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Abstract The intersection numbers for p spin curves of the moduli space ﬂg,n
are considered for D; type by a matrix model. The asymptotic behavior of the
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1 Introduction

It is well known that the generating function of the intersection numbers on
moduli space of p spin stable curves becomes the 7 function of the generalized
KdV hierarchies (p-reduced KP hierarchies), which are related to a two dimen-
sional gravity [Il [2]. There are now many studies of the intersection numbers
including Gelfand-Dikii pseudo differential equation [3} 4]. We have proposed a
method of the calculation for this intersection numbers by a generalized Kontse-
vich matrix model, which was derived by the duality and replica method based
on the random matrix theory [5l [6] [7, [§]. For one point function, an expression
for single intersection numbers has been derived explicitly.

For the purpose of the extension to half integer spin p, we reformulated this
integral expressions by a new change of variables, and we have investigated the
intersection numbers of Ramond punctures for half-spin in previous articles I,
11 [9, [10].

This reformulation enables us to obtain easily the intersection numbers for
integer p (Neveu-Schwarz punctures) for n point functions, which should be
consistent with the results obtained by the recursive method [I1}, 12] due to
Gelfand-Dikii equation. The evaluation of several marked points in general p
and for genus g was obtained in the recursive calculations [12], and we show in
this article that our method of the Laurent expansion agrees with them for the
lower orders, especially for three point functions.

The ADE singularities characterized by Dynkin diagrams are important top-
ics in statistical physics. The D; singularity is represented by the algebraic equa-
tion y' !+ yx2+22 = 0 (I > 4). The Coxeter number defined by p = 21 —2 in D,
singularity can be interpreted as a spin p. The weight system of D; is known as
(a,b,c;h) = (2,1—2,1—1;2(1—1)). The simply laced Lie algebra, A;, By, C;, Dy,
are related to classical Lie groups SU (I + 1), SO(21 + 1), SP(l), SO(2l), respec-
tively. We have discussed A;, By, Cy, D; cases, where HarishChandra theorem
can be applied for the random matrix models with external sources [8, [13].
These random matrix models were applied for the non-orientable surfaces or
Klein surfaces. Recently the D; singularity has been discussed for the intersec-
tion numbers of one point function [14].

The open intersection numbers have been discussed based on the logarithmic
matrix models [15] 16, 17, I8 19} 20} 2T, 22} 23], which shows the extension of
the intersection theory of Riemann surface to open Riemann surface, i.e. it has
boundaries [I7, 2I]. The boundaries, similar to the D brane, are represented by
the logarithmic terms. The matrix model with a logarithmic potential for the
open intersection theory is written for general p (generalized Airy matrix model
with a logarithmic potential) [I5],
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where B is a Hermitian matrix and k is a parameter. The matrix A is an
external source. This model is called as Kontsevich-Penner model, when p = 2.

The spin p is related to [ as p = 21—2 for D; type singularity. We investigated
before the case of Lie algebra so(N), sp(N) and found that the correspondent
one point function u(s) has a logarithmic terms [13], which makes a difference
from A; type. These cases were discussed as a manifestation of the feature of
non-orientable surface (Klein surface) further in [16] [§].

In this paper, we explicitly show that the intersection numbers of D; type



can be derived from the matrix model witha logarithmic term. By the Gaussian
integral of = for y'~! + 22y + 22, we have 1//y which turns to be a logarith-
mic potential by the exponentiation. This may give simple explanation of the
appearance of the logarithmic term in the matrix model of D; singularity. In
general, an oscillating integrals of n-variables have asymptotic expansions with
logarithmic terms, related to Newton polygon [24] and it is well known that such
expansion is related to the resolution of the singularities. The D; type is related
to a real algebraic curves and the Euler characteristics x of a real algebraic
curve is obtained in the case of p = —1 in D; type (p = 21 — 2) [13, 25| 26].

It is known that Aj, A4, A3 (p=6,5,4) singularities correspond to Ashkin-
Teller model, 3-state Potts model and Ising model respectively [27, 28]. The
Ap_1 singularity has a central charge C' = 2 — 6/p. The central charge C = %
and critical exponent of the energy v are consistent with the values of Ising
model. The anomalous conformal dimensions are A, = %, Ay = p&;_?;). These
dimensions and central charges agree with the well-known values of Ising (p = 4)
and 3-state Potts model (p = 5).

For D; type singularities, the central charge is also given by C' = 2 — %,
where p is Coxeter number p = 2] — 2. The interesting applications are found
in the condensed matter physics for the topological excitation of electron at the
boundaries, as Majorana fermions [21], and the edge excitation on the boundary
as Quantum Hall effect, for instance. Furthermore, in D, singularity, there are
intriguing Ramond sector [29, [30], which is related to the vanishing relation for
one point function of g = 2+3m, m € Z, for which we will discuss in this paper.

The spin p takes a value of positive integer according to the singularity
theory. However, as discussed for p = —1, Euler characteristic is obtained
from the continuation from positive integer to p = —1 in the expression of the
intersection numbers. The cases of p = % and p = %, which are fractional spins,
have been discussed in our previous papers [9, [I0]. These cases correspond
to "fermion”, and the genus expansion of one point function agree with the
selection rule due to Riemann-Roch theorem. As a conformal field theory (CFT)
in two dimensions, p = % case exists as #7 system in the supersymmetric non-
linear sigma model, which also corresponds to spanning forrest model with a
central charge C = —2 [31]. There is an interesting observation that for p = %
case, the tautological relations become simple [32] [33] [34]. In this paper, by the
results of LIT [0, [T0], we investigate the m point correlation functions of p = %,
and find that the punctures of Ramond type appear in a pairwise as same as
p = —2 case.

The case p = —2 corresponds to the unitary matrix model of the lattice gauge
theory [35] B6] B7, [38]. The strong coupling region of this case has a character
expansion [39] [40]. We consider this character expansion [40] for the negative
p case, p = —2,—3,... by the n-point function of U(sy,...,s,) =<[]; tresiM >,
which can be interpreted as Wilson loops.

This article is organized as following: One point intersection numbers of p
spin curves for genus g is shown in section 2 for A;. In section 3, one point func-
tions of D; type is evaluated up to g = 11. In section 4, one point functions for
non-integer p case of A type and D type are discussed for p = %, %, —%, -1, -2.
In section 5, the large g and large p limits are discussed. The integrality of
the intersection number is discussed in the relation to Bernoulli numbers. It is
shown that the denominators of the intersection numbers and Bernoulli num-
bers are same. In the limit p — oo, the intersection numbers reduce to Bernoulli
numbers [41], which are intriguingly connected to homotopy, differential topol-
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ogy and number theories [42] [43, [45] 46]. In section 6, the intersection numbers
for multi marked points are evaluated, which is consistent with the results by
the recursion relations. The section 7 is devoted to the evaluations of half spin
p= %, —% and the negative integers p = —2 and p = —3 cases. For the negative
integer case, the strong coupling expansion is investigated in the relation to the
characters of U(N). In the section 8, we give summary and discussions.

2 One point function for A; type

Since the p spin curves of the moduli space has a correspondence to A, singu-
larity by mirror symmetry, we use the terminology of A; type for the [ =p—1
spin curves, which distinguishes the case D type.

For A; case, the generating function of the intersection number for one
marked point is expressed as [0, [7]

u(s) = <treSB

- 2—6 —prllut )" = (=) (2.1)
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The generating function for the intersection numbers of A4; (p =1+ 1) is evalu-
ated for small s by the replacement u = (£)'/7,
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This leads to
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where z = ¢rs*"». Writing this expansion with the intersection numbers <

Tn,j >g¢ (n is integer, and spin component j =0,1,2,...,p —2) as

1 j+ 1, 20-1 _ 1
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one obtain the intersection numbers as a polynomial of p. We have a relation
of n and j for non-vanishing intersection numbers,
1 j+1
29-1)(1+-)=n+— (2.5)
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which comes from the Riemann-Roch relation (RR) for § marked points by § =1

3g — 3—|—5—an 1—— Z]l (2.6)



Thus the s dependence appears for one point case (§ = 1) as a power
j+1
sRomDO+E) = gt 57 iy (24). The intersection numbers ( in the case of p = 2),

are given by the first Chern class ¢; or v, as

< Tpy o Tny >g= / WP (2.7)
M

g,s

where /\;lg,s is a compactified moduli space with s marked points on genus g
Riemann surface. The intersection numbers of one point 74, (g) (Coxeter number
p=141) is thus given as [9] [10]

p—1
24
(p-DE2p+1)(p-3) FA-2)

< Tnj >g=1 =

< Tng Zg=2 = Bl 42 T+
p-5!-42.3 r(1 - )
} _ (=1)E2p+1)(p—5)(8p* —13p—13) T1—3)
< T Ze=s = PERTRVEREE (1 - L)
p—1)2p+ 1)(p—7)(72p* — 298p> — 17p? + 562p + 281
< j > =
Tnj Zg=4 = p3- 9144 .15
7
. (1 —15)
_ 14
I( %)
<Tnj>g=s = (P—1)2p+1)(p—3)(p—9)(4p+3)(32p* — 162p* + p*
+326p + 163)—— b=
b PR3 T (1 — 1)
<Tnj>g=6 = (p—1)(2p+1)(p—11)(530688p® — 5830544p" + 16589332p°
+8955300p° — 65056373p* — 26944928p> + 85178190p>
1 INCEEY

+80708428p + 20177107)

2.8
p5-13!7-5~4633r(1—1+7m)( )

where < 7, ; >g=1=< 71,0 >¢=1 [7]. In [8], < 7,,; > up to g =9 is evalated.
When p = 2 (Kontsevich model), it leads to a simple expression,

1

< T2 >= e (2.9)
There appear interesting vanishing relations for < 74, >. For instance,ath
p = 3 case, < T4, > are vanishing at ¢ =24 3m (m € Z). For p =5, < 74, >
are vanishing at ¢ = 34+ 5m (m € Z). In general odd integer p, < 74, > are
vanishing at g = (p +1)/2 + pm (m € Z). Some of these relations can be seen
in the expressions of < 74, > up to genus g = 9 in [§]. We will see later that
Dy (p = 6) type has this periodicity of the vanishing relation at g = 2 + 3m

(m € Z) for Dy.
For the case Az (p = 3), one point function u(s) is given by the Airy function
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where ( = —N2/3(4:31/3)71s8/3_ 4,(0) = 37%/3/T'(3) and A}(0) = —371/3/T(3).
This Airy function leads to the intersection numbers of

< 7-89735*1' J >g= (2.11)

which shows the vanishing relations for g = 2,5,8,... (9 = 2+ 3m, m € Z), for
such case the value of spin j takes 2. The absence of g = 2,5,8, ... is due to
Stokes phenomena.

