3

2
µ2
0 , (A.7)
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while e2ν is a constant and reads

e2ν =
−κ +

√
κ2 + 8z2

4
. (A.8)

The constants a±, m± can be expressed in terms of κ and a constant parameter z as

a± =
1± ǫ

2
, ǫ =

κ±
√
κ2 + 8z2

4z
, m± =

κ± z

2
. (A.9)

In order to compare the two solutions we take

k2 =
a+
a−

, k8 =
16

9
a+a− , (A.10)

which are consistent with the constraint a++a− = 1 required by the definition of a±, and
relate our coordinates µ1, µ2 to those in [2] as

µ1 =
√
a+µ̂1 , µ2 =

√
a−µ̂2 . (A.11)

We then identify φ1 = φ+, φ2 = φ− and

p1 = 2m+ = κ+ z , p2 = 2m− = κ− z , (A.12)

thus having σ1 = η+, σ2 = η−. As consistency checks we have that 2(m+ + m−) =
p1+ p2 = 2κ and that the definition of k2 in (2.31) agrees with (A.10). Lastly, comparing
the overall factors in the metric and the dilaton of the two solutions, we find

g2 =

(

3

2

)3/2

k
3/4
8 L−2

AdS4
, λ2 =

(

3

2

)−1/6

k
1/4
8 F̂

−2/3
0 . (A.13)

The Romans mass (2.36) then reads F(0) =
F̂0

LAdS4

, reducing to the expression in [2] for

LAdS4 = 1. Writing our four-form flux (2.37) in the variables used in [2], we find

F(4) =
H

8

(

2µ0

3F̂0

)1/3

L3
AdS4

{

W
µ̂1µ̂2

µ0

dµ̂1 ∧ dµ̂2 ∧ η+ ∧ η−

− vol(Σg) ∧
[

m+

a+
dφ− ∧

(

3µ0µ̂2 dµ̂2 − 4a−µ̂
2
2 dµ0

)

+
m−

a−
dφ+ ∧

(

3µ0µ̂1 dµ̂1 − 4a+µ̂
2
1 dµ0

)

]}

,

(A.14)

where we defined
W = 9Hµ2

0 + 16H
(

a3+µ̂
2
1 + a3−µ̂

2
2

)

− 12 . (A.15)

This expression agrees with the F(4) given in [2] only partially22. A couple of useful
identities that we used for comparing the two solutions are

m+

a+
= −2e2ν [1− 2(a+ − a−)] ,

m−

a−
= −2e2ν [1− 2(a− − a+)] . (A.16)

22While the above F(4) satisfies the equations of motion and the Bianchi identity, we found that the
four-form flux given in [2] is not closed.
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B OSp(2|4) superalgebra from bilinears

Below we show that the OSp(2|4) superalgebra can be reconstructed from the Killing
spinors of our AdS4 × Σ solution, as expected. The fact that the Killing vectors of AdS
can be constructed as bilinears in the Killing spinors is well known. Here we demonstrate
that the D = 6 solution captures part of the R-symmetry of the dual d = 3, N = 2
SCFTs. Specifically, it includes the component of the R-symmetry along the spindle
isometry. The full R-symmetry would arise from working with the Killing spinors of the
uplifted ten-dimensional solution.

Let us recall the relevant ingredients from section 3.1. The Killing spinors of the D = 6
solution are a pair of symplectic-Majorana spinors, taking the form

ǫA = ϑ+ ⊗ ηA+ + ϑ− ⊗ ηA− , (B.1)

where A = 1, 2 is a symplectic index. The spinors ϑ± are the chiral components of a
Majorana Killing spinor ϑ = ϑ(xµ̂) in AdS4, obeying

ϑ∗ = B4ϑ , ∇̂µ̂ϑ =
1

2
γµ̂ϑ , (B.2)

thus we have ϑ = ϑ+ + ϑ− with γ5ϑ± = ±ϑ±. The spinors ηA± = ηA±(y) are Dirac spinors
defined on the spindle. Defining the following vector bilinear

