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Abstract

Mysterious Duality has been discovered by Iqbal, Neitzke, and Vafa [INV02] as a convincing, yet mysterious

correspondence between certain symmetry patterns in toroidal compactifications of M-theory and del Pezzo

surfaces, both governed by the root system series Ek.

It turns out that the sequence of del Pezzo surfaces is not the only sequence of objects in mathematics

that gives rise to the same Ek symmetry pattern. We present a sequence of topological spaces, starting with

the four-sphere S4, and then forming its iterated cyclic loop spaces L k
c S4, within which we discover the Ek

symmetry pattern via rational homotopy theory. For this sequence of spaces, the correspondence between its

Ek symmetry pattern and that of toroidal compactifications of M-theory is no longer a mystery, as each space

L k
c S4 is naturally related to the compactification of M-theory on the k-torus via identification of the equations of

motion of (11− k)-dimensional supergravity as the defining equations of the Sullivan minimal model of L k
c S4.

This gives an explicit duality between algebraic topology and physics.

Thereby, we extend Iqbal-Neitzke-Vafa’s Mysterious Duality between algebraic geometry and physics into

a triality, also involving algebraic topology. Via this triality, duality between physics and mathematics is de-

mystified, and the mystery is transferred to the mathematical realm as duality between algebraic geometry and

algebraic topology. Now the question is: Is there an explicit relation between the del Pezzo surfaces Bk and

iterated cyclic loop spaces of S4 which would explain the common Ek symmetry pattern?
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1 Introduction

Mysterious Duality has been discovered by Iqbal, Neitzke, and Vafa [INV02] as a remarkable, yet mysterious cor-

respondence between certain symmetry patterns in toroidal compactifications of M-theory and del Pezzo surfaces,

both governed by the root system corresponding to the exceptional series Ek, k ≤ 8.

Del Pezzo surfaces. Consider the del Pezzo surface Bk obtained as the blowup of the complex projective plane

CP2 at k generic points x1, . . . ,xk, 0 ≤ k ≤ 8. The Picard group Pic(Bk) of isomorphism classes of line bundles is

in this case isomorphic to the divisor class group and the second cohomology group: Pic(Bk) ∼= H2(Bk;Z). This

is a rank-(k+1) lattice with a natural Lorentzian inner product given by the intersection form. Another important

feature of the del Pezzo surface Bk is the anticanonical class: −Kk := −Ω2
Bk

, which is ample and defines a map

Bk ! CP9−k, also called anticanonical. This map is an embedding for k ≤ 6. The degree of the del Pezzo surface

is the self-intersection number (−Kk) · (−Kk) = Kk ·Kk = 9− k.

There is also an “outlier” del Pezzo surface B′
1 := CP1 ×CP1 of degree 8 with Picard group of rank 2. This

surface is related to the del Pezzo surfaces Bk by a single blowup: if we blow up a point in CP1 ×CP1, we will

obtain a surface isomorphic to B2.

The connection between algebraic geometry and Lie theory comes from the fact that the Cartan matrices of the

exceptional Lie algebras of type Ek and their root systems arise from the above data: a lattice with a distinguished

element and inner product (see [Ma74]).

In general, even for a fixed k, the surfaces Bk obtained from varying the blowup points are not isomorphic as

complex manifolds. However, they are diffeomorphic, so these surfaces give rise to the same combinatorial data,

and we will just speak of “the” del Pezzo surface Bk for each k.

The Mysterious Duality correspondence. There is a correspondence between del Pezzo surfaces Bk and M-

theory “wrapped” on tori T k, [INV02], as follows. Given an element ω of H2(Bk;R), considered as a gener-

alized Kähler form on Bk, the generalized volumes ω(C ) := ω ·C =
∫
Bk

ω ∪C of the standard basic classes

C = H ,E1, . . . ,Ek, see §4.1, may be thought of as logarithms, up to certain constants, of the coordinates (ℓp,R1,
. . . ,Rk) on the moduli space of M-theory compactified on the flat k-torus T k:

ω(H ) =−3lnℓp; ω(Ei) =− ln(2πRi) , i = 1, . . . ,k,

where ℓp is the Planck scale and the Ri’s are the radii of the torus factors. The moduli space of M-theory com-

pactified on T k is usually taken to be the double quotient K\G/G(Z), where G is the U-duality group, which is

the (real split form of the) Lie group Ek, G(Z) is its integral form, and K is the maximal compact subgroup of G

[HT95][OP99]. In [INV02] a simpler moduli space Mk := A/W is used. Taking into account the Iwasawa decom-

position G = KAN with A the R-split abelian factor and N the unipotent factor and the identification of the Weyl

group as W = N (A)/A, where N (A) is the normalizer of A, one may think of passing from K\G/G(Z) to A/W

as some sort of abelianization:

K\G/G(Z) = (AN)/G(Z)
abelianize ///o/o/o/o/o/o/o Mk = A/W . (1)

Further, the Mysterious Duality correspondence has the following features [INV02]:
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(i) Automorphisms of Bk and H2(Bk;Z) correspond to the U-duality transformations of M-theory on T k. The

U-duality group of M-theory on T k, which for rectangular compactifications with no C-field is given by the

Weyl group of Ek, is related to a subgroup of the automorphism group of H2(Bk;Z) which preserves the

intersection form and canonical class.

(ii) The moduli space A/W of compactified M-theory corresponds to the moduli space H2(Bk;R)/W of general-

ized Kähler forms ω , regarded as metric/transcendental data on Bk, up to automorphisms of Bk considered as

an algebraic surface.

(iii) Two classes of rational curves C1 and C2 related as C1 +C2 = −Kk on Bk correspond to two Dp1-branes

with Dp2-branes with p1 + p2 = 7− k, expressing electric-magnetic duality.

(iv) The p-branes of type IIA and type IIB string theory in 10 dimensions correspond to classes of rational curves

on B1 and CP1 ×CP1, respectively.

Our conceptual take. We bring in algebraic topology, in the form of (rational) homotopy theory, and propose a

triality of the form:
Algebraic Geometry oo

3©
//

kk

1©
++

Algebraic Topology

Physics
ss

2©

33❣❣❣❣❣❣

Figure 1: Mysterious Triality. The solid arrow 2© stands for a relationship between physics and algebraic topology which is made explicit,

while the dotted arrows 1© and 3© denote still mysterious correspondences based on combinatorial coincidences. It is enough to solidify

one of the dotted arrows to remove the mystery veil off the face of Triality.

The remarkable fact is that the duality pictured by arrow 2© is explicit. Let us explain the main idea behind it.

Rational homotopy theory associates to a topological space a certain algebra in two ways: the Quillen model, which

is a differential graded (dg) Lie algebra, and the Sullivan model, which is a dg-commutative algebra. Roughly

speaking, the Sullivan model is a rational homotopy model based on cohomology, while the Quillen model is

based on homotopy, so they are dual in some sense; see [Ta83][Maj00][FHT01].

In our context, the Sullivan minimal model of the 4-sphere S4 captures the dynamics of the fields in M-theory,

as proposed in [Sa13], and developed further under the name Hypothesis H in [FSS17][FSS19b][FSS19c][GS21]

(and applied in [Ro20]). Particularly, the generators of the Sullivan minimal model

M(S4) = R
[
g4,g7 | dg4 = 0,dg7 =− 1

2
g2

4

]

correspond to the basic supergravity fields G4 and G7 = ∗G4, expressed as differential forms on 11d spacetime,

whereas the differential of M(S4) corresponds to the equations of motion (EOMs):

dG4 = 0, dG7 =− 1
2
G4 ∧G4 = 0 . (2)

Moreover, the algebra of gauge transformations for these fields is captured by the Quillen model (see Example 2.2).

A gentle introduction to the relationship between M-theory and rational homotopy theory is given in [FSS19a].

Furthermore, we find a striking match between the equations for the Sullivan minimal model of the iterated

cyclic loop space (cyclification) L k
c S4 of the four-sphere and the EOMs of k-fold circle reduction of M-theory; see

§2 (specifically, §2.1, Examples 2.5 and 2.6, and §2.6). This is deeply rooted in the fact that writing out the EOMs

for the reduction of supergravity on a circle S1 is akin to the process of working out the Sullivan minimal model of

the cyclic loop space; see (13) and (16), cf. adjunction (9).

We may formulate the above more precisely as the main mathematical physics result of the paper.

Theorem 1.1 (Supergravity dynamics from rational homotopy theory). The Sullivan minimal model M(L k
c S4)

determines the duality-symmetric equations of motion of (11− k)-dimensional supergravity descending from 11-

dimensional supergravity §2.5, with the gauge algebra structure determined by the corresponding Quillen model

(Examples 2.2, 2.3). There is also a minimal Sullivan algebra corresponding to type IIB, with T-duality between

type II theories (Prop. 2.12) observed at the level of Sullivan minimal models.

3



This matching also implies the following general philosophy (extending the k = 1 case in [FSS18a][FSS18b]):

Any feature of or statement about the Sullivan minimal model of an iterated cyclic loop space L k
c S4

(or the rational homotopy type thereof) may be translated into a feature of or statement about the

compactification of M-theory on the k-torus.

Examples of such derive from the mathematical core of the paper: we find that toroidal symmetries of the

rational homotopy type of L k
c S4 lead naturally to the root system Ek, for each k ≥ 0. Combined with the theo-

rem above, this explains the appearance of the Ek root system in toroidal compactifications of M-theory and the

connection of the Weyl group W (Ek) to U-duality. The split real torus action on M(L k
c S4) translates into trom-

bone and rescaling symmetries of (11− k)-dimensional supergravity (see §3.3), the 27 exceptional vectors in the

root system E6 translate into a collection of 27 distinguished fields in 5d spacetime (see §4.6). The luxury of the

principle above was not available within the duality between del Pezzo surfaces and torodial compactifications of

M-theory, as there was only a collection of surprising coincidences, which were not based on an explicit relation.