For p = 4, u(s) is written by the Bessel function, [8]
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We have Riemann-Roch relation of ([2:6)) for the s-point intersection numbers
< Ty j1Tnaga " Tnajs >g- The factor (1 — %) is a central charge ¢ = 2=2. The
last term is also charge for p spin curves. Note this central charge ¢ is also valid
for D; singularity, since the weight system of D; singularity W = T4 yw

1

Qy =779 = (l 1) The central charge ¢ is given by 2 — 2¢q, — 2q1 =1-1= 1
Since p = 2(l — 1), we have ¢ = 1 — ; for D; case. Thus the Riemann-Roch
relation (2.6) is applied both for A; and D; singularities.

3 One point function for D, type

The singularity theory of D; type is described as a two dimensional normal
singularity by the equation of 2!~ 4+ xy?+ 22 = 0 (I > 4). The weight system is
(a,b,c;h) = (2,1 —2,1—1;2(1 — 1)), where h is called as Coxeter . For D, case,
we use the spin p value for Coxeter number h, which is related to [ as p = 21 — 2.
For D4, we have spin curve of p = 6.

The intersection numbers are extended from (27 to the one includes the
boundary. The tangent bundle is trivially on the boundary of the moduli space.
We need analogous term for the first Chern class on the boundary and introduce
the correspondent quantity o for the boundary [21].

< Tpy t v Tp 0 >= / R VA (3.1)
M

where m punctures on the boundary are added to ([277). This is generalization to
open intersection numbers, and related to D; singularity as we will see. Instead



of working of the geometrical moduli space M, we study the equivalent partition
function of a matrix model as same as A; case. The partition function of a
matrix model is expressed by the n point correlation function wu(sy, sa, ..., $n)
with a logarithmic potential [§].

We have the following one point function 4(s) in the integral form for D,

The generating function @(s) of the intersection numbers < 7 > for D,
(p =2l — 2) is given by
1= l/ due~ il =g 1 (3.2)
0

S s2
1 4u?

where ¢ = 2= 3" L1 as shown in [7]. a, is eigenvalues of the external source.
p—1 v gk,
The last factor is absent for A; case. It is written as

— 2( log(u—f log(u+ )+€210g(u+ )— log(u—) (33)

Note that if we change u — —u, above term is invariant. If we write the
coeflicient of the logarithm as k instead of %, two terms are k and —k coefficient,
and it leads to the polynomial of even power of k. This characterizes the D;
type as we will discuss later.

The small s expansion of u(s) with u = t%, becomes
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The last factor is the expansion of [33)). The integer power of s, denoted as m,
shows the relation to genus g as 29 — 1 =m
The small s expansion of @(s), with the normalization factors pg—l,l and
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gamma factor 1/T(1 — T)’ gives the intersection numbers of one point case,
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where n and j are determined by the Riemann-Roch selection rule of ([2.6]).

When p = 6, which corresponds to D4 (Coxeter number p is equal to 21 —2 for
Dy), the intersection numbers < 7 >, are vanishing for g = 2+ 3k, k € Z. This
vanishing intersection numbers can be seen explicitly as a factor (p—6) in above
expression. It is interesting to observe that the factor (p — 6) accompany the
factor (3 +4p) in the g = 5,8, 11 for both A,_; and D; cases. [§]. The existing
factors (3 + 4p) are expected to appear in higher genus both for A4, and Dy,
when g =5+3m,(m =0,1,2,...). The vanishing condition of g = 2+ 3k, k € Z
for p = 6 will be discussed at later section in more details.

We find for p = 2 that the simple expression for one point function (j = 0
for p = 2) is obtained from (33,

1

o (3.7)

< T3g—2 >=
Above formula for p = 2 will be proved later in ([€3]).

There is a relation to the open intersection numbers. The logarithmic po-
tential with a coefficient k£ has been studied so called as Kontsevich-Penner
model or Airy matrix model with a logarithmic potential [I5] 16, [18]. Putting
p=2and k = § in the expressions of (L) [15, [I8], the results agree with
33). For instance, < 11,0 >g=1= p2_z2 becomes % for p = 2, which agrees with
< o>= B2 Loty ko= Lin [I5, 18], < 7y Sgeo= o4 for p = 2



agrees with < 7y >= % = 1 for k = 5. For non orientable surface,
taking account of projective plane (g = —) Klein surface (g = 1), and crosscap

(9= 2), genus g is considered as a fractional (double genus) [13]. Thus for the
comparison with the expressions of < 73,_, > in [16] [18], we need a relation
2

g = 2g — 1 i.e. the one point function of ([B.5) corresponds to < T3¢-1 > in
2

[16] 18], and the result completely agrees for the case of integer 22 /271. The case
p =2 in D; type means D, so Dy case has a meaning of the Kontsevich-Penner
model as an open intersection theory, although [ > 4 case is discussed in the
singularity theory. The terms of < Tagl 1 >, which appear with half-integer
3q

, have expressions of odd k polynormal and they do not appear in D; type
in (B:a)

For the open intersection numbers, there appear intersection numbers such
that < 75 >= -+ (k + k?). These are odd power of k. As we observed in (J),
we have sum of k and —k for the logarithmic correction, therefore adding these
two contributions, they are cancelled for such < Ts > intersection numbers.
This is a reason that we have no half integer indexed intersection numbers in
D, type.

As noted in [I5], such odd k intersection numbers with half integer indexed 7
are evaluated by the contour integral, and therefore can be regarded as Ramond
sectors.

Thus the intersection numbers belong to the orientable surfaces, Which do

not include the case of half integer 2=2. For general p, if we put k = % in [15],
we find also the agreement with (IZE)
For p = 6, which corresponds to Dy, the intersection numbers become

™o, = 1, 5,0, 40824, 1224727O for ¢ = 0,1,2,3,4,5, respectively. These values
are obtained from (B3] as the coefﬁments of Gamma function factors. They
agree with [I4]. It is remarkable that 7p, is vanishing at g = 2, 5, since a factor
(p—6) appears in ([B.35]). This suggests 7p, (p = 6 case) is vanishing periodically
at g=2+4+3k ke Z.

This periodic vanishing reallation of the intersection numbers is due to the
selection rule for spin p. We have from Riemann-Roch formula the relation

between the spin p and the genus g,
p+1)2g—1)=pn+j+1 (3.8)
where j =0,1,2,...,p — 2. For the singularity theory, D; has a relation
29 —1=pn' +mg, (3.9)

where m,, is defined by the characteristic polynomial x(¢) for the weight system
(a,b,c; h) as

1 (th —to)(th —t¥) th—tc

X = @i Ztma (3.10)

with [ is Milnor number. j is m, — 1, which is the spin components of spin p.
For Dy, the weight system becomes (2,2, 3;6), and m, = 1,3,5 (may =ms3 =
3, double). The relation of B8] is written by n’ =n+ 1, j = m, — 1 in (39).
For p =6 in Dy, g = 1 corresponds to m, = 1 (j=0,n= 1) g = 2 corresponds
tomg =3 (j =2,m=23). g=25, g=8 correspond to m, = 3. Thus for
g =2+ 3k (k € Z), the exponent becomes m,, = 3, which is doubled. This



correspondence is related to the vanishing relation of the intersection numbers
of Dy for g =2+ 3k.

From @35 and @), It is easily recognized ; (i) large p behavior is same as
A-type (28], (ii) the intersection numbers of p = —1/2 are vanishing for g > 1
for all order of g (same as A-type), (iii) the intersection numbers of p = —2 for
D-type are vanishing for all genus g > 0. These remarkable properties will be
proved in the following sections.

Since we have derived exact one point function of D; type, it may be inter-
esting to consider the negative values of p and half-integer p as discussed in A4;
type [8L @9 10]. In the next section, we examine the negative integer values of
p and half-integer p. Interesting applications of such non-positive integer cases
were discussed in [10] for A; type.

4 One point function of D; type for the non-
positive integer cases

We have discussed the non-positive integer spin p for one marked point of the
Ap_1 type in the previous articles [9, [10]. Here we extend these results of A
type to D type for one marked point.

For D; singularity, the relation of p = 2] — 2 gives the constraint that spin
p should be even integer. Since the intersection numbers are expressed by the
polynomial of p as ([B.5]), the analytic continuation of p to the general values
including the non-integer case is possible. Our formulation of a matrix model
allows the non-positive integer value of p.

In this section, we will find the remarkable coincidence of the intersection
number of D; type with that of A,_1 model with a logarithmic term, so called
generalized Kontsevich-Penner model.

e Change of variable

As discussed in [9, [30], although there is no Ramond contribution for A4,_;
case in the positive integer p, there appear Ramond punctures in D; type (p =
2] — 2) [10, 30]. The Ramond contribution may be obtained by the residue of
y = 0 in the following integral representation by a change of variable from u to
y, following the discussion of [9, [10] as

u =

(" = =) (4.1)

y2

N[ .

The factor of D; logarithmic potential becomes after the change of variable of

&1,

Yy
= (4.2)
u2—1 y

+

Yy
The measure for A,_; type is now changed simply to i(y+ 1/y*)dy due to {2),
which reads that the measure is y £ y%, (+) sign for A-type and (—) sign for
D-type.

e Equivalence to generalized Kontsevich-Penner model of open
intersection numbers



Extension of Airy with logarithmic potential (Kontsevich-Penner model) to
general p spin case has been investigated with the logarithmic potential with co-
efficient & in [16] [I5]. We will show that the intersection numbers of generalized
Kontsevih-Penner model with k = £3 are identical to that of D; (p = 21 — 2)
intersection numbers.

For genus g = 1, the intersection number is

p—1+12k2

= 4.
<T >gm 51 (4.3)
With k = :I:%7 it becomes
p+2
=— 4.4
<T>=— (4.4)

which agrees with 7p,in [B8]) . For genus g = 2, the generalized Kontsevich-
Penner model gives (Eq.(5.28) of [16]),

I (p=1-3)2p+1)

(12)2[ 10 — (3p+ 1)k* — 2k (4.5)

< T >g=2=
’ p

By putting k = +1, we find exactly < 7 >g_o= ﬁ(p +2)(2p+1)(p — 6) for
D-type in ([B.3).

