
ar
X

iv
:2

11
1.

14
74

7v
1 

 [
he

p-
th

] 
 2

9 
N

ov
 2

02
1

A canonical bracket for open gravitational system

Laurent Freidel1, ∗

1Perimeter Institute for Theoretical Physics
31 Caroline St. N, N2L 2Y5, Waterloo ON, Canada

(Dated: November 30, 2021)

This paper shows that the generalization of the Barnich-Troessaert bracket recently pro-
posed to represent the extended corner algebra can be obtained as the canonical bracket for
an extended gravitational Lagrangian. This extension effectively allows one to reabsorb the
symplectic flux into the dressing of the Lagrangian by an embedding field. It also implies
that the canonical Poisson bracket of charges, forms a representation of the extended corner
symmetry algebra.

PACS numbers:

∗Electronic address: lfreidel@perimeterinstitute.ca

http://arxiv.org/abs/2111.14747v1
mailto:lfreidel@perimeterinstitute.ca


2

I. INTRODUCTION

One of the most vexing questions of theoretical physics is whether the formation and subsequent
evaporation of black holes is a unitary process, and if so, how the information comes out [1–3]. An-
swering this question requires knowing how much information can be encoded in a black hole, and how
it is transferred to the exterior. In addition, resolving this problem requires understanding what are
the quantum black-holes hair [4] and their semi-classical analog?

This question is, in fact, related to a more fundamental challenge which is to describe the phase
space of a compact region in general relativity. This problem is more basic than questions about black
holes: it underlies the fundamental puzzle of how one can define local subsystems in a theory of gravity
[5–7] which are necessary to describe experiments performed by localized observers inside the system.

This second question has received renewed attention in recent years. The series of work [5, 8–13]
has established that there is a universal symmetry group called the extended corner symmetry group,
associated with the corners of the spacetime causal diamonds and representing gravitational subsystems.
It has been established that the extended corner symmetry group acts on the gravitational phase space
associated with finite regions and that symmetry charges for this group represent the hair needed to
reconstruct the gluing of subregions [5, 14]. Moreover, this extended corner symmetry group has been
shown to be a maximal [12] and universal [8] subgroup of space-time diffeomorphisms.

In [5] a subgroup called the corner symmetry group was identified and shown to be represented
canonically on the gravity phase space. In other words, the Noether charges for the corner symmetry
action are Hamiltonians that implement the symmetry through the canonical bracket. This part of the
symmetry is readily quantizable. The study of the corner symmetry group representations has been
initiated in [15], where complete sets of Casimir have been identified. The rest of the extended corner
symmetry group includes the normal supertranslations, which have not yet received a satisfactory
canonical interpretation.

The challenge, in this case, is formidable. The supertranslations are spacetime transformations that
translate the corners. Such transformations do not preserve the gravitational symplectic structure, and
therefore, they fail to be Hamiltonian. The leak of symplectic flux through the corner is encoded into a
variational one form that represents the mathematical obstruction to have integrable supertranslation
charges. At the physical level, and on the asymptotically flat phase space, the non vanishing of flux
expresses the presence of gravitational radiation [16–28]. Of course, gravitational radiation prevents
the existence of isolated gravitational subsystems. Therefore constructing an Hamiltonian action of
supertranslations is tantamount to understand if one can represent open systems canonically. Presented
in this way, this sounds like an impossible task since one usually expects that open systems do not lend
themselves to quantization. Therefore what is usually done is to impose by hand boundary conditions
that close the system as in AdS/CFT [29–32] or study topological field theories and reabsorb the
Hamiltonian flux into a field redefinition [33, 34]. Unitarity and canonical representation of the charges
is achieved in these cases because gravitational radiation is either conveniently killed or dynamically
absent. If one wants to understand non perturbatively the nature of quantum radiation, one must
allow symplectic flux to be non-vanishing. In recent years, several studies of open Hamiltonian systems
associated with null boundaries with non-zero flux have advanced our knowledge of fluxes along null
surfaces [35–45]

Recently, two works have addressed the canonical representation of the extended corner symmetry
group. In [13] a generalization of the Barnich-Troessaert charge bracket [22] has been constructed. It
was shown that, under this bracket, the charges of corner symmetry form a representation of the corner
symmetry algebroid. The problem of interpreting this bracket in terms of a Poisson bracket on a phase
space was left open. Besides, the work [12] postulated a canonical representation of supertranslations
on a phase space that includes the embedding field introduced in [5]. However, this construction was not
connected to a symplectic structure derived from a Lagrangian, and the relation with the generalized
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Barnich-Troessaert was left unresolved.
In this note, we provide a resolution of these issues. We demonstrate that the dressing of the

Lagrangian by an embedding field provides a modification of the symplectic form, which allows a
canonical representation of the supertranslations. We also establish that this modification of the
symplectic structure gives the generalized Barnich-Troessaert bracket. This results therefore identify
the two strategies of [12] and [13] as equivalent.