The very lack of an explicit relation is the essence of the mystery behind the duality proposed by [INV02]. This is

the dotted arrow 1© in Figure 1.

The associated series of mathematical results is collected in the following metatheorem.

Theorem 1.2 (Metatheorem). (a) The maximal R-split torus of the real algebraic group AutM(L k
c S4) for k ≥ 0

is a (k+1)-dimensional torus T k+1 canonically isomorphic to Gk+1
m over R (Cor. 3.6).

(b) The action of the maximal split torus Gk+1
m on M(L k

c S4) may be lifted to an action on the space L k
c S4 in the

rational homotopy category. In this way, the last factor Gm of Gk+1
m acts via self-maps of the target S4 and the

first k factors act via self-maps of the source S1s (Props. 3.12 and 3.13).

(c) For type IIB, a maximal split torus T B =G2
m is identified explicitly (Prop. 3.14).

(d) The (k+ 1)-dimensional real abelian Lie algebra hk = Lie(T k+1) ⊆ DerM(L k
c S4), which plays the role of a

Cartan subalgebra, of the maximal R-split torus T = T k+1 of the algebraic group AutM(L k
c S4) has an explicit

canonical basis. So does the linear dual h∗k , which plays the role of a weight space (Thm. 4.1).

(e) There is a unique element of the Lie algebra hk, which acts on the Quillen minimal model Q(L k
c S4) as the

degree operator (Thm. 4.4).

(f) For each k, 0 ≤ k ≤ 8, the above bases (d) and element (e) give rise to the exceptional root data Ek. This

data, extracted from cyclic loop spaces M(L k
c S4), replicates the root data determined by del Pezzo surfaces

Bk (Thm. 4.6). The construction of the root data of Theorem 4.6 extends to k ≥ 9 (Remark 4.7).

(g) For type IIB, the exceptional root data from the rational homotopy model for type IIB replicates the data

determined by the del Pezzo surface CP1 ×CP1 and produces the root system A1 (Prop. 4.9).

(h) 27 Lines via rational homotopy of 6-fold cyclic loop space: In the weight decomposition

πR
• (L

6
c S4) =

⊕

α∈P(h6)

πR
• (L

6
c S4)α

corresponding to the 7-torus action on the Quillen minimal model Q(L 6
c S4) = πR

• (L
6

c S4)[1], the 27 excep-

tional vectors αi ∈ P(h6), i = 1, . . . ,27, single out precisely the second real homotopy group πR
2 (L

6
c S4):

πR
2 (L

6
c S4) =

27⊕

i=1

πR
• (L

6
c S4)αi

.

Moreover,

dimπR
• (L

6
c S4)αi

= 1

for each i= 1, . . . ,27, which means there are 27 canonically defined, linearly independent lines in the R-vector

space πR
2 (L

6
c S4) and dimπR

2 (L
6

c S4) = 27 (Thm. 4.10).
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Thus, our work provides an explicit, conceptual correspondence 2© between physics and algebraic topology

in the Triality above and thereby uncovers the mystery of Mysterious Duality, if understood in a broad sense as a

duality between physics and mathematics. The other two sides of the Triality, see Figure 1, still remain a mystery.

Filling out either of the mysterious sides of the triangle would complete the story and resolve the Mysterious

Duality conjecture of [INV02].

This leads to a new, conjectural duality within mathematics, a duality between the algebraic geometry of del

Pezzo surfaces and the algebraic topology of cyclic loop spaces of the 4-sphere, formulated as:

Conjecture 1.3. There must be an explicit relation between the series of del Pezzo surfaces Bk, 0 ≤ k ≤ 8, and

CP1 ×CP1 on the one hand and the series of iterated loop spaces L k
c S4, 0 ≤ k ≤ 8, and the topological model

IIB, see §2.6, on the other hand. In particular, blowing up a del Pezzo surface should correspond to taking a

cyclification of an iterated cyclification of S4. This relation should match the Ek symmetry patterns occurring in

both series, as well as relate other geometric data, such as relate the volumes of curves on del Pezzo surfaces with

certain metric data on the iterated loop spaces.

The Ek symmetry patterns. The dimensional reduction of M-theory on a k-torus gives rise to a theory in D =
11− k dimensions with the scalar fields with symmetry pattern [INV02] in the five columns in Table 1 below,

matching the familiar pattern for del Pezzo surfaces [Ma74], to which we add the 6th column for cyclic loop

spaces (“cyclifications” L k
c S4 of S4), as well as the 7th column corresponding torus symmetry, both of which we

discover in this paper. This highlights the interrelations among Lie theory (4th column), algebraic geometry (5th

column), and topology/physics (6th column), as appropriate by the trichotomy/triality in Figure 1.

D k Type of Ek Lie algebra g del Pezzo Model Maximal Split Torus

11 0 A−1 sl0 =∅ CP2 S4 Gm

10 1 A0 sl1 = 0 B1 LcS4 Gm ×Gm

10 1 A1 sl2 CP1 ×CP1 IIB Gm ×Gm

9 2 A1 sl2 B2 L 2
c S4 G2

m ×Gm

8 3 A2 ×A1 sl3 ⊕ sl2 B3 L 3
c S4 G3

m ×Gm

7 4 A4 sl5 B4 L 4
c S4 G4

m ×Gm

6 5 D5 so10 B5 L 5
c S4 G5

m ×Gm

5 6 E6 e6 B6 L 6
c S4 G6

m ×Gm

4 7 E7 e7 B7 L 7
c S4 G7

m ×Gm

3 8 E8 e8 B8 L 8
c S4 G8

m ×Gm

Table 1: The Ek pattern in Lie theory, (0 ≤ k ≤ 8) del Pezzo surfaces, and cyclifications of S4.

Our formulation allows us to extend to higher ranks, k = 9, 10, and 11, corresponding to the infinite-dimension-

al cases. Indeed, since our discussion extends beyond the Lie setting to the Kac-Moody setting, we have extensions

of the Triality in Figure 1 and of Conjecture 1.3 that go beyond the Fano case on the algebraic side in §4.7. We

also observe that cyclic loop spaces, when we go beyond k = 8, undergo a transition analogous to that on the del

Pezzo/root systems/Lie algebra side: the degree of the cyclification L k
c S4 in the sense of (46) ceases to be positive,

the corresponding root system becomes infinite, and the metric on the k-dimensional real vector space holding the

root system is no longer Euclidean; see Remark 4.7. The surface B9 gives rise to a rank-9 parabolic lattice, while

B10 and B11 correspond to rank-10 and 11 hyperbolic lattices.

D k Type of Ek Kac-Moody algebra g Non-Fano Surface Model Maximal Split Torus

2 9 E9 = Ê8 affine e9 = ê8 B9 L 9
c S4 G9

m ×Gm

1 10 E10 hyperbolic e10 B10 L 10
c S4 G10

m ×Gm

0 11 E11 Lorentzian e11 B11 L 11
c S4 G11

m ×Gm

Table 2: The Ek pattern in Kac-Moody theory (k ≥ 9), further blowups of CP2 and cyclifications of S4.
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Note that our approach can be made quite general by looking at other topological spaces than S4. This would

then lose the connection to M-theory, but the rational homotopy theory aspects would still be interesting to explore.

For instance, other spheres would have the same toric symmetries of the rational homotopy type and produce the

same root data.
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2 The 4-sphere and its cyclifications as the universal targets for M-theory and its

reductions

We will provide our main topological setting for the rest of the paper using (rational) homotopy theory, along the

lines outlined in the Introduction.

2.1 The Sullivan minimal model

Here we replace the notion of a rational Sullivan minimal model of a topological space with a less common notion

of a real Sullivan minimal model, given that real coefficients of physical fields could be a bit more natural than

rational ones (see the discussion in [FSS20]). We will therefore assume that our algebraic models are defined over

the reals R (see [BS95][GM13]).

To every path-connected, nilpotent (the fundamental group is nilpotent and acts nilpotently on higher homotopy

groups) topological space Z, rational homotopy theory associates a minimal Sullivan algebra, called the Sullivan

minimal model M(Z) of Z, a differential graded commutative R-algebra (DGCA) M = M(Z) = (S(V ),d) of a cer-

tain type, called a minimal Sullivan algebra, after [Su77]; see the definition below and standard rational homotopy

theory references, e.g., [FHT01][FOT08][GM13].

Here and henceforth, we will be restricting our attention to spaces which have finite-dimensional real homology

groups and, respectively, minimal Sullivan algebras having strong finite type, i.e., based on a graded vector space V

of finite total dimension, dimV < ∞. The spaces of interest below, namely the four-sphere S4 and its cyclifications,

satisfy this condition.

Definition 2.1 (Sullivan minimal models). (i) A Sullivan algebra is a differential graded commutative R-alge-

bra (DGCA) (M,d) based on the free graded commutative algebra M = S(V ) on a graded real vector space

V =
⊕

n>0V n with a differential d : M !M of degree 1, d2 = 0, satisfying the following nilpotence condition,

known as the Sullivan condition: V is the union of an increasing series of graded subspaces

V (0)⊆V (1)⊆ . . . (3)

such that d(V (0)) = 0 and d(V (k))⊆ S(V (k−1)) for k ≥ 1.

(ii) A Sullivan model of a DGCA A is a Sullivan algebra M with a quasi-isomorphism M ! A, i.e., a homomor-

phism which induces an isomorphism on cohomology.
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(iii) We say that a Sullivan algebra is minimal if

d(M)⊆ M+ ·M+,

where M+ :=
⊕

n>0 Mn = S≥1(V ).