Kµ = i ǫ′1Γµǫ1 , (B.3)

where ǫ1 and ǫ′1 are two Killing spinors, straightforward manipulations lead to

Kµ̂ = 2im(ξ′)∗ξ ϑ̄′γµ̂ϑ , Ky = 0 , Kz = 2(ξ′)∗ξ ϑ̄′ϑ . (B.4)

From (B.2) it immediately follows that

∇(µ̂(ϑ̄
′γν̂)ϑ) = 0 = ∇µ̂(ϑ̄

′ϑ) , (B.5)

hence
Kµ∂µ = 2(ξ′)∗ξ

(

imϑ̄′γµ̂ϑ ∂µ̂ + ϑ̄′ϑ ∂z
)

(B.6)

are Killing vectors for the D = 6 solution. One can check that ǫ′2Γµǫ2 = −(ǫ′1Γµǫ1)∗,
while ǫ′1Γµǫ2, ǫ′2Γµǫ1 and ǫ′AΓ7ΓµǫB are not Killing vectors, so there are no further vector
bilinears to consider.

To make contact with the OSp(2|4) superalgebra we need to look in more detail into
the structure of the Killing spinors in AdS4. Writing the unit radius AdS4 metric as

ds2AdS4 = u2ηmndx
mdxn +

du2

u2
, (B.7)

and defining the coordinates xµ̂ = (t, x1, x2, u) ≡ (xm, u), the Killing spinors on AdS4 can
be written as [55]

ǫAdS4
= e

1
2
(lnu) γ3

[

1 +
1

2u
xmγm(1− γ3)

]

ψ , (B.8)
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with ψ a constant spinor and {γm, γn} = u2ηmn. This can be conveniently split into two
independent Killing spinors as ǫAdS4

= ǫ+ + ǫ−, where

ǫ+ = u1/2ψ+ , ǫ− = u−1/2 (1 + xmγm)ψ− , (B.9)

with

ψ± ≡ I4 ± γ3
2

ψ =⇒ γ3ψ± = ±ψ± . (B.10)

Note that ǫ± and ψ± are not chiral spinors, since γ3 is not the chiral matrix. A Majorana
condition can be consistently imposed on ǫAdS4

, which implies that ψ and, in turn, ψ±
are Majorana spinors. We can then identify ϑ with ǫAdS4 and write the Killing vectors
in (B.4) as

Kµ̂ = 2im(ξ′)∗ξ
(

ǭ′+γ
µ̂ǫ+ + ǭ′+γ

µ̂ǫ− + ǭ′−γ
µ̂ǫ+ + ǭ′−γ

µ̂ǫ−
)

,

Kz = 2(ξ′)∗ξ
(

ǭ′+ǫ+ + ǭ′+ǫ− + ǭ′−ǫ+ + ǭ′−ǫ−
)

.
(B.11)

As standard, the two independent ǫ+ spinors are identified with the real Poincaré super-
charges Q and the ǫ− with the real superconformal supercharges S. For this reason we
shall refer to the different contributions in (B.11) as Kµ̂QQ, K

µ̂
QS, K

µ̂
SQ and K

µ̂
SS, respectively,

and likewise for Kz . Specifically, the components along the spindle are

KzQQ = 0 , KzQS = 2(ξ′)∗ξ ψ̄′
+ψ− ,

KzSS = 0 , KzSQ = 2(ξ′)∗ξ ψ̄′
−ψ+ ,

(B.12)

and the components along AdS4 are

KmQQ = 2im(ξ′)∗ξ u (ψ̄′
+γ

mψ+) , KuQQ = 0 ,

KmQS = 2im(ξ′)∗ξ
[

xm(ψ̄′
+ψ−) + xn(ψ̄′

+γ
m
nψ−)

]

, KuQS = −2im(ξ′)∗ξ u ψ̄′
+ψ− ,

KmSQ = 2im(ξ′)∗ξ
[

−xm(ψ̄′
−ψ+) + xn(ψ̄′

−γ
m
nψ+)

]