During the completion of this project, we became aware of the independent work by Ciambelli,
Leigh and Pai [46] reaching a result similar to ours.

We begin in section II by giving a self-contained derivation of the construction of the diffeomorphism
Noether charge for a covariant Hamiltonian. This section summarizes the main results of [13]. We also
present the construction of the the pseudo-bracket of charges. In section III we introduce the embedding
field and the Lagrangian’s dressing. We show that this dressing can be reabsorbed in terms of the
variational calculus by a field space connection. We then prove that the resulting extended symplectic
potential gives after contraction with the diffeomorphism generators the generalized Barnich-Troessaert
charge bracket. It forms a representation of the extended corner symmetry algebra.

II. COVARIANT PHASE SPACE

The construction of the covariant phase space requires the introduction of a bicovariant calculus
[47–49]which is a generalization of Cartan calculus including both spacetime Cartan derivatives and
variational field derivatives. We follow here the exposition of [9, 13, 44]. We assume that our fields
denoted φA are smooth section of a Bundle π : P → M over spacetime M and we denote by F the
space of fields. The automorphisms group Aut(P ) of the bundle is generated by the fiber-preserving
diffeomorphisms: A diffeomorphism Ψ : P → P is called fiber-preserving if π ◦ Ψ = ψ ◦ π for some
smooth diffeomorphism ψ : M → M of M . If ψ = idM then Ψ is a gauge transformation. At the
infinitesimal level an automorphism is represented by a vector field ξ ∈ X(P ) such that ξ̄ ◦dπ = dπ ◦ ξ,
where dπ : TP → TM is the anchoring map, and ξ̄ ∈ X(M) is a vector field on spacetime. When P
is a G-bundle associated the group action G × P → P the automorphism has a semi-direct product
structure Diff(M)⋉GS .

A. Bicovariant calculus

Given a vector field ξ representing an infinitesimal automorphism, we denote by ιξ the interior
product. We also denote d the Cartan differential. Both d and ιξ are graded differentials acting on
spacetime forms of respective weight +1 and −1. All commutators that follow are taken as graded
commutators. The Lie derivative along ξ is defined as the commutator Lξ = [d, ιξ]. The map

ξ → ξ̂ := Lξ, (2.1)

denotes the lift of ξ onto field space. This means that the action of the field space Lie derivative on the
set of fundamental fields φA is given by L

ξ̂
= Lξφ

A. To fix the idea we can assume that the space of
fields contains the metric gab and some scalar fields φ. In this case the automorphism group is simply
Diff(M) and ξ is a vector field on M with action L

ξ̂
gab = ∇aξb+∇bξa and L

ξ̂
φ = ξa∂aφ. We also have

a Cartan calculus on field space where δ is the field space variational differential, and we denote by
I
ξ̂
= Lξy the field contraction and by L

ξ̂
= [I

ξ̂
, δ], the field space Lie derivative along ξ̂ = Lξ. The

variational Cartan calculus axioms imply that

[I
ξ̂
, I
ψ̂
] = 0, [L

ξ̂
, δ] = 0, [L

ξ̂
, I
ψ̂
] = −I

Ĵξ,ψK
, [L

ξ̂
, L

ψ̂
] = −L

Ĵξ,ψK
, (2.2)
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where the bracket is an algebroid bracket generalizing of the Lie bracket for field dependent vector
fields,1 i-e vector field such that δξ 6= 0:

Jξ, ψK := [ξ, ψ]Lie + L
ψ̂
ξ − L

ξ̂
ψ . (2.4)

A general field observable is a field space form O(φA, δφA) that can be expressed entirely in terms of
the physical fields and their variations. We say that O(φA, δφA) is a covariant observable when

L
ξ̂
O = LξO + IδξO. (2.5)