Thus we find that the one point intersection number of D; type (p = 2] —2)
is same as the intersection numbers of generalized Kontsevich-Penner matrix
model with & = % One can check more higher g case are consistent with
this identification. When p = 2, the generalized open intersection numbers
are evaluated in higher orders [I§], in which a parameter N is same as our k.
The odd power terms of k are cancelled by adding £k contributions, and the
results agree with D; type intersection numbers with k£ = % Note that the
open intersection number is described by the logarithmic potential with £ =1

[15, 16, [7, 17, 22| 23].
e p=1 case

We now discuss and prove the remarkable features for specific values of p.
The first example is p = 1 case of A;. The intersection number < 7 > becomes
vanishing in all order of g due to a factor(p — 1) in (Z8]).

u(s) = l/due—%((“+%)2—(“—%)2)
S
_ Ly 1~ -%)
n s%2i7r(y+y3)e
Py L) d et (4.6)

s ) 2w —ics’ dy

which becomes vanishing due to the total derivative. This is consistent with a
factor (p — 1) in all order in [2.8]).
For Dy case, the measure is a factor (y — y—lg) instead of (y + y%),

7 dy 1 _ies(y?_ 1)
= - —Z 2y — _ 2\ 2
us) = gl ()l FO
o - 1 2m 2m+1
= — Z_O —22mm!(m D s7e (4.7)
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This is consistent with the expression of (B.8) for p = 1. The genus g is equal
to m.

e p =2 case

For p = 2, using the representation of y, one point function u(s) is expressed
as
) _bcg dy 1 i(y4+ 1 )
= —e 21° + —)e™ vi 4.8
u(s) = ge B § Wy )OS (18)
where + means A type and D type, respectively. With the change of variable
1
y = t1, this is written by the modified Bessel function I, (z),

) c dt es3
’U,(S) = éeiﬂ % i (t 3 + tfg)e S5 (t+1)
1 _seg3 cs3 cs3
= g¢ () 2 L5l
1 __5c.3 1 + cs®
= Lo : 4.9
2°¢ (cs3) ¢ (4.9)
By taking ¢ = —5, we find the close form of for Atype 29); < 134—2 >= !(214)9 ,
and the result of D-type B1); < 139—2 >= q!Gg. This gives a proof of ([B.7).
o p=—1
When p = —1, one point function u(s) provides Euler characteristic x(M,,1)

for A; type singularity [7] as

uls) = N/zm< _%>N
- N/ 1_62)267%

n—1

_ /0 27T(ZB%ZM )~ Nz (4.10)

where a change of variable (u — 3)/(u+ ) = e™* is used and a factor 1/N?
represent the genus g expansion. This u(s ) gives Euler characteristic x(My 1) =
¢(1—2g) = (—I)Q%ng, where B, is a Bernoulli number (By = %,Bs =
—, Bg = 5, ...).
For D; type, if we put p = —1 in (B3] with 7 = 0 (gamma function of the
denominator becomes one for p = —1,j = 0, and numerator gamma function
gives (29 — 1)!), , we find that < 7 >, as T .. for g =1,2,3,.

24> 7 960° 8064’
These numbers are equal to Euler characteristics y

=(1-2'"29)=. 4.11
x=( 5 (a.11)
In the limit p — —1, (B:2) becomes
as) = = / due—ctootEh __4__
2 w2 —1
1 u—1 U
= Z [ du(=—)y—— __ 4.12
5 [ (1.12)



By the change of variable (u — 1)/(u+ 1) = e %, du = —2¢ /(1 — e *)%dz =
(=2)(e*/? — e7*/%)72dz, u/Vu2 — 1 = 1(e*/2 + e7%/2), it becomes after partial

integration,

N 1 Nz

where ¢ is replaced by N to make clear of genus dependence, as ﬁ series.
Above integral reduces to (@II]), with 1/24, 7/960,... for ¢ = 1,2,.... This
X is same as virtual Euler characteristics, obtained for o(2N) matrix model
as a non-orientable surface [8]. For p = —1, there is no ¢ class, and only
Euler class (Witten class) exists. Since D, type is related to o(2N) Lie algebra,
it is reasonable to obtain the result of [@IIl), which is same as a virtual Euler
characteristics of real algebraic curves [26]. Indeed, we have obtained this virtual
Euler characteristic of real algebraic curves for so(2n + 1), so(2n), sp(n) cases
as antisymmetric matrix models [I3] [§].

.p:—%

It is remarkable that the intersection number has a factor of (2p + 1) for D,

type, which is same as A; case (Z8]). The reason of this factor (2p+ 1) exists for
all genus (g > 1) is explained by the change of variable of (£1]). The exponential

S1/2
factor in (32) becomes simply as e~ “ v for p = —1/2. Therefore we have for
Dy case with p = —1 from ({2,

i(s) = 7{ Yy Lyemei (4.14)

. 2T y3
where the integral is evaluated by a contour around y = 0. This gives non-

vanishing term of order s, which means g = 1, but the remaining terms of all
higher genus (g > 1) should vanish due to Cauchy theorem.

e p=—-2

In A, matrix model, the case p = —2 becomes equivalent to the unitary
matrix model (BGW) model [35] B6], and the intersection numbers agree with
BGW matrix model as shown in [40].

For D; (p = 21 — 2) case, there is a factor (p + 2) for all genus case as in
@B3). This may be explained as follows [40]. We have in the p = —2 case
l=(p+2)/2 =0 for D;, namely Dy case,

k
a(s) 1 d_ue#ﬁ%<u+s>
u
= / :L'_e 1+m (M)k
471'\/_ 1—0—1:17\/5

_ 2\/_( (4k2—1)+sﬁ(4k2—1)(4k2 9)

—s w(ﬁlk? — 1)(4k* — 9)(4k* — 25) +--) (4.15)

The second line is derived by the change of variable u = —( 1+ - \/_) Since

the coefficient of the logarithmic factor of D; is k = , we find the vanishing
results of 4(s) from above equation. This gives a proof for a factor p + 2 for the
intersection numbers in all orders of D-type ([B.5]).
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BGW model is considered for the unitary matrix, and its extension to O(N)
group was studied in [38]. There appears a phase transition between weak
coupling (small s) and a strong coupling regions (large s).

e Large s expansion for p = —2

The large s expansion was investigated in [40] based on ([{I5]) for p = —2 of
A; type. Due to two terms of (II]), the extension of the large s expansion for
p = —2 case of D; type is straightforward. We obtain by the shift « — (v —1)/2
following [40],

o) = %fﬁiﬁeﬁ[@ib e
- mlsm%%w [(Zfi)’“r(zj:)*’“] (4.16)

with k& = % Noting that

du 1 u+1, 2 . < (x4 1)km
Q- BTN Zgnnk | de T
f{ Sim =T a1 — /1 e~ 1)k
2 [(—k—m+1
= _ 2 (ginmk)21=2m (2 — o LR = m A )

T I'(—k+m) (4.17)

we obtain 4(s) in the large s expansion. In the unitary matrix model, we put
k = —N and the result agree with the strong coupling expansion (character
expansion) [40)].
e Half-integer p = % and %
For D; type, with the change of variables v — y in ([1l), one point function
a(s) is
N 1 dy 1
i(s) = 5 § 3= 5)al0) (4.9

i Y

Note that the difference between A; and D is a factor of (y £ %), where (+) is
for A; and (—) is for D;. The factor g(y) is same as A; case. We have for A;,

/2m ~ G [t 37 = (= 5)P ] (4.19)

By the change of variable of u = %(y2 — y72), it becomes after the replace
u — su/2, we have for A; case (+) and D; case (—)

7; dy 1 _ﬂ(i)lﬂ'l 1 [(U2_i)2p+2_(y2+i)2p+2]
= — — 4+ — (p+1) \ 4 42 +1) 1 L 4.20
u(s) 2/2m(y e (4.20)

where the exponential factor g(y) is expressed as

¢/ s3/2(3y— L 1 1.
gly) =P (p= 5. = i) (421)

The half-integer p case is related to Ramond sector [9,[10]. We assume Riemann-
Roch relation for p = % is valid as

3g—3+1:n+(g—1)(1—%)+ (4.22)

ESEAN
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with p = % and j = —1. j = —1 means Ramond puncture [I0]. This selection

rule indeed valid for the small s expansion of u(s). We have from ([£22)

n=6g—3 (4.23)
which means that u(s) is a power series of s%973 and the intersection number is
given by the coefficient, < 7, ; >¢=< Teg—3,-1 >g-

The one point function u(s) for p = 1 for A, is evaluated with the integral
by part,

1 dy 1 /s (3y—L) 7 % dy d 32 (3y— L)
us) = 5 ]{ ST y?’)e T 6032 | 2ntdy©
_ : Ay ' (3y— )

6832 | 2ir

S (=1 1 g 69—
2;m(5> 5093 (4.24)

with ¢ = —i'/2/6. The summation is over genus g due to ([E23).

This generating function of the intersection numbers shows the precise agree-
ment with ([2.8)). Note that I'(1 — 2‘7],%1) in ([28) is changed to I'(—1) by mul-
tiplication factor, and this I'(—1) is interpreted as a normalization factor for

the case of p = % Then we find the precise agreement for p = % case between

([@24) and (Z.8). The case of p = 3 is interpreted as a manifestation of Ramond
puncture since spin component is j = —1 (The denominator I'(1 — 1%) in 2.8)
becomes one). This fascinating result of p = % will be further discussed in the
next section related to the denominator of Bernoulli numbers. The intersection
numbers are rational numbers and the denominator is common denominator of
Bernoulli numbers. In p = % case, there appears cancellation of this numbers
of (EI0).
For D; type (p =1/2,1 =5/4), it becomes from (2]

N ) dy 1, cs3/2(3y— L
ils) = ifﬁ(y‘we o)
7 dy 52 cs(3 _s2
= P ) (4.25)

This integral is written as the derivative of the exponent by s. Using the same
integral as ([{24)), we obtain

a(s) =

Ay e
6cs ds 24w

o0

(=1)7(6g—1) 1 ;) 6g-3
= Y R (o (4.26)
| —1)!
e g!(3g—1)! 48
where ¢ = —%i%. This result is consistent for p = 3 in () as < 7 >g—1=

BE2 — 2. The expression of p = & for D; (I = 1(p+2) = 5) is obtained solely

from the residue calculation, which means that this case is Ramond puncture
with j = —1 [10].

