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1 Introduction

It is well known that the generating function of the intersection numbers on
moduli space of p spin stable curves becomes the τ function of the generalized
KdV hierarchies (p-reduced KP hierarchies), which are related to a two dimen-
sional gravity [1, 2]. There are now many studies of the intersection numbers
including Gelfand-Dikii pseudo differential equation [3, 4]. We have proposed a
method of the calculation for this intersection numbers by a generalized Kontse-
vich matrix model, which was derived by the duality and replica method based
on the random matrix theory [5, 6, 7, 8]. For one point function, an expression
for single intersection numbers has been derived explicitly.

For the purpose of the extension to half integer spin p, we reformulated this
integral expressions by a new change of variables, and we have investigated the
intersection numbers of Ramond punctures for half-spin in previous articles I,
II [9, 10].

This reformulation enables us to obtain easily the intersection numbers for
integer p (Neveu-Schwarz punctures) for n point functions, which should be
consistent with the results obtained by the recursive method [11, 12] due to
Gelfand-Dikii equation. The evaluation of several marked points in general p
and for genus g was obtained in the recursive calculations [12], and we show in
this article that our method of the Laurent expansion agrees with them for the
lower orders, especially for three point functions.

The ADE singularities characterized by Dynkin diagrams are important top-
ics in statistical physics. TheDl singularity is represented by the algebraic equa-
tion yl−1+yx2+z2 = 0 (l ≥ 4). The Coxeter number defined by p = 2l−2 in Dl

singularity can be interpreted as a spin p. The weight system of Dl is known as
(a, b, c;h) = (2, l−2, l−1; 2(l−1)). The simply laced Lie algebra, Al, Bl, Cl, Dl,
are related to classical Lie groups SU(l+ 1), SO(2l+ 1), SP (l), SO(2l), respec-
tively. We have discussed Al, Bl, Cl, Dl cases, where HarishChandra theorem
can be applied for the random matrix models with external sources [8, 13].
These random matrix models were applied for the non-orientable surfaces or
Klein surfaces. Recently the Dl singularity has been discussed for the intersec-
tion numbers of one point function [14].

The open intersection numbers have been discussed based on the logarithmic
matrix models [15, 16, 17, 18, 19, 20, 21, 22, 23], which shows the extension of
the intersection theory of Riemann surface to open Riemann surface, i.e. it has
boundaries [17, 21]. The boundaries, similar to the D brane, are represented by
the logarithmic terms. The matrix model with a logarithmic potential for the
open intersection theory is written for general p (generalized Airy matrix model
with a logarithmic potential) [15],

Z =

∫

dBe−
c

p+1 trB
p+1+ktrlogB+trBΛ (1.1)

where B is a Hermitian matrix and k is a parameter. The matrix Λ is an
external source. This model is called as Kontsevich-Penner model, when p = 2.

The spin p is related to l as p = 2l−2 forDl type singularity. We investigated
before the case of Lie algebra so(N), sp(N) and found that the correspondent
one point function u(s) has a logarithmic terms [13], which makes a difference
from Al type. These cases were discussed as a manifestation of the feature of
non-orientable surface (Klein surface) further in [16, 8].

In this paper, we explicitly show that the intersection numbers of Dl type
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can be derived from the matrix model witha logarithmic term. By the Gaussian
integral of x for yl−1 + x2y + z2, we have 1/

√
y which turns to be a logarith-

mic potential by the exponentiation. This may give simple explanation of the
appearance of the logarithmic term in the matrix model of Dl singularity. In
general, an oscillating integrals of n-variables have asymptotic expansions with
logarithmic terms, related to Newton polygon [24] and it is well known that such
expansion is related to the resolution of the singularities. The Dl type is related
to a real algebraic curves and the Euler characteristics χ of a real algebraic
curve is obtained in the case of p = −1 in Dl type (p = 2l− 2) [13, 25, 26].

It is known that A5, A4, A3 (p=6,5,4) singularities correspond to Ashkin-
Teller model, 3-state Potts model and Ising model respectively [27, 28]. The
Ap−1 singularity has a central charge C = 2 − 6/p. The central charge C = 1

2
and critical exponent of the energy ν are consistent with the values of Ising
model. The anomalous conformal dimensions are ∆ǫ =

4
p , ∆φ = p−3

p(p−2) . These

dimensions and central charges agree with the well-known values of Ising (p = 4)
and 3-state Potts model (p = 5).

For Dl type singularities, the central charge is also given by C = 2 − 6
p ,

where p is Coxeter number p = 2l − 2. The interesting applications are found
in the condensed matter physics for the topological excitation of electron at the
boundaries, as Majorana fermions [21], and the edge excitation on the boundary
as Quantum Hall effect, for instance. Furthermore, in D4 singularity, there are
intriguing Ramond sector [29, 30], which is related to the vanishing relation for
one point function of g = 2+3m, m ∈ Z, for which we will discuss in this paper.

The spin p takes a value of positive integer according to the singularity
theory. However, as discussed for p = −1, Euler characteristic is obtained
from the continuation from positive integer to p = −1 in the expression of the
intersection numbers. The cases of p = 1

2 and p = 3
2 , which are fractional spins,

have been discussed in our previous papers [9, 10]. These cases correspond
to ”fermion”, and the genus expansion of one point function agree with the
selection rule due to Riemann-Roch theorem. As a conformal field theory (CFT)
in two dimensions, p = 3

2 case exists as βγ system in the supersymmetric non-
linear sigma model, which also corresponds to spanning forrest model with a
central charge C = −2 [31]. There is an interesting observation that for p = 1

2
case, the tautological relations become simple [32, 33, 34]. In this paper, by the
results of I,II [9, 10], we investigate the m point correlation functions of p = 1

2 ,
and find that the punctures of Ramond type appear in a pairwise as same as
p = −2 case.

The case p = −2 corresponds to the unitary matrix model of the lattice gauge
theory [35, 36, 37, 38]. The strong coupling region of this case has a character
expansion [39, 40]. We consider this character expansion [40] for the negative
p case, p = −2,−3, ... by the n-point function of U(s1, ..., sn) =<

∏

i tre
siM >,

which can be interpreted as Wilson loops.
This article is organized as following: One point intersection numbers of p

spin curves for genus g is shown in section 2 for Al. In section 3, one point func-
tions of Dl type is evaluated up to g = 11. In section 4, one point functions for
non-integer p case of A type and D type are discussed for p = 3

2 ,
1
2 ,− 1

2 ,−1,−2.
In section 5, the large g and large p limits are discussed. The integrality of
the intersection number is discussed in the relation to Bernoulli numbers. It is
shown that the denominators of the intersection numbers and Bernoulli num-
bers are same. In the limit p→ ∞, the intersection numbers reduce to Bernoulli
numbers [41], which are intriguingly connected to homotopy, differential topol-
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ogy and number theories [42, 43, 45, 46]. In section 6, the intersection numbers
for multi marked points are evaluated, which is consistent with the results by
the recursion relations. The section 7 is devoted to the evaluations of half spin
p = 1

2 ,− 1
2 and the negative integers p = −2 and p = −3 cases. For the negative

integer case, the strong coupling expansion is investigated in the relation to the
characters of U(N). In the section 8, we give summary and discussions.

2 One point function for Al type

Since the p spin curves of the moduli space has a correspondence to Ap−1 singu-
larity by mirror symmetry, we use the terminology of Al type for the l = p− 1
spin curves, which distinguishes the case D type.

For Al case, the generating function of the intersection number for one
marked point is expressed as [6, 7]

u(s) = < tresB >

=
1

s

∫

du

2iπ
e−

c
p+1 [(u+

s
2 )

p+1−(u− s
2 )

p+1] (2.1)

The generating function for the intersection numbers of Al (p = l+ 1) is evalu-
ated for small s by the replacement u = ( t

cs )
1/p,

u(s) =
1

spπ
· 1

(cs)1/p

∫ ∞

0

dtt
1
p−1e−t

× e−
p(p−1)

3!4 s
2+ 2

p c
2
p t

1− 2
p − p(p−1)(p−2)(p−3)

5!42
s
4+ 4

p c
4
p t

1− 4
p +··· (2.2)

This leads to

u(s) =
1

c
1
p s1+

1
p π

[Γ(1 +
1

p
)− p− 1

24
zΓ(1− 1

p
)

+
(p− 1)(2p+ 1)(p− 3)

5760
z2Γ(1− 3

p
) + · · · ] (2.3)

where z = c
2
p s2+

2
p . Writing this expansion with the intersection numbers <

τn,j >g (n is integer, and spin component j = 0, 1, 2, ..., p− 2) as

u(s) =
∑

g

< τn,j >g
1

π
Γ(1− j + 1

p
)c

2g−1
p pg−1s(2g−1)(1+ 1

p ), (2.4)

one obtain the intersection numbers as a polynomial of p. We have a relation
of n and j for non-vanishing intersection numbers,

(2g − 1)(1 +
1

p
) = n+

j + 1

p
(2.5)

which comes from the Riemann-Roch relation (RR) for s̃marked points by s̃ = 1

3g − 3 + s̃ =

s̃
∑

i=1

ni + (g − 1)(1− 2

p
) +

1

p

s̃
∑

i=1

ji (2.6)
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Thus the s dependence appears for one point case (s̃ = 1) as a power

s(2g−1)(1+ 1
p ) = sn+

j+1
p in (2.4). The intersection numbers ( in the case of p = 2),

are given by the first Chern class c1 or ψ, as

< τn1 · · · τns >g=

∫

M̄g,s

ψn1 · · ·ψns (2.7)

where M̄g,s is a compactified moduli space with s marked points on genus g
Riemann surface. The intersection numbers of one point τAl

(g) (Coxeter number
p= l+1) is thus given as [9, 10]

< τn,j >g=1 =
p− 1

24

< τn,j >g=2 =
(p− 1)(2p+ 1)(p− 3)

p · 5! · 42 · 3
Γ(1 − 3

p )

Γ(1− 1+j
p )

< τn,j >g=3 =
(p− 1)(2p+ 1)(p− 5)(8p2 − 13p− 13)

p2 · 7! · 43 · 32
Γ(1− 5

p )

Γ(1− 1+j
p )

< τn,j >g=4 =
(p− 1)(2p+ 1)(p− 7)(72p4 − 298p3 − 17p2 + 562p+ 281)

p3 · 9!44 · 15

×
Γ(1− 7

p )

Γ(1− 1+j
p )

< τn,j >g=5 = (p− 1)(2p+ 1)(p− 3)(p− 9)(4p+ 3)(32p4 − 162p3 + p2

+326p+ 163)
1

p411!453

Γ(1 − 9
p )

Γ(1− 1+j
p )

< τn,j >g=6 = (p− 1)(2p+ 1)(p− 11)(530688p8 − 5830544p7 + 16589332p6

+8955300p5 − 65056373p4 − 26944928p3 + 85178190p2

+80708428p+ 20177107)
1

p5 · 13!7 · 5 · 4633
Γ(1− 11

p )

Γ(1− 1+m
p )

(2.8)

where < τn,j >g=1=< τ1,0 >g=1 [7]. In [8], < τn,j > up to g = 9 is evalated.
When p = 2 (Kontsevich model), it leads to a simple expression,

< τ3g−2 >=
1

g!(24)g
(2.9)

There appear interesting vanishing relations for < τAl
>. For instance,ath

p = 3 case, < τAl
> are vanishing at g = 2 + 3m (m ∈ Z). For p = 5, < τAl

>
are vanishing at g = 3 + 5m (m ∈ Z). In general odd integer p, < τAl

> are
vanishing at g = (p+ 1)/2 + pm (m ∈ Z). Some of these relations can be seen
in the expressions of < τAl

> up to genus g = 9 in [8]. We will see later that
D4 (p = 6) type has this periodicity of the vanishing relation at g = 2 + 3m
(m ∈ Z) for D4.

For the case A2 (p = 3), one point function u(s) is given by the Airy function
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as [7]

u(s) =
1

Ns(3Ns)1/3
Ai(ζ)

=
1

Ns(3Ns)1/3

[

Ai(0)

(

1 +
1

3!
ζ3 +

1 · 4
6!

ζ6 +
1 · 4 · 7

9!
ζ9 + · · ·

)

+A′
i(0)

(

ζ +
2

4!
ζ4 +

2 · 5
7!

ζ7 +
2 · 5 · 8
10!

ζ10 + · · ·
)]

(2.10)

where ζ = −N2/3(4·31/3)−1s8/3, Ai(0) = 3−2/3/Γ(23 ) andA
′
i(0) = −3−1/3/Γ(23 ).

This Airy function leads to the intersection numbers of

< τ 8g−5−j
3

,j >g=
1

(12)gg!

Γ( g+1
3 )

Γ(2−j
3 )

(2.11)

which shows the vanishing relations for g = 2, 5, 8, ... (g = 2 + 3m, m ∈ Z), for
such case the value of spin j takes 2. The absence of g = 2, 5, 8, ... is due to
Stokes phenomena.