When the vector fields are field independent this simply means that (Lξ − Lξ)O = 0. In this case we
can replace the action of the field space Lie derivative with the infinitesimal automorphism group ac-
tion. Examples of covariant covariant observables includes the fundamental fields and their variational
differential. Indeed we have that Lξφ

A = I
ξ̂
δφA = Lξφ

A by definition. While on the basis of one form
we get

Lξδφ
A = δI

ξ̂
δφA = δLξφ

A = Lξδφ
A + Lδξφ

A = (Lξ + Iδξ)δφ
A. (2.6)

This leads to the important concept of the anomaly [13, 39, 44] of an observable which is given by

∆ξO := (Lξ − Lξ − Iδξ)O. (2.7)

B. Covariant Phase space and fluxes

Given a Lagrangian L, we can construct from it, using Anderson’s homotopy [47] operators, a unique
[9, 13, 50] symplectic potential θ and equation of motion E satisfying the constraints

δL = dθ − E. (2.8)

Taking the field-space differential of this equation gives the conservation equation

dω = δE, (2.9)

where ω := δθ is the symplectic form density. The conservation equation for the symplectic form is the
classical equivalent of the unitarity condition.

A symmetry generator ξ ∈ Aut(P ) is an element of the automorphism group of the bundle. By
definition a field transformation ξ̂ is a Lagrangian symmetry when ξ̂[L] = dℓξ. We are only interested
in local symmetries which are such that

I
ξ̂
E = dCξ, (2.10)

where Cξ is the constraint which vanishes when E vanishes.2 The Lagrangian is said to possess no
anomalies when ∆ξL = 0, which implies ℓξ = ιξL. The construction of the symplectic potential is

1 The algebroid bracket is evaluated by using the definition Lξ̂φ = −Lξφ, when acting on a fundamental field, and
evaluating

[Lξ̂ , Lψ̂]φ = [Lξ̂Lψφ− Lψ̂Lξφ] = LL
ξ̂
ψφ+ [Lψ,Lξ]− LL

ψ̂
ξφ = −LJξ,ψKφ = −L

Ĵξ,ψK
φ. (2.3)

2 For Einstein gravity we have that Cξ = ξµ(Gµ
ν − 8πGTµ

ν)ǫν . Where Gµ
ν is the Einstein tensor, Tµ

ν is the energy-
momentum tensor and ǫµ = i∂µǫ is the codimension 1 volume form.
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covariant which means that we also have ∆ξθ = 0 in this case. We restrict our analysis to covariant
Lagrangians. Readers interested in the generalization of the phase space analysis to non-covariant
Lagrangian are referred to [13]. For covariant Lagrangians we have that [19, 49, 51, 52]

∆ξL = d(I
ξ̂
θ − ιξL− Cξ) = 0. (2.11)

This means that the Noether current is given by

Jξ := I
ξ̂
θ − ιξL = Cξ + dqξ. (2.12)

The Noether current is therefore the sum of a constraint Cξ that vanishes on-shell and of a corner
charge aspect3 qξ. The current conservation equation dJξ = I

ξ̂
E is trivial since the current is exact

on-shell.
The main theorem of Noether stems from the fact that the field transformations are Hamiltonian

generators. In practice this means that we have the following fundamental canonical relation for field
dependent symmetries

−I
ξ̂
ω = δ (Cξ + dqξ)

︸ ︷︷ ︸

Noether Charge

−[Cδξ + dqδξ]− [ιξE + d(ιξθ)]
︸ ︷︷ ︸

Symplectic Flux

. (2.13)

A simple proof is provided in appendix A. If one integrates this on a slice Σ, with boundary S = ∂Σ,
and defines Ω =

∫

Σ ω, the fundamental Noether theorem reads

−I
ξ̂
Ω = δQξ −Qδξ − Sξ, (2.14)

where Qξ, the Noether charge associated with the Lagrangian L, is given by

Qξ :=

∫

Σ
Cξ +

∫

S

qξ. (2.15)

The charge is a boundary term when the constraints are satisfied. This charge allows us to distinguish
the diffeomorphisms which are gauge transformations form the ones which are symmetries. By definition
the gauge transformations are represented by vanishing on-shell Noether charges while the symmetries
are associated with transformations that carry non-vanishing on-shell Noether charges. The subgroup
of diffeomorphisms which represents a symmetry of a covariant Lagrangian for a slice Σ with boundary
S is the extended corner symmetry group given by [5, 12, 13]

HS :=
(
Diff(S)⋉GL(2,R)S

)
⋉R2S. (2.16)

This group is maximal [12] (i-e any further local extension include the entire Diff(M) group) and
universal [8] (i-e the same group is activated by higher derivative gravity theories).