For p = % of A; type, it corresponds to 87 system as discussed in [9]. There
are two different punctures belongs to Neveu-Schwarz and Ramond sectors.
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From ([@20), D; case is expressed as

cs3/2(5y3 104 L 3 47 1
gly) = T (p=Se= 2()7) (4.27)
2 54
dy 1| esBpyd-104 1
— <z - : Y Y 428
u(s) = § 3= e (1.25)
The small s expansion gives < 7, ; >, s"+§(j+1), where j = —1, —%, 0. The spin
j = —1 corresponds to Ramond sector, and Neveu-Schwarz sector is j = —%, 0.

The Ramond sector (R) is evaluated by the contour integral for A; of p = 3 in
91,

4 211 257
ur(s) = 30255 _rs Pst? [EARL R

10 .25
= 25 3 . 2? S 10' 224 cC S =+ (429)

29-1)(1+3) _ gty (G+1)

where s If we take p = % and j = —1, then we have

$%9-5. The first term of above equation is for ¢ = 2, and the second term is
for g =5. For Dy, p = %, the contribution of Ramond sector becomes

1 191754 29 - 1663 - 5°
:ECQS5_ 9-17-5 $gl5 9-1663-5 10425

25 219 32932 e (4.30)

ur(s)

5 Large p, large g limits and integrality

In a recent paper [14], the asymptotic behaviors of the intersection numbers
for A,—1, D; and Eg types for the large g are discussed based on the ordinary
differential equations (ODE). In this section, we consider the large g limit of
Ap—1 and D; types based upon the integral representation of the intersection
numbers u(s), which may be simpler than the analysis of ODE.

The exponential parts of u(s) of A,_1 and D; are same. We write the
exponent as a function f(u), which becomes

S

) (5.1)

F) = e((u+ 5" = (u

This function f is a polynomial of u, hence this is an algebraic relation [14].
The one point function u(s) is a series of s(+3)(20-1), Thus, large ¢ limit is
equivalent to the large s limit, and this limit is obtained by a saddle point

method for the exponent f(u). By the scaling u — JSu, f(u) becomes
F(5) = 5 (w+ 17 = (w = 1)) (5.2)
We denote this exponent as g(u). By the saddle point method, the first deriva-
tive of g is vanishing,
dg

T=clp+ DG (W 1P~ (w= 1) =0 (5.3)

which reads to
u+1

u—1

Ay =1 (5.4)
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The solution of this equation is “H = e2™/P je. u = (e™/P 4 e~ ™/P)(e™/P —
e~ ™/P). Thus, f(us/2) = —csPt

is written by a contour integral of ¢ (t = s2+2/ P) in the large ¢ limit apart from
Gamma function of the definition in (2],

=g

(2isin%)7p. The intersection number < 7 >,

dt 1 —1/2 —ct?/?(2isin(m P

where t~1/2 factor comes from 1/81+% in the front of the integral of u(s), which
corresponds to genus zero contribution. We expand the exponential term as
> L (f(su/2))™, with 2 — 3 = g. We have an asymptotic behavior in the
large g limit as

2(p+ 1)%sin

> 1
ST > TRy )’ (5.6)
((550 p(p+1)» (sinZ)>
where ¢ = ﬁ and the normalization factor pgl,l is included. Thus the term of

1

51)7 for

power (—g) becomes [(p + 1)%4p(sin%)2]*9, which agrees with known -
p = 2 case.

For D; (p = 2l — 2) type, the exponential term is same as A,_1. For the
large g behavior, the power g part a? becomes same.

Note that for p = %, there is no finite saddle point solution of (5.4)), except
u = co. The asymptotic term of (5.0) diverges for p = o, (k € Z). For p = &,
we have used the change of variable from u to y, and have obtained the explicit
form of (£24)) for the large g limit. It is remarkable that the polynomial of p of
order p? in the intersection numbers of genus g has all real roots. Namely the
zeros of the polynomial are on the real axis.

The values of this polynomials at p = 1 are —1,5,(—32-5-7),(3-4-5-7-13)
for g = 1,2, 3,4, respectively. These numerators cancel with the denominator of
Bernoulli numbers in (B.I0), and the intersection numbers of p = % is expressed
simply as 24). This fascinating feature of p = 3 case shows that there is
a characteristic topological meaning of the curves of Riemann surface for the
fermionic spins.

The intersection numbers < 7 >, are rational numbers since they involve the
inverse of automorphism from the orbifold. As remarked by Zagier [45], there
is a property of the integrality by multiply certain factors of two Pochhammer
symbols to the intersection numbers < 7 >4. The denominators of the expres-
sion of < 7 >, are same for A,_; type and D; type as (2.8) and (B.5). Thus the
integrality can be obtained by the application of the same Pochhammer symbols
for both cases.

As an example of integrality, with the multiplication of Pochhammer symbol
(@) =z(x+1)---(r+n—1) to < T >y=5n, the following quantities become
[14] [45] 18].

3. 4
ap = (2103552)”(5)n(3)n < T >gosn

2 1
b" = (2123554)n(5)n(_ﬁ)n <T >g:5'n, (57)
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which are integers (apart from the normalization of pJ ——t ), where < 7 > 5=
161/777600000 for A4 (p = 5) in ([Z.8). The generating function > b,t" is
algebraic, while a,, grows exponentially [45].

As evaluated in [4T] [§], the higher spin p limit (p — oo) of each intersection
numbers of a fixed genus g shows interesting features, which are expressed by
Bernoulli numbers By,. From (Z.8) and (81), it is easily noticed that the values
of the coefficients of highest order of p become same for A,_; and D; case for a
fixed genus g.

. _( 1) 1B29 g g—1
p]il{.lo<7'>q |A _phj{.lo<7—>g |DZ_W +O( ) (58)

The denominators of the expression of < 7 >, are same, and then integrality
should be same for A,_; and D;. The result of (.8]), which reduces to Bernoulli
number B,,, has been obtained in [41], and the relation to the partition function
of black hole is discussed. With o = 2, uP™! = 22, u(s) is written in the large
p7

us) = 2 [ omarie
17
2_2 2¢ 1 0,1 1. shg
= ‘¢ —3(2 —~log—2 5.9
PO HG) el los™2) (59)

=3 (-1)"! ](322;;)‘!’22;, the Bernoulli number Bs,, is obtained

for the intersection number in the large p limit.

The notation of Bernoulli numbers are By = %,B4 = —%,BG = 42,Bg =
_ _ _ 691 _ 7 _ 3617
30,310 = 66,312 = —50a5,B1a = §,B1s = —%35- The denominator of

< T >4 is common in the denominator of Ba,/((29)!(2g)) for arbitrary p, since
the intersection number is described by the multiplication of polynomial of p to
By /((29)!(29g)) for A; and Dy cases.

The denominator of Ba,/(2g) is given by [42] [43]

B
denominator(2—29g) = H plton(29) (5.10)
p>2,(p—1)I29

The condition of the prime p is (p — 1)|(2g), which means the (p — 1) divides
(2g), and v,(N) is the largest exponent e such that p¢|N. For instance, the
denominator of Bygop/1000 is 24 - 3 - 5% - 41 - 101 - 251. Thus the integrality of
< T >4 is obtained by the multiplication of the factor of the (5.10) with a factor
(29)!.

The denominator of Bsgy/k counts the numbers of distinct J-class map:
Smtdk=1 _ §m as shown in (5.13) [43]. The numerator of By /2k is related to
differential topology such as characteristics. Indeed we have for p = —1, Euler
characteristics (1 — 2g) = (—1)9By,/2g for A,_1, and (1 — 229—1)% for
D; [8].

The asymptotic behavior for large g of By, is easily obtained by the formula,

21r)29
¢(29) = (2(;;)! | Bag| (5.11)
Since ((29) =Y =35 ~ 1 (for g — 00), [Bog| ~ 27392);'
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The next leading term for p — oo in (B.8]) may be evaluated similar to the
derivation of (B.8). . From the lower order of ¢ in (Z8) and (1), the intersection
numbers are expressed for p — oo and a fixed g,

| Bag|p? ai(g)  alg) |
(29),(29)[1+ » T2 T ] (5.12)

where a,(g) is a polynomial of integer coefficients.

Since the denominator of < 7 >, is given by the denominator of Bs,/2¢ as
shown above, it is interesting to note this implies the existence of a factor in the
numerator of < 7 >,. In the case of p = 5 (A4 type), the denominator of B1y/10
is 22311, from the integrality of a1 in (5.1) (g=5), the factor 11 should be in
the numerator of < 7 >,_5. Indeed the factor 2p 4 1 gives 11 for p = 5. The
factor (2p + 1) i.e. 11 exists in all < 7 >4 and it cancels with all denominator
of <7 >y4=5,, since Bsy/(5g) has 11 in the denominator due to the formula of
(EI0). The factor (2'193552)™(2),,(3), in (B1) gives the cancellation in part of
the denominator of < 7 >5, through the expression of Bernoulli number Byj.

The another number of series s, = (£)n(2)n < 7 >s5n, which is found to
be integrality in [14] gives a factor 31,41,51,61,... due to (1),. Such prime
numbers 31,41,61,.. appear in the denominator of < 7 >5, in higher genus
g, and these prime numbers should be cancelled with Pochhammer symbol of
(%)n Thus the integral numbers a,,, b,,, ¢, are consistent with the integrality of
< T >54.

The relation of the numerator of Bernoulli number Bsj to differential topol-
ogy O41—1 is known as Milnor exotic 7 sphere. The order of O4;_1, card(O45—1)
is given by the stable homotopy T4, as [43] [42)

< T >g=

By,

card(©q,_1) = 22*73(2%1 1) - card(Ily_1) - %

(5.13)
For 4k = 2, it becomes 28 = 2(2% — 1) - 240 - (55)/4. The numerator of < 7 >,
has therefore a relation to differential topology and homotopy theory. Exotic 7-
sphere is related Eg singularity (z°+y>+22 = 0) [43] and 28 different differential
structures are described by algebraic equation such that :ﬁk*1 +a5 423+ 2+
22 =0(2(2k — 1,3,2,2,2)) (k=1,2,...,28) [46].

For Eg singularity, the intersection numbers are evaluated by the ODE [14],
and the denominators of 7g, are not directly expressed by Bernoulli numbers ,
although it is closely related. The relation of Bernoulli number to mapping class
group I'; and characteristic classes has been discussed in [44]. The intersection
numbers of half-integer p spin curve may have interesting further applications
for topology and mapping class group.