For p = 4, u(s) is written by the Bessel function, [8]

u(s) =
1

2
√
8
e

3
160 s

5 1

2sin(π4 )

[

I− 1
4
(
1

32
s5) + I 1

4
(
1

32
s5)

]

=
1

8

∞
∑

m,n=0

1

m!n!Γ(n+ 5
4 )

(
3

160
)m(

1

64
)2n+

1
4 s5m+10n+ 1

4 (2.12)

We have Riemann-Roch relation of (2.6) for the s-point intersection numbers
< τn1,j1τn2,j2 · · · τns,js >g. The factor (1− 2

p ) is a central charge ĉ = p−2
p . The

last term is also charge for p spin curves. Note this central charge ĉ is also valid
for Dl singularity, since the weight system of Dl singularity W = yl−1 + yx2,
qy = 1

l−1 , qa = l−2
2(l−1) . The central charge ĉ is given by 2− 2qy − 2qx = 1− 1

l−1 .

Since p = 2(l − 1), we have ĉ = 1 − 2
p for Dl case. Thus the Riemann-Roch

relation (2.6) is applied both for Al and Dl singularities.

3 One point function for Dl type

The singularity theory of Dl type is described as a two dimensional normal
singularity by the equation of xl−1+xy2+ z2 = 0 (l ≥ 4). The weight system is
(a, b, c;h) = (2, l− 2, l− 1; 2(l− 1)), where h is called as Coxeter . For Dl case,
we use the spin p value for Coxeter number h, which is related to l as p = 2l−2.
For D4, we have spin curve of p = 6.

The intersection numbers are extended from (2.7) to the one includes the
boundary. The tangent bundle is trivially on the boundary of the moduli space.
We need analogous term for the first Chern class on the boundary and introduce
the correspondent quantity σ for the boundary [21].

< τn1 · · · τnsσ
m >=

∫

M̄
ψn1 · · ·ψns (3.1)

wherem punctures on the boundary are added to (2.7). This is generalization to
open intersection numbers, and related to Dl singularity as we will see. Instead
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of working of the geometrical moduli space M̄, we study the equivalent partition
function of a matrix model as same as Al case. The partition function of a
matrix model is expressed by the n point correlation function u(s1, s2, ..., sn)
with a logarithmic potential [8].

We have the following one point function û(s) in the integral form for Dl,

The generating function û(s) of the intersection numbers < τ > for Dl

(p = 2l − 2) is given by

û(s) =
1

s

∫ ∞

0

due−
c

(p+1)
[(u+ s

2 )
p+1−(u− s

2 )
p+1] 1

√

1− s2

4u2

(3.2)

where c = N
p−1

∑ 1

ap+1
α

as shown in [7]. aα is eigenvalues of the external source.

The last factor is absent for Al case. It is written as

1
√

1− s2

4u2

=
1

2

(

√

u+ s
2

u− s
2

+

√

u− s
2

u+ s
2

)

=
1

2

(

e
1
2 log(u− s

2 )− 1
2 log(u+

1
2 ) + e

1
2 log(u+

s
2 )− 1

2 log(u− 1
2 )

)

(3.3)

Note that if we change u → −u, above term is invariant. If we write the
coefficient of the logarithm as k instead of 1

2 , two terms are k and −k coefficient,
and it leads to the polynomial of even power of k. This characterizes the Dl

type as we will discuss later.

The small s expansion of u(s) with u = t
1
p , becomes

û(s) =
1

Nπs

1

(cs)1/p

∫ ∞

0

dtt
1
p−1e−t[1− p(p− 1)

24
s2(cs)2/pt1−

2
p

−p(p− 1)(p− 2)(p− 3)

5! · 16 s4(cs)4/pt1−
4
p +

p2(p− 1)2

2 · (24)2 s4(cs)4/pt2−
4
p

−p
3(p− 1)3

3!(24)3
s6(cs)6/pt3−

6
p +

p2(p− 1)2(p− 2)(p− 3)

5! · 14 · 16 s6(cs)6/pt2−
6
p

−p
3(p− 1)3

3!(24)3
s6(cs)6/pt3−

6
p

−p(p− 1)(p− 2)(p− 3)(p− 4)(p− 5)

7!43
s6(cs)6/pt1−

6
p + · · · ]

× [1 +
1

8
s2(cs)2/pt−

2
p +

3

128
s4(cs)4/pt−

4
p +

15

3072
s6(cs)6/pt−

6
p + · · · ](3.4)

The last factor is the expansion of (3.3). The integer power of s, denoted as m,
shows the relation to genus g as 2g − 1 = m.

The small s expansion of û(s), with the normalization factors 1
pg−1 and
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gamma factor 1/Γ(1− 1+j
p ), gives the intersection numbers of one point case,

< τ1,0 >g=1 =
p+ 2

24

< τn,j >g=2 =
(p+ 2)(2p+ 1)(p− 6)

5760p

Γ(1− 3
p )

Γ(1− 1+j
p )

< τn,j >g=3 =
(p+ 2)(2p+ 1)(8p3 − 77p2 + 196p+ 188)

2903040p2

Γ(1− 5
p )

Γ(1− 1+j
p )

< τn,j >g=4 =
(p+ 2)(2p+ 1)(4p2 − 27p− 22)(18p3 − 133p2 + 308p+ 332)

1393459200p3

×
Γ(1− 7

p )

Γ(1− 1+j
p )

< τn,j >g=5 =
(p+ 2)(2p+ 1)(4p+ 3)(p− 6)

122624409600p4
(32p5 − 450p4 + 1741p3

−1642p2 − 6788p− 3288)
Γ(1− 9

p )

Γ(1− 1+j
p )

< τn,j >g=6 =
(p+ 2)(2p+ 1)

14!6!27 · 3p5 (530688p9 − 13260176p8 + 115768820p7

−412604468p6 + 276695515p5 + 1715374838p4 − 2129848328p3

−6843457424p2− 4961166736p− 1156803104)
Γ(1− 11

p )

Γ(1− 1+j
p )

< τn,j >g=7 =
(p+ 2)(2p+ 1)

16!21033p6
(211335p11 − 8586624p10 + 96830032p9

−488127956p8 + 889089716p7 + 1243914177p6 − 5937016268p5

−1741314004p4+ 21058826784p3+ 29690849392p2

+15502250816p+ 2905782080)
Γ(1 − 13

p )

Γ(1− 1+j
p )

< τn,j >g=8 =
(p+ 2)(2p+ 1)(p− 6)(3 + 4p)(5 + 6p)

18!2155p7
(462976p10

−15295120p9 + 179456596p8 − 953948892p7 + 2115904691p6

+586034636p5 − 9624755932p4 + 5128005728p3

+31236673872p2+ 25467952320p+ 6355800000)
Γ(1− 15

p )

Γ(1− 1+j
p )

< τn,j >g=9 = (2 + p)(1 + 2p)(16502445084498176+ 122234441454621184p

+362714955007461120p2+ 525312614038452992p3

+326733211545349216p4− 23742664329025152p5

−100306262063206224p6+ 8323562725999632p7

+24146966038644009p8− 6773140965548282p9

−2307841939577188p10+ 1677474927489096p11

−402367617574016p12+ 48227812538240p13

−2854331624448p14+ 64684523520p15)

× 1

271211974879377138647040000p8

Γ(1− 17
p )

Γ(1− 1+j
p )

(3.5)
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< τn,j >g=10 = (2 + p)(1 + 2p)(−24830402547748278784− 209477583844413564160p

−730557543123682249216p2− 1318998112825968482560p3

−1208129128709188488640p4− 333863005164255047776p5

+264649746344510118240p6+ 126068631741386072496p7

−78507951575573824290p8− 22445884710909365885p9

+21279933896679839896p10− 1348924974460414280p11

−2661096526358202656p12+ 1087695793798917040p13

−200715490239800960p14+ 19791837888816384p15

−993551356753920p16+ 19465064349696p17)

× 1

3579998068407778230140928000000p9

Γ(1− 19
p )

Γ(1− 1+j
p )

< τn,j >g=11 = ((−6 + p)(2 + p)(1 + 2p)(3 + 4p)(7 + 8p)

×(−467169353783096832− 3341630372025717504p

−9468101148218970624p2− 12751291781631800064p3

−6632138067837797184p4+ 1788770829880213088p5

+2276784479751975200p6− 728458396311840240p7

−535146263253641670p8+ 300779490648921045p9

+17161921882855788p10− 53942771498453544p11

+19196939796342336p12− 3360970337005104p13

+319429042188736p14− 15406349322752p15

+286370611200p16)

× 1

73191071620781243816214528000000p10

Γ(1− 21
p )

Γ(1− 1+j
p )

(3.6)

where n and j are determined by the Riemann-Roch selection rule of (2.6).
When p = 6, which corresponds toD4 (Coxeter number p is equal to 2l−2 for

Dl), the intersection numbers < τ >g are vanishing for g = 2+3k, k ∈ Z. This
vanishing intersection numbers can be seen explicitly as a factor (p−6) in above
expression. It is interesting to observe that the factor (p − 6) accompany the
factor (3 + 4p) in the g = 5, 8, 11 for both Ap−1 and Dl cases. [8]. The existing
factors (3 + 4p) are expected to appear in higher genus both for Ap−1 and Dl,
when g = 5+3m, (m = 0, 1, 2, ...). The vanishing condition of g = 2+3k, k ∈ Z
for p = 6 will be discussed at later section in more details.

We find for p = 2 that the simple expression for one point function (j = 0
for p = 2) is obtained from (3.5),

< τ3g−2 >=
1

g!6g
(3.7)

Above formula for p = 2 will be proved later in (4.9).
There is a relation to the open intersection numbers. The logarithmic po-

tential with a coefficient k has been studied so called as Kontsevich-Penner
model or Airy matrix model with a logarithmic potential [15, 16, 18]. Putting
p = 2 and k = 1

2 in the expressions of (1.1) [15, 18], the results agree with

(3.5). For instance, < τ1,0 >g=1=
p+2
24 becomes 1

6 for p = 2, which agrees with

< τ1 >= 1+12k2

24 = 1
6 with k = 1

2 in [15, 18]. < τn,j >g=2=
1
72 for p = 2

8



agrees with < τ4 >=
1+56k2+16k4

1152 = 1
72 for k = 1

2 . For non orientable surface,
taking account of projective plane (g = 1

2 ), Klein surface (g = 1), and crosscap
(g = 3

2 ), genus g is considered as a fractional (double genus) [13]. Thus for the
comparison with the expressions of < τ 3g′−1

2

> in [16, 18], we need a relation

g′ = 2g − 1 i.e. the one point function of (3.5) corresponds to < τ 3g′−1
2

> in

[16, 18], and the result completely agrees for the case of integer 3g′−1
2 . The case

p = 2 in Dl type means D2, so D2 case has a meaning of the Kontsevich-Penner
model as an open intersection theory, although l ≥ 4 case is discussed in the
singularity theory. The terms of < τ 3g′−1

2

>, which appear with half-integer

3g′−1
2 , have expressions of odd k polynomial, and they do not appear in Dl type

in (3.5).
For the open intersection numbers, there appear intersection numbers such

that < τ 5
2
>= 1

12 (k + k3). These are odd power of k. As we observed in (4.9),
we have sum of k and −k for the logarithmic correction, therefore adding these
two contributions, they are cancelled for such < τ 5

2
> intersection numbers.

This is a reason that we have no half integer indexed intersection numbers in
Dl type.

As noted in [15], such odd k intersection numbers with half integer indexed τ
are evaluated by the contour integral, and therefore can be regarded as Ramond
sectors.

Thus the intersection numbers belong to the orientable surfaces, which do

not include the case of half integer 3g′−1
2 . For general p, if we put k = 1

2 in [15],
we find also the agreement with (3.5).

For p = 6, which corresponds to D4, the intersection numbers become
τD4 = 1, 12 , 0,

1
40824 ,

13
122472 , 0 for g = 0, 1, 2, 3, 4, 5, respectively. These values

are obtained from (3.5) as the coefficients of Gamma function factors. They
agree with [14]. It is remarkable that τD4 is vanishing at g = 2, 5, since a factor
(p−6) appears in (3.5). This suggests τD4 (p = 6 case) is vanishing periodically
at g = 2 + 3k, k ∈ Z.

This periodic vanishing reallation of the intersection numbers is due to the
selection rule for spin p. We have from Riemann-Roch formula the relation
between the spin p and the genus g,

(p+ 1)(2g − 1) = pn+ j + 1 (3.8)

where j = 0, 1, 2, ..., p− 2. For the singularity theory, Dl has a relation

2g − 1 = pn′ +mα (3.9)

where mα is defined by the characteristic polynomial χ(t) for the weight system
(a, b, c;h) as

χ(t) =
1

th
(th − ta)(th − tb)(th − tc)

(ta − 1)(tb − 1)(tc − 1)
=

l
∑

α=1

tmα (3.10)

with l is Milnor number. j is mα − 1, which is the spin components of spin p.
For D4, the weight system becomes (2, 2, 3; 6), and mα = 1, 3, 5 (m2 = m3 =

3, double). The relation of (3.8) is written by n′ = n+ 1, j = mα − 1 in (3.9).
For p = 6 in D4, g = 1 corresponds to mα = 1 (j=0,n=1). g = 2 corresponds
to mα = 3 (j = 2, n = 3). g = 5, g = 8 correspond to mα = 3. Thus for
g = 2 + 3k (k ∈ Z), the exponent becomes mα = 3, which is doubled. This

9



correspondence is related to the vanishing relation of the intersection numbers
of D4 for g = 2 + 3k.