Sξ is the symplectic flux, which measures the failure of the Noether charge to be a Hamiltonian
generator of the diffeomorphism symmetry.

Sξ :=

∫

Σ
ιξE +

∫

S

ιξθ. (2.17)

We use here a different definition of the flux that the one in [13]. There we considered the Hamiltonian
flux denoted Fξ which was given by a pure boundary term and included the charge in its definition. The

3 For Einstein gravity minimally coupled to matter we have that qξ is given by the Komar expression qξ =
1

16πG
⋆dg(ξ) =

1

16πG
ǫab∇

aξb where ǫab = ι∂aι∂bǫ is the codimension 2 volume form.
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relation between the symplectic and Hamiltonian flux is Sξ = Fξ −Qδξ +
∫

Σ ιξE. The symplectic and
Hamiltonian flux agree on-shell when the vector fields are field independent. Focusing on the symplectic
flux is more adapted to our discussion. It is important to note that when ξ is field independent and
tangent to the hypersurface Σ then the flux is a pure boundary term even when the equations of motion
are not imposed. This is relevant for quantization, as this means that the tangential constraints Cξ
form, in the bulk of Σ, a canonical representation of the diffeomorphism algebra. Note that this is not
true for diffeomorphisms that move the surface Σ transversally. In this case the flux is a boundary
term only on-shell.

The name symplectic flux is justified by the fact that it controls how the symplectic potential
transforms under diffeomorphism. If one denote sξ := ιξE+dιξθ the symplectic flux integrant we have
that (see appendix A)

Lξω = sξ − sδξ. (2.18)

The integrated symplectic flux Sξ vanishes for the corner symmetry group GS := Diff(S)⋉GL(2,R)S ,
which means that GS is represented canonically on the gravity phase space. On the other end, the
normal subgroup R2S of super-translations, carries non zero flux and is not represented canonically on
the gravity phase space. The presence of flux curtails our ability to understand the Noether charge
Qξ as an Hamiltonian generator of symmetry acting on the gravitational phase space. Despite this,
Barnich and Troeassert [20–22, 53] have proposed to consider a pseudo-Poisson bracket acting on the
charges of boundary symmetry. This bracket has been extended in [13] to include all corner symmetries,
not just the ones tangent to a given boundary, and field dependency. This pseudo-Poisson bracket is
only defined on the Noether charges and given by

{Qξ, Qψ} := L
ξ̂
Qψ −QL

ψ̂
ξ − I

ψ̂
Sξ +

∫

S

ιξιψL. (2.19)

where Sξ is the symplectic flux. It was shown in [13] that when the Lagrangian is covariant this bracket
forms a representation of the extended corner symmetry algebra. In other words we have

{Qξ , Qψ}+QJξ,ψK = 0. (2.20)

Despite all these successes. The construction is unsatisfactory because it forbids us from arguing that
the pseudo-bracket of charges descends from a canonical bracket defined on the gravity phase space.
Without such an interpretation it is not possible to promote this bracket to a quantum commutator.
This impossibility reflects the fundamental issues of open systems that carries non-trivial flux: One
do not expect them to be quantizable. On the other end, the presence of a charge bracket satisfying
Jacobi, suggests that it should be possible to overcome this difficulty and represent the charge action
canonically. It turns out that the bracket which is quantizable is the modified pseudo-bracket

{Qξ, Qψ}
′ := {Qξ, Qψ} −QL

ξ̂
ψ +QL

ψ̂
ξ = −Q[ξ,ψ]Lie

, (2.21)

which provides a canonical representation of the diffeomorphism algebra instead of the algebroid. It is
useful to express the pseudo-Poisson bracket (2.21) in terms of the symplectic structure. Contracting
(2.14) with I

ψ̂
we see that we can write this pseudo-bracket as

{Qξ, Qψ}
′ = Ω(ξ̂, ψ̂) + I

ξ̂
Sψ − I

ψ̂
Sξ +

∫

S

ιξιψL,

= Ω(ξ̂, ψ̂) + LψQξ − I
ψ̂
Sξ, (2.22)

where the second line follows from the equality LψQξ = I
ξ̂
Sψ +

∫

S
ιξιψL, proven in appendix B.
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III. EXTENDED PHASE SPACE

One of the main ingredient of the paper [5] is the introduction of an embedding field which extended
the gravitational phase space and renders the covariant calculus covariant. The embedding field also
allows to cleanly distinguish the notion of gauge transformations from the notion of corner symme-
tries. This formalism was further developed by Speranza in [8] to include the case where the on-shell
Lagrangian is non-vanishing.