A minimal Sullivan model of a connected (i.e., An = 0 for n < 0 and A0 = R) DGCA A exists and is unique up

to isomorphism.

To every topological space Z, Sullivan’s construction in rational/real homotopy theory associates a DGCA

APL(Z), called the algebra of real polynomial differential forms on Z.1 If Z is a smooth manifold, one can take

the de Rham algebra of smooth differential forms on Z instead. (This example is the main reason why we prefer

real homotopy theory to rational one). If Z is path-connected, nilpotent, and has finite-dimensional real homology

groups, then the DGCA APL(Z) gives rise to a minimal Sullivan model S(V ), defined up to isomorphism, called

the (real) Sullivan minimal model of Z.

2.2 S4 as the universal target for M-theory via Hypothesis H

We adopt the perspective proposed in [Sa13] of viewing the 4-sphere S4 as the universal space of form fields in

M-theory. The significance of this is that S4 encodes, entirely in its topology, the field G4 and its dual G7 as well as

their dynamics. This space is viewed as a universal space in the sense that these field configurations are given at the

homotopy level by real homotopy classes of maps from spacetime Y 11 to S4, and whenever geometry is included,

one would need all maps; see [FSS15][FSS17][GS21] (but here we will concentrate on topology).

In 11-dimensional supergravity, which is the low-energy limit of M-theory, the equations of motion (EOMs)

are [CJS78]

dG4 = 0, d ∗G4 +
1
2
G4 ∧G4 = 0 .

When combined with the self-duality condition

G7 := ∗G4 , (4)

these may be rewritten as (2) by using G4 and G7, where the fields G4 and G7 are represented by differential forms

of degree 4 and 7, respectively, on the 11-dimensional spacetime Y 11 of M-theory, and ∗ denotes the Hodge star

operator, which captures the dependence on the metric on Y 11. Note that locally we may write

G4 = dC3, G7 = dC6 − 1
2
C3 ∧G4

for some differential forms C3 and C6, viewed as the corresponding potentials. However, we will use the duality-

symmetric (doubled field) formulation, where G4 and G7 are treated independently [BBS98] (see also [MS03]

[Sa06][ST17][BMSS18] for more global treatments). This will also suppress any explicit dependence on the

metric, suitable for our topological perspective, which may be regarded as describing the topological background

of the full story. To get the full picture at the level of fields, one simply adds metric data to spacetime and imposes

the duality relation ∗G4 = G7. We have also found a way to add metric data to the universal real homotopy model

of S4 (and its cyclifications) via introducing moduli parameters; see the end of §4.4.

The topological aspects of the M-theory dynamics at the real homotopy level are captured by the real homotopy

theory description given by the Sullivan minimal model of S4, [Sa13], which we denote M(S4):2

M(S4) = (R[g4,g7],d) ,

dg4 = 0, dg7 =− 1
2
g2

4 , (5)

1We clarify that, by a little abuse of terminology, we will often say “rational” even when one should more correctly say “real.” However,

it will always be clear from the context what field of coefficients we is working with.
2We will use lowercase letters for universal elements and uppercase letters to denote spacetime fields.
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where the degree of each of the generators g4 and g7 is given by the corresponding subscript: |g4| = 4, |g7| = 7.

Here we are choosing to include the factor of − 1
2

in the expressions of the model, as opposed to being absorbed by

the generators (see [FSS17, Ex. 3.3]).

Comparing (2) with (5), we see that there exists a differential graded (dg) algebra homomorphism

M(S4)−! (Ω•(Y ),d), (6)

g4 7−! G4,

g7 7−! G7,

where (Ω•(Y ),d) is the de Rham algebra of the 11-dimensional spacetime Y 11. The de Rham algebra is, in fact,

a real homotopy model of the manifold Y 11, and this model could be different from the Sullivan minimal model.

Rational (or, actually, real [FSS20]) homotopy theory provides a canonical continuous map

Y −! S4
R, (7)

where S4
R is the rationalization over R of M(S4), a certain universal topological space whose Sullivan minimal

model M(S4
R) is isomorphic M(S4), such that the pullback map from the Sullivan minimal model of S4

R to the de

Rham model of Y 11 is given by (6). The space S4
R has the same real homotopy type as S4 via a map S4

! S4
R, but

Hn(S
4
R;Z) is a real vector space for each n ≥ 1. The rationalization may be obtained via a simplicial construction

from the dg-commutative algebra M(S4); see [BS95][FSS20].

In [Sa13], it is suggested that there is actually a continuous map to the honest-to-goodness 4-sphere S4,

Y −! S4, (8)

that induces the homomorphism (6). Indeed, a comparison of this target to its linearization, that is to say, the

Eilenberg-MacLane classifying space K(Z,4), which encodes the C-field as captured by a degree 4 class, with

the 4-sphere is presented in [GS21] through a Postnikov tower analysis. The nonabelian nature and the shift by

Pontrjagin classes in the quantization condition of the C-field are studied in [FSS19b].

The generator g4 of M(S4) may be realized as a volume form on the sphere S4, but in the de Rham algebra of S4,

there is no room for g7. One may desire to have a model of the universal target space for M-theory, so that not only

g4, but also g7 may be realized as a differential form. One such model was suggested to us by M. Kapranov: it is

the complement HP∞ \\HP∞−2 =
⋃

N HPN \\HPN−2 of a codimension 2 plane HP∞−2 in the quaternionic projective

space HP∞. The infinite-dimensional manifold HP∞ \\HP∞−2 is homotopy equivalent to HP1 ∼= S4 and may prove

to be useful in 11d supergravity.

2.3 The Quillen model and M-theory gauge structure

The Sullivan minimal model M(Z) (see §2.1) of each of the spaces Z we are considering has quadratic differen-

tial. This model is actually the symmetric algebra on a space of generators having a certain homotopy-theoretic

meaning:

M(Z) = (S(Q(Z)[−1]∗),d),

where Q(Z) is the Quillen minimal model 3 of Z [Qu69], which in our quadratic-differential case is given by the

graded Lie algebra of real homotopy groups

Q(Z) := π•(Z)⊗R[1]

3Here we abandon the traditional notion of minimality, based on a free graded Lie algebra, in favor of a more modern one: Q(Z) is an

L∞-algebra with the zero differential, see [BFMT20]. The differential d on M(Z) may be identified as the Chevalley-Eilenberg differential,

but this is beside the point here.
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of Z. Let us explain what this means. Consider the real homotopy groups of Z, as a graded vector space over R

π•(Z)⊗R :=
⊕

i∈Z
πi(Z)⊗R,

where

πi(Z)⊗R :=





0 for i ≤ 0,(
π1(Z)/[π1(Z),π1(Z)]

)
⊗ZR for i = 1,

πi(z)⊗ZR for i ≥ 2.

If we shift the grading down by one and consider the natural isomorphism

π•(Z)⊗R[1]
∼

−−! π•(ΩZ)⊗R ,

where ΩZ := Map∗(S
1,Z) is the based loop space of Z, we will get a natural graded Lie-algebra structure with

respect to the Samelson product. This is induced on π•(ΩZ)⊗R by the commutator map [−,−] : ΩZ×ΩZ ! ΩZ

of the concatenation ΩZ×ΩZ ! ΩZ of based loops in Z:

Sa+b = Sa ×Sb/Sa ∨Sb γ1×γ2
−−−−! ΩZ×ΩZ

[−,−]
−−−! ΩZ ,

for γ1 ∈ πa(ΩZ) and γ2 ∈ πb(ΩZ), where Sa ∨Sb is the wedge sum of the pointed spaces Sa and Sb.

An equivalent, more standard description of the corresponding Lie bracket on π•(Z)[1]⊗R ∼= π•(ΩZ)⊗R, is

known as Whitehead product, which does not appeal to based loop spaces; see, e.g., [FHT01]. We will not need it

here (see [FSS19c][FSS20, §3.2] for detailed discussion in this context).

Now let us return to the case Z = L k
c S4. We will start with k = 0. The following is, in a sense, dual to the

description of the fields via the Sullivan minimal model of S4 in (5).

Example 2.2 (M-theory gauge algebra via the Quillen model of S4). The Quillen model of S4 is just the graded

Lie algebra on two generators

Q(S4) =Re3 ⊕Re6,

|e3|= 3, |e6|= 6,

[e3,e3] = e6, [e3,e6] = 0, [e6,e6] = 0,

which is actually the free graded Lie algebra over R generated by e3. This captures the algebra of gauge trans-

formation of the C-field and its dual and, hence, also captures the Dirac quantization of the M-branes (see

[CJLP98b][LLPS99][KS03][Sa10]).

We will revisit the reduction of this algebra, corresponding to cyclic loop spaces L k
c S4 for k > 0 in Example

2.3.

2.4 Dimensional reduction of M-theory on tori and iterated cyclifications of S4

Type IIA and looping. The reduction from M-theory in 11 dimensions to type IIA string theory in 10 dimensions

is captured by looping. Such a process has been utilized topologically at the level of bundles leading to loop

bundles in 10 dimensions starting from an E8 gauge bundle (capturing the purely topological aspects of G4) in 11

dimensions [MS03]. In our current case, we do this at the level of universal target spaces, taking into account the

rotation of the circle. This leads to the concept of a cyclic loop space or cyclification, advocated in [FSS18b] (see

(11) below)
LcS4 := L S4//S1.
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Why cyclic loop space. Let us provide mathematical justification of the appearance of the cyclic loop space.