From (3.5 and (3.6)), It is easily recognized ; (i) large p behavior is same as
A-type (2.8), (ii) the intersection numbers of p = −1/2 are vanishing for g > 1
for all order of g (same as A-type), (iii) the intersection numbers of p = −2 for
D-type are vanishing for all genus g > 0. These remarkable properties will be
proved in the following sections.

Since we have derived exact one point function of Dl type, it may be inter-
esting to consider the negative values of p and half-integer p as discussed in Al

type [8, 9, 10]. In the next section, we examine the negative integer values of
p and half-integer p. Interesting applications of such non-positive integer cases
were discussed in [10] for Al type.

4 One point function of Dl type for the non-

positive integer cases

We have discussed the non-positive integer spin p for one marked point of the
Ap−1 type in the previous articles [9, 10]. Here we extend these results of A
type to D type for one marked point.

For Dl singularity, the relation of p = 2l − 2 gives the constraint that spin
p should be even integer. Since the intersection numbers are expressed by the
polynomial of p as (3.5), the analytic continuation of p to the general values
including the non-integer case is possible. Our formulation of a matrix model
allows the non-positive integer value of p.

In this section, we will find the remarkable coincidence of the intersection
number of Dl type with that of Ap−1 model with a logarithmic term, so called
generalized Kontsevich-Penner model.

• Change of variable

As discussed in [9, 30], although there is no Ramond contribution for Ap−1

case in the positive integer p, there appear Ramond punctures in Dl type (p =
2l − 2) [10, 30]. The Ramond contribution may be obtained by the residue of
y = 0 in the following integral representation by a change of variable from u to
y, following the discussion of [9, 10] as

u =
i

2
(y2 − 1

y2
) (4.1)

The factor of Dl logarithmic potential becomes after the change of variable of
(4.1),

u√
u2 − 1

=
y − 1

y3

y + 1
y3

(4.2)

The measure for Ap−1 type is now changed simply to i(y+1/y3)dy due to (4.2),
which reads that the measure is y ± 1

y3 , (+) sign for A-type and (−) sign for
D-type.

• Equivalence to generalized Kontsevich-Penner model of open

intersection numbers

10



Extension of Airy with logarithmic potential (Kontsevich-Penner model) to
general p spin case has been investigated with the logarithmic potential with co-
efficient k in [16, 15]. We will show that the intersection numbers of generalized
Kontsevih-Penner model with k = ± 1

2 are identical to that of Dl (p = 2l − 2)
intersection numbers.

For genus g = 1, the intersection number is

< τ >g=1=
p− 1 + 12k2

24
(4.3)

With k = ± 1
2 , it becomes

< τ >=
p+ 2

24
(4.4)

which agrees with τDl
in (3.5) . For genus g = 2, the generalized Kontsevich-

Penner model gives (Eq.(5.28) of [16]),

< τ >g=2=
1

p(12)2
[
(p− 1)(p− 3)(2p+ 1)

40
− (3p+ 1)k2 − 2k4] (4.5)

By putting k = ± 1
2 , we find exactly < τ >g=2=

1
5760p (p+ 2)(2p+ 1)(p− 6) for

D-type in (3.5).
Thus we find that the one point intersection number of Dl type (p = 2l− 2)

is same as the intersection numbers of generalized Kontsevich-Penner matrix
model with k = 1

2 . One can check more higher g case are consistent with
this identification. When p = 2, the generalized open intersection numbers
are evaluated in higher orders [18], in which a parameter N is same as our k.
The odd power terms of k are cancelled by adding ±k contributions, and the
results agree with Dl type intersection numbers with k = 1

2 . Note that the
open intersection number is described by the logarithmic potential with k = 1
[15, 16, 7, 17, 22, 23].

• p = 1 case

We now discuss and prove the remarkable features for specific values of p.
The first example is p = 1 case of Al. The intersection number < τ > becomes
vanishing in all order of g due to a factor(p− 1) in (2.8).

u(s) =
1

s

∫

due−
c
2 ((u+

s
2 )

2−(u− s
2 )

2)

=
i

s

∮

dy

2iπ
(y +

1

y3
)e

− ics
2 (y2− 1

y2
)

=
i

s

∮

dy

2iπ
(

1

−ics)
d

dy
e
− ics

2 (y2− 1
y2

)
(4.6)

which becomes vanishing due to the total derivative. This is consistent with a
factor (p− 1) in all order in (2.8).

For Dl case, the measure is a factor (y − 1
y3 ) instead of (y + 1

y3 ),

u(s) =
i

s

∮

dy

2iπ
[2y − (y +

1

y3
)]e

− ics
2 (y2− 1

y2
)

= −
∞
∑

m=0

1

22mm!(m+ 1)!
s2mc2m+1 (4.7)
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This is consistent with the expression of (3.5) for p = 1. The genus g is equal
to m.

• p = 2 case

For p = 2, using the representation of y, one point function u(s) is expressed
as

u(s) =
i

2
e−

5c
24 s

3

∮

dy

2iπ
(y ± 1

y3
)e

cs3

16 (y4+ 1
y4

)
(4.8)

where ± means A type and D type, respectively. With the change of variable
y = t

1
4 , this is written by the modified Bessel function Iν(z),

u(s) =
i

8
e−

5c
24 s

3

∮

dt

2iπ
(t−

1
2 ± t−

3
2 )e

cs3

16 (t+ 1
t )

=
i

8
e−

5c
24 s

3

[I− 1
2
(
cs3

8
)± I 1

2
(
cs3

8
)]

=
i

2
e−

5c
24 s

3

√

1

π(cs3)
e±

cs3

8 (4.9)

By taking c = − 1
2 , we find the close form of for A type (2.9); < τ3g−2 >=

1
g!(24)g ,

and the result of D-type (3.7); < τ3g−2 >=
1

g!6g . This gives a proof of (3.7).

• p = −1

When p = −1, one point function u(s) provides Euler characteristic χ(M̄g,1)
for Al type singularity [7] as

u(s) =
1

N

∫

du

2iπ

(

u− 1
2

u+ 1
2

)N

= − 1

N

∫ ∞

0

dz

2π

e−z

(1− e−z)2
e−Nz

=

∫ ∞

0

dz

2π
(
∑

B2n
zn−1

n!
)e−Nz (4.10)

where a change of variable (u − 1
2 )/(u + 1

2 ) = e−z is used and a factor 1/N2

represent the genus g expansion. This u(s) gives Euler characteristic χ(M̄g,1) =
ζ(1 − 2g) = (−1)g 1

2gB2g, where Bn is a Bernoulli number (B2 = 1
6 , B4 =

− 1
30 , B6 = 1

42 , ...).
For Dl type, if we put p = −1 in (3.5) with j = 0 (gamma function of the

denominator becomes one for p = −1, j = 0, and numerator gamma function
gives (2g − 1)!), , we find that < τ >g as 1

24 ,− 7
960 ,

31
8064 , ... for g = 1, 2, 3, ....

These numbers are equal to Euler characteristics χ

χ = (1 − 21−2g)
B2g

2g
. (4.11)

In the limit p→ −1, (3.2) becomes

û(s) =
1

2

∫

due−clog( u+1
u−1 )

u√
u2 − 1

=
1

2

∫

du(
u− 1

u+ 1
)c

u√
u2 − 1

(4.12)
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By the change of variable (u − 1)/(u + 1) = e−z, du = −2e−z/(1 − e−z)2dz =
(−2)(ez/2 − e−z/2)−2dz, u/

√
u2 − 1 = 1

2 (e
z/2 + e−z/2), it becomes after partial

integration,

û(s) =

∫

dz
1

ez/2 − e−z/2
e−Nz (4.13)

where c is replaced by N to make clear of genus dependence, as 1
N2g series.

Above integral reduces to (4.11), with 1/24, 7/960,... for g = 1, 2, .... This
χ is same as virtual Euler characteristics, obtained for o(2N) matrix model
as a non-orientable surface [8]. For p = −1, there is no ψ class, and only
Euler class (Witten class) exists. Since Dl type is related to o(2N) Lie algebra,
it is reasonable to obtain the result of (4.11), which is same as a virtual Euler
characteristics of real algebraic curves [26]. Indeed, we have obtained this virtual
Euler characteristic of real algebraic curves for so(2n + 1), so(2n), sp(n) cases
as antisymmetric matrix models [13, 8].

• p = − 1
2

It is remarkable that the intersection number has a factor of (2p+ 1) for Dl

type, which is same as Al case (2.8). The reason of this factor (2p+1) exists for
all genus (g > 1) is explained by the change of variable of (4.1). The exponential

factor in (3.2) becomes simply as e−c s1/2

y for p = −1/2. Therefore we have for
Dl case with p = − 1

2 from (4.2),

û(s) =

∮

c

dy

2iπ
(y − 1

y3
)e−c s1/2

y (4.14)

where the integral is evaluated by a contour around y = 0. This gives non-
vanishing term of order s, which means g = 1, but the remaining terms of all
higher genus (g > 1) should vanish due to Cauchy theorem.

• p = −2

In Ap−1 matrix model, the case p = −2 becomes equivalent to the unitary
matrix model (BGW) model [35, 36], and the intersection numbers agree with
BGW matrix model as shown in [40].

For Dl (p = 2l − 2) case, there is a factor (p + 2) for all genus case as in
(3.5). This may be explained as follows [40]. We have in the p = −2 case
l = (p+ 2)/2 = 0 for Dl, namely D0 case,

û(s) =
1

s

∮

du

2iπ
e−

1
u+s+

1
u

(

u+ s

u

)k

= − 1

4π
√
s

∫

dx
1

x2
e
− 4x2

1+sx2 (
1− ix

√
s

1 + ix
√
s
)k

= − 1

2
√
πs

(−s1
8
(4k2 − 1) + s2

1

3!27
(4k2 − 1)(4k2 − 9)

−s3 1

5!29
(4k2 − 1)(4k2 − 9)(4k2 − 25) + · · · ) (4.15)

The second line is derived by the change of variable u = 1
2 (−1 + i

x
√
s
). Since

the coefficient of the logarithmic factor of Dl is k = 1
2 , we find the vanishing

results of û(s) from above equation. This gives a proof for a factor p+2 for the
intersection numbers in all orders of D-type (3.5).
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BGW model is considered for the unitary matrix, and its extension to O(N)
group was studied in [38]. There appears a phase transition between weak
coupling (small s) and a strong coupling regions (large s).

• Large s expansion for p = −2

The large s expansion was investigated in [40] based on (4.15) for p = −2 of
Al type. Due to two terms of (1.1), the extension of the large s expansion for
p = −2 case of Dl type is straightforward. We obtain by the shift u→ (u−1)/2
following [40],

û(s) =
1

2

∮

du

2iπ
e

4
2(u2

−1) [(
u+ 1

u− 1
)k + (

u+ 1

u− 1
)−k]

=
1

2

∞
∑

1

4m

m!sm

∮

du

2iπ

1

(u2 − 1)m
[(
u+ 1

u− 1
)k + (

u+ 1

u− 1
)−k] (4.16)

with k = 1
2 . Noting that

∮

du

2iπ

1

(u2 − 1)m
(
u + 1

u − 1
)k = − 2

π
sinπk

∫ ∞

1

dx
(x + 1)k−m

(x − 1)k+m

= − 2

π
(sinπk)21−2m(2m− 2)!

Γ(−k −m+ 1)

Γ(−k +m)
(4.17)

we obtain û(s) in the large s expansion. In the unitary matrix model, we put
k = −N and the result agree with the strong coupling expansion (character
expansion) [40].

• Half-integer p = 1
2 and 3

2

For Dl type, with the change of variables u→ y in (4.1), one point function
û(s) is

û(s) =
1

s

∮

dy

2iπ
(y − 1

y3
)g(y) (4.18)

Note that the difference between Al and Dl is a factor of (y± 1
y3 ), where (+) is

for Al and (−) is for Dl. The factor g(y) is same as Al case. We have for Al,

u(s) =
1

s

∫

du

2iπ
e−

1
(p+1)

[(u+ s
2 )

p+1−(u− s
2 )

p+1] (4.19)

By the change of variable of u = i
2 (y

2 − y−2), it becomes after the replace
u→ su/2, we have for Al case (+) and Dl case (−)

u(s) =
i

2

∫

dy

2iπ
(y ± 1

y3
)e

− sp+1

(p+1) (
i
4 )

p+1 1

y2(p+1) [(y
2−i)2p+2−(y2+i)2p+2]

(4.20)

where the exponential factor g(y) is expressed as

g(y) = e
c′s3/2(3y− 1

y3
)
(p =

1

2
, c′ = −1

6
i1/2) (4.21)

The half-integer p case is related to Ramond sector [9, 10]. We assume Riemann-
Roch relation for p = 1

2 is valid as

3g − 3 + 1 = n+ (g − 1)(1− 2

p
) +

j

p
(4.22)
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with p = 1
2 and j = −1. j = −1 means Ramond puncture [10]. This selection

rule indeed valid for the small s expansion of u(s). We have from (4.22)

n = 6g − 3 (4.23)

which means that u(s) is a power series of s6g−3 and the intersection number is
given by the coefficient, < τn,j >g=< τ6g−3,−1 >g.