6 n-point functions of A; types

The change of variable from u to y in ([&I)) is useful for the evaluation of higher
point correlation functions (s, ..., sn). We have checked to obtain the known
results for the integer values of p = 3,4, 5 of [I1} [12] by the Laurent expansion
of y.

e two point functions for integer p

19



The two point function u(s1, s2) is written as, (for p = 3, see (ZI))),

2+2 2+2
s1.1 [ dyidys ER P

u\si, S2 :—4—p% - 1+ 2+
(s1050) = 42D R+ 2L+ )

2 2 2p+1) 23 2p—4 | (2p+D)p2p—1)(p—1) 4+5 2p-8
ieXP[Zizl(—C)(yiP P(P_g)si Pyt (2p )11(31?J )(p )Si Py ]
y‘ll 2+% - 2+% As %

S = S
[1 - lyéll - (z_;)p y_%(yg - ng )]2 + yl (81 + 82)

(6.1)
For p = %, it becomes as (Z.IT) with a slight difference of notation of ¢ (a factor

3 difference).

The selection rule of (2.0) is

1 1, .
2(9—1)(14‘5)4'2:”1 +n2+5(31 + J2) (6.2)
The two point function is expressed as
n 1+j nao+ 2L (145
u(s1,s2) =C Z < Toy i Tna s > 511+ o +]1)522+p( 32) (6.3)
ni,Ji

where C is a constant., which involves factors of gamma-function. This two
point function and the intersection numbers < 7, j, Tn,,j, > for Neveu-Schwarz
punctures are evaluated in general p in [41]. Here we reconsider two point func-
tions under the formula by the integral y in (6.1), which may be easily obtained
in more systematic ways for both Neveu-Schawrz and Ramond punctures. The
numerator and denominator of (6.1 are expanded in the small s; and s.

As an example, the case < 751721 > of p =4, we find

5 5 1
(ii.5) u(31,52):sfs22/ dyy dype™ WY (—— (~2816y3 + 7680y4")
0 y1

1 11 5 5 1
+y—%1(—28728y%1 4 27888y — 2880y37)) = S16°1 % [1“(2)]2 (6.4)
By multiplying a factor % = % it leads to < 13,1721 >= 1—0 which agrees with
.
We have checked < 71,1731 >g—2= o35 for p =3, < 71,1731 >g—0= 155 for
p =5, which are genus g = 2 cases.
e three point functions for integer p
Three point function (s, 2, $3) is given for A type by
2+%
S1 ; _ 2Py ..
— _8 d CZ(yl + )
usrss) = 82 [ s 121 yZH wot T e
" 1 1
A 2t 2 242 T
Y1 P 1 2i
L= S = (P08 — ) - G+ o)
y 1 1
2 212 212 T
Y3 P 1 P 9
L= = ()73 — %) — = (2 s3)
1
X 82+2 . . 82+% 215% (6.5)
L (:_;)pf(yg — )t (st ss)



The exponential term is expressed after the scaling of s as (6.1),

2, peptD) 2HE opia pr1pEp-Dp-1) ATF opos
—Y STy Ty g s Yy e

(6.6)

where the factor ¢ is absorbed in y;, which follows the scaling to s; as csP1!.
There are results of the intersection numbers of three-point for p = 3 up
to g = 2 for different 6 intersection numbers[II]. We evaluated these 6 cases
to verify the validity the integral representation of (G.5) based on the random
matrix theory.
For instance, the case of < 71 171,173,0 >4=2 is evaluated as,

5 5 10 3
(ii.5)  u(sy,s2,83) = —8ch 57 535 /deiefzy? (—560% —80y1yfyg
1 1 93

1 1
+—7— (2860y3 — 7700y3 + 1470y3%) + —1—7 (85203 — 8400y3°
Y1 Y2 Y1 Y2

+1225y§1)>
29 5 5 10 1 2
= Tqa0°1 52 55 (F(g))QF(g) (6.7)

This leads to < 71,171,173,0 >g=2= % for p = 3 by the normalization of %

We have correctly derived the 6 intersection numbers of three punctures of
p = 3 in genus g = 2 with a normalization constant %, which agrees the values
of [11].

Thus the method of Laurent expansion of y works for the evaluation of
the higher point correlation function, which is a generating function of the
intersection number, and it provides a practical method for higher correlation
functions.

7 n-point functions of p = %, —%, —2, and —3

In this section, we consider the half integer p = %, —%, —% and the negative

integer p = —2, —3 cases. Some of these one point functions have been discussd
in the previous articles [9} [10].

7-1: n-point function for p = %

Since % > j; is integer in this case, we are able to include them in the integral
part of Y n;. Then the spin component j; can be chosen as arbitrary value as
mod p. Here we take the spin component j; as —1. Other choice may be j = 0 or
j= —%. All these cases provide the shift of the integer n. From the continuation
of Ramond spin component j = p — 1, the choice of j = —% may be naturally
considered. However, the difference between j = —1 and j = —% leads the shift
of the integer n, this choice may do not cause a serious conclusion. For the
integer p, the algebraic geometry has been studied [4].

One point function u(s) is given by ([@24]), which becomes by an integral of
part, p

? c's3/2(3y— L
u(s) = T 6c'53/2 % Gr=s) (7.1)

and it becomes a series of Y- a,s%977.
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e string equation for p =

We discuss the string equation for p = % Although the usual string equation
may be not applied for this case, analogous equation about a forgetting of a
marked point can be considered.

The selection rule for p = 1 (Z8) for s marked points is,

69—64—5:2711-4—22]'1- (7.2)
i=1 i=1

Possible values of j; may be O,—%,—l, for which the last term becomes
. 1+my
integers. The term s, = ”  becomes s

By taking j; = —1, it becomes

n;+2 n,+1 g .
LT, 8T and 877, respectively.

6g—6+3s=>Y n (7.3)
i=1
gg ~% are derived from ([610), which is considered as a string

1
. . = 2 . 1
equation, since s» = s* for p = 3.

The term of order s%s

451 [ dyrdys 1 8 e1(3y1)+ea(3ya—3)
’U,(Sla 32) = —g (2Z7T)2 y_?(y2 + _g)e v3
= Y agsisy’ ey’ (7.4)
g

The coefficient a, is denoted by the intersection numbers as < 73, _1764—2,—1 >,

where we defined n of 7, _1 as the power of ST < Tn,—1 > is a coefficient
. -2 . . . .

of s™. This term of order s~ is one point function in @24). Thus we have a

string equation,

< T2,-1Teg—2,—1 >=< Teg—3,—1 > (7.5)

in which 75,1 operates on 7¢4—2,—1 for the change to 7¢4—3,—1. Note that the
usual notation of 7, ; is different from above as a shift n — n — 2, since we took
Ji=-L

Three points function of p = 1 is studied for A; case in [10]. From the
selection rule of j; = —1 (i = 1,2, 3), we have from (T3)) ; 69+ 3 = n1 +n2 +ns
for < Tny,—1Tny,—1Tng,—1 >-

The term of order s? is obtained from three point function as

2 6 6
51 dyl 1 3c1y1 % dy?dy3 S 53
u(s1, s2,53) = — -3¢ . yo £ —35)(ys + £—3
( )= Gwa?  2in imp 2 ) W
| |
R — (7.6)
2(s2+s3)+ F BB+
Since two point function u(ss, s3) is written as
;6 ;6
7 ddeyg Sg Sg c2(3y2— 22 )4c3(3ys— )
u(s2,53) = - Yo £ =) (ys £ —=)e v3 v3
(52:55) = e T o) § G 3
1 )
5 : — . —c.c. (7.7)
<%_%_Z_§+Z_§_2Z(82+83)
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Thus we have a string equation
< T2, 1Tng,~1Tng, 1 >g=< Tny—1,-1Tnz,~1 >g + < Tny —1Tnz—1,-1 >¢ (7.8

The difference between A; and D; is due to the sign (1) in the representa-
tion of y variable in (£20), and the string equation of three points function for
A; ia valid also for D; case.

e two point function and absence of dilaton equation for p = %

For integer spin p, a dilaton field corresponds to 71 9, which corresponds to

s't5. When p= % is inserted into this term, it becomes s term.
We have found that there is no dilaton equation for p = 3 [10]. The one
marked point intersection number < 719 >4—1 corresponds to < 73 _1 >4—1 in

our notation. However, we do not find two point function
< T3Teg—3 >g= Ox < Teg—3 =g (7.9)

which means a vanishing coefficient. Above equation plays a role of a dilaton
equation, but the coefficient becomes zero.

The two point function of p = % is obtained by the expansions of small s; and
sg in a genus expansion. For this purpose, we write the integral representation

of [61)) as

6
4 dyrdyo s8 s > (yi— Sf
u(s1, s2) “332 f inye (y1 + y—%)(m + y_g)e i
1
X = (7.10)
(g(% - y—%) - g(yz - ﬁ))Q +4(s1 + 52)?

If we expand in the inverse of y;, we obtain

2 6 6 5§ 58
s1 [ dyidyo 87 Sg\ clyr—giz)telya—3%)
,82) = —A= b ——— (1 + —5)(y2 + 5 z 3
U(Sl 52) S% (2Z7T)2 (yl y:lg)(yQ yg)e 1 2
1
x E[l+g+92+93+-~-] (7.11)
1
where
g = 2(£ 513 S?S%) B (ﬁ s1y3  sis3 2
yi o ossyi o uius’ ut o ssui wivs
4 4 2
Asi(s + 52)° (7.12)
Y

By the contour integral at y; = 0,y2 = 0, we have expanding the exponential
term proportional to c,

1
u(sy, 82) = —[5045%531

1 1 1 1 1
+C8(%3§83 + 1—358183 + msﬁsg + 2_1684118% + —1080858;0) +0(c"?)]
+[51 4 82] (713)
The expression should be symmetric by adding the terms of s; <+ s2. The terms
of order g = 2 becomes by this symmetrization,
g 1

3 1
g ((sd ot +olsf 4 sbed) + St 4 Gl a0 ) ()
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The first term shows the string equation; s?s3 — s3. Note that there is no s3

term in two point function, which is supposed to be present for the term for a
dilaton equation.