An embedding field is a map X : m→M , where m is a reference manifold and M is the spacetime.
Given a gravity Lagrangian L(gab, φ) we can use this map to define an extended Lagrangian Lext =
X∗(L) which depends on the metric g, the matter fields φ, but also on the location of the spacetime
region X(m) supporting this Lagrangian. Embedding maps X represent the local charts and allow
us to locate the slice Σ and its two sphere boundary S = ∂Σ as fixed hypersurface and corner in the
reference space4.

The variation of the extended Lagrangian gives

δLext = X∗(δL + LχL) = X∗ [E + d (θ + iχL)] . (3.1)

Here θ is the symplectic potential that would have been obtained for the original Lagrangian L, and
hence depends only on the metric and field variations (δg, δφ) and not on δX. χ denotes the Maurer-
Cartan variational form

χ := δX ◦X−1. (3.2)

A. Field space connection

This variational form can be understood as a field space connection valued into diff(M). The notion
of field space connection was introduced by Gomes and Riello [54–56] in the context of gauge theory.
We generalize here this concept to the gravitational setting. A field space connection is a vector valued
one-form on Field space, i-e an element χ ∈ Ω1(F, aut(P )), which satisfies

I
ξ̂
χ = −ξ, L

ξ̂
χ = −δχξ. (3.3)

We introduce the covariant field space variation δχ which is a (0, 1) graded derivation5

δχ := δ + Lχ. (3.4)

In components this means that χ = χa∂a where χa are variational one forms such that Iξχ
a = −ξa.6

Its curvature, given by

R[χ] := δχ+
1

2
[χ, χ]Lie, (3.5)

4 Namely we can assume that m = R
d, that Σ is the image by X of the hypersurface σ = {(0, ~x)|~x ∈ R

d−1} while S is
the image of the unit sphere s inside σ.

5 There is a notational difference with [13]. Here we denote the field space Lie derivative along ξ by Lξ̂ and the field
space covariant variation by δχ. There we denoted the field space Lie derivative along ξ by δξ and didn’t introduce a
covariant variation.

6 The unusual sign follows from the fact that the lift map ξ → ξ̂ is an anti-morphism for field independent vector fields.
In other words diffeomorphism action on field is a left action, i-e a morphism. While in the mathematical literature one
conventionally take the right action to be the gauge action. Since the right action is an anti-morphism, a minus sign is
needed to compensate.
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is an horizontal form, and satisfies the Bianchi identity. This means that

I
ξ̂
R[χ] = 0, δχR = 0. (3.6)

Both properties follow straightforwardly from the definition. For instance

Lξχ = δI
ξ̂
χ+ I

ξ̂
δχ = −δξ − Lχξ + I

ξ̂
R[χ] = −δχξ + I

ξ̂
R[χ]. (3.7)

The curvature enters the commutator of covariant differential as an argument for the Lie derivative

δ2χ =
1

2
[δχ, δχ] =

1

2
[δ, δ] + [δ,Lχ] +

1

2
[Lχ,Lχ] = LR[χ]. (3.8)

The concept of an embedding field can now be formalized as a choice of a field-space connection which
is flat. This flat connection is the Maurer-Cartan connection for the embedding field. Given any form
α we have

δ(X∗α) = X∗(δχα). (3.9)

With this understanding we do not have to restrict to global embedding fields.7

Given a connection χ we can define the covariant Lie derivative by

L
χ
ξ := [δχ, Iξ̂ ] = [δ, I

ξ̂
] + [Lχ, Iξ̂] = L

ξ̂
− Lξ. (3.10)

while the anomaly operator and the bracket can be expressed as the commutators

∆ξ = −[I
ξ̂
, Lχ̂ − Lχ], [Lχ

ξ̂
, I
ψ̂
] = I

Ĵξ,χK
. (3.11)