The one point function u(s) for p = 1
2 for Al is evaluated with the integral

by part,

u(s) =
i

2

∮

dy

2iπ
(y +

1

y3
)e

c′s3/2(3y− 1
y3

)
=

i

6c′s3/2

∮

dy

2iπ
y
d

dy
e
c′s3/2(3y− 1

y3
)

= − i

6c′s3/2

∮

dy

2iπ
e
c′s3/2(3y− 1

y3
)

= 2

∞
∑

g=1

(−1)g

g!(3g − 1)!
(
1

48
)gs6g−3 (4.24)

with c′ = −i1/2/6. The summation is over genus g due to (4.23).
This generating function of the intersection numbers shows the precise agree-

ment with (2.8). Note that Γ(1 − 2g−1
p ) in (2.8) is changed to Γ(−1) by mul-

tiplication factor, and this Γ(−1) is interpreted as a normalization factor for
the case of p = 1

2 . Then we find the precise agreement for p = 1
2 case between

(4.24) and (2.8). The case of p = 1
2 is interpreted as a manifestation of Ramond

puncture since spin component is j = −1 (The denominator Γ(1− 1+j
p ) in (2.8)

becomes one). This fascinating result of p = 1
2 will be further discussed in the

next section related to the denominator of Bernoulli numbers. The intersection
numbers are rational numbers and the denominator is common denominator of
Bernoulli numbers. In p = 1

2 case, there appears cancellation of this numbers
of (5.10).

For Dl type (p = 1/2, l = 5/4), it becomes from (4.2)

û(s) =
i

2

∮

dy

2iπ
(y − 1

y3
)e

cs3/2(3y− 1
y3

)

=
i

2s

∮

dy

2iπ
(y − s2

y3
)e

cs(3y− s2

y3
)

(4.25)

This integral is written as the derivative of the exponent by s. Using the same
integral as (4.24), we obtain

û(s) =
i

6cs

d

ds

(
∮

dy

2iπ
e
3csy− cs3

y3

)

= 2

∞
∑

g=1

(−1)g(6g − 1)

g!(3g − 1)!
(
1

48
)gs6g−3 (4.26)

where c = − 1
6 i

1
2 . This result is consistent for p = 1

2 in (3.5) as < τ >g=1=
p+2
24 = 5

48 . The expression of p = 1
2 for Dl (l =

1
2 (p+ 2) = 5

2 ) is obtained solely
from the residue calculation, which means that this case is Ramond puncture
with j = −1 [10].

For p = 3
2 of Al type, it corresponds to βγ system as discussed in [9]. There

are two different punctures belongs to Neveu-Schwarz and Ramond sectors.
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From (4.20), Dl case is expressed as

g(y) = e
cs3/2(5y3− 10

y + 1
y5

)
(p =

3

2
, c =

4i

5
(
i

4
)5/2) (4.27)

u(s) =

∮

dy

2iπ
(y − 1

y3
)e

cs
3
2 [5y3− 10

y + 1
y5

]
(4.28)

The small s expansion gives < τn,j >g s
n+ 2

3 (j+1), where j = −1,− 1
2 , 0. The spin

j = −1 corresponds to Ramond sector, and Neveu-Schwarz sector is j = − 1
2 , 0.

The Ramond sector (R) is evaluated by the contour integral for Al of p = 3
2 in

[9],

uR(s) =
5

25
c2s5 − 7

3
· 54

216
c6s15 +

79 · 11
10!

· 3
257

224
c10s25 + · · · (4.29)

where s(2g−1)(1+ 1
p ) = sn+

1
p (j+1). If we take p = 3

2 and j = −1, then we have

s
10
3 g− 5

3 . The first term of above equation is for g = 2, and the second term is
for g = 5. For Dl, p =

3
2 , the contribution of Ramond sector becomes

uR(s) =
105

25
c2s5 − 19 · 17 · 54

219
c6s15 +

29 · 1663 · 55
32232

c10s25 + · · · (4.30)

5 Large p, large g limits and integrality

In a recent paper [14], the asymptotic behaviors of the intersection numbers
for Ap−1, Dl and E6 types for the large g are discussed based on the ordinary
differential equations (ODE). In this section, we consider the large g limit of
Ap−1 and Dl types based upon the integral representation of the intersection
numbers u(s), which may be simpler than the analysis of ODE.

The exponential parts of u(s) of Ap−1 and Dl are same. We write the
exponent as a function f(u), which becomes

f(u) = c((u+
s

2
)p+1 − (u− s

2
)p+1) (5.1)

This function f is a polynomial of u, hence this is an algebraic relation [14].

The one point function u(s) is a series of s(1+
1
p )(2g−1). Thus, large g limit is

equivalent to the large s limit, and this limit is obtained by a saddle point
method for the exponent f(u). By the scaling u→ s

2u, f(u) becomes

f(
su

2
) = c(

s

2
)p+1((u + 1)p+1 − (u − 1)p+1) (5.2)

We denote this exponent as g(u). By the saddle point method, the first deriva-
tive of g is vanishing,

dg

du
= c(p+ 1)(

s

2
)p+1((u+ 1)p − (u− 1)p) = 0 (5.3)

which reads to

(
u+ 1

u− 1
)p = 1 (5.4)
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The solution of this equation is u+1
u−1 = e2πi/p, i.e. u = (eπi/p + e−πi/p)(eπi/p −

e−πi/p). Thus, f(us/2) = −csp+1(2isinπ
p )

−p. The intersection number < τ >g

is written by a contour integral of t (t = s2+2/p) in the large g limit apart from
Gamma function of the definition in (2.4),

< τ >g=

∮

dt

2πi

1

tg+1
t−1/2e−ctp/2(2isin(π/p))−p

(5.5)

where t−1/2 factor comes from 1/s1+
1
p in the front of the integral of u(s), which

corresponds to genus zero contribution. We expand the exponential term as
∑

1
m! (f(su/2))

m, with pm
2 − 1

2 = g. We have an asymptotic behavior in the
large g limit as

< τ >g∼
2(p+ 1)

1
p sinπ

p

(2g−1
p )!

(
1

4p(p+ 1)
2
p (sinπ

p )
2
)g (5.6)

where c = 1
p+1 and the normalization factor 1

pg−1 is included. Thus the term of

power (−g) becomes [(p+ 1)
2
p 4p(sinπ

p )
2]−g, which agrees with known 1

(24)g for
p = 2 case.

For Dl (p = 2l − 2) type, the exponential term is same as Ap−1. For the
large g behavior, the power g part ag becomes same.

Note that for p = 1
2 , there is no finite saddle point solution of (5.4), except

u = ∞. The asymptotic term of (5.6) diverges for p = 1
2k , (k ∈ Z). For p = 1

2 ,
we have used the change of variable from u to y, and have obtained the explicit
form of (4.24) for the large g limit. It is remarkable that the polynomial of p of
order pg in the intersection numbers of genus g has all real roots. Namely the
zeros of the polynomial are on the real axis.

The values of this polynomials at p = 1
2 are − 1

2 , 5, (−32 ·5 ·7), (3 ·4 ·5 ·7 ·13)
for g = 1, 2, 3, 4, respectively. These numerators cancel with the denominator of
Bernoulli numbers in (5.10), and the intersection numbers of p = 1

2 is expressed
simply as (4.24). This fascinating feature of p = 1

2 case shows that there is
a characteristic topological meaning of the curves of Riemann surface for the
fermionic spins.

The intersection numbers < τ >g are rational numbers since they involve the
inverse of automorphism from the orbifold. As remarked by Zagier [45], there
is a property of the integrality by multiply certain factors of two Pochhammer
symbols to the intersection numbers < τ >g. The denominators of the expres-
sion of < τ >g are same for Ap−1 type and Dl type as (2.8) and (3.5). Thus the
integrality can be obtained by the application of the same Pochhammer symbols
for both cases.

As an example of integrality, with the multiplication of Pochhammer symbol
(x)n = x(x + 1) · · · (x + n − 1) to < τ >g=5n, the following quantities become
[14, 45, 18].

an = (2103552)n(
3

5
)n(

4

5
)n < τ >g=5n

bn = (2123554)n(
2

5
)n(−

1

10
)n < τ >g=5n (5.7)
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which are integers (apart from the normalization of 1
pg−1 ), where < τ >g=5=

161/777600000 for A4 (p = 5) in (2.8). The generating function
∑

bnt
n is

algebraic, while an grows exponentially [45].
As evaluated in [41, 8], the higher spin p limit (p→ ∞) of each intersection

numbers of a fixed genus g shows interesting features, which are expressed by
Bernoulli numbers B2g. From (2.8) and (3.5), it is easily noticed that the values
of the coefficients of highest order of p become same for Ap−1 and Dl case for a
fixed genus g.

lim
p→∞

< τ >g |Ap−1 = lim
p→∞

< τ >g |Dl
=

(−1)g+1B2g

(2g)!(2g)
pg +O(pg−1) (5.8)

The denominators of the expression of < τ >g are same, and then integrality
should be same for Ap−1 and Dl. The result of (5.8), which reduces to Bernoulli
number Bn, has been obtained in [41], and the relation to the partition function
of black hole is discussed. With σ = s

p , u
p+1 = x2, u(s) is written in the large

p,

u(s) =
2

σ

∫

dx

2iπ
x−1+ 2

p e−
2c

p+1x
2shσ

2

=
2

σ
Γ(

2

p
)(

2c

p+ 1
)−

1
2 (
σ

2
)−

1
p exp(−1

p
log

shσ
2

σ
2

) (5.9)

Noting that log
sh σ

2
σ
2

=
∑

(−1)n−1B2nσ
2n

(2n)!2n , the Bernoulli number B2n is obtained

for the intersection number in the large p limit.
The notation of Bernoulli numbers are B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 , B8 =
− 1

30 , B10 = 5
66 , B12 = − 691

2730 , B14 = 7
6 , B16 = − 3617

510 . The denominator of
< τ >g is common in the denominator of B2g/((2g)!(2g)) for arbitrary p, since
the intersection number is described by the multiplication of polynomial of p to
B2g/((2g)!(2g)) for Al and Dl cases.

The denominator of B2g/(2g) is given by [42, 43]

denominator
(B2g

2g

)

=
∏

p>2,(p−1)|2g
p1+vp(2g) (5.10)

The condition of the prime p is (p − 1)|(2g), which means the (p − 1) divides
(2g), and vp(N) is the largest exponent e such that pe|N . For instance, the
denominator of B1000/1000 is 24 · 3 · 54 · 41 · 101 · 251. Thus the integrality of
< τ >g is obtained by the multiplication of the factor of the (5.10) with a factor
(2g)!.

The denominator of B2k/k counts the numbers of distinct J-class map:
Sm+4k−1 → Sm as shown in (5.13) [43]. The numerator of B2k/2k is related to
differential topology such as characteristics. Indeed we have for p = −1, Euler

characteristics ζ(1 − 2g) = (−1)gB2g/2g for Ap−1, and (1 − 22g−1)
(−1)gB2g

2g for

Dl [8].
The asymptotic behavior for large g of B2g is easily obtained by the formula,

ζ(2g) =
(2π)2g

2(2g)!
|B2g| (5.11)

Since ζ(2g) =
∑

1
n2g ∼ 1 (for g → ∞), |B2g| ∼ 2(2g)!

(2π)2g .
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The next leading term for p → ∞ in (5.8) may be evaluated similar to the
derivation of (5.9). . From the lower order of g in (2.8) and (3.5), the intersection
numbers are expressed for p→ ∞ and a fixed g,

< τ >g=
|B2g|pg
(2g)!(2g)

[1 +
a1(g)

p
+
a2(g)

p2
+ · · · ] (5.12)

where an(g) is a polynomial of integer coefficients.
Since the denominator of < τ >g is given by the denominator of B2g/2g as

shown above, it is interesting to note this implies the existence of a factor in the
numerator of < τ >g. In the case of p = 5 (A4 type), the denominator of B10/10
is 22 · 3 · 11, from the integrality of a1 in (5.7) (g=5), the factor 11 should be in
the numerator of < τ >g=5. Indeed the factor 2p + 1 gives 11 for p = 5. The
factor (2p + 1) i.e. 11 exists in all < τ >g and it cancels with all denominator
of < τ >g=5n, since B5g/(5g) has 11 in the denominator due to the formula of
(5.10). The factor (2103552)n(35 )n(

4
5 )n in (5.7) gives the cancellation in part of

the denominator of < τ >5g through the expression of Bernoulli number B2g.
The another number of series c5n = (45 )n(

1
5 )n < τ >5n, which is found to

be integrality in [14] gives a factor 31, 41, 51, 61, ... due to (15 )n. Such prime
numbers 31,41,61,.. appear in the denominator of < τ >5g in higher genus
g, and these prime numbers should be cancelled with Pochhammer symbol of
(15 )n. Thus the integral numbers an, bn, cn are consistent with the integrality of
< τ >5g.