, KuSQ = 2im(ξ′)∗ξ u ψ̄′
−ψ+ ,

KmSS = (x · x+ u−2) bm − 2xm(x · b) , KuSS = 2u (x · b) ,
(B.13)

with bm ≡ 2im(ξ′)∗ξ u (ψ̄′
−γ

mψ−) and x · b = ηmnx
mbn. We now define the additional

parameters
am ≡ 2im(ξ′)∗ξ u (ψ̄′

+γ
mψ+) ,

Λm
n ≡ 2im(ξ′)∗ξ (ψ̄′

+γ
m
nψ− + ψ̄′

−γ
m
nψ+) ,

λ ≡ 2im(ξ′)∗ξ (ψ̄′
+ψ− − ψ̄′

−ψ+) ,

r ≡ 2(ξ′)∗ξ (ψ̄′
+ψ− + ψ̄′

−ψ+) .

(B.14)

It can be proven that in D = 4, for any pair of generic Majorana spinors Ψ1 and Ψ2, we
have

(Ψ̄1γ
µ̂1 . . . γµ̂nΨ2)

∗ = −Ψ̄1γ
µ̂1 . . . γµ̂nΨ2 (n ≥ 0) , (B.15)

namely any bilinear constructed with Majorana spinors is pure imaginary. It follows
that the bilinears inside the parentheses in all the parameters are pure imaginary. This
is consistent with the N = 1 AdS4 superalgebra, which is obtained by formally setting
2m(ξ′)∗ξ = 1 in am, bm, Λm

n and λ and r = 0. However, because we have N = 2, the
parameters are complexified by ξ and ξ′. The Killing vector K can then be expressed as

K = KQQ + KQS + KSQ + KSS , (B.16)
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with
KQQ = am∂m ≡ P ,

KSS = (x · x+ u−2) bm∂m − 2(x · b)(xm∂m − u ∂u) ≡ K ,

KQS + KSQ = λ(xm∂m − u ∂u) + Λm
n x

n∂m + r ∂z ≡ D +M +R ,

(B.17)

which have the formal structure of the anticommutators of the OSp(2|4) superalgebra.
Specifically, the left hand side of the equations above may be identified with the anti-
commutators {Q,Q}, {S, S}, and {Q, S}, respectively. On the right hand side we find
the bosonic generators of the SO(3, 2) isometry of AdS4, namely translations P , Lorentz
transformations M , dilatations D, and special conformal transformations K. Moreover,
we find that R ≡ r ∂z is the generator of the R-symmetry. The superalgebra may be
completed by computing the spinorial Lie derivatives LV ǫ+, LV ǫ− along the above Killing
vectors.
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[8] P. Ferrero, J. P. Gauntlett, J. M. Pérez Ipiña, D. Martelli, and J. Sparks,
“D3-Branes Wrapped on a Spindle”, Phys. Rev. Lett. 126 no. 11, (2021) 111601,
arXiv:2011.10579 [hep-th].

[9] P. Ferrero, J. P. Gauntlett, D. Martelli, and J. Sparks, “M5-branes wrapped on a
spindle”, JHEP 11 (2021) 002, arXiv:2105.13344 [hep-th].

[10] S. M. Hosseini, K. Hristov, and A. Zaffaroni, “Rotating multi-charge spindles and
their microstates”, JHEP 07 (2021) 182, arXiv:2104.11249 [hep-th].

48

http://arxiv.org/abs/1507.01515
http://arxiv.org/abs/1807.06031
http://arxiv.org/abs/hep-th/0007018
http://arxiv.org/abs/0911.4926
http://arxiv.org/abs/1302.4451
http://arxiv.org/abs/1203.0303
http://arxiv.org/abs/2012.08530
http://arxiv.org/abs/2011.10579
http://arxiv.org/abs/2105.13344
http://arxiv.org/abs/2104.11249


[11] A. Boido, J. M. P. Ipiña, and J. Sparks, “Twisted D3-brane and M5-brane
compactifications from multi-charge spindles”, JHEP 07 (2021) 222,
arXiv:2104.13287 [hep-th].

[12] P. Ferrero, M. Inglese, D. Martelli, and J. Sparks, “Multi-charge accelerating black
holes and spinning spindles”, arXiv:2109.14625 [hep-th].