The 10-dimensional spacetime of type IIA string theory is actually the “11-dimensional spacetime Y 11 wrapped on

S1”, which translates to the mathematical language simply as the 10-dimensional quotient Y 11/S1 by a free action

of S1. Now, there is an adjunction

Mor/BS1(Y 11/S1,LcZ)
∼

−−! Mor(Y 11,Z), (9)

where Y 11 is a space with a free action of S1, Z is another topological space, the left-hand side is the set of

morphisms in the category /BS1 of spaces over BS1 (equivalent to the category of principal S1-bundles, such as

Y !Y/S1 and L Z !LcZ), and the right-hand side is the set of continuous maps Y ! Z; see [FSS18b][BMSS18,

Theorem 2.44]. This adjunction produces a map

Y/S1
−! LcS4 (10)

from the map (8) (or using the corresponding rationalization S4
R of S4 over R and the map (7)). If the action of S1

on Y 11 is not free, one has to replace the naive quotient Y 11/S1 by the homotopy quotient Y 11//S1 in the above.

Roughly speaking, thinking of LcS4 as the space of unparameterized (also known as equivariant) free loops in S4,

a map like (8) from an S1-space Y 11 will produce a map (10) which assigns to a point y ∈Y 11/S1 the map that takes

the S1-orbit in Y 11 over y to S4 by the given map Y 11
! S4.

We would like to make more precise what we mean by iterated cyclic loop spaces. Let L Z = Map(S1,Z) be

the free loop space of a topological space Z, which we will assume to be path-connected. The free loop space

admits a natural (right) action of the group S1 by rotating loops

( f · z)(z′) = f (zz′) ,

for f ∈ L Z and z,z′ ∈ S1, and we define the cyclic loop space or cyclification LcZ to be the homotopy quotient

LcZ := L Z//S1. (11)

One may construct it using the Borel construction (L Z×ES1)/S1, where ES1 is the universal space for S1 bundles,

as the quotient by the diagonal action of S1, i.e., the quotient by the relation

( f · z,e)∼ ( f ,z · e) ,

for f ∈ L Z, e ∈ ES1, and z ∈ S1. We will use the convention that if Z is not simply connected, when L Z acquires

path components, we retain only the component of the constant loop and in that case use the same notation

L Z := (L Z)0 ,

which also makes our cyclic loop spaces path-connected.

M-theory on T k,k ≤ 8 and higher cyclic loop spaces. The reduction of the above system on tori T k = (S1)k

leads to a low-dimensional system corresponding to duality-symmetric supergravity actions in these dimensions

matching the EOMs of M-theory compactified on a k-dimensional torus T k in an iterative way, as we explain below.

Suppose the 10-dimensional spacetime X10 = Y 11/S1 of type IIA string theory (or the 10-dimensional space-

time X10 of type IIB supergravity) also has a free action of S1. Then applying the adjunction (9) to the map (10),

we get a natural map

X10/S1 = (Y 11/S1)/S1
−! L

2
c S4.

This would be the second toroidal compactification of M-theory to a 9-dimensional spacetime. Iterating this

process, for each k, 0 ≤ k ≤ 11, we will be getting a map

(
. . .((Y 11/S1)/S1) . . . /S1

)
−! L

k
c S4,
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the quotient being by k copies of S1, from the kth toroidal compactification of the 11-dimensional M-theory to the

k-fold cyclification L k
c S4 of the four-sphere.

Hence, for k ≥ 0, the iterated cyclic loop space L k
c Z is the k-fold iteration of the cyclic loop space construction:

L
0

c Z := Z,

L
k

c Z := Lc(L
k−1

c Z) for k ≥ 1.

We will often refer to iterated loop spaces as cyclifications. We will be interested mostly in the iterated cyclic

loop spaces L k
c S4 of the 4-sphere S4, both for 0 ≤ k ≤ 8 and for k ≥ 9. For k = 1 this is studied extensively in

[FSS18a][FSS18b] in relation to T-duality and the twisted K-theory description of the fields in type II string theory

(cf. §2.6). The generalization is possible thanks to the general construction in [BMSS18].

The above matching of the EOMs with the differential on the Sullivan model of the k-fold cyclic loop space

L k
c S4 is another striking phenomenon, which we observe in this paper; see §2.5.

Example 2.3 (The brane/reduced M-theory gauge algebra via the Quillen model of the cyclification of S4). We

have seen the description of the M-theory gauge algebra via Quillen model of S4 is just the graded Lie algebra on

two generators in Example 2.2. The gauge algebra of the reduced fields in 11− k dimensions will correspond to

the Quillen model of L k
c S4. We will not work out the details, as it is clear that matching the fields and EOMs of

reduced M-theory with the generators and their differentials in the Sullivan minimal model of the cyclification of

S4 implies similar matching between the gauge algebra and the Quillen model. Thus, the gauge algebra formulas

in [CJLP98b][LLPS99] should be reproduced just by looking at the Quillen model of L k
c S4.

2.5 The Sullivan minimal model of the cyclic loop space

Our goal here is to describe the Sullivan minimal model of the cyclic loop space M(LcZ) in terms of the Sullivan

minimal model M(Z) = S(V ) of the space Z. Along the way, we also provide a duality-symmetric reduction of

fields in M-theory on tori, extending and organizing partial/local results in the supergravity and M-theory literature.

Suppose Z is a path-connected, nilpotent space with finite-dimensional real homotopy groups. With our con-

vention in §2.4, we claim the following:

Proposition 2.4 (Basic properties of the cyclic loop space). (i) LcZ is also path-connected, nilpotent, and has

finite-dimensional rational homotopy groups.

(ii) The Sullivan minimal model M(LcZ) of LcZ is given by the extension (13) below.

Proof. (i) Indeed, the path-connected free loop space L Z sits in a fiber sequence

ΩZ ! L Z
ev∗
−−! Z, (12)

where ev∗ is evaluation at the basepoint ∗ ∈ S1 and ΩZ = Map∗(S
1,Z) is the based loop space. The constant-loop

section of ev∗ splits the homotopy groups: πi(L Z) = πi(Z)⊕πi(ΩZ) = πi(Z)⊕πi+1(Z) for i ≥ 2 and π1(L Z) =
π1(ΩZ)⋊π1(Z)= π2(Z)⋊π1(Z). The action of π1(ΩZ) on πi(L Z) for i≥ 2 is trivial, while the action of π1(Z) on

πi(L Z) for i ≥ 2 is the sum of actions on πi(Z) and πi+1(Z). Therefore, the action of π1(L Z) on πi(L Z), i ≥ 2,

is nilpotent. The group π1(L Z) itself is nilpotent as a semidirect product of a nilpotent group acting nilpotently

on an abelian group. Indeed, the action of π1(Z) on π1(ΩZ) defining the semidirect product is compatible with

the standard action of π1(Z) on π2(Z), which is assumed to be nilpotent, see , e.g., [AFO17]. As concerns the

homotopy groups of the cyclic loop space LcZ, it just adds a copy of Z to π2(L Z), on which π1(LcZ) = π1(L Z)
acts trivially, as one can see from the fiber sequence

S1
! L Z ×ES1

! LcZ,

in which the inclusion of the fiber S1 over the constant loop factors through the contractible space ES1.
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(ii) Vigué-Poirrier and Burghelea [VPB85] show4 that the Sullivan minimal model M(LcZ) is isomorphic to

(S(V ⊕V [1]⊕Rw),dc), which is an extension (in the sense of Halperin [Hal83], also known as a Λ-extension)

(R[w],0) −! (S(V ⊕V [1]⊕Rw),dc)−! (S(V ⊕V [1]),d f ) (13)

corresponding to the homotopy fiber sequence

L Z ! LcZ ! BS1.

Here V [1] =
⊕

n>0V [1]n is the truncated desuspension, the graded vector space with components

V [1]n :=

{
V n+1 for n > 0,

0 for n ≤ 0.
(14)

The truncation affects only the non-simply connected case, when V 1 6= 0, as it truncates only this graded compo-

nent. The differentials d f and dc may be described as follows. Let

s : V −!V [1],

v 7−!

{
v for v ∈V n, n > 1,

0 for v ∈V 1,

be the natural map, a surjection of degree −1. Then, for all v ∈V ,

d f v := dv,

d f sv :=−sdv, (15)

where s is extended to a unique degree-(−1) derivation of S(V ⊕V [1]) such that s(u) = 0 for all u ∈V [1]. Since

this derivation s is a version of a graded polynomial de Rham differential, we have s2 = 0. Then, for all v ∈V , we

define

dcv := dv+ sv ·w,
dcsv :=−sdv, (16)

dcw := 0.

Similarly, the Sullivan minimal model of the free loop space L Z is a Halperin extension

(S(V ),d)−! (S(V ⊕V [1]),d f )−! (S(V [1]),0) (17)

corresponding to the fiber sequence (12).

Example 2.5 (Reduction on a circle and the cyclification LcS4). From M(S4) in (5), the Sullivan minimal model

M(LcS4) of the cyclic loop space of S4 can be presented as (cf. [FSS17, Ex. 3.3][FSS18b, Ex. 2.7])

M(LcS4) = (R[g4,g7,sg4,sg7,w],d) ,

dg4 = sg4 ·w, dg7 =− 1
2
g2

4 + sg7 ·w ,

dsg4 = 0, dsg7 = sg4 ·g4, dw = 0 .

As in [FSS18b, Ex. 2.7], making the change of variables f2 = w, h3 = sg4, f4 = g4, f6 = sg7, and h7 = g7, this can

be rewritten as

M(LcS4) =
(
R[ f2, f4, f6,h3,h7], d f2 = 0, dh3 = 0, d f4 = h3 f2, d f6 = h3 f4, dh7 =− 1

2
f4

2 + f2 f6

)
.