The relation of the numerator of Bernoulli number B2k to differential topol-
ogy Θ4k−1 is known as Milnor exotic 7 sphere. The order of Θ4k−1, card(Θ4k−1)
is given by the stable homotopy Π4k−1 as [43, 42]

card(Θ4k−1) = 22k−3(22k−1 − 1) · card(Π4k−1) ·
B2k

2k
(5.13)

For 4k = 2, it becomes 28 = 2(23 − 1) · 240 · ( 1
30 )/4. The numerator of < τ >g

has therefore a relation to differential topology and homotopy theory. Exotic 7-
sphere is related E8 singularity (x5+y3+z2 = 0) [43] and 28 different differential
structures are described by algebraic equation such that x2k−1

1 +x32 +x23 + x24 +
x25 = 0(Σ(2k − 1, 3, 2, 2, 2)) (k=1,2,...,28) [46].

For E6 singularity, the intersection numbers are evaluated by the ODE [14],
and the denominators of τE6 are not directly expressed by Bernoulli numbers ,
although it is closely related. The relation of Bernoulli number to mapping class
group Γg and characteristic classes has been discussed in [44]. The intersection
numbers of half-integer p spin curve may have interesting further applications
for topology and mapping class group.

6 n-point functions of Al types

The change of variable from u to y in (4.1) is useful for the evaluation of higher
point correlation functions u(s1, ..., sn). We have checked to obtain the known
results for the integer values of p = 3, 4, 5 of [11, 12] by the Laurent expansion
of y.

• two point functions for integer p

19



The two point function u(s1, s2) is written as, (for p = 1
2 , see (7.11)),

u(s1, s2) = −4(
s1
s2

)
1
p

∮

dy1dy2
(2iπ)2

(y1 +
s
2+ 2

p

1

y31
)(y2 +

s
2+ 2

p

2

y32
)

× 1

y41

exp[
∑2

i=1(−c)(y
2p
i − p(2p+1)

3 s
2+ 2

p

i y2p−4
i + (2p+1)p(2p−1)(p−1)

30 s
4+ 4

p

i y2p−8
i + · · · )]

[1− s
2+ 2

p
1

y4
1

− ( s1s2 )
1
p 1
y2
1
(y22 −

s
2+ 2

p
2

y2
2

)]2 +
4s

2
p
1

y4
1
(s1 + s2)2

(6.1)

For p = 1
2 , it becomes as (7.11) with a slight difference of notation of c (a factor

3 difference).
The selection rule of (2.6) is

2(g − 1)(1 +
1

p
) + 2 = n1 + n2 +

1

p
(j1 + j2) (6.2)

The two point function is expressed as

u(s1, s2) = C
∑

ni,ji

< τn1,j1τn2,j2 > s
n1+

1
p (1+j1)

1 s
n2+

1
p (1+j2)

2 (6.3)

where C is a constant., which involves factors of gamma-function. This two
point function and the intersection numbers < τn1,j1τn2,j2 > for Neveu-Schwarz
punctures are evaluated in general p in [41]. Here we reconsider two point func-
tions under the formula by the integral y in (6.1), which may be easily obtained
in more systematic ways for both Neveu-Schawrz and Ramond punctures. The
numerator and denominator of (6.1) are expanded in the small s1 and s2.

As an example, the case < τ2,1τ2,1 > of p = 4, we find

(ii.5) u(s1, s2) = s
5
2
1 s

5
2
2

∫ ∞

0

dy1dy2e
−c(y8

1+y8
2)(

1

y131
(−2816y32 + 7680y112 )

+
1

y211
(−28728y112 + 27888y192 − 2880y272 )) =

11

240
s

5
2
1 s

5
2
2 [Γ(

1

2
)]2 (6.4)

By multiplying a factor 1
p = 1

4 , it leads to < τ2,1τ2,1 >=
11
960 , which agrees with

[11].
We have checked < τ1,1τ3,1 >g=2=

11
4320 for p = 3, < τ1,1τ3,1 >g=2=

17
1200 for

p = 5, which are genus g = 2 cases.

• three point functions for integer p

Three point function u(s1, s2, s3) is given for A type by

u(s1, s2, s3) = −8(
s1
s3

)
1
p

∫

1

(2iπ)3

3
∏

i=1

dyi

3
∏

i=1

(yi +
s
2+ 2

p

i

y3i
)e−c

∑
(y2p

i +··· )

× 1

y41

1

1− s
2+ 2

p
1

y4
1

− ( s1s2 )
1
p 1
y2
1
(y22 −

s
2+ 2

p
2

y2
2

)− 2is
1
p
1

y2
1
(s1 + s2)

× 1

y22

1

1− s
2+ 2

p
2

y4
2

− ( s2s3 )
1
p 1
y2
2
(y23 −

s
2+ 2

p
3

y2
3

)− 2is
1
p
2

y2
2
(s2 + s3)

× 1

1− s
2+ 2

p
1

y4
1

− ( s1s3 )
1
p 1
y2
1
(y23 −

s
2+ 2

p
3

y2
3

) +
2is

1
p
1

y2
1
(s1 + s3)

(6.5)
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The exponential term is expressed after the scaling of s as (6.1),

e−y2p
i + p(2p+1)

3 s
2+ 2

p
i y2p−2

i − (2p+1)p(2p−1)(p−1)
30 s

4+ 4
p

i y2p−8
i +··· (6.6)

where the factor c is absorbed in yi, which follows the scaling to si as cs
p+1.

There are results of the intersection numbers of three-point for p = 3 up
to g = 2 for different 6 intersection numbers[11]. We evaluated these 6 cases
to verify the validity the integral representation of (6.5) based on the random
matrix theory.

For instance, the case of < τ1,1τ1,1τ3,0 >g=2 is evaluated as,

(iii.5) u(s1, s2, s3) = −8c
5
3 s

5
3
1 s

5
3
2 s

10
3
3

∫

∏

dyie
−

∑
y6
i

(

−560
y2y

3
3

y111
− 80

y2
y111 y

3
3

+
1

y111 y
5
2

(2860y33 − 7700y93 + 1470y153 ) +
1

y111 y
11
2

(8520y93 − 8400y153

+1225y213 )

)

=
29

1440
s

5
3
1 s

5
3
2 s

10
3
3 (Γ(

1

3
))2Γ(

2

3
) (6.7)

This leads to < τ1,1τ1,1τ3,0 >g=2=
29

2160 for p = 3 by the normalization of 2
3 .

We have correctly derived the 6 intersection numbers of three punctures of
p = 3 in genus g = 2 with a normalization constant 2

3 , which agrees the values
of [11].

Thus the method of Laurent expansion of y works for the evaluation of
the higher point correlation function, which is a generating function of the
intersection number, and it provides a practical method for higher correlation
functions.

7 n-point functions of p =
1
2 ,−1

2,−2, and −3

In this section, we consider the half integer p = 1
2 ,− 1

2 ,− 3
2 and the negative

integer p = −2,−3 cases. Some of these one point functions have been discussd
in the previous articles [9, 10].

7-1: n-point function for p = 1
2

Since 1
p

∑

ji is integer in this case, we are able to include them in the integral

part of
∑

ni. Then the spin component ji can be chosen as arbitrary value as
mod p. Here we take the spin component ji as −1. Other choice may be j = 0 or
j = − 1

2 . All these cases provide the shift of the integer n. From the continuation
of Ramond spin component j = p − 1, the choice of j = − 1

2 may be naturally
considered. However, the difference between j = −1 and j = − 1

2 leads the shift
of the integer n, this choice may do not cause a serious conclusion. For the
integer p, the algebraic geometry has been studied [4].

One point function u(s) is given by (4.24), which becomes by an integral of
part,

u(s) = − i

6c′s3/2

∮

dy

2iπ
e
c′s3/2(3y− 1

y3
)

(7.1)

and it becomes a series of
∑

g ags
6g−3.
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• string equation for p = 1
2

We discuss the string equation for p = 1
2 . Although the usual string equation

may be not applied for this case, analogous equation about a forgetting of a
marked point can be considered.

The selection rule for p = 1
2 (2.6) for s marked points is,

6g − 6 + s =

s
∑

i=1

ni + 2

s
∑

i=1

ji (7.2)

Possible values of ji may be 0,− 1
2 ,−1, for which the last term becomes

integers. The term s
ni+

1+mi
p

i becomes sni+2
i , sni+1

i and sni
1 , respectively.

By taking ji = −1, it becomes

6g − 6 + 3s =

s
∑

i=1

ni (7.3)

The term of order s21s
6g−2
2 are derived from (6.1), which is considered as a string

equation, since s
1
p = s2 for p = 1

2 .

u(s1, s2) = −4s21
s22

∮

dy1dy2
(2iπ)2

1

y31
(y2 ±

s62
y32

)e
c1(3y1)+c2(3y2−

s62
y3
2
)

=
∑

g

ags
2
1s

6g−2
2 c21c

4g−2
2 (7.4)

The coefficient ag is denoted by the intersection numbers as < τ2,−1τ6g−2,−1 >,

where we defined n of τn,−1 as the power of sn+
1+j
p . < τn,−1 > is a coefficient

of sn. This term of order s6g−2
2 is one point function in (4.24). Thus we have a

string equation,
< τ2,−1τ6g−2,−1 >=< τ6g−3,−1 > (7.5)

in which τ2,−1 operates on τ6g−2,−1 for the change to τ6g−3,−1. Note that the
usual notation of τn,j is different from above as a shift n→ n− 2, since we took
ji = −1.

Three points function of p = 1
2 is studied for Al case in [10]. From the

selection rule of ji = −1 (i = 1, 2, 3), we have from (7.3) ; 6g+3 = n1+n2 +n3

for < τn1,−1τn2,−1τn3,−1 >.
The term of order s21 is obtained from three point function as

u(s1, s2, s3) = − s21
(s2s3)2

∮

dy1
2iπ

1

y31
e3c1y1

∮

dy2dy3
(2iπ)2

(y2 ±
s62
y32

)(y3 +± s
6
3

y33
)

e
c2(3y2−

s62
y32

)+c3(3y3−
s63
y33

) 1

2i(s2 + s3) +
y2
2

s22
− s42

y2
2
− y2

3

s23
+

s43
y2
3

(7.6)

Since two point function u(s2, s3) is written as

u(s2, s3) =
i

s22s
2
3(s2 + s3)

∮

dy2dy3
(2iπ)2

(y2 ±
s62
y32

)(y3 ±
s63
y33

)e
c2(3y2−

s62
y32

)+c3(3y3−
s63
y33

)

(

1
y2
2

s22
− s42

y2
2
− y2

3

s23
+

s43
y2
3
− 2i(s2 + s3)

− c.c.

)

(7.7)
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Thus we have a string equation

< τ2,−1τn2,−1τn3,−1 >g=< τn2−1,−1τn3,−1 >g + < τn2,−1τn3−1,−1 >g (7.8)

The difference between Al and Dl is due to the sign (±1) in the representa-
tion of y variable in (4.20), and the string equation of three points function for
Al ia valid also for Dl case.

• two point function and absence of dilaton equation for p = 1
2

For integer spin p, a dilaton field corresponds to τ1,0, which corresponds to

s1+
1
p . When p = 1

2 is inserted into this term, it becomes s3 term.
We have found that there is no dilaton equation for p = 1

2 [10]. The one
marked point intersection number < τ1,0 >g=1 corresponds to < τ3,−1 >g=1 in
our notation. However, we do not find two point function

< τ3τ6g−3 >g= 0× < τ6g−3 >g (7.9)

which means a vanishing coefficient. Above equation plays a role of a dilaton
equation, but the coefficient becomes zero.