This is shown in appendix C. Finally, an important property of the field-space connection is that it is
anomaly free

∆ξχ = L
ξ̂
χ− Lξχ− I

δξ̂
χ = −δχξ + Lχξ + δξ = 0. (3.12)

B. Extended symplectic structure

From the variation 3.1 we conclude that the extended symplectic potential is given by θext = X∗θχ
where θχ is the covariant symplectic potential

θχ := θ + ιχL, (3.13)

and χ is the flat Maurer-Cartan connection. This potential is covariant when θ is, i-e we have ∆ξθχ = 0.
The Noether current (2.12) is simply given by the contraction of the covariant potential along the Lie
derivative

I
ξ̂
θχ = Jξ = Cξ + dqξ. (3.14)

7 Another class of field space connection arises through gauge fixing. If G(g) = 0 is a gauge fixing condition then one can
associate to this a field space connection χG which is such that δχGG = 0.
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where qξ is the corner charge aspect introduced earlier. From this we define the covariant symplectic
structure:

ωχ := δχθχ, Ωχ :=

∫

Σ
ωχ. (3.15)

In appendix D the covariant symplectic form is expanded in terms of components. The expansion
shows that, although the modification of the symplectic potential is a bulk modification, the covariant
symplectic structure differs from the non-covariant one by an on-shell term plus a corner term:

ωχ = ω + ιχE + d
(
ιχθ +

1
2 ιχιχL

)
. (3.16)

This symplectic structure (which already appears in [8]) is covariantly closed δχωχ = 0 and satisfies
the crucial property of being conserved on-shell dωχ = δχE.

Integrating 3.16 on a slice Σ leads to the covariant symplectic form

Ωχ = Ω+ Sχ +
1

2

∫

S

ιχιχL (3.17)

One can now establish our first central result: The action of field independent diffeomorphism δξ = 0
is canonical. More precisely, one has that

−I
ξ̂
Ωχ = δχQξ −Qδξ. (3.18)

This follows from the fundamental canonical relation (2.14) and the identity

I
ξ̂
Sχ −

∫

S

ιξιχL = −Sξ − LχQξ, (3.19)

proven in appendix C. The introduction of the connection into the symplectic structure has allowed
us to reabsorb the flux term into the symplectic potential. This means that the diffeomorphism action
is Hamiltonian (even off-shell!) and that the bracket of charge is therefore given by the usual Poisson
bracket for the extended phase space.

{Qξ, Qψ}χ = Ωχ(ξ̂, ψ̂) = L
χ

ξ̂
Qψ −QL

ξ̂
ψ. (3.20)

In the second equality we used (3.10). Our second main result is the fact that this canonical Poisson
bracket coincides with the pseudo Poisson Bracket described in (2.21). This follows from

Ωχ(ξ̂, ψ̂) = I
ψ̂
I
ξ̂
Ωχ = I

ψ̂
I
ξ̂
Ω+ I

ψ̂

(

I
ξ̂
Sχ −

∫

S

ιξιχL

)

= Ω(ξ̂, ψ̂)− I
ψ̂
Sξ + LψQξ = {Qξ, Qψ}

′. (3.21)

where we used (3.19) in the last equality. And we recognize the expression of the pseudo-bracket given
in (2.22). This equality between the extended canonical bracket and the pseudo-bracket ensures that

{Qξ, Qψ}χ = −Q[ξ,ψ]Lie
. (3.22)

The covariant calculus that we have develop allows us to give a simple proof of the fact that

L
χ

ξ̂
Qψ −QL

ξ̂
ψ = −Q[ξ,ψ]Lie

. (3.23)
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First, from the vanishing anomaly condition ∆ξθχ = 0 we get that Lχξ θχ = Iδξθχ = Cδξ + dqδξ and
therefore

L
χ

ξ̂
Qψ =

∫

Σ
L
χ

ξ̂
I
ψ̂
θ =

∫

Σ
I
ψ̂
L
χ

ξ̂
θχ +

∫

Σ
[Lχ
ξ̂
, I
ψ̂
]θχ

= I
ψ̂
Qδξ −

∫

Σ
I
Ĵξ,ψK

θχ = −QJξ,ψK +QL
ψ̂
ξ

= −Q[ξ,ψ]Lie
+QL

ξ̂
ψ. (3.24)

IV. CONCLUSION

In this note, we have established that the extended corner symmetry algebra can be represented
canonically on the gravitational phase space enlarged by the presence of the embedding field.