4Vigué-Poirrier and Burghelea assume that Z is simply connected, but their argument applies to the more general nilpotent case verbatim,

by taking V [1] to be the truncated desuspension (14) of V , given that Halperin’s theorem on fibrations [Hal83, Theorem 20.3] is done in the

nilpotent case.

12



Being defined for LcS4, these equations are universal, and we obtain the corresponding ones in spacetime by

pulling back, giving the datum of a closed 3-form H3 and of 2-, 4- and 6-forms F2, F4 and F6 on X such that

dF2 = 0; dF4 = H3 ∧F2; dF6 = H3 ∧F4,

together with a 7-form H7, which is a potential for a certain 8-form:

dH7 =− 1
2
F4 ∧F4 +F2 ∧F6;

cf. [CW84][HN85][GP84] for the classical theory and [BNS04] for the duality-symmetric formulations of type

IIA D = 10 supergravity. Hence, if Y ! X is rationally a principal S1-bundle, then a map Y ! S4 in the rational

category will induce, by the hofiber/cyclification adjunction (9), such a set of differential forms on the base X .

As explained in [FSS17][FSS18b], the above equations for the differentials of the F2n’s are precisely (a subset

of) the equations for a H3-twisted cocycle ∑n F2nun in (Ω•(X)((u)),dH3
) with F0 = 0, corresponding to the EOMs

and Bianchi identities captured by twisted (rational) even K-theory, as appropriate for type IIA string theory. We

consider the type IIA and IIB perspectives in §2.6.

Proposition 2.4 can be iterated to give the same result for L 2
c Z, so that we can now continue with further

dimensional reduction. 5

Example 2.6 (Reduction on a 2-torus and the double cyclification L 2
c S4). For the Sullivan minimal model

M(L 2
c S4) of the double cyclification of the sphere S4, we have

M(L 2
c S4) = (R[g4,g7,s1g4,s1g7,w1,s2g4,s2g7,s2s1g4,s2s1g7,s2w1,w2],d) ,

dg4 = s1g4 ·w1 + s2g4 ·w2, dg7 =− 1
2
g2

4 + s1g7 ·w1 + s2g7 ·w2,

ds1g4 = s2s1g4 ·w2, ds1g7 = s1g4 ·g4 + s2s1g7 ·w2,

ds2g4 =−s2s1g4 ·w1 + s1g4 · s2w1, ds2g7 = s2g4 ·g4 − s2s1g7 ·w1 − s1g7 · s2w1,

ds2s1g4 = 0, ds2s1g7 =−s2s1g4 ·g4 + s1g4 · s2g4,

dw1 = s2w1 ·w2, ds2w1 = 0, dw2 = 0 .

These equations are again universal, and we again obtain the corresponding ones in spacetime by pullback. These

are the EOMs and Bianchi identities of type II string theory at low energy, i.e., type II supergravity in 9 dimensions

in the duality-symmetric formulation. A more common physics notation for the above fields (once pulled back to

the 9d spacetime (X/S1)/S1, but omitting the pullback notation) is

g4 = F4, g7 = H7, s1g4 = H
(1)
3 , s1g7 = F

(1)
6 , s2g4 = H

(2)
3 , s2g7 = F

(2)
6 ,

s2s1g4 = F2, s2s1g7 = F5, w1 = F
(1)
2 , w2 = F

(2)
2 , s2w1 = F

(2)
1 .

The classical EOMs are given in [BHO95][DR96], so the above can be viewed as a duality-symmetric extension.

Remark 2.7 (Iterated S1 vs. direct T 2 = S1 ×S1 reduction). We compare the two settings:

(i) In the iterated case, M(L 2
c S4), notice the appearance of the axion s2w1, which would be absent in the direct

reduction on T 2 corresponding to the “toroidification” M(Map(T 2,S4)//T 2).

(ii) Note that dw1 = s2w1 ·w2 above, whereas in the direct T 2-reduction, we would have dw1 = dw2 = 0. Likewise,

note the two terms in the differential ds2g4 above, while in the direct reduction, it would be on an equal footing

with ds1g4, that is, ds2g4 = s1s2g4 ·w1.

5We will have multiple circle fiber directions and corresponding labels on the contractions si and the classes of the circles wi. We realize

that the notation is not fully in parallel with the convention of using such labels to indicate the degree, but choosing another notation such

as s(i) might overload the expressions when multiple such occur below. We hope the distinction will be clear from the context.
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Example 2.8 (Reduction on a 3-torus and the triple cyclification L 3
c S4). Since the double cyclification L 2

c S4

is not simply connected and its Sullivan minimal model has one generator, s2w1, of degree one, for the triple

cyclification L 3
c S4, a new phenomenon happens: the desuspension V [1] becomes truncated, see (14). We will

describe the Sullivan minimal model M(L 3
c S4). The list of generators will include a new generator, w3, and those

of the previous case, Example 2.6, as well as their desuspensions, s3g, where g is a former generator of M(L 2
c S4),

except for g = s2w1, which gets truncated: we may just as well assume that

s3s2w1 = 0 . (18)

This truncation will also affect the equations for the differentials in the following way. In accordance with (16),

the differentials of the former generators g of M(L 2
c S4) from Example 2.6 above will all acquire an extra term

s3g ·w3, such as

dg4 = s1g4 ·w1 + s2g4 ·w2 + s3g4 ·w3 ,

except for the equation

ds2w1 = 0 , (19)

which will remain intact. The differentials of the desuspensions s3g of the former generators g of M(L 2
c S4) will

work by the expression in (16), such as

ds3g4 =−s3s1g4 ·w1 + s1g4 · s3w1 − s3s2g4 ·w2 + s2g4 · s3w2 ,

but those generators g whose differentials contained s2w1 will be affected in the way that in (16), we shall impose

the relation (18):

ds3w1 = s2w1 · s3w2, ds3s2g4 =−s3s2s1g4 ·w1 − s2s1g4 · s3w1 − s3s1g4 · s2w1 ,

ds3s2g7 =−s3s2g4 ·g4 + s2g4 · s3g4 + s3s2s1g7 ·w1 + s2s1g7 · s3w1 + s3s1g7 · s2w1 .

Let us list all the d-closure equations for the generators of M(L 3
c S4), as this will be important for us later:

ds3s2s1g4 = 0, ds2w1 = 0, ds3w2 = 0, dw3 = 0 .

The above equations are again universal, and we obtain the corresponding ones in spacetime by pullback, and

capture the equations of motion and Bianchi identities of type II string theory at low energy, i.e., type II supergravity

in 8 dimensions in the duality-symmetric formulation, extending, for instance, [AT85].

Example 2.9 (Reduction on T k and k-fold cyclifications L k
c S4 for k ≥ 3). The pattern of Example 2.8, as predicted

by Equations (13)–(16), pertains. The d-closed generators, which will play an important role later, consists of

(i) k elements of degree one:

s3s2s1g4, s2w1, s3w2, . . . , skwk−1 ,

(ii) and an element of degree two: wk.

The number nk of generators does not follow the recursion nk = 2nk−1 + 1 seemingly suggested by (13), because

of the truncations. However, the set of generators is easy to account for:

sil . . .si1 g4, where 0 ≤ l ≤ 3 and 1 ≤ i1 < · · ·< il ≤ k,

sil . . .si1 g7, where 0 ≤ l ≤ 6 and 1 ≤ i1 < · · ·< il ≤ k,

wi, 1 ≤ i ≤ k,

s jwi, 1 ≤ i < j ≤ k.

The pullbacks of their differentials to spacetime correspond, likewise, to the EOMs and Bianchi identities of

duality-symmetric low energy string theory/supergravity in dimensions 11− k. Supplying these leads to a duality-

symmetric extension of the non-duality symmetric versions studied, e.g., in [LP96][LLP98], and surveyed in

[CDF91][Ta98].
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2.6 Type IIB and T-duality

The equivalence of real Sullivan minimal models M(X)∼= M(Y ) is in correspondence with the underlying topolog-

ical spaces X and Y being rationally (in fact, under our formalism, “really”) homotopy equivalent. This will allow

us to obtain a candidate for the real model for type IIB without having to immediately work out a topological space

analogue for IIB of the cyclification of S4 on the type IIA side.

Starting with a topological model of the real homotopy type for type IIA, let us call that IIA, and one for

type IIB, let us call that IIB, it would be ideal to have an equivalence upon dimensional reduction of both to

nine dimensions, i.e., in the spirit of the approach of [FSS18a], upon cyclification, M(LcIIA)∼= M(LcIIB). This

would correspond to a real homotopy equivalence LcIIA ∼ LcIIB, a universal version of T-duality. The situation

here is subtler, and this section is devoted to discussing the intricacies of type IIB, versions of the equivalence

LcIIA ∼ LcIIB of real homotopy types, and the discrepancy between them.

Now starting with S4 as the universal space for M-theory (as in [Sa13] and (5)), we get the cyclification LcS4 as

the model for type IIA in ten dimensions (as in [FSS17] and Example 2.5). Dimensionally reducing further amounts

to double cyclification L 2
c S4 in nine dimensions (as in Example 2.6). On the other hand, dimensionally reducing

type IIB to nine dimensions leads to the once-cyclified space LcIIB. In terms of S4, the expected equivalence in

nine dimensions would hence amount to the equivalence of Sullivan models

M(LcIIB)∼= M(L 2
c S4)

and a real homotopy equivalence at the level of spaces

LcIIB ∼ L
2

c S4.

While we will not work out the decyclification, we do have a path along which to proceed:

M

Lc

��

L 2
c

pp

IIB
Lc

!!❈
❈❈

❈❈
❈❈

❈ IIA
Lc

}}④④
④④
④④
④④

9d

This diagram is not only motivated by physics but also by Mysterious Duality and the del Pezzo story, in which we

have

CP2

b

��

b2

qq

CP1 ×CP1

b

$$❏
❏❏

❏❏
❏❏

❏❏
❏

B1

b

}}④④
④④
④④
④④

B2

where b denotes the process of blowing up (rather than the blowup map, which would go in the opposite direction).