The two point function of p = 1
2 is obtained by the expansions of small s1 and

s2 in a genus expansion. For this purpose, we write the integral representation
of (6.1) as

u(s1, s2) = − 4

s21s
2
2

∮

dy1dy2
(2iπ)2

(y1 +
s61
y31

)(y2 +
s62
y32

)e
c
∑

(yi−
s6i
3y3

i

)

× 1

( 1
s21
(y21 −

s61
y2
1
)− 1

s22
(y22 −

s62
y2
2
))2 + 4(s1 + s2)2

(7.10)

If we expand in the inverse of y1, we obtain

u(s1, s2) = −4
s21
s22

∮

dy1dy2
(2iπ)2

(y1 +
s61
y31

)(y2 +
s62
y32

)e
c(y1−

s61
3y3

1
)+c(y2−

s62
3y3

2
)

× 1

y41
[1 + g + g2 + g3 + · · · ] (7.11)

where

g = 2(
s61
y41

+
s21y

2
2

s22y
2
1

− s21s
4
2

y21y
2
2

)− (
s61
y41

+
s21y

2
2

s22y
2
1

− s21s
4
2

y21y
2
2

)2

− 4s41(s1 + s2)
2

y41
(7.12)

By the contour integral at y1 = 0, y2 = 0, we have expanding the exponential
term proportional to c,

u(s1, s2) = −[
1

3
c4s21s

4
2

+c8(
1

360
s81s

4
2 +

1

135
s71s

5
2 +

1

180
s61s

6
2 +

1

216
s41s

8
2 +

1

1080
s21s

10
2 ) +O(c12)]

+[s1 ↔ s2] (7.13)

The expression should be symmetric by adding the terms of s1 ↔ s2. The terms
of order g = 2 becomes by this symmetrization,

c8
1

33 · 5

(

(s81s
4
2 + s41s

8
2 + s71s

5
2 + s51s

7
2) +

3

2
s61s

6
2 +

1

8
(s21s

10
2 + s101 s

2
2)

)

(7.14)
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The first term shows the string equation; s21s
4
2 → s32. Note that there is no s3

term in two point function, which is supposed to be present for the term for a
dilaton equation.

From (2.6) for p = 1
2 , we have 6g = n1 + n2 for sn1

1 sn2
2 . The first etrm of

(7.13) is genus one, and the term of c8 is genus two, since n1 + n2 = 12. It is
interesting to note that n1 and n2 are both even, or both odd, since 6g is an
even number. The terms of s21s

10
2 is consistent with a string equation of (7.4).

It may be easy to obtain the higher order terms. The parameter c is c = i
4 .

Each term of two point function is order of c4gsn1
1 s6g−n1

2 for genus g, which
agrees with the selection rule of (2.6). The scaling relation between c and s can
be seen in (2.4). After the rescaling of u → s

2u, the exponent becomes csp+1.

This leads to the scaling cs
3
2 , and u(s1, s2) ∼

∑

n=2

∑∞
g=1 c

4gsn1 s
6g−n
2 . (7.13) is

consistent with this behavior.
There may be another way for the evaluation of the contour integral. For

genus one case, the last factor of (7.10) is approximated by

1

(
y2
1

s21
− y2

2

s22
)2

=
1

(y1

s1
− y2

s2
)2(y1

s1
+ y2

s2
)2

(7.15)

We take residues at y1 = s1
s2
y2 and at y1 = − s1

s2
y2. Expanding the exponent in

order c4, we find the residue of y1 = s1
s2
y2 and y2 = 0 as

U(s1, s2) =
c4

6s32
(s91 + 2s81s2 + s71s

2
2 − s31s

6
2 − 2s21s

7
2 − s1s

8
2) (7.16)

and from the pole at y1 = − s1
s2
y2 and y2 = 0 as

u(s1, s2) =
c4

6s32
(−s91 + 2s81s2 − s71s

2
2 + s31s

6
2 − 2s21s

7
2 + s1s

8
2) (7.17)

Adding these two contributions, by noting the cancellation of terms, we have

u(s1, s2) =
2c4s81
3s22

− 2

3
c4s21s

4
2 (7.18)

The term of s21s
4
2 agrees with (7.13) in genus one.

One may evaluate the residue of (7.10) by taking 8 poles of y1. There are 8
poles, except a pole of numerator y1 = 0,

y1 = ± is1s
2
2

2y2
± s1y2

2s2
± s1

√

−s62 ± 4is1s22y
2
2 ± 2is32y

2
2 + y42

2s2y2
(7.19)

These residues for 8 poles are simply expressed as

∮

dy1
2iπ

(y1 +
s61
y3
1
)(y2 +

s62
y3
2
)

( 1
s21
(y21 −

s61
y2
1
)− 1

s22
(y22 −

s62
y2
2
))2 + 4(s1 + s2)2

= ±i s
2
1(s

6
2 + y42)

8(s1 + s2)y32
(7.20)

Adding the contribution of 8 poles, there is a cancellation. Thus the contribution
comes only from the pole of y1 = y2 = 0.
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• three-point function for p = 1
2

We have three point function of p = 1
2 by putting p = 1

2 in (6.5),

u(s1, s2, s3) = −8
s21
s23

∮ 3
∏

i=1

dyi
2iπ

3
∏

i=1

(yi +
s6i
y3i

)e
c
∑

(3yi−
s6i
y3
i

)

×(
1

y41y
2
2

)
1

1− s61
y4
1
− s21

s22y
2
1
(y22 −

s62
y2
2
)− 2is21

y2
1
(s1 + s2)

× 1

1− s62
y4
2
− s22

s23y
2
2
(y23 −

s63
y2
3
)− 2is22

y2
2
(s2 + s3)

× 1

1− s61
y4
1
− s21

s23y
2
1
(y23 −

s63
y2
3
) +

2is21
y2
1
(s1 + s3)

(7.21)

where c = − 1
6 i

1/2. Expanding the denominators in the power series of si, we
obtain by the evaluation of residues,

u(s1, s2, s3) = −8
s21
s23

(

27

4
c4s63 + i

81

4
c6(s21s2s

6
3 + 3s32s

6
3 + 3s22s

7
3) +O(c8)

)

(7.22)

These terms are order of c4g+2s6g+3 according to the scaling relation between c
and s as cs3/2. After the contour integration of y1, the remaining term is odd
for the exchange of (s2, y2) ↔ (s3, y3). For this order of c

4, the contour integral
of y1 is factorized as

U(s1, s2, s3) = −8s21

∮

dy1
2iπ

y1
y41
e
c(3y1−

s61
y3
1

)
∮

dy2dy3
(2iπ)2

(y2 +
s62
y32

)(y3 +
s63
y33

)

× e
c(3y2−

s62
y32

)+c(3y3−
s63
y33

)

s23y
2
2 −

s62s
2
3

y2
2

− s22y
2
3 +

s22s
6
3

y2
3

− 2is22s
2
3(s2 + s3)

(7.23)

The denominator becomes (s23y
2
2 − s22y

2
3)

−1 in this order, and it is odd for the
exchange (s2, y2) ↔ (s3, y3). Therefore the first term of order c4 is vanishing by
adding the symmetric terms of s2 ↔ s3. Absence of order c4 term agrees with
(2.6), which implies the order of c4g+2s6g+3 for a genus g term.

The term of order c6 in (7.22) contains i = (−1)1/2, which comes from the
term of i(si + sj) in the denominator of (7.21). Note that c = − 1

6 i
3/2, ic6 is

real number. The term of order c6 is also vanishing by the following reason.
We have expanded the large y1 > y2 > y3. We have to consider also the case
of y3 > y2. For this case, we exchange y2 ↔ y3 as well as s2 ↔ s3 with the
complex conjugate of the term −2i(s2 + s3), and this leads to the opposite sign
of the term of c6 with the exchange s2 ↔ s3. Thus after adding this symmetric
term, we obtain the cancellation of (7.22) and vanishing result of c6 term. The
fact that there is no three point function suggests the punctures are pairwise,
and the vanishing three point function gives the simple structure of the spin
p = 1

2 case, which may be related to the simplification for Faber conjecture [33]
as discussed in [10, 34].

• four-point function for p = 1
2
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The selection rule for four point function is 6g+6 =
∑4

i=1 ni. The connected
four point function u(s1, s2, s3, s4) is expressed as in [10] with the same change
of variables ui → i

2 (y
2
i − 1

y2
i
), by assuming order of smallness s1 < s2 < s3 < s4,

u(s1, s2, s3, s4) = −16
s21
s24

∮ 4
∏

i=1

(yi +
s6i
y3i

)e
c
∑4

i=1(3yi−
s6i
y3
i

)

× 1

y21 −
s61
y2
1
− s21

s22
(y22 −

s62
y2
2
)− 2is21(s1 + s2)

1

y22 −
s62
y2
2
− s22

s23
(y23 −

s63
y2
3
)− 2is22(s2 + s3)

× 1

y23 −
s63
y2
3
− s23

s24
(y24 −

s64
y2
4
)− 2is23(s3 + s4)

1

y21 −
s61
y2
1
− s21

s24
(y24 −

s64
y2
4
) + 2is21(s1 + s4)

(7.24)

Since the four point function is cyclic about yi (i = 1, ..., 4), we take y1 and y3
are large, and expansion of 1/y1 and 1/y3 in (7.24). Similar to the three point
function, we find that the contour integrals of (7.24) are vanishing for the terms
of order ci (i = 1, ..., 7). The non-vanishing term appears at the order c8 with a
result of

u(s1, s2, s3, s4) = −729c8s21s
2
3s

4
2s

4
4 +O(c12s18) (7.25)

where c = − 1
6 i

1/2. This is consistent with the selection rule of 6g+6 =
∑4

i=1 ni,
where ni is a power of si. In this order, the genus g is one, and it is consistent
with the scaling of c4g+4s6g+6 = c8s12. The result of (7.25) is obtained for y1 >
{y2, y4} and y3 > {y2, y4}. The total expression is obtained by the permutation
of the variables{s1, ..., s4}.

In this four point function, the numbers of punctures are even numbers
(i.e. it is four). The punctures have the spin indices j = −1 as a Ramond

puncture, and according to this spin indices, the selection rule 6g+6 =
∑4

i=1 ni

is obtained. Thus our explicit result of the four point function is consistent with
the conjecture that Ramond punctures are pairwise.

The term of (7.25) is consistent with the successive string equations, which
give the reduction of s21s

2
3s

4
2s

4
4 → s21s

3
2s

4
4 → s23s

4
4 → s34. Note that < τ3 > is

non-vanishing one point intersection number.
For n-point function (n > 1), this Ramond puncture pairing conjecture

states that if n is odd, the n-point function is vanishing, and if n is even, it
is non-vanishing. For n-point function (n ≥ 6), the contour integral becomes
similar to n = 4. Assuming yj (j is odd) is large, and expand in the inverse
power of yj , we obtain the n-point function u(s1, ..., sn) from the evaluation
of the residues of yi at yi = 0. Through these residual calculations, we find
the selection rule of (2.6) for p = 1

2 is valid with the Ramond values of spin
component j = −1, and Ramond punctures (j = −1) appear as pair-wise form.

• continuation from integer p to p = 1
2

For the continuation to p = 1
2 , the spin component j is assumed to be (-1)

[9, 10]. From the selection rule of (2.6) , we have for p = 1
2

6g − 6 + 3 =

3
∑

i=1

ni + 2

3
∑

i=1

ji (7.26)
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For general p, the three point function < τ0,0τ0,0τ0,p−2 > t0,0t0,0t0,p−2 is

genus zero term, which corresponds to s
1
p

1 s
1
p

2 s
p−1
p

3 term. Putting p = 1
2 , this

term becomes s21s
2
2s

−1
3 . This term is obtained from the contour integral in

(7.21) by expanding the second denominator about 2is22s3/y
2
2 as

u(s1, s2, s3)g=0 = −8s21s
2
2s

−1
3

∮ 3
∏

i=1

dyi
2iπ

y33
y31y

3
2

ec
∑

yi (7.27)

However the contour integral of y3 gives zero around y3 = 0. Thus we have
no 3-point function of p = 1

2 at genus zero. This result is consistent with the
conjecture of the punctures of Ramond type, which should be paired.

The string equation of p = 1
2 has been found in [10]. It is transform from

t0,0 → t2, (t2 = s2).
For u(s) is given by (4.24).

u(s) =
c2

48
s3 − 1

5!
(
1

48
)2c6s9 + · · · (7.28)

This expression is continuation of u(s) for the integer p, with p = 1
2 , since for

general p, it is given by [7] as

u(s) =
1

s1+
1
p

[Γ(1+
1

p
)− p− 1

24
yΓ(1− 1

p
)+

(p− 1)(p− 3)(1 + 2p)

5!423
y2Γ(1− 3

p
)+· · · ]
(7.29)

with y = s2+
2
p . There appears a divergence in the limit of p = 1

2 for Γ-function,
and with the normalization of this factor, (7.29) becomes equivalent to (7.28)
as noted in Eq.(18) of [10].

From the results of (7.13), u(s1, s2) is expressed as

u(s1, s2) = −1

3
c4s21s

4
2 + c8(

1

1080
s21s

10
2 +

1

216
s41s

8
2 +

1

180
s61s

6
2 +

1

135
s71s

5
2

+
1

360
s81s

4
2)

−c12( s21s
16
2

3265920
+

s41s
14
2

204120
+

7s61s
12
2

291600
+
s71s

11
2

48600
+

313s81s
10
2

8164800
+

s91s
9
2

22680

+
443s101 s

8
2

16329600
+

11s111 s
7
2

510300
+

169s121 s
6
2

8164800
+

19s131 s
5
2

2041200
+

s141 s
4
2

583200
) +O(c16)

(7.30)

This expression is interpreted as a continuation of p→ 1
2 . s

4
2 corresponds to s

2
p

2

with p = 1
2 . Since s

2
p

2 is t0,1, s
4 corresponds to t0,1. The term s5 corresponds to

t1,1.