From (26) for p = 1, we have 6g = ny + ny for s7'sh?. The first etrm of
(TI3) is genus one, and the term of ¢® is genus two, since ny + ng = 12. It is
interesting to note that ny; and no are both even, or both odd, since 6g is an
even number. The terms of s7s1° is consistent with a string equation of (Z.4)).

It may be easy to obtain the higher order terms. The parameter ¢ is ¢ = 7.
Each term of two point function is order of 0495?1339_"1 for genus g, which
agrees with the selection rule of (Z26]). The scaling relation between ¢ and s can
be seen in (24). After the rescaling of u — Su, the exponent becomes csP*?.
This leads to the scaling ¢s2, and u(s1, s2) ~ 3, _, Py 9s7sS9" . (TI3) is
consistent with this behavior.

There may be another way for the evaluation of the contour integral. For
genus one case, the last factor of (ZI0) is approximated by

1 1
= 7.15)
? 2 Y1 y2)2(YL 4 Y2)2 (
G -up @G-SPE+D)
We take residues at y; = z—;yg and at y; = —z—;yg. Expanding the exponent in
order c¢*, we find the residue of y; = z—;yg and yo =0 as
o 8 72 3 8
U(si1,s2) = @(51 + 25580 + 5753 — 5355 — 25755 — 5155) (7.16)
2
and from the pole at y; = —z—;yg and y2 =0 as
A
u(s1, 82) = @( 59 4+ 25550 — 5752 + 5555 — 25757 4 5153) (7.17)
2

Adding these two contributions, by noting the cancellation of terms, we have

2c¢ts§ 2
3531 - 5045%53 (7.18)

u(s1, 82) =

The term of s?s3 agrees with (ZI3) in genus one.
One may evaluate the residue of (ZI0) by taking 8 poles of y;. There are 8
poles, except a pole of numerator y; = 0,

5153 L 518 51\/ S & disys3ys + 2issy3 + y5

=+
oy 292 282 252Y2

(7.19)

These residues for 8 poles are simply expressed as

dy, (y1 + 3% )(yz+ )
2 (& (43 —%—g@—gn+4a+m2

(3
o 5%(52 +v3)
= sigl TR (7.20)

Adding the contribution of 8 poles, there is a cancellation. Thus the contribution
comes only from the pole of y; = yo = 0.
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e three-point function for p = %

We have three point function of p = % by putting p = % in (G5,

2 3 6 s6
51 dy; 59, e (Byi—%)
u(s1, 82,83) = —8— — i+ —=%)e Vi
(rosassn) = =853 TL 52 T+ 30
(-3) 1
1. 2 3 6 2is2
Yiva 1 — % _ S;Ig (12 Z_%) — 25 (s1 + 82)
1
X sg s% 2 sg 2is§
1_5_53743@3_@)_ 3(524'53)
1
X 6 2 6 2 2 (7'21)
R D e
where ¢ = —%il/ 2. Expanding the denominators in the power series of s;, we

obtain by the evaluation of residues,

ST (2T 46 8l gia g 3.6 2.7 8
u(s1, $2,83) = — 2\ 7 + i (s7s285 + 3s5s5 + 3s585) + O(c®)
3

(7.22)

These terms are order of ¢*9125%913 according to the scaling relation between ¢
and s as ¢s/2. After the contour integration of i, the remaining term is odd
for the exchange of (sa,y2) ¢ (s3,y3). For this order of ¢?, the contour integral

of y; is factorized as

6
dyr y1 cBui—%) [ dya2dys sS 58
v = i s o
€c<3yr%>+c<3yr§>
X (7.23)

62 2.6
2,2 5253 20,2 5253 16202
S3Y2 — 3 Sz T 3 — 2is555(s2 + 53)

The denominator becomes (s3y3 — s3y3)~! in this order, and it is odd for the
exchange (s2,y2) <> (s3,93). Therefore the first term of order ¢* is vanishing by
adding the symmetric terms of sy <> s3. Absence of order ¢ term agrees with
([2.6), which implies the order of ¢*9725%9%3 for a genus g term.

The term of order ¢® in (Z22) contains i = (—1)/2, which comes from the
term of i(s; + s;) in the denominator of (ZZI). Note that ¢ = —1i%/2, icS is
real number. The term of order c® is also vanishing by the following reason.
We have expanded the large y; > y2 > y3. We have to consider also the case
of y3 > yo. For this case, we exchange y» <> y3 as well as s <> s3 with the
complex conjugate of the term —2i(s2 + s3), and this leads to the opposite sign
of the term of ¢ with the exchange so <+ s3. Thus after adding this symmetric
term, we obtain the cancellation of (7.22) and vanishing result of ¢® term. The
fact that there is no three point function suggests the punctures are pairwise,
and the vanishing three point function gives the simple structure of the spin
p= % case, which may be related to the simplification for Faber conjecture [33]
as discussed in [10, [34].

e four-point function for p = %
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The selection rule for four point function is 6g+6 = 2?21 n;. The connected

four point function u(s1, s2, $3,84) is expressed as in [I0] with the same change
of variables u; — %(yf - y%), by assuming order of smallness s; < s2 < $3 < 4,

2 4 6 4 56
s S\ 2o (Byi——%)
1 i=1 3

U(81782,83,S4)=—16—2]{ | |(yi+_§)€ v
SiJ 4 i

Yy
1 1
ST S I DS N 28 82 s oo

V- B B3 %)~ 2isi(on +52) 3~ 3 — F — 23) — 2isk(s2 + 50)

1 1
% 2_§_ﬁ(2_§)_2-2 + 2 5L ST(2 S 4 2i62(sy + )
Ys — 2 — Wi — 2 is3(s3 + 84) Yi e 53(94 yg) is(s1+ sa
(7.24)

Since the four point function is cyclic about y; (i = 1,...,4), we take y; and ys
are large, and expansion of 1/y; and 1/ys in (Z24). Similar to the three point
function, we find that the contour integrals of (C.24]) are vanishing for the terms
of order ¢’ (i = 1,...,7). The non-vanishing term appears at the order c® with a
result of

u(s1, 82, 53, 84) = —729c¢3s3 525555 + O(c*?s'®) (7.25)

where ¢ = —%i!/2. This is consistent with the selection rule of 6g+6 = S

where n; is a power of s;. In this order, the genus g is one, and it is consistent
with the scaling of ¢?974s69+6 = 8512, The result of (Z.2H) is obtained for y; >
{y2,y4} and y3 > {ya,y4}. The total expression is obtained by the permutation
of the variables{sy, ..., s4}.

In this four point function, the numbers of punctures are even numbers
(i.e. it is four). The punctures have the spin indices j = —1 as a Ramond
puncture, and according to this spin indices, the selection rule 6g+6 = Zle n;
is obtained. Thus our explicit result of the four point function is consistent with
the conjecture that Ramond punctures are pairwise.

The term of (Z25)) is consistent with the successive string equations, which
give the reduction of s3s3s3si — s7s3si — sisi — si. Note that < 73 > is
non-vanishing one point intersection number.

For n-point function (n > 1), this Ramond puncture pairing conjecture
states that if n is odd, the n-point function is vanishing, and if n is even, it
is non-vanishing. For n-point function (n > 6), the contour integral becomes
similar to n = 4. Assuming y; (j is odd) is large, and expand in the inverse
power of y;, we obtain the n-point function wu(si,...,s,) from the evaluation
of the residues of y; at y; = 0. Through these residual calculations, we find

1

the selection rule of ([2.6) for p = 5 is valid with the Ramond values of spin

component j = —1, and Ramond punctures (j = —1) appear as pair-wise form.

e continuation from integer p to p = 1

For the continuation to p = %, the spin component j is assumed to be (-1)

[9, [10]. From the selection rule of ([2.6]) , we have for p = 3

3 3
6g—6+3=> ni+2> ji (7.26)
=1 =1
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For general p, the three point function < 74,070,070,p—2 > to,0t0,0t0,p—2 is
1 1 p—1

enus zero term, which corresponds to sy sJ s erm. Puttin = 3 is
term, which ponds to s¥sis;? ¢ Putting p = 3, th
term becomes s?s3s; . This term is obtained from the contour integral in

(T21) by expanding the second denominator about 2is2s3/y3 as

3
_ 2.2 —1 dy; yg ey

u(s1, 82, 83)g=0 8515353 7411:[1 % y?yg’e (7.27)
However the contour integral of ys gives zero around y3 = 0. Thus we have
no 3-point function of p = % at genus zero. This result is consistent with the
conjecture of the punctures of Ramond type, which should be paired.

The string equation of p = § has been found in [I0]. It is transform from
t0,0 — ta, (t2 = 52>.

For u(s) is given by ({£.24)).

u(s) = 0—253 - l(i)2c6s9 +--- (7.28)
48 51148

This expression is continuation of u(s) for the integer p, with p = %, since for
general p, it is given by [7] as

1 1. p—1 1. (p—1)(p-3)(1+2p)
u(s) = pE= [F(1+];)—p7yr(1_];)+ L 1)5!423 -

) 3
YT ) ]
(7.29)

with y = s2t%. There appears a divergence in the limit of p = % for I'-function,
and with the normalization of this factor, ((29) becomes equivalent to (28]
as noted in Eq.(18) of [I0].