The Sullivan minimal model M(IIB) of the real homotopy type IIB. Consider the free graded commutative al-

gebra R[ω1,h3,ω3,ω5,h7,ω7], the subscripts denoting the degrees of the respective elements. Define a differential

by the following equations:

dω1 = 0, dh3 = 0,

dω3 = h3ω1, dω5 = h3ω3, (20)

dh7 = ω3ω5 +ω7ω1, dω7 = h3ω5.
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Pulling back these universal differential forms to spacetime, we get the EOMs of D = 10 type IIB supergravity in

the duality-symmetric formulation, and without imposing self-duality; cf. [SW83][HW84][Sch83] for the classical

formulation and [DLS97][DLT98] for the duality-symmetric formulation. Note that we do not include fields of

degree greater than seven, as in the dual picture of type IIA (see Example 2.6), this would require parametrized

homotopy theory [BMSS18]. Additionally, there are several subtleties in type IIB which makes a purely topological

perspective delicate due to the mixing between geometry and topology, in the sense that some of the fields arise

from the metric, as we explain further below (see [BMSS18]).

T-duality: comparing M(LcIIA) and M(LcIIB). Computing M(LcIIB) using the recipe of §2.5 and changing

the variables sh3,w,sω3,sω5,sω7 in the notation of (13) and (16) to

c2 := sh3, c̃2 := w, ω2 := sω3,

ω4 := sω5, ω6 := sω7,

more common in physics, we get the following presentation.

Proposition 2.10 (Cyclification of type IIB to d = 9 ).

M(LcIIB) = (R[ω1,c2, c̃2,ω2,h3,ω3,ω4,ω5,sh7,ω6,h7,ω7],d)

dω1 = 0, dc2 = 0, dc̃2 = 0,

dω2 =−c2 ·ω1, dh3 = c2 · c̃2, dω3 = h3 ·ω1 +ω2 · c̃2,

dω4 =−c2 ·ω3 +h3 ·ω2, dω5 = h3 ·ω3 +ω4 · c̃2, (21)

dsh7 =−ω2 ·ω5 +ω3 ·ω4 −ω6 ·ω1, dω6 =−c2 ·ω5 +h3 ·ω4,

dh7 = ω3 ·ω5 +ω7 ·ω1 + sh7 · c̃2, dω7 = h3 ·ω5 +ω6 · c̃2 .

We would like to match it with M(LcIIA) = M(L 2
c S4), see Example 2.6. Writing

ω2 := w1, h3 := s1g4, ω4 := g4,

ω6 := s1g7, h7 := g7,

ω1 := s2w1, c2 := s2s1g4, c̃2 := w2,

ω3 := s2g4, ω5 := s2s1g7, sh7 := s2h7 ,

we get a compatible presentation for the DGCA M(LcIIA).

Proposition 2.11 (Cyclification of type IIA to d = 9 ).

M(LcIIA) = (R[ω1,c2, c̃2,ω2,h3,ω3,ω4,ω5,sh7,ω6,h7],d) ,

dω1 = 0, dc2 = 0, dc̃2 = 0,

dω2 = ω1 · c̃2, dh3 = c2 · c̃2, dω3 =−c2 ·ω2 +h3 ·ω1,

dω4 = h3 ·ω2 +ω3 · c̃2, dω5 =−c2 ·ω4 +h3 ·ω3, (22)

dsh7 = ω3 ·ω4 −ω5 ·ω2 −ω6 ·ω1, dω6 = h3 ·ω4 +ω5 · c̃2,

dh7 =− 1
2
ω2

4 +ω6 ·ω2 + sh7 · c̃2 .

Now it is time to compare M(LcIIA) with M(LcIIB). Here is a striking conclusion:

Proposition 2.12 (Matching in 9 dimensions). Up to replacement

c2 ↔−c̃2,

all the equations for the differential of M(LcIIA) in (22) exactly match those of M(LcIIB) in (21), except for the

following mismatch for the generators of degree 7:
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Model M(LcIIA) M(LcIIB)

Generators h7 h7, ω7

Differentials dh7 =− 1
2
ω2

4 +ω6 ·ω2 + sh7 · c̃2
dh7 = ω3 ·ω5 +ω7 ·ω1 − sh7 · c2,

dω7 = h3 ·ω5 −ω6 · c2

With relations imposed algebraically, this means that

M(LcIIA)/(h7,dh7)∼= M(LcIIB)/(h7,ω7,dh7,dω7) , (23)

that is to say, the two DGCAs, M(LcIIA) and M(LcIIB), are isomorphic modulo the differential ideals gen-

erated by the generators of degree 7. Perhaps, topologically more interesting is an isomorphism between the

dg-subalgebras MA ⊂ M(LcIIA) and MB ⊂ M(LcIIB) generated by all the generators except those of degree 7:

MA� _

��

∼ // MB� _

��

M(LcIIA) M(LcIIB) .

(24)

These dg-subalgebras are minimal Sullivan, and their isomorphism morally corresponds to the rational equivalence

over R of quotient spaces of LcIIA and LcIIB.

Another way to evade the above mismatch is to introduce “stable” models of types IIA and IIB, which turn out

to be perfectly compatible with T-duality, at the expense of using spectra in lieu of spaces. See details in [FSS18a].

We plan to give a physical interpretation of the discrepancy in an upcoming paper [SV22].

3 Toroidal symmetries

Here we describe the toroidal symmetry of the iterated cyclic loop spaces L k
c S4 for k ≥ 0 from §2.5, for which we

provide topological interpretation.

3.1 Toroidal symmetries of minimal algebras

We will be interested in real toroidal symmetries of minimal Sullivan algebras M, i.e., diagonalizable actions

T ! AutM of a real split torus, an affine algebraic group T isomorphic over R to the group Gk
m for some k ≥ 1,

where Gm = GL(1) is the multiplicative group. Here AutM is the group of automorphisms of M as a DGCA.

When M has strong finite type, AutM is an affine algebraic group over R, because it is defined by the invertibility

of the Jacobian condition in the affine R-variety EndM; see [Su77][Re78]. Thus, by an action T ! AutM above,

we mean a morphism of algebraic groups defined over R.

We will consolidate essentially all toroidal symmetries of M, which could be done by considering a maximal

R-split torus T ⊆ AutM. In our study, a maximal split torus will play a role similar to that of a maximal torus in

the theory of compact Lie groups or that of a Cartan subalgebra in the theory of complex semisimple Lie algebras.

Indeed, a real split torus T ⊆ AutM gives rise to a weight decomposition:

M =
⊕

α∈X(T )
Mα (25)

indexed by the character group X(T ) = HomR(T,Gm) of real algebraic group homomorphisms from T to the

multiplicative group Gm, so that T acts on each weight space Mα by the character α :

Mα =
{

m ∈ M | t ·m = α(t)m for all t ∈ T
}
.

If T is a real split torus of dimension n ≥ 0, then X(T )∼= Zn; see [Bo91, Corollary 8.2 and Proposition 8.5]. Since

automorphisms of M have to respect the DGCA structure, i.e., the Z-grading, differential, and multiplication on

M, the weight decomposition is automatically compatible with it. That is, we have
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(1) Mn =
⊕

α∈X(T )(Mα ∩Mn) for each n ≥ 0;

(2) d(Mα)⊆ Mα for each α ∈ X(T );

(3) Mα ·Mβ ⊆ Mα+β for all α ,β ∈ X(T ).

Here and henceforth we write the group law in the character group X(T ) additively and employ the exponential

notation:

tα := α(t) for t ∈ T , α ∈ X(T ).

Specifically for minimal Sullivan algebras, weight decompositions have been considered by L. Renner in his Mas-

ter’s thesis [Re78] on automorphism groups of minimal algebras.

Maximal split tori are unique up to conjugation in a real agebraic group; see [Bo91, Theorem 15.14]. This

implies that the weight decompositions corresponding to different maximal split tori are related by automorphisms

of M.

Given an abstract R-split torus T , a weight decomposition (25) defines an obvious action of T on M.

A weight decomposition of a minimal Sullivan algebra M = S(V ) induces a weight decomposition

V =
⊕

α∈X(T)
Vα

of the generating space V , because the latter may be canonically identified with the space of indecomposables:

I(M) = M+/(M+)2 = S≥1(V )/S≥2(V ), and M+ and (M+)2 are split into weight spaces by definition, whereas a

diagonalizable action diagonalizes on invariant subquotients; cf. [Re78, Proposition 3.4.2]. This does not mean

that V is necessarily a T -invariant subspace of M. For that matter, we will distinguish the generating space V ⊂
S(V ) = M and the subquotient I(M) of the indecomposables of M.

3.2 Toroidal symmetries of a cyclification

Here we apply the results of §3.1 to a “cyclification”, i.e., to the cyclic loop space LcZ of a space Z considered in

§2.4. Let us start with a few observations.

Proposition 3.1 (Split tori of a Sullivan model). Suppose an R-split torus T acts on a minimal Sullivan algebra

M = (S(V ),d) of strong finite type.

(i) Then the weights of the action, that is to say, the characters α ∈ X(T ) for which the weight space Mα , see

(25), is nontrivial, are generated multiplicatively on

P(M) := Z(M+)/Z(M+)∩ (M+)2 ⊆ I(M),

where Z(M+) := kerd|M+ = {x ∈ M+ | dx = 0}.

(ii) The action of an R-split torus on M is determined by its action on P(M). In other words, if T ⊆ AutM is an

R-split torus, then the composition T ⊆ AutM ! GL(P(M)) is injective. In particular, dimT ≤ dimP(M).