[13] C. Couzens, K. Stemerdink, and D. van de Heisteeg, “M2-branes on Discs and
Multi-Charged Spindles”, arXiv:2110.00571 [hep-th].

[14] I. Bah, F. Bonetti, R. Minasian, and E. Nardoni, “M5-brane sources, holography,
and Argyres-Douglas theories”, JHEP 11 (2021) 140,
arXiv:2106.01322 [hep-th].

[15] C. Couzens, N. T. Macpherson, and A. Passias, “N = (2, 2) AdS3 from D3-branes
wrapped on Riemann surfaces”, arXiv:2107.13562 [hep-th].

[16] M. Suh, “D3-branes and M5-branes wrapped on a topological disc”,
arXiv:2108.01105 [hep-th].

[17] M. Suh, “D4-D8-branes wrapped on a manifold with non-constant curvature”,
arXiv:2108.08326 [hep-th].

[18] M. Suh, “M2-branes wrapped on a topological disc”, arXiv:2109.13278 [hep-th].

[19] D. Cassani, J. P. Gauntlett, D. Martelli, and J. Sparks, “Thermodynamics of
accelerating and supersymmetric AdS4 black holes”, Phys. Rev. D 104 no. 8,
(2021) 086005, arXiv:2106.05571 [hep-th].

[20] A. Cabo-Bizet, D. Cassani, D. Martelli, and S. Murthy, “Microscopic origin of the
Bekenstein-Hawking entropy of supersymmetric AdS5 black holes”, JHEP 10
(2019) 062, arXiv:1810.11442 [hep-th].

[21] S. M. Hosseini, K. Hristov, and A. Zaffaroni, “Gluing gravitational blocks for AdS
black holes”, JHEP 12 (2019) 168, arXiv:1909.10550 [hep-th].

[22] F. Benini, K. Hristov, and A. Zaffaroni, “Black hole microstates in AdS4 from
supersymmetric localization”, JHEP 05 (2016) 054, arXiv:1511.04085 [hep-th].

[23] J. Nian and L. A. Pando Zayas, “Microscopic entropy of rotating electrically
charged AdS4 black holes from field theory localization”, JHEP 03 (2020) 081,
arXiv:1909.07943 [hep-th].

[24] K. Hristov, S. Katmadas, and C. Toldo, “Matter-coupled supersymmetric
Kerr-Newman-AdS4 black holes”, Phys. Rev. D 100 no. 6, (2019) 066016,
arXiv:1907.05192 [hep-th].

[25] P. Benetti Genolini, J. M. Perez Ipiña, and J. Sparks, “Localization of the action in
AdS/CFT”, JHEP 10 (2019) 252, arXiv:1906.11249 [hep-th].

[26] P. Ferrero, J. P. Gauntlett, and J. Sparks, “Supersymmetric spindles”,
arXiv:2112.01543 [hep-th].

49

http://arxiv.org/abs/2104.13287
http://arxiv.org/abs/2109.14625
http://arxiv.org/abs/2110.00571
http://arxiv.org/abs/2106.01322
http://arxiv.org/abs/2107.13562
http://arxiv.org/abs/2108.01105
http://arxiv.org/abs/2108.08326
http://arxiv.org/abs/2109.13278
http://arxiv.org/abs/2106.05571
http://arxiv.org/abs/1810.11442
http://arxiv.org/abs/1909.10550
http://arxiv.org/abs/1511.04085
http://arxiv.org/abs/1909.07943
http://arxiv.org/abs/1907.05192
http://arxiv.org/abs/1906.11249
http://arxiv.org/abs/2112.01543


[27] A. Brandhuber and Y. Oz, “The D-4 - D-8 brane system and five-dimensional fixed
points”, Phys. Lett. B 460 (1999) 307–312, arXiv:hep-th/9905148.

[28] M. Cvetic, S. S. Gubser, H. Lu, and C. N. Pope, “Symmetric potentials of gauged
supergravities in diverse dimensions and Coulomb branch of gauge theories”, Phys.
Rev. D 62 (2000) 086003, arXiv:hep-th/9909121.