From the results of (Z13), u(s1, s2) is expressed as

1 1 1 1
u(sy, 82) = —504858421 + 08(10808%8%0 + 2—163‘1{% + ms?sg + 1—355{s§
1
+%8§83)
et 52530 stsdt 759532 sTsil 31355510 5959
3265920 204120 291600 = 48600 = 8164800 22680
44351955 11ss]  169s12s§  19s13s3 sits3 )+ 00
16329600 = 510300 = 8164800 = 2041200 = 583200
(7.30)

2

This expression is interpreted as a continuation of p — % s4 corresponds to sJ
2

with p = % Since s3 is 9,1, s* corresponds to to,1. The term s
t11.-

5 corresponds to

. . 2 442
The intersection number for sy s,

? is given
(P-D+2)(p-2) 1

< >g4=9= — = 7.31

701741 Zg=2 2880p 768 (7.31)

This expressesion agrees for the value of [11], [12], ﬁ and ﬁ for p = 4 and
2 442

p = 5. (T3] corresponds to sy 52+p — sts§ for p = 1. The term, which

1

gives s7s5 in the limit p — %, may exists also from another term < 75722 >
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. 241 243 . . o . .
with s] ”sy ”. Therefore, sis5 is obtained from the limit of different terms of

1942
general p. The term sf Ps, 7 is as
1 1 3, 242 244
u(s1,82) = — (P + 1P - DI~ E)F(l - 5)51 59 (7.32)

which by the change s; <+ sq, it becomes s7s5 for p — %
For s9s$ term in (Z.30), we have

(P-Dp-3)2p+11) , 1
5760p 192

< T0,2T4,0 >g=2= (7.33)

. 2 A+ . .
which corresponds to s{'s, * — s9s§ for p = 1. The values of these intersection

numbers agree with the intersection numbers from (Z.30).
2 2

242 242 .
For < 75,1721 >4—2 corresponds to s; "s, 7 — s$s5, which degenerates to
([33). Thus the continuation to p = % is not unique.
2 1 . o 2
The term s» and s°T7 become same s? in the limit p — % The terms s?,

2 1 . o
s*% and s*"% become s® in the limit of p — %

7-2: n-point function of p = —%
For p = —%, the selection rule becomes for k-marked points
k
2 -2+k=-) n (7.34)
i=1
where we take j; = —1. This requires the negative power n; of s for higher

genus g, which leads to the inverse power of s; in m-point function u(s1, ..., $m).
As discussed in [9] [10], one point function u(s) is a contour integral,

dy 1 _c
1
= 5023 (7.35)

This term belongs to genus g = 0 order, which leads to n; = 1 from ([Z.34]) as s™.
The coefficient ¢? is given by the scaling (cs?*1)? = ¢%s. From the expansion
of the intersection numbers in (2.8]), the higher order terms are vanishing for

p = —% by the existent factor (2p 4+ 1) for g > 1. In the genus g = 1 order,
the intersection number < 71 9 >= p2—_41 in (23) for the integer p suggests the
nonvanishing value for p = —%. This order is given by the second term of the

integrand. By the change of y — 1, (Z.35) is written as

3
uls) = [ o) + e (7.36)

2m S

The second term of the integrand becomes by the integration as —c%—s (c =
(3)P = 2), which is a continuation of Z-1 = —4. There is a factor ['(3) = 2 in
23). Thus genus g = 1 term is consistent with (23]).
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Two point function of (1) is written for p = —1 as

S dy1dy 2 1 1
- 4 5242 1ay2 ; —cy Vi
u(51752) (81) % (2Z7T)2 iZI(y + S?ylg)e
1 1
— . (7.37)
yi (1- _Sfly% - (ﬁ)Q%(yg - —sglyg))2 + _4_512;1 (51 + s2)?

The contour integral is evaluated for the poles of y; = yo = 0. By the

expansion of the exponential term as 2:(—0(1%1 + y%))k/k!, we obtain

1 3
U(Sl, 82) = —48%(104 — 266' (S% + 85159 + 128%)
12
—1—2?—10'(341l + 245759 + 1615755 + 3845155 + 2885s3)
16
~o o (s$ + 485559 + T15s%s2 + 45285353 + 134415255 + 183045, 55
+915255) + O(c*®)) + (51 <> s2) (7.38)
Each term is written as c495‘1"1|s‘2n2|, ni + ng = 2g. For p = —3, the selection
rule becomes for two point function as (m; = —1)

— 29 =n1 + N2 (739)

Thus n1,ne are negative integers for s;"'s, ™. The expansion of (7.38) is
similar to the weak coupling expansion of p = —2 case.

By the change of variable y; = &, (i = 1,2), it becomes by t; — t;/c,

529 dt1dts t? —t 1 —t2 —t
= —4 - t 3 ’
u(s1, s2) (51) % (27;7_‘_)2( 1+ 048% )e (tg + 0482 )e
1
i _ . (7.40)
(1 gy = (2)8(F — ) + i (51 4 2)?

From the selection rule of (T.34)), in the case two point function n = 2, we have

2g = —(n1 + ng) (7.41)

for u(s1,s2) = > ¢nynas1ts5?. The values of ny and ne can be both positive

and negative integers. The expansion of (Z40) is

s dt,dt tt t ta
’U,(Sl,Sg) _ _4(_2)2% 1 Ze—h—tz 1 3 (1+ 412 + 422

s1 (2im) (12 — %342)2 ctsy  clss

51
12 12 — 12 51+ 89)2 t 1
+o L1 2 4! — ) yE +0(—8)) (7.42)
Csll——%t—é Cc*S1 (1__515_%)2 C
81t s7 ta

where the dependence of ¢ is obtained from the scaling to s as a combination of

C2S.

7-3: Strong coupling of p = —2

e p = —2 and unitary matrix model
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It was pointed out that for p = —2 corresponds to unitary matrix model
[37, 40]. The unitary matrix model has two phases of the weak coupling and
string coupling phases [35], [36].

For one point function, we have for large s,

- 4
u(s) = 5 gy + )ed T
2 2 2 5 7 7 11 11-13 11-13
T2 TS T3 65 T 1058 T 3087 T 8405 | 201689
11-13-17  13-17-19 13-17-19 17-19-23
95345 . 7410 T 253452 . 7611 + 263452 . 11612 + 273552 . 11513 T
(7.43)

where ¢ = (i)p = 2% The contour integral reduces to the calculation of the
residue at y = (—1)/%. This expansion is written by the modified Bessel func-
tion as

1= 220 (k+ 1) 1

1= =S R o

k=0
= 2ri2 D=2t - nd) (7.44)

where F'(«,; 2) is a confluent hypergeometric function, and Iy(z) is a modified
Bessel function. The crossover to the weak coupling of small s is at s = 2, which
corresponds to s = % = 2. The external source is A. The small s expansion is

given by (2.8)) through the intersection numbers of p = —2 [40]. We have

1 du 1 1
— — R _u+s+§
u(s) S 2i7re

1 dr __42?
— e

B 1 & (2n— 1) 1,5,
= - go L =2)() (7.45)

By noting that (2n — 1)!! = 2"T'(n + 3)//7, the last sum is written as

u(s) = 1 ZI‘(n+§)1"(n—§)(s)n

- 7.46
43 \f5 = n! 4 (7.46)

This weak coupling expansion of one point function has been derived and the
comparison with the unitary matrix model has been discussed in [40].

The model p = —2 has naturally a logarithmic potential, which becomes
equivalent to unitary U(N) matrix model. The strong coupling expansion in
([44) is evaluated by the character expansion of U(N) group, which character
X satisfies

i
[ v (a0 Ut an) =5, 2L (7.47)
The character of U(N) is expressed by
det[tfi TN
Xni,mna,... = y (748)

det[tY )

i

30



where t; is eigenvalue of U. The dimension d, is equal to d, = x,(1). For the
eigenvalue 1, (t; = 1),

dogy = Xpa(1) = 5V + N), duyy = xp(1) = 5(N? = N)  (7.49)
The integration of unitary matrix U is written as
/ dUtr(AU)tr(BUT) = Cytr(AB) (7.50)
where A and B are arbitrary matrices,
/ DUtr(AU)tr(AU)tr(B1U ) tr(BoUT) = Coa[tr(A; By )tr(AgBa)

+tI’(AlBQ)tI'(AgBl)] + CQ [tr(AlBlAng) + tI’(AlBgAQBl)] (751)

Generalization of this equation for n-times trace is described by Cj, . ...
The coefficient of the single trace is C,, = C, 0,...0, which are

1 4
G=l C=—m7 S=mogmw oy
o 30
- D(N - 4(V2 -9y
336
Cs = (N2 —1)(N? — 4)(N? — 9)(N? — 16) (7.52)
The general formula of C,, is [39]
_ nl(n = DI 1
Cn = (1) n (N2—1)(N2—4)(N2-9)---(N2 - (n—1)?)
n—1
x> 1 (7.53)

= glgln—qg—1Dl(n—qg—1)!
The coefficient of 1/s™ in (Z43) is 2C,,, and agrees with N = 0 [40, [39).

It is interesting to note that when we change the measure (y+ U%) to (y— y%),
i.e. D-type, one point function is vanishing i.e. u(s) = 0. The feplacemenf of
this measure y + 1/y° by y, the values of u(s) becomes half of (7.43).

For the derivation of the N dependence, we make a change of variable u to
z as

u—1 . 1+e~*
P T (7.54)
and .
e
Thus we obtain
N _4c oy —1 N
U(s) = 5 /dueswzfl) (u 1)

—Zz

& =1 c e
— _N d ~ =Nz~ _z 1—e % 21n )
/0 Z;n!e [Se (1 —e"%)7 7(1 = (7.56)
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The leading term (¢ = 0) gives the Euler characteristics (1 — 2g) [7], the next

order is £, and the second order becomes

s?

02 > z —2z\2 _—Nz CQ 1
The next order is

N

o (z) /d262z(1 _ 672)467NZ
_ Nep L 4 6 4 1
~ 6's"'N-2 N-1 N N+1 N+2

1

= —AN(S)? (7.58)

s’ N(N2—1)(NZ—4)
Extending these evaluations, we find from (7.50])

U(s) = i (2n —2) ! (7.59)

M Tl (N )

n=1

where ¢ = 1. The number (2n — 2)!/n! coincides with the numerator of C,
in (TH2). Thus we find that one point function U(s), which is a single trace
operator, is a generating function of the coefficient C), in (Z53).

For two point function U(s1, s2) with a logarithmic term is written as

)N

(7.60)

up +1 N us +1
u1—1 ’UQ-l

dc 4c
—+—
U(s1,82) = /duldugesl(“?*” 2203 1) (
1

(5211,2 — S1u1 + (51 + SQ))(SQUQ — S1uU1 — (51 + 52))

Using the change of variables in (Z.54]), one obtain
e e *

(I—e%)2(1—e#2)2

U(51752) = 5182/d21d326*N21*N22
1
(1+1 ejzz) (1+1 ejzl)+(sl+52)
1

X
sa(1+ 2=%5) —s1(1 + =) — (51 + s2)

Xe_lezl(l e—71)2 +Se (1- e=#2)2

X

(7.61)

Expanding the two denominators for sy > s1,

e *Z l—e> S1\m z —z
452 ZZ l—e 21 o (1 62)1(_) e (I—e 2)2 (7.62)

e %1 S
2 m=01=0 2

with a measure of du; = e~ * /(1 — e *))?dz;, we obtain the strong coupling

expansion of 1/s7*s5?,

—Zz1 —Z22

€ €

(1—e"#1)2(1—e%2)2

72 1 —e 2 S
7z1 m zo\1 _1 m—+l _zo 1— —2z9\2
4;2 S R M e G LRl LR

xeﬁeﬂ (1—e 721)2_,’_%622(1_6722)2

U(81752) = (8182)/d21d22e*Nz1*Nz2

(7.63)

32



The leading term is given by Euler characteristics ((1 — 2g),

e ~t

1 —Nz1—Nz
U(Sl,Sg):@/denge Nz sz
2
B,

1)7171 o

1 1

= 452 N2 Z N2n (=
2 n=0
1 1

= T > ¢ —2n) (7.64)

where we have to count s; ¢ s9, and B, is Bernoulli number B; = %,BQ =
%, Bs = %, .... Note this term has no s; dependence.