The intersection number for s
2
p

1 s
4+ 2

p

2 is given

< τ0,1τ4,1 >g=2=
(p− 1)(p+ 2)(p− 2)

2880p
→ 1

768
(7.31)

This expressesion agrees for the value of [11, 12], 1
320 and 7

1200 for p = 4 and

p = 5. (7.31) corresponds to s
2
p

1 s
4+ 2

p

2 → s41s
8
2 for p = 1

2 . The term, which
gives s41s

8
2 in the limit p → 1

2 , may exists also from another term < τ2,0τ2,2 >
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with s
2+ 1

p

1 s
2+ 3

p

2 . Therefore, s41s
8
2 is obtained from the limit of different terms of

general p. The term s
2+ 1

p

1 s
2+ 3

p

2 is as

u(s1, s2) = − 1

576
(p+ 1)(p− 1)Γ(1− 1

p
)Γ(1− 3

p
)s

2+ 2
p

1 s
2+ 1

p

2 (7.32)

which by the change s1 ↔ s2, it becomes s41s
8
2 for p→ 1

2 .
For s61s

6
2 term in (7.30), we have

< τ0,2τ4,0 >g=2=
(p− 1)(p− 3)(2p+ 11)

5760p
→ 1

192
(7.33)

which corresponds to s
3
p

1 s
4+ 1

p

2 → s61s
6
2 for p = 1

2 . The values of these intersection
numbers agree with the intersection numbers from (7.30).

For < τ2,1τ2,1 >g=2 corresponds to s
2+ 2

p

1 s
2+ 2

p

2 → s61s
6
2, which degenerates to

(7.33). Thus the continuation to p = 1
2 is not unique.

The term s
2
p and s2+

1
p become same s4 in the limit p → 1

2 . The terms s
2
p ,

s2+
2
p and s4+

1
p become s6 in the limit of p→ 1

2 .

7-2: n-point function of p = − 1
2

For p = − 1
2 , the selection rule becomes for k-marked points

2g − 2 + k = −
k

∑

i=1

ni (7.34)

where we take ji = −1. This requires the negative power ni of s for higher
genus g, which leads to the inverse power of si in m-point function u(s1, ..., sm).
As discussed in [9, 10], one point function u(s) is a contour integral,

u(s) = s

∮

dy

2iπ
(y +

1

s2y3
)e−

c
y

=
1

2
c2s (7.35)

This term belongs to genus g = 0 order, which leads to n1 = 1 from (7.34) as sn1 .
The coefficient c2 is given by the scaling (csp+1)2 = c2s. From the expansion
of the intersection numbers in (2.8), the higher order terms are vanishing for
p = − 1

2 by the existent factor (2p + 1) for g > 1. In the genus g = 1 order,

the intersection number < τ1,0 >=
p−1
24 in (2.3) for the integer p suggests the

nonvanishing value for p = − 1
2 . This order is given by the second term of the

integrand. By the change of y → 1
t , (7.35) is written as

u(s) = s

∫

dt

2iπ
(− 1

t2
)(
1

t
+
t3

s2
)e−ct (7.36)

The second term of the integrand becomes by the integration as − 1
c2s (c =

(14 )
p = 2), which is a continuation of p−1

24 = − 1
16 . There is a factor Γ(3) = 2 in

(2.3). Thus genus g = 1 term is consistent with (2.3).
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Two point function of (6.1) is written for p = − 1
2 as

u(s1, s2) = −4(
s2
s1

)2
∮

dy1dy2
(2iπ)2

2
∏

i=1

(yi +
1

s2i y
3
i

)e
−c

∑
1
yi

1

y41

1

(1− 1
s21y

4
1
− ( s2s1 )

2 1
y2
1
(y22 − 1

s22y
2
2
))2 + 4

s41y
4
1
(s1 + s2)2

(7.37)

The contour integral is evaluated for the poles of y1 = y2 = 0. By the
expansion of the exponential term as

∑

(−c( 1
y1

+ 1
y2
))k/k!, we obtain

u(s1, s2) = −4s22(
1

4
c4 − c8

2 · 6!(s
2
1 + 8s1s2 + 12s22)

+
c12

2 · 10!(s
4
1 + 24s31s2 + 161s21s

2
2 + 384s1s

3
2 + 288s42)

− c16

2 · 14!(s
6
1 + 48s51s2 + 715s41s

2
2 + 4528s31s

3
2 + 13441s21s

4
2 + 18304s1s

5
2

+9152s62) +O(c20)) + (s1 ↔ s2) (7.38)

Each term is written as c4gs
|n1|
1 s

|n2|
2 , n1 + n2 = 2g. For p = − 1

2 , the selection
rule becomes for two point function as (mi = −1)

− 2g = n1 + n2 (7.39)

Thus n1, n2 are negative integers for s−n1
1 s−n2

2 . The expansion of (7.38) is
similar to the weak coupling expansion of p = −2 case.

By the change of variable yi =
1
ti
, (i = 1, 2), it becomes by ti → ti/c,

u(s1, s2) = −4(
s2
s1

)2
∮

dt1dt2
(2iπ)2

(t1 +
t51
c4s21

)e−t1(
1

t32
+

t2
c4s22

)e−t2

1

(1− t41
c4s21

− ( s2s1 )
2t21(

1
t22

− t22
c4s22

))2 +
4t41
c4s41

(s1 + s2)2
(7.40)

From the selection rule of (7.34), in the case two point function n = 2, we have

2g = −(n1 + n2) (7.41)

for u(s1, s2) =
∑

cn1,n2s
n1
1 sn2

2 . The values of n1 and n2 can be both positive
and negative integers. The expansion of (7.40) is

u(s1, s2) = −4(
s2
s1

)2
∮

dt1dt2
(2iπ)2

e−t1−t2
t1t2

(t22 −
s22
s21
t21)

2

(

1 +
t41
c4s21

+
t42
c4s22

+2
t21
c4s21

t21 − t22

1− s22
s21

t21
t22

− 4
(s1 + s2)

2

c4s41

t41

(1− s22
s21

t21
t22
)2

+O(
1

c8
)

)

(7.42)

where the dependence of c is obtained from the scaling to s as a combination of
c2s.

7-3: Strong coupling of p = −2

• p = −2 and unitary matrix model
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It was pointed out that for p = −2 corresponds to unitary matrix model
[37, 40]. The unitary matrix model has two phases of the weak coupling and
string coupling phases [35, 36].

For one point function, we have for large s,

u(s) =
i

2

∮

dy

2iπ
(y +

1

y3
)e

c
s

y4

(y4+1)2

=
2

s
+

2

s2
+

2

s3
+

5

3s4
+

7

6s5
+

7

10s6
+

11

30s7
+

11 · 13
840s8

+
11 · 13
2016s9

+
11 · 13 · 17
25345 · 7s10 +

13 · 17 · 19
253452 · 7s11 +

13 · 17 · 19
263452 · 11s12 +

17 · 19 · 23
273552 · 11s13 + · · ·

(7.43)

where c = (14 )
p = 24. The contour integral reduces to the calculation of the

residue at y = (−1)1/4. This expansion is written by the modified Bessel func-
tion as

u(s) = =
1

s

∞
∑

k=0

22k+1Γ(k + 1
2 )

Γ(12 )Γ(k + 2)k!

1

sk

=
2

s
F (

1

2
, 2;

4

s
) =

2

s
e

2
s [I0(

2

s
)− I1(

2

s
)] (7.44)

where F (α, γ; z) is a confluent hypergeometric function, and I0(z) is a modified
Bessel function. The crossover to the weak coupling of small s is at s = 2, which
corresponds to s = 1

Λ = 2. The external source is Λ. The small s expansion is
given by (2.8) through the intersection numbers of p = −2 [40]. We have

u(s) =
1

s

∮

du

2iπ
e−

1
u+s+

1
u

= − 1

4π
√
s

∫

dx

x2
e
− 4x2

1+x2s

= − 1

4π
√
s

∞
∑

n=0

(2n− 1)!!

2nn!
Γ(n− 1

2
)(
s

4
)n (7.45)

By noting that (2n− 1)!! = 2nΓ(n+ 1
2 )/

√
π, the last sum is written as

u(s) = − 1

4π
3
2
√
s

∞
∑

n=0

Γ(n+ 1
2 )Γ(n− 1

2 )

n!
(
s

4
)n (7.46)

This weak coupling expansion of one point function has been derived and the
comparison with the unitary matrix model has been discussed in [40].

The model p = −2 has naturally a logarithmic potential, which becomes
equivalent to unitary U(N) matrix model. The strong coupling expansion in
(7.44) is evaluated by the character expansion of U(N) group, which character
χ satisfies

∫

dUχr(AU)χr′(U
†A†) = δrr′

χr(AA
†)

dr
(7.47)

The character of U(N) is expressed by

χn1,n2,... =
det[t

nj+N−j
i ]

det[tN−j
i ]

(7.48)
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where ti is eigenvalue of U . The dimension dr is equal to dr = χr(1). For the
eigenvalue 1, (ti = 1),

d[2,0] = χ[2,0](1) =
1

2
(N2 +N), d[1,1] = χ[1,1](1) =

1

2
(N2 −N) (7.49)

The integration of unitary matrix U is written as

∫

dUtr(AU)tr(BU †) = C1tr(AB) (7.50)

where A and B are arbitrary matrices,

∫

DUtr(A1U)tr(A2U)tr(B1U
†)tr(B2U

†) = C12 [tr(A1B1)tr(A2B2)

+tr(A1B2)tr(A2B1)] + C2[tr(A1B1A2B2) + tr(A1B2A2B1)] (7.51)

Generalization of this equation for n-times trace is described by Cl1,...,ln.
The coefficient of the single trace is Cn = Cn,0,...0, which are

C1 = 1, C2 = − 1

N2 − 1
, C3 =

4

(N2 − 1)(N2 − 4)
,

C4 = − 30

(N2 − 1)(N2 − 4)(N2 − 9)
,

C5 =
336

(N2 − 1)(N2 − 4)(N2 − 9)(N2 − 16)
(7.52)

The general formula of Cn is [39]

Cn = (−1)n
[(n− 1)!]3

n

1

(N2 − 1)(N2 − 4)(N2 − 9) · · · (N2 − (n− 1)2)

×
n−1
∑

q=0

1

q!q!(n− q − 1)!(n− q − 1)!
(7.53)

The coefficient of 1/sn in (7.43) is 2Cn, and agrees with N = 0 [40, 39].
It is interesting to note that when we change the measure (y+ 1

y3 ) to (y− 1
y3 ),

i.e. D-type, one point function is vanishing i.e. u(s) = 0. The replacement of
this measure y + 1/y3 by y, the values of u(s) becomes half of (7.43).

For the derivation of the N dependence, we make a change of variable u to
z as

u− 1

u+ 1
= e−z, u =

1 + e−z

1− e−z
(7.54)

and

du = −2
e−z

(1− e−z)2
(7.55)

Thus we obtain

U(s) =
N

2

∫

due
4c

s(u2
−1) (

u− 1

u+ 1
)N

= −N
∫ ∞

0

dz

∞
∑

n=0

1

n!
e−Nz[

c

s
ez(1− e−z)2]n

e−z

(1 − e−z)2
(7.56)
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The leading term (c = 0) gives the Euler characteristics ζ(1 − 2g) [7], the next
order is c

s , and the second order becomes

N
c2

2s2

∫ ∞

0

dzez(1 − e−z)2e−Nz =
c2

s2
1

N2 − 1
(7.57)

The next order is

−N
6
(
c

s
)3
∫

dze2z(1− e−z)4e−Nz

= −N
6
(
c

s
)3[

1

N − 2
− 4

N − 1
+

6

N
− 4

N + 1
+

1

N + 2
]

= −4N(
c

s
)3

1

N(N2 − 1)(N2 − 4)
(7.58)

Extending these evaluations, we find from (7.56)

U(s) =

∞
∑

n=1

(2n− 2)!

n!sn
1

∏n−1
l=1 (N

2 − l2)
(7.59)

where c = 1. The number (2n − 2)!/n! coincides with the numerator of Cn

in (7.52). Thus we find that one point function U(s), which is a single trace
operator, is a generating function of the coefficient Cn in (7.53).