This result is presented in a technical manner and clearly begs for a more profound conceptual
explanation that we expect to develop in the future. What is puzzling is that we are talking about an
open system, which can have degrees of freedom leaving and entering the system through its boundary.
We don’t expect an Hamiltonian action. In particular, the dressed symplectic form is not conserved
under super-translations. Nevertheless, the symmetry charges are Hamiltonian. At a colloquial level,
this phenomenon is simply that the embedding field acts as an extremely thorough gatekeeper who
faithfully records what symmetry charge information leaves or enters the system.

In [5] we showed that the introduction of the embedding field creates two type of transformations
which commute with one another. The left action, given by L

ξ̂
gab = Lξgab, and Lξ̂X = ξ, is the action

we have studied here and represents infinitesimal automorphisms. There is also the right action. It is
labeled by vector fields v on the source m of the embedding map X : m→M . This action is given by
Lv̌gab = 0, and Lv̌X = dX(v). It represents the active translation of the corners. The canonical study
of such transformations is awaiting.

Note that in [5] we used the embedding field for a different strategy than the one here. There it was
used to shift the symplectic potential and defined θext = θχ+dqχ, introducing edge modes [9–11]. Such
a transformation renders the left action pure gauge and promote the right translations as symmetries.
It would also be interesting to see if we can also implement this strategy here through the choice of
a boundary Lagrangian ℓ and shift the gravity Lagrangian by a boundary term L → L + dℓ. What
is required is that qχ appears as the corner symplectic potential of ℓ. It is natural to wonder if the
canonical representation of symmetry charges survives the introduction of edge modes.
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Appendix A: Fundamental canonical relation and flux

The validity of the fundamental canonical relation (2.13) straightforwardly follows from the covari-
ance condition ∆ξθ = (L

ξ̂
− Lξ − I

δξ̂
)θ = 0 and after evaluating

L
ξ̂
θ = I

ξ̂
ω + δI

ξ̂
θ = I

ξ̂
ω + δ (Cξ + dqξ + ιξL) ,



11

Lξθ = ιξdθ + dιξθ = ιξδL+ (ιξE + dιξθ),
I
δξ̂
θ = ιδξδL+Cδξ + dqδξ. (A1)

To establish the local symplectic flux law (2.18) we use that

Lξθ = dιξθ + ιξ(E + δL) = sξ + ιξδL,

Lξω = δLξθ − Lδξθ = δsξ − sδξ + δ(ιξδL)− ιδξδL = δsξ − sδξ. (A2)

where we have introduced sψ := dιψθ + ιψE the symplectic flux integrand: Sψ =
∫

Σ sψ.

Appendix B: Flux Charge relation

We now prove the identity LψQξ = IξSψ +
∫

S
ιξιψL used in section II B. We work at the level of

charge aspects

Lψqξ = Lψ(Iξ̂θ − ιξL)

= I
ξ̂
(dιψθ + ιψdθ)− LψιξL

= I
ξ̂
(dιψθ + ιψE + ιψδL) −LψιξL

= I
ξ̂
sψ + ιψLξL− LψιξL, (B1)

To conclude we use that

ιψLξL−LψιξL = ιψιξdL− dιψιξL = dιξιψL, (B2)

and we integrate over Σ. We now evaluate

I
ξ̂
sψ + dιξιψL = I

ξ̂
ιψE + I

ξ̂
dιψθ + dιξιψL

= ιψdCξ + dιψ(Iξ̂θ − ιξL)

= (ιψd + dιψ)(Cξ + dqξ). (B3)

which gives the identity

LψQξ = I
ξ̂
Sψ +

∫

S

ιξιψL, (B4)

after integration over Σ.

Appendix C: Commutators

The variational Cartan calculus The operator Iχ̂ satisfies the following properties

[Iχ̂, Iξ̂] = −II
ξ̂
χ̂ = I

ξ̂
, [Iχ̂, δ] := Lχ̂, [Iχ̂,Lχ] = −Lχ (C1)

From this we get that [Iχ̂, δχ] = Lχ̂ − Lχ.