The next term in the strong coupling is the term of order 1/s1s2 as we
will see later for N = 0 in (L68). In the strong coupling region, U(sq, s2) is
expanded in the inverse power of s; and sp. The pole of (1 — e~ *1) in (T63)
should be cancelled with the expansion of the exponent in the last term. Then,
similar to one point function U(s), two point function is evaluated in the form
of characters of U(N) as shown in [40], which used a different method as shown
here.

We have from ([.63)) two point function for p = —2,

c c? 1 & 1

459 N2 + 451590 N2(N2 —1) + s2s9 N2(N2 —1)(N2 — 4)

|30 ! +O(=1y)  (7.65)
4s3s9 N2(N2 —1)(N2 — 4)(N2 —9) st s2 '

U(Sl, 52)

The coefficient C1 ,, is [40]

1 12
Cu=mgEor T oo
o 120
BT (N2 Z1) (N2 —4)(N2 —9)
Ci4 1680 (7.66)

4= _(NQ —1)(N2 — 4)(N2 - 9)(N2? — 16)

The expression of U(sy, s2) of (ZG3J) in a strong coupling agrees with the coef-
ficients of Cp, n,-

This shows that the n point function U(sy,...,s,) of p = —2 case in the
inverse s expansion is a generating function of the coefficient Cy, .. ;, of unitary
integral of the multi-trace products.

We now turn to the change of variable y. We here use the expression of (6.1])
for p = —2. It becomes for two point function,

4 4
dyidys 1+yi 1+y3, & me =S o
u(sy, $2) = —45152% (2i7r)2( % )( % Je 1A+ T2 (4vd)
1

X 7.67
G107 — ) — 528 — 2P+ 4(o1 + 527 (767)

For the large s expansion, the expansion parameter is coupled to c as ¢ by a
scaling. The exponent of the integrand has a pole at 1 + y} = 0, which leads
to y; = :l:(—l)i,yi = :l:(—l)%. This pole appears for p < —%, since the term of

33



exponent is (y? + y%)2p+2. Taking the pair of poles y; = :I:(—l)i Y2 = i(_l)%
or y; = £(—1)%,y, = £(—1)7, two point function in the large s is evaluated
with a contour integral as,

( ) A2 1 I ( 1 1 ) c* ( 5 n 7 n 5
u(sy, 89) = — —— — —
1oz 20 5189 210%s182  s2sy 3-21505183  s2sZ2 0 sisy

cd (7+13+13+ 7)
220.3 5158 s2s3  s3sE 0 sise

8 ( 21 n 49 n 66 49 n 21 )
224 .15 5185 s?s3  sSsy  sts3 0 sPso
e’ 11 31 53 53 31 11
- o8 7.68
55 15\ msg | 523 | s3sd | alsd | ;s sty T OLC) (T69)

where ¢ = (3)P = 2%, This result is consistent with [40], where there is a factor

N, which comes from the logarithmic potential. Above expansion coincides with
the result of N = 0 in [40], since we do not take the logarithmic potential in
(C&0). From this derivation, it can be found that the large s region is related
to the pole at the solution of y* + 1 = 0. This pole exists for p = —2, while this
pole does not exists for the positive integer p. It may be interesting to discuss
p = —3/2 and p = —3 cases, which seem to be related to the interesting phase
of the gravity. The relation to the black hole for p — —oo has been discussed
in [g].

For two point function in the weak coupling region, we use the expression
of (6I) with the value of p = —2. Since the leading term in the exponent
is —c%, we make a change of variable ;—4 = t;. Then the exponent becomes

—cti/(1+ s;t;)?. The two point function u(sy,s2) is written as

1 s9.1 dtidty —1 _3 _cztift
u(sy, s2) = _Z(EV %th Pl (L4 s1ta)(1 + sato)e 7 OFeat”
1
7.69
< (7.69)
where g is
sat Sat 4t
9= 251t +2(—1 ) (1=sata) — [s1t1+ (=) 2 (1 —sata)]> — — (s1+52)? (7.70)
S1to S1to S1
By the expansion of 1/(1 —g) = > g™, we evaluate the terms of order s52s7".
The selection rulein ([2.6) becomes for two marked points of p = —2,
1 . .
g—|—1—|—§(j1 + J2) =ny + ne (7.71)

From (T69), we find the terms in the lower orders similar to (2.1)-(2.5) in
11
the previous section. For g = 1, j; = jo = 0, we obtain the term s{s5 as

11 dtistg 1 , 1
-1.5 .3 1202 P}
c "S87S8 ———(t7 —t
1 2/(2z7r)22t2%(1

ojw

)eftlftz

u(s1, s2)

= ———s7 52% (7.72)
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For the term of order siso, which is g = 2, j; = jo = —1,

_ dtrdty _, _, 1
u(sl, 82) = C 28182/ (27;7_‘_)26 t t2%(—7t% + 13t:1$ — t%)
5
= _—6471'5152 (773)

where the integral of ¢y is a residue evaluation, and the integral ¢; is the expo-
nential integral for 0 < t; < co. The coefficient c is ¢ = 47P = 42

The terms s7*s52 (n1,ng: integers) belong to Ramond sector (j; = j2 = —1),
1 1
and they appear in a pair. The terms of 571”+2 s;2+2 belong to Neveu-Schwarz

141 1+4s
. . . . . ny— ng——s-—
sectors with the spin components j; = jo = 0 in u(s1,s2) ~ s, > 8y 2

7-4: Strong coupling of p = —3

For p = —3 case, the strong coupling expansion of the inverse of s is
7 dy 1 %yﬁ(y‘L*l)
L —esZ it 7.74
u(s) = 5 f g+ e (7.74)
This large s expansion is given by the residue at y = (—1)1/ 4
1 3 13 17-19 23
ws) = Gt gt ar e T 20 g pat0 | g3 ge
29 - 31 29-31-37 37-41-43
217 .32 .5 . 7424 + 220 .35 . 52 . 7428 + 925 . 34 . 52 . 72432
37-41-43-47 n 41-43-47-53 L 47-53-59 - 61
930 .36.53.7.11536 ' 2333853.7.13540 ' 9363754.7.1] .135%4
+-- (7.75)
with ¢ = 26. These terms of order of Szik is expressed as
O (6n — 5)!! 31
u(s) = ; (An —1)N(2n — )M (n —1)(n — 1) n227—2 g4n
— (6n+1)!(2n+1) 8
— (4n+4)!(3n)!n! 4rgintd
With a logarithmic potential, p = —3 one point function U(s) becomes
du e(— 1 yu+1ly
U — s2V(ut1)2 (w127 ( 777
()= § 5e “r) (777)
Similar to p = —2 case, we make a change of variables of (Z54]). Then we have
UGs) = -2 / e

—Zz

= —2/d27(1 c )2eé[*2€’z+8’22*ezz+2€zle—Nz (7.78)
— e 3

This gives a strong coupling expansion. The term of order 3 is

c 1
_(3_2)N2 —1
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2,
The term of order & is

_(4%)2/dze—Nz63z(1 —6_2)4(1—1—6_2)2
S
e 48(2N? - 3)

- _(@)QN(JW —1)(N2 —4)(N2 —-9)

(7.79)

The order of g—z in U(s) for p = —3 becomes

8965 ¢ N2 7
7 () (N2 = 1)(N2 — 4)(N% = 9)(N? — 16)(N2 — 25)

4
The order of & becomes

9450c4 2N* — 38N?2 + 63
s8 N(N2 —1)(N2 —4)(N2 — 9)(N2 — 16)(N2 — 25)(N2 — 36)(N2 — 49)

The denominator is same as p = —2 case, but the numerator is different from
p = —2 case. There is no term of order 527@% The terms of order # have
a factor 3 and there is no such factor for other terms. When N — 0, U(s)
becomes in the power series of 54% Indeed the expansion of (T.75) agrees with

the expansion of (T.78]), and the coefficient is consistent with ¢ = 2.

8 Summary and discussions

In this article, we have extended the results of previous articles I and 1T [9] [10]
to D; type and to the multiple correlation functions of p spin curve, specially
for the non-positive integer values of p.

The agreement with the values, evaluated by the Gelfand Dikii equations
[11} 12], has been shown in the Laurent expansions of y variable.

The intersection number of one marked point was examined for the large
p and large genus g. The analysis reveals interesting relations between the
intersection numbers and the number theory through Bernoulli numbers. The
intersection numbers are shown to be expressed as Bernoulli numbers ( for p —
oo) multiplied a polynomial of p. Therefore, the denominator of the intersection
numbers have common values of the denominator of Bernoulli numbers. For
p = % spin case (fermionic), this denominator is cancelled by the numerator,
and the intersection numbers are simply expressed as (£.24]).

This integral representation enables us to continue the integer p to the non-

positive integer p, like p = %, p = —% and p = —2 for which we evaluated n
point functions explicitly as discussed in I and II [9] [10].
Since the central charge is given by C' = 2 — g, the case p = —% corresponds

to C' = 14 for instance. Such extension of the central charge C' (C' > 1) is
interesting from the view point of conformal field theory, since it goes over a
barrier at C = 1. The CFT for C > 1 has attracted interest for the case
1 < C' < 26, which is related to 2d gravity coupled to matter field of the
central charge C [47], and in this region, the behavior like a branched polymer
is expected. The behavior of quantum Liouville theory is discussed recently
in the probabilistic approach [48]. The conformal field theory of p spin curves
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in the area of 1 < C, p < 0 is interesting with respect to gauge theory and
quantum gravity in higher dimensions and further studies are desirable.

The D; type singularity has been investigated, under the new representation
of the contour integrals in the variables of y; for m-point correlation functions.
The difference between A; and D, types is characterized by the factor, which
appears as the different measure of the contour integrals. We have shown that
D, type is obtained by the logarithmic term, which is expected from the super-
symmetric random matrices [20].
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