[29] L. J. Romans, “The F(4) Gauged Supergravity in Six-dimensions”, Nucl. Phys. B
269 (1986) 691.

[30] R. D’Auria, S. Ferrara, and S. Vaula, “Matter coupled F(4) supergravity and the
AdS(6) / CFT(5) correspondence”, JHEP 10 (2000) 013, arXiv:hep-th/0006107.

[31] S. M. Hosseini, K. Hristov, A. Passias, and A. Zaffaroni, “6D attractors and black
hole microstates”, JHEP 12 (2018) 001, arXiv:1809.10685 [hep-th].

[32] A. Guarino, D. L. Jafferis, and O. Varela, “String Theory Origin of Dyonic N=8
Supergravity and Its Chern-Simons Duals”, Phys. Rev. Lett. 115 no. 9, (2015)
091601, arXiv:1504.08009 [hep-th].

[33] D. L. Jafferis and S. S. Pufu, “Exact results for five-dimensional superconformal
field theories with gravity duals”, JHEP 05 (2014) 032,
arXiv:1207.4359 [hep-th].

[34] A. Passias, D. Prins, and A. Tomasiello, “A massive class of N = 2 AdS4 IIA
solutions”, JHEP 10 (2018) 071, arXiv:1805.03661 [hep-th].

[35] P. M. Crichigno and D. Jain, “The 5d Superconformal Index at Large N and Black
Holes”, JHEP 09 (2020) 124, arXiv:2005.00550 [hep-th].

[36] P. M. Crichigno, D. Jain, and B. Willett, “5d Partition Functions with A Twist”,
JHEP 11 (2018) 058, arXiv:1808.06744 [hep-th].

[37] H. Lu, C. N. Pope, and J. F. Vazquez-Poritz, “From AdS black holes to
supersymmetric flux branes”, Nucl. Phys. B 709 (2005) 47–68,
arXiv:hep-th/0307001.

[38] M. Cvetic, H. Lu, and C. N. Pope, “Gauged six-dimensional supergravity from
massive type IIA”, Phys. Rev. Lett. 83 (1999) 5226–5229, arXiv:hep-th/9906221.

[39] N. Seiberg, “Five-dimensional SUSY field theories, nontrivial fixed points and
string dynamics”, Phys. Lett. B 388 (1996) 753–760, arXiv:hep-th/9608111.

[40] A. Passias, “A note on supersymmetric AdS6 solutions of massive type IIA
supergravity”, JHEP 01 (2013) 113, arXiv:1209.3267 [hep-th].

[41] D. L. Jafferis, “The Exact Superconformal R-Symmetry Extremizes Z”, JHEP 05
(2012) 159, arXiv:1012.3210 [hep-th].

[42] S. M. Hosseini, I. Yaakov, and A. Zaffaroni, “The joy of factorization at large N :
five-dimensional indices and AdS black holes”, arXiv:2111.03069 [hep-th].

50

http://arxiv.org/abs/hep-th/9905148
http://arxiv.org/abs/hep-th/9909121
http://arxiv.org/abs/hep-th/0006107
http://arxiv.org/abs/1809.10685
http://arxiv.org/abs/1504.08009
http://arxiv.org/abs/1207.4359
http://arxiv.org/abs/1805.03661
http://arxiv.org/abs/2005.00550
http://arxiv.org/abs/1808.06744
http://arxiv.org/abs/hep-th/0307001
http://arxiv.org/abs/hep-th/9906221
http://arxiv.org/abs/hep-th/9608111
http://arxiv.org/abs/1209.3267
http://arxiv.org/abs/1012.3210
http://arxiv.org/abs/2111.03069


[43] S. M. Hosseini, I. Yaakov, and A. Zaffaroni, “Topologically twisted indices in five
dimensions and holography”, JHEP 11 (2018) 119, arXiv:1808.06626 [hep-th].

[44] N. Bobev and P. M. Crichigno, “Universal RG Flows Across Dimensions and
Holography”, JHEP 12 (2017) 065, arXiv:1708.05052 [hep-th].