(iii) If T is an R-split torus of AutM of dimension dimT = dimP(M), then T is a maximal split torus of AutM.

(iv) If the differential on M = S(V ) is quadratic, then the natural map ker d ∩V = Z(M+)∩V ! P(M) is an

isomorphism.

Proof. (i) This part generalizes Proposition 3.4.2 of Renner’s thesis [Re78], and so does the proof. However, our

generalization to the non-simply connected and non-algebraically closed case requires new ideas and more work.

We will need to use a more invariant version of the Sullivan nilpotence condition Definition 2.1(i), due to Bous-

field and Gugenheim [BG76]. Every minimal Sullivan algebra M admits a canonically defined double filtration

M(0)⊆ M(1)⊆ M(2)⊆ . . . ,

M(n,0)⊆ M(n,1)⊆ M(n,2)⊆ . . . ,
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n ≥ 1, by dg-subalgebras, such that M(0) = R,
⋃

n M(n) = M, and

⋃

p

M(n, p) = M(n) for each n ≥ 1. (26)

The subalgebra M(n) is defined as the dg-subalgebra generated by Mi for 1 ≤ i ≤ n. The subalgebra M(n, p) is

defined inductively, starting from M(n,0) = M(n−1), as the subalgebra generated by M(n, p−1) and the elements

x ∈ Mn such that dx ∈ M(n, p−1). Conversely, every connected DGCA M which is free as a graded commutative

algebra and for which the subalgebras defined above satisfy (26) is a minimal Sullivan algebra, see [BG76, Proof of

Proposition 7.5]. Bousfield and Gugenheim simply call connected, free as graded commutative algebras DGCAs

satisfying (26) minimal. The equivalence of the two types of models, the minimal Sullivan model and Bousfield-

Gugenheim’s minimal model follows from the existence and uniqueness theorems for each type, see [Su77] and

[BG76], respectively.

The augmentation ideal M+ ⊂ M and its powers (M+)n = S≥n(V ) are T -invariant. Moreover, the weight

decomposition of M maps isomorphically to the weight decomposition of the associated graded algebra grM :=⊕
n≥0(M

+)n/(M+)n+1 = S(I(M)). The subquotient I(M) of M is T -invariant and inherits a weight decomposition.

Thus, the weights of M are generated multiplicatively by the weights of I(M). Similarly, P(M) is a T -invariant

subquotient of M and inherits a weight decomposition. Note that the subalgebras M(n) and M(n, p), defined

intrinsically by using the multiplicative and dg-structures on M, are T -invariant and get a weight decomposition.

We will show that the weights of the subalgebras M(n, p) are multiplicatively generated by the weights of

P(M) and M(n, p− 1) and run a double induction on n and p. By definition, the subalgebra M(n, p) is generated

by M(n, p−1) and x ∈ Mn such that dx ∈ M(n, p−1). Its subspace Z(Mn)⊆ Mn of n-cycles fits into a short exact

sequence of T -invariant spaces:

0 −! Z(Mn)∩ (M+)2
−! Z(Mn)−! P(Mn)−! 0 .

Observe that Z(Mn)∩ (M+)2 ⊆ M(n− 1) = M(n,0), because the component of degree n of (M+)2 is spanned by

products of elements in Mi for 1 ≤ i ≤ n−1. On the other hand, the weights of a T -invariant complement C(Mn) to

Z(Mn) in the space {x ∈ Mn | dx ∈ M(n, p−1)} are among the weights of M(n, p−1), because for x 6= 0 ∈C(Mn),
dx will be nonzero and have the same weight.

(ii) From Part (i), we can deduce that if an R-split torus T acts faithfully on M, that is to say, T ⊆ AutM, then

it would also act faithfully on P(M). Indeed, if there is a t ∈ T acting on P(M) trivially, then by Part 1, for all

weights α of M, we have α(t) = 0, which means t acts trivially on M. Thus, T embeds into the general linear

group GL(P(M)) of P(M) regarded as a vector space. Since the maximal torus of GL(P(M)) has dimension equal

to dimP(M), we conclude that dimT ≤ dimP(M).

(iii) Follows from (ii).

(iv) Note that the composition V ⊆ M+
! I(M) is injective. Therefore, ker d|V = Z(M+)∩V maps injectively to

P(M). To show that this map is surjective, let x̄ ∈ P(M) and x ∈ M+ = S≥1(V ), dx = 0, represent x̄. Decompose

x = x1 + x2 + . . . , with xi ∈ Si(V ). Then dx = 0 implies dx1 = dx2 = · · · = 0, because when the differential d is

quadratic, dxi ∈ Si+1(V ). Therefore, x1 ∈V also represents x̄.

Within the context of §2.5, we now establish the following results. For the rest of this section, let Z be a path-

connected and nilpotent space and M(Z) = (S(V ),d) its real Sullivan minimal model, which we assume to have

strong finite type. Consider the real Sullivan minimal model M(LcZ) = (S(V ⊕V [1]⊕Rw),dc) of the cyclic loop

space LcZ of Z.

Lemma 3.2 (The growth of dimension of the space of closed generators). If the differential d on M(Z) is quadratic,

then

dim (ker dc ∩ (V ⊕V [1]⊕Rw)) = dim(kerd ∩V )+1.

Proof. We will start with a simpler case of simply connected Z and make necessary adjustments in the more general

case.
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Simpler Case: Z is simply connected. At the level of minimal Sullivan model M = M(Z) = S(V ), this means that

V 1 = 0.

We claim that

ker dc ∩ (V ⊕V [1]⊕Rw) = (ker d∩V )[1]⊕Rw. (27)

Indeed, from formulas (16), we see that no nonzero element of V =V>1 could be in ker dc, whereas w is always in

kerdc. We claim that kerdc ∩V [1] = (ker d ∩V )[1]. Indeed, to justify the inclusion (ker d ∩V)[1] ⊆ kerdc ∩V [1],
we start with a d-closed element v ∈V ⊆ M(Z) and observe that dcsv =−sdv = 0, again from (16).

Let us prove the opposite inclusion: kerdc ∩V [1] ⊆ (kerd ∩V )[1]. If dcsv = 0 for some v ∈ V , then sdv = 0.

Note that dv is in S(V ), which may be thought of as the algebra of polynomial functions on the graded manifold

V∗ = SpecS(V ) or, passing to the grading modulo 2, on the supermanifold V∗, the affine superspace associated

with the super vector space V ∗. The minimality condition on d moreover implies that dv ∈ S≥2(V ). Note also that

the differential s may be identified with the de Rham differential of the affine superspace V∗:

s = ddR : Ω0(V∗) = S(V ) −! Ω1(V∗) = S(V )⊗V [1] .

(In Z-graded geometry, one usually has V [−1] for the cotangent space, but it is the same as V [1] under mod 2

grading.) So, by the super Poincaré lemma [Ma97, Proposition 3.4.5], ker s = S0(V ) = R. Therefore, if sdv = 0

then dv ∈ S≥2(V )∩S0(V ) = 0, i.e., v ∈ ker d∩V . We conclude that kerdc ∩V [1] = (kerd ∩V )[1]. Summing up all

the parts of V ⊕V [1]⊕Rw, we see that (27) holds.

General Case: Z is not necessarily simply connected. We will adjust formula (27). Now we claim that

kerdc ∩ (V ⊕V [1]⊕Rw) = (kerd ∩V 1)⊕ (kerd ∩V≥2)[1]⊕Rw.

So, it is again clear from (16) that w ∈ kerdc. Given that sv = 0 for any v ∈ V 1, it is also clear that we have

kerdc ∩V = kerd ∩V 1. What remains to be proven is that kerdc ∩V [1] = (ker d ∩V≥2)[1].
Let us start with showing (kerd∩V≥2)[1]⊆ kerdc∩V [1]. If v ∈V≥2 is such that dv = 0, then dcsv =−sdv = 0.

For the opposite inclusion, kerdc ∩V [1] ⊆ (ker d ∩V≥2)[1], suppose that dcsv = 0 for some v ∈ V≥2. (We

ignore v ∈ V 1, as in this case sv = 0.) The second formula (16) then implies sdv = 0. Note that dv ∈ S≥2(V )
because of the minimality of (S(V ),d). Another observation is that since sv = 0 for any v ∈V 1, the differential s :

S(V )! S(V )⊗V≥2[1] may now be identified with the relative de Rham differential of the relative affine superspace

V∗ = (V1)∗× (V≥2)∗ over (V1)∗:

s = ddR : Ω0
V∗/(V1)∗(V

∗) = S(V ) −! Ω1
V∗/(V1)∗(V

∗) = S(V )⊗V≥2[1].

As in Case 1, the super Poincaré lemma implies that ker s = S(V 1).
Getting back to our v ∈V≥2 such that dcsv = 0, we see that dv ∈ S≥2(V )∩S(V 1) = S≥2(V 1). Since the degree

of v is at least two, the degree of dv must be at least three. This means that dv ∈ S≥3(V 1). But the differential is

assumed to be quadratic: dv ∈ S2(V ), whence dv = 0. Lemma is proven.

Proposition 3.3 (Automorphisms of the Sullivan model of a cyclification). The automorphisms of M(Z) extend

naturally to automorphisms of M(LcZ). Moreover, one has a natural inclusion

AutM(Z)×Gm ⊆ AutM(LcZ). (28)

Proof. In general, knowing that the group of automorphisms of the Sullivan minimal model of a space is isomor-

phic to the group of rational homotopy self-equivalences thereof and the functoriality of the construction Z 7!LcZ,

we get a morphism AutM(Z)! AutM(LcZ). This morphism is injective, because if g ∈ AutM(Z) acts trivially

on M(LcZ), then it will act trivially on every subquotient, including M(Z), see (13) and (17).