For two point function U(s1, s2) with a logarithmic term is written as

U(s1, s2) =

∫

du1du2e
4c

s1(u2
1
−1)

+ 4c

s2(u2
2
−1) (

u1 + 1

u1 − 1
)N (

u2 + 1

u2 − 1
)N

× 1

(s2u2 − s1u1 + (s1 + s2))(s2u2 − s1u1 − (s1 + s2))
(7.60)

Using the change of variables in (7.54), one obtain

U(s1, s2) = s1s2

∫

dz1dz2e
−Nz1−Nz2

e−z1

(1− e−z1)2
e−z2

(1− e−z2)2

× 1

s2(1 +
2e−z2

1−e−z2
)− s1(1 +

2e−z1

1−e−z1
) + (s1 + s2)

× 1

s2(1 +
2e−z2

1−e−z2
)− s1(1 +

2e−z1

1−e−z1
)− (s1 + s2)

×e
c
s1

ez1(1−e−z1 )2+ c
s2

ez2 (1−e−z2 )2 (7.61)

Expanding the two denominators for s2 > s1,

1

4s22

∞
∑

m=0

∞
∑

l=0

(
1− e−z2

1− e−z1
e−z1)m(

1 − e−z2

1− e−z1
ez2)l(

s1
s2

)m+lez2(1− e−z2)2 (7.62)

with a measure of dui = e−zi/(1 − e−zi)2dzi, we obtain the strong coupling
expansion of 1/sn1

1 sn2
2 ,

U(s1, s2) = (s1s2)

∫

dz1dz2e
−Nz1−Nz2

e−z1

(1− e−z1)2
e−z2

(1− e−z2)2

× 1

4s22

∞
∑

m=0

∞
∑

l=0

(
1− e−z2

1− e−z1
e−z1)m(

1− e−z2

1− e−z1
ez2)l(

s1
s2

)m+lez2(1 − e−z2)2

×e
c
s1

ez1 (1−e−z1)2+ c
s2

ez2(1−e−z2 )2 (7.63)
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The leading term is given by Euler characteristics ζ(1− 2g),

U(s1, s2) =
1

4s22

∫

dz1dz2e
−Nz1−Nz2

e−z1

(1− e−z1)2

=
1

4s22N
2

∑

n=0

1

N2n
(−1)n−1Bn

2n

=
1

4s22N
2

∑

n

1

N2n
ζ(1 − 2n) (7.64)

where we have to count s1 ↔ s2, and Bn is Bernoulli number B1 = 1
6 , B2 =

1
30 , B3 = 1

42 , .... Note this term has no s1 dependence.
The next term in the strong coupling is the term of order 1/s1s2 as we

will see later for N = 0 in (7.68). In the strong coupling region, U(s1, s2) is
expanded in the inverse power of s1 and s2. The pole of (1 − e−z1) in (7.63)
should be cancelled with the expansion of the exponent in the last term. Then,
similar to one point function U(s), two point function is evaluated in the form
of characters of U(N) as shown in [40], which used a different method as shown
here.

We have from (7.63) two point function for p = −2,

U(s1, s2) =
c

4s2N2
+

c2

4s1s2

1

N2(N2 − 1)
+

c3

s21s2

1

N2(N2 − 1)(N2 − 4)

+
30c4

4s31s2

1

N2(N2 − 1)(N2 − 4)(N2 − 9)
+O(

1

sn1 s
2
2

) (7.65)

The coefficient C1,n is [40]

C1,1 =
1

N2 − 1
, C1,2 = − 12

(N2 − 1)(N2 − 4)

C1,3 =
120

(N2 − 1)(N2 − 4)(N2 − 9)

C1,4 = − 1680

(N2 − 1)(N2 − 4)(N2 − 9)(N2 − 16)
(7.66)

The expression of U(s1, s2) of (7.63) in a strong coupling agrees with the coef-
ficients of Cn1,n2 .

This shows that the n point function U(s1, ..., sn) of p = −2 case in the
inverse s expansion is a generating function of the coefficient Cl1,...,ln of unitary
integral of the multi-trace products.

We now turn to the change of variable y. We here use the expression of (6.1)
for p = −2. It becomes for two point function,

u(s1, s2) = −4s1s2

∮

dy1dy2
(2iπ)2

(
1 + y41
y31

)(
1 + y42
y32

)e
− c

s1

y41
(1+y41)2

− c
s2

y42
(1+y42)2

× 1

(s1(y21 − 1
y2
1
)− s2(y22 − 1

y2
))2 + 4(s1 + s2)2

(7.67)

For the large s expansion, the expansion parameter is coupled to c as c
s by a

scaling. The exponent of the integrand has a pole at 1 + y4i = 0, which leads

to yi = ±(−1)
1
4 , yi = ±(−1)

3
4 . This pole appears for p ≤ − 3

2 , since the term of
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exponent is (y2 + 1
y2 )

2p+2. Taking the pair of poles y1 = ±(−1)
1
4 , y2 = ±(−1)

1
4

or y1 = ±(−1)
3
4 , y2 = ±(−1)

3
4 , two point function in the large s is evaluated

with a contour integral as,

u(s1, s2) =
c2

26
1

s1s2
− c3

210
(

1

s1s22
+

1

s21s2
) +

c4

3 · 215 (
5

s1s32
+

7

s21s
2
2

+
5

s31s2
)

− c5

220 · 3(
7

s1s42
+

13

s21s
3
2

+
13

s31s
2
2

+
7

s41s2
)

+
c6

224 · 15(
21

s1s52
+

49

s21s
4
2

+
66

s31s
3
2

+
49

s41s
2
2

+
21

s51s2
)

− c7

228 · 15(
11

s1s62
+

31

s21s
5
2

+
53

s31s
4
2

+
53

s41s
3
2

+
31

s51s
2
2

+
11

s61s2
) +O(c8) (7.68)

where c = (14 )
p = 24. This result is consistent with [40], where there is a factor

N , which comes from the logarithmic potential. Above expansion coincides with
the result of N = 0 in [40], since we do not take the logarithmic potential in
(7.67). From this derivation, it can be found that the large s region is related
to the pole at the solution of y4 +1 = 0. This pole exists for p = −2, while this
pole does not exists for the positive integer p. It may be interesting to discuss
p = −3/2 and p = −3 cases, which seem to be related to the interesting phase
of the gravity. The relation to the black hole for p → −∞ has been discussed
in [8].

For two point function in the weak coupling region, we use the expression
of (6.1) with the value of p = −2. Since the leading term in the exponent
is −c 1

y4
i
, we make a change of variable 1

y4
i
= ti. Then the exponent becomes

−cti/(1 + siti)
2. The two point function u(s1, s2) is written as

u(s1, s2) = −1

4
(
s2
s1

)
1
2

∮

dt1dt2
(2iπ)2

t
− 1

2
1 t

− 3
2

2 (1 + s1t1)(1 + s2t2)e
−c

∑ ti
(1+siti)

2

× 1

1− g
(7.69)

where g is

g = 2s1t1+2(
s2t1
s1t2

)
1
2 (1−s2t2)−[s1t1+(

s2t1
s1t2

)
1
2 (1−s2t2)]2−

4t1
s1

(s1+s2)
2 (7.70)

By the expansion of 1/(1− g) =
∑

gn, we evaluate the terms of order sn2

2 sn1

1 .
The selection rulein (2.6) becomes for two marked points of p = −2,

g + 1 +
1

2
(j1 + j2) = n1 + n2 (7.71)

From (7.69), we find the terms in the lower orders similar to (2.1)-(2.5) in

the previous section. For g = 1, j1 = j2 = 0, we obtain the term s
1
2
1 s

1
2
2 as

u(s1, s2) = c−1s
1
2
1 s

1
2
2

∫

dt1st2
(2iπ)2

1

2t
3
2
2

(t
1
2
1 − t

3
2
1 )e

−t1−t2

= − 1

16π
s

1
2
1 s

1
2
2 (7.72)
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For the term of order s1s2, which is g = 2, j1 = j2 = −1,

u(s1, s2) = c−2s1s2

∫

dt1dt2
(2iπ)2

e−t1−t2
1

t22
(−7t21 + 13t31 − t41)

= − 5

64π
s1s2 (7.73)

where the integral of t2 is a residue evaluation, and the integral t1 is the expo-
nential integral for 0 < t1 <∞. The coefficient c is c = 4−p = 42.

The terms sn1
1 sn2

2 (n1, n2: integers) belong to Ramond sector (j1 = j2 = −1),

and they appear in a pair. The terms of s
n1+

1
2

1 s
n2+

1
2

2 belong to Neveu-Schwarz

sectors with the spin components j1 = j2 = 0 in u(s1, s2) ∼ s
n1− 1+j1

2
1 s

n2− 1+j2
2

2 .

7-4: Strong coupling of p = −3

For p = −3 case, the strong coupling expansion of the inverse of s is

u(s) =
i

2

∮

dy

2iπ
(y +

1

y3
)e

c
s2

y6(y4−1)

(y4+1)4 (7.74)

This large s expansion is given by the residue at y = (−1)1/4,

u(s) =
1

s4
+

3

8s8
+

13

26 · 3s12 +
17 · 19

210 · 32 · 5s16 +
23

214 · 3s20

+
29 · 31

217 · 32 · 5 · 7s24 +
29 · 31 · 37

220 · 35 · 52 · 7s28 +
37 · 41 · 43

225 · 34 · 52 · 72s32

+
37 · 41 · 43 · 47

230 · 36 · 53 · 7 · 11s36 +
41 · 43 · 47 · 53

2333853 · 7 · 13s40 +
47 · 53 · 59 · 61

2363754 · 7 · 11 · 13s44
+ · · · (7.75)

with c = 26. These terms of order of 1
s2k is expressed as

u(s) =

∞
∑

n=1

(6n− 5)!!

(4n− 1)!!(2n− 3)!!(n− 1)!(n− 1)!

3

n22n−2

1

s4n

=
∞
∑

n=0

(6n+ 1)!(2n+ 1)

(4n+ 4)!(3n)!n!

8

4ns4n+4
(7.76)

With a logarithmic potential, p = −3 one point function U(s) becomes

U(s) =

∮

du

2iπ
e

c
s2

( 1
(u+1)2

− 1
(u−1)2

)
(
u + 1

u − 1
)N (7.77)

Similar to p = −2 case, we make a change of variables of (7.54). Then we have

U(s) = −2

∫

dze−Nz e−z

(1− e−z)2
e−

c
4s2

e2z(1−e−z)3(1+e−z)

= −2

∫

dz
e−z

(1− e−z)2
e

c
4s2

[−2e−z+e−2z−e2z+2ez ]e−Nz (7.78)

This gives a strong coupling expansion. The term of order c
s2 is

−(
c

s2
)

1

N2 − 1
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The term of order c2

s4 is

−(
c

4s2
)2
∫

dze−Nze3z(1− e−z)4(1 + e−z)2

= −(
c

4s2
)2

48(2N2 − 3)

N(N2 − 1)(N2 − 4)(N2 − 9)
(7.79)

The order of c3

s6 in U(s) for p = −3 becomes

8965

4
(
c3

s6
)

N2 − 7

(N2 − 1)(N2 − 4)(N2 − 9)(N2 − 16)(N2 − 25)

The order of c4

s8 becomes

−9450
c4

s8
2N4 − 38N2 + 63

N(N2 − 1)(N2 − 4)(N2 − 9)(N2 − 16)(N2 − 25)(N2 − 36)(N2 − 49)

The denominator is same as p = −2 case, but the numerator is different from
p = −2 case. There is no term of order 1

s2n+1 . The terms of order 1
s4n have

a factor 1
N and there is no such factor for other terms. When N → 0, U(s)

becomes in the power series of 1
s4n . Indeed the expansion of (7.75) agrees with

the expansion of (7.78), and the coefficient is consistent with c = 2.

8 Summary and discussions

In this article, we have extended the results of previous articles I and II [9, 10]
to Dl type and to the multiple correlation functions of p spin curve, specially
for the non-positive integer values of p.

The agreement with the values, evaluated by the Gelfand Dikii equations
[11, 12], has been shown in the Laurent expansions of y variable.

The intersection number of one marked point was examined for the large
p and large genus g. The analysis reveals interesting relations between the
intersection numbers and the number theory through Bernoulli numbers. The
intersection numbers are shown to be expressed as Bernoulli numbers ( for p→
∞) multiplied a polynomial of p. Therefore, the denominator of the intersection
numbers have common values of the denominator of Bernoulli numbers. For
p = 1

2 spin case (fermionic), this denominator is cancelled by the numerator,
and the intersection numbers are simply expressed as (4.24).

This integral representation enables us to continue the integer p to the non-
positive integer p, like p = 1

2 , p = − 1
2 and p = −2 for which we evaluated n

point functions explicitly as discussed in I and II [9, 10].
Since the central charge is given by C = 2− 6

p , the case p = − 1
2 corresponds

to C = 14 for instance. Such extension of the central charge C (C > 1) is
interesting from the view point of conformal field theory, since it goes over a
barrier at C = 1. The CFT for C > 1 has attracted interest for the case
1 < C < 26, which is related to 2d gravity coupled to matter field of the
central charge C [47], and in this region, the behavior like a branched polymer
is expected. The behavior of quantum Liouville theory is discussed recently
in the probabilistic approach [48]. The conformal field theory of p spin curves
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in the area of 1 < C, p < 0 is interesting with respect to gauge theory and
quantum gravity in higher dimensions and further studies are desirable.

The Dl type singularity has been investigated, under the new representation
of the contour integrals in the variables of yi for m-point correlation functions.
The difference between Al and Dl types is characterized by the factor, which
appears as the different measure of the contour integrals. We have shown that
Dl type is obtained by the logarithmic term, which is expected from the super-
symmetric random matrices [20].
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