[45] S. M. Hosseini and A. Zaffaroni, “Universal AdS Black Holes in Theories with 16
Supercharges and Their Microstates”, Phys. Rev. Lett. 126 no. 17, (2021) 171604,
arXiv:2011.01249 [hep-th].

[46] S. M. Hosseini and K. Hristov, “4d F(4) gauged supergravity and black holes of
class F”, JHEP 02 (2021) 177, arXiv:2011.01943 [hep-th].

[47] S. Giri, “Black holes with spindles at the horizon”, arXiv:2112.04431 [hep-th].

[48] L. F. Alday, M. Fluder, C. M. Gregory, P. Richmond, and J. Sparks,
“Supersymmetric solutions to Euclidean Romans supergravity”, JHEP 02 (2016)
100, arXiv:1505.04641 [hep-th].

[49] P. B. Genolini and P. Richmond, “Supersymmetry of higher-derivative supergravity
in AdS4 holography”, Phys. Rev. D 104 no. 6, (2021) L061902,
arXiv:2107.04590 [hep-th].

[50] C. Couzens, J. P. Gauntlett, D. Martelli, and J. Sparks, “A geometric dual of
c-extremization”, JHEP 01 (2019) 212, arXiv:1810.11026 [hep-th].

[51] S. M. Hosseini and A. Zaffaroni, “Geometry of I-extremization and black holes
microstates”, JHEP 07 (2019) 174, arXiv:1904.04269 [hep-th].

[52] J. P. Gauntlett, D. Martelli, and J. Sparks, “Toric geometry and the dual of
I-extremization”, JHEP 06 (2019) 140, arXiv:1904.04282 [hep-th].

[53] J. P. Gauntlett, D. Martelli, and J. Sparks, “Fibred GK geometry and
supersymmetric AdS solutions”, JHEP 11 (2019) 176,
arXiv:1910.08078 [hep-th].

[54] M. Suh, “Supersymmetric AdS6 black holes from matter coupled F (4) gauged
supergravity”, JHEP 02 (2019) 108, arXiv:1810.00675 [hep-th].

[55] H. Lu, C. N. Pope, and J. Rahmfeld, “A Construction of Killing spinors on S**n”,
J. Math. Phys. 40 (1999) 4518–4526, arXiv:hep-th/9805151.

51

http://arxiv.org/abs/1808.06626
http://arxiv.org/abs/1708.05052
http://arxiv.org/abs/2011.01249
http://arxiv.org/abs/2011.01943
http://arxiv.org/abs/2112.04431
http://arxiv.org/abs/1505.04641
http://arxiv.org/abs/2107.04590
http://arxiv.org/abs/1810.11026
http://arxiv.org/abs/1904.04269
http://arxiv.org/abs/1904.04282
http://arxiv.org/abs/1910.08078
http://arxiv.org/abs/1810.00675
http://arxiv.org/abs/hep-th/9805151

	1 Introduction
	2 Uplift of D=6 solutions to massive type IIA
	2.1 The D=6 gauged supergravity
	2.2 Improved uplift to massive type IIA
	2.3 The AdS6 solution and its uplift
	2.4 The AdS4 g solutions and their uplift

	3 The AdS4  solutions
	3.1 Local form of the solutions
	3.2 Global analysis I: metric and magnetic fluxes
	3.3 Solution of the regularity conditions
	3.4 Global analysis II: gauge fields and Killing spinors
	3.5 Uplift to massive type IIA and holographic free energy

	4 Field theory
	4.1 d=5 SCFTs dual to the AdS6 solution
	4.2 d=3 SCFTs dual to the AdS4 g solutions
	4.3 d=3 SCFTs dual to the AdS4  solutions

	5 Gravitational blocks for branes on spindles
	5.1 M2-branes
	5.2 D3-branes
	5.3 D4-branes
	5.4 M5-branes

	6 D4-branes wrapped on g
	6.1 AdS2g solutions
	6.2 Entropy function

	7 Discussion
	A More details on the AdS4 g solutions
	A.1 Relation with the Lagrangian of Karndumri:2015eta
	A.2 Equivalence with the solutions of Bah:2018lyv

	B OSp(2|4) superalgebra from bilinears