[Iχ̂, Lξ̂] = I
Ĵξ,χK

= Iδξ + ILχ̂ξ,

Jξ, χK = [ξ, χ]Lie + Lχ̂ξ − L
ξ̂
χ = δχξ + (Lχ̂ − Lχ)ξ. (C2)
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From this we establish that

[I
ξ̂
, Lχ̂] = [I

ξ̂
, [Iχ̂, δ]] = [[I

ξ̂
, Iχ̂], δ] + [Iχ̂, [Iξ̂ , δ]] = −[I

ξ̂
, δ] + [Iχ̂, Lξ̂]

= −L
ξ̂
+ I

Ĵξ,χK
. (C3)

This means that we get

[I
ξ̂
, δχ] = [I

ξ̂
, δ] + [I

ξ̂
,Lχ] = L

ξ̂
−Lξ,

[Iχ̂, δχ] = [Iχ̂, δ] + [Iχ̂,Lχ] = Lχ̂ − Lχ,
[I
ξ̂
, Lχ̂ − Lχ] = −(L

ξ̂
− Lξ − Iδχξ) = −∆ξ (C4)

We also have

[I
ξ̂
, δχ] = [I

ξ̂
, δ] + [I

ξ̂
,Lχ] = L

ξ̂
−Lξ,

[Iχ̂, δχ] = [Iχ̂, δ] + [Iχ̂,Lχ] = Lχ̂ − Lχ,
[I
ξ̂
, Lχ̂ − Lχ] = −(L

ξ̂
− Lξ − Iδχξ) = −∆ξ. (C5)

Appendix D: Charge algebra

One first establish the key identity [8]

Lχιχ =
1

2

(
ι[χ,χ] + dιχιχ − ιχιχd

)
(D1)

which follows form the Cartan identity [Lξ, ιρ] = ι[ξ,ρ] and the fact that Lξ is a (0, 1) and ιξ is a (−1, 1)
graded differential operator

Lχιχ = ι[χ,χ] − ιχLχ
= ι[χ,χ] − ιχdιχ − ιχιχd
= ι[χ,χ] − (dιχιχ + ιχdιχ) + dιχιχ − ιχιχd
= ι[χ,χ] − Lχιχ + dιχιχ − ιχιχd. (D2)

From which we get (D1).
We can now use it to evaluate the covariant symplectic structure

ωχ = (δ + Lχ)(θ + ιχL)
= δθ + διχL+ Lχθ + LχιχL

= ω + ιδχL− ιχδL+ Lχθ +
1

2

(
ι[χ,χ] + dιχιχ − ιχιχd

)
L,

= ω − ιχdθ + ιχE + Lχθ +
1
2dιχιχL+ ιR[χ]L

= ω + ιχE + d
(
ιχθ +

1
2 ιχιχL

)
(D3)

where we used D1 in the third line and R[χ] = 0 in the last equality. We now focus on the proof of
(3.19). We denote sχ = ιχE + dιχθ the symplectic flux integrand and we evaluate

I
ξ̂
sχ +

1
2Iξ̂d(ιχιχL) = I

ξ̂
ιχE + dI

ξ̂

(
ιχθ +

1
2 ιχιχL

)

= −(ιξE + ιχdCξ)− d
(

ιξθ + ιχ

(

I
ξ̂
θ − ιξL

))

= −(ιξE + dιξθ + Lχ(Cξ + dqξ)). (D4)
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We obtain (3.19) after integration. We can finally evaluate (3.16)

I
ξ̂
ωχ = I

ξ̂
ω + I

ξ̂
ιχE + dI

ξ̂

(
ιχθ +

1
2 ιχιχL

)

= −δ (Cξ + dqξ) + [ιξE +Cδξ + d(ιξθ + qδξ)]− (ιξE + ιχdCξ) + dI
ξ̂

(
ιχθ +

1
2 ιχιχL

)

= −δ (Cξ + dqξ) + d(ιξθ)− ιχdCξ − d
(

ιξθ + ιχIξ̂θ + ιξιχL
)

+Cδξ + dqδξ

= −δ (Cξ + dqξ)− ιχdCξ − d (ιχCξ + ιχdqξ) + Cδξ + dqδξ
= −δχ (Cξ + dqξ) + Cδξ + dqδξ. (D5)

where we have used the on-shell definition of the Noether charge

Cξ + dqξ = I
ξ̂
θ − ιξL . (D6)
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