It will be useful to have explicit formulas for this extension, ρ : AutM(Z) !֒ AutM(LcZ). Suppose that

g : M(Z) ! M(Z) is an automorphism of M(Z) = S(V ). Then g defines an automorphism ρ(g) of M(LcZ) =
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S(V ⊕V [1]⊕Rw) by acting on the free generators V ⊕V [1]⊕Rw as follows:

ρ(g)v := gv for v ∈V ,

ρ(g)(sv) := s(gv) for sv ∈V [1],

ρ(g)w := w.

Now, for t ∈Gm, define an action

t · v := v for v ∈V ,

t · (sv) := t(sv) for sv ∈V [1], (29)

t ·w := t−1w.

These formulas define an explicit inclusion (28).

Theorem 3.4 (Maximal split tori of the Sullivan model of a cyclification). Let us also assume that the differential

in the Sullivan minimal model M(Z) = (S(V ),d) is quadratic, i.e., the restriction of d to V maps V to S2(V ): d|V :

V ! S2(V ). Suppose there is an R-split torus T ⊆ AutM(Z) such that dimT = dimP(M(Z)), see Proposition 3.1.

Then T is a maximal split torus of AutM(Z), dim(T ×Gm) = dimP(M(LcZ)) and T ×Gm is a maximal split

torus of AutM(LcZ).

Proof. By Proposition 3.1(iii), T is a maximal split torus of AutM(Z). Proposition 3.3 implies that T ×Gm is a split

torus in AutM(LcZ). To prove that it is maximal, using the Proposition 3.1(iii) once again, it is enough to show that

dimP(M(LcZ)) = dimP(M(Z))+1, which is equal to dim(T ×Gm) by assumption. Applying Proposition 3.1(iv),

we see that kerd∩V ∼= P(M(Z)). Formulas (16) for the differential dc of M(LcZ) show that the differential is also

quadratic. Therefore, we have kerdc ∩ (V ⊕V [1]⊕Rw)∼= P(M(LcZ)), and conclude with Lemma 3.2.

Given the decomposition of the Sullivan minimal model into weight spaces of the previous section, §3.1, the

toroidal symmetries of the theorem yield the following statement.

Corollary 3.5 (Weight decomposition in Sullivan models). If M(Z) =
⊕

α∈X(T ) Mα is the weight decomposi-

tion corresponding to the action of a maximal split torus T , which induces a weight decomposition I(M(Z)) =⊕
α∈X(T) I(M(Z))α on the space I(M(Z)) of indecomposables, then the weight decomposition of M(LcZ) cor-

responding to its maximal split torus Tc = T ×Gm induces the following weight decomposition on its space

I(M(LcZ)) = I(M(Z))⊕ I(M(Z))[1]⊕Rw of indecomposables:

(i) The weight of w ∈ M(LcZ) is ε1 = (0,−1) ∈ X(Tc) =X(T )×X(Gm);

(ii) If v ∈ (I(M(Z))α for some weight α ∈ X(T ), then the image v in I(M(Z)) ⊆ I(M(LcZ)) has weight α :=
(α ,0) ∈ X(T )×X(Gm);

(iii) If v ∈ (I(M(Z))α for some weight α ∈ X(T ), then the image sv in (I(M(Z))[1] ⊆ I(M(LcZ)) has weight

α − ε1 ∈ X(T )×X(Gm).

3.3 Toroidal symmetries of the minimal algebras of cyclifications of S4

Here we apply the results of the previous section to the “cyclifications,” the iterated cyclic loop spaces L k
c S4 of

the 4-sphere S4, k ≥ 0, from §2.4. The resulting symmetries of the Sullivan minimal model hold universally for

fields of k-dimensional reductions of M-theory and may be interpreted as trombone and torus rescaling symmetries

discussed in [CDF91][CLPS98] and [DS09]. Let us start with an immediate consequence of Theorem 3.4.

Corollary 3.6 (Toroidal symmetries). The maximal R-split torus of the real algebraic group AutM(L k
c S4) for

k ≥ 0 is T k+1, isomorphic to Gk+1
m over R. The structure of L k

c S4 as an iterated cyclification (or the structure of

M(L k
c S4) as a sequence of Halperin extensions (13) and (17)) determines a canonical splitting T k+1 ∼=Gk+1

m .
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Proof. The statement follows from Theorem 3.4 by induction. The base case k = 0 is done in Example 3.7

below.

Example 3.7 (k = 0: The 4-sphere S4). We start with the automorphism group AutM(S4) of the Sullivan minimal

model M(S4) of S4; see (5). By the degree argument, an automorphism of M(S4) must take g4 to a scalar multiple

of itself:

g4 7! tg4 (30)

for some t ∈Gm(R), and this determines the action of the automorphism on g7:

g7 7! t2g7,

and thereby on the whole DGCA M(S4). This gives an identification AutM(S4) ∼= Gm over R, and, therefore,

AutM(S4) automatically coincides with its maximal split torus T and dimT = dimP(M(S4)) = 1, as P(M(S4))∼=
kerd ∩ (Rg4 ⊕Rg7) = Rg4, see Proposition 3.1(iv). Note that this identification is unique up to automorphism of

Gm, which could only be t 7! t−1 if not trivial. Thus, we get a weight decomposition determined by

g4 ∈ M(S4)ε0
, g7 ∈ M(S4)2ε0

,

with the weights defined up to common sign, that is to say,

tε0 = t (31)

or tε0 = t−1. (Again, the weights are just determined by the weight of g4, as that is the only d-closed generator).

We can always normalize this ambiguity so as to have positive weights and assume (31) is valid. This choice also

has topological motivation, as we will see in §3.4.1.

Example 3.8 (k = 1: The cyclification LcS4 of the sphere S4). We now look at the maximal real split torus of

AutM(LcS4) compatible with the structure of M(LcS4) as the Sullivan minimal model of the cyclic loop space

of S4; see Example 2.5. Corollary 3.6 canonically identifies the maximal split torus of AutM(LcS4) as Gm ×Gm,

acting on M(LcS4) = R[g4,g7,sg4,sg7,w] as follows:

t ·g4 = tε0g4, t ·g7 = t2ε0 g7, (32)

t · sg4 = tε0−ε1sg4, t · sg7 = t2ε0−ε1sg7,

t ·w = tε1 w,

where t ∈ (Gm ×Gm)(R). This corresponds to a weight decomposition determined by

g4 ∈ M(LcS4)ε0
, g7 ∈ M(LcS4)2ε0

,

sg4 ∈ M(LcS4)ε0−ε1
, sg7 ∈ M(LcS4)2ε0−ε1

,

w ∈ M(LcS4)ε1
,

as per Corollary 3.5.

Example 3.9 (k = 2: The double cyclification L 2
c S4). We now consider Example 2.6. Again, iterating the ap-

plication of Theorem 3.4, the maximal torus of AutM(L 2
c S4) is identified canonically with the product G3

m =
(Gm×Gm)×Gm, where the first factor Gm×Gm refers to the maximal torus of AutM(LcS4) identified in the pre-

vious example. Continuing the use of notation of Corollary 3.5, we obtain a weight decomposition of M(L 2
c S4),

which is determined on its generators (see Example 2.6) as follows:

g4 ∈ Mε0
, g7 ∈ M2ε0

,

s1g4 ∈ Mε0−ε1
, s1g7 ∈ M2ε0−ε1

,

w1 ∈ Mε1
, (33)

s2g4 ∈ Mε0−ε2
, s2g7 ∈ M2ε0−ε2

,

s2s1g4 ∈ Mε0−ε1−ε2
, s2s1g7 ∈ M2ε0−ε1−ε2

,

s2w1 ∈ Mε1−ε2
, w2 ∈ Mε2

,

where, for brevity, we have been writing M for M(L 2
c S4).
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Example 3.10 (k = 3: The triple cyclification L 3
c S4). Now we consider Example 2.8. Again the maximal torus

of AutM(L 3
c S4) splits canonically to become G4

m = (G3
m)×Gm, where the first factor comes from the double

cyclification. The resulting weight decompositon of M = M(L 3
c S4) repeats the formulas (33) verbatim for the

weights of those generators which are the generators of M(L 2
c S4). The weight of w3 is ε3. For the weights of

generators of the type s3g, where g is a generator on the list (33), the formulas are the same as (33), except that

weight ε3 gets subtracted, e.g.,

s3g4 ∈ Mε0−ε3
, s3w2 ∈ Mε2−ε3

.

The weight ε1 − ε2 − ε3 will not be present, as s3s2w1 gets truncated to zero.

Example 3.11 (k ≥ 3: The k-fold cyclification L k
c S4). Let us say a few words on the general pattern we see for

k ≥ 3. All the weights of the generating space V for S(V ) = M(L k
c S4) will be of the form

ε0−
l

∑
j=1

εi j
, where 0 ≤ l ≤ 3 and 1 ≤ i1 < · · ·< il ≤ k,

2ε0−
l

∑
j=1

εi j
, where 0 ≤ l ≤ 6 and 1 ≤ i1 < · · ·< il ≤ k,

εi, 1 ≤ i ≤ k,

εi − ε j, 1 ≤ i < j ≤ k.

Each of the corresponding weight spaces in V will be one-dimensional; see Example 2.9.

3.4 Topological interpretation of toroidal symmetries

In this section, we interpret the toroidal symmetries (29) and (30) as rational (real) homotopy equivalences. The

idea of doing that was suggested by A. Bondal. These symmetries have physical interpretation of trombone and

torus rescaling symmetries, mentioned in §3.3.

3.4.1 Toroidal symmetries coming from S4

Let us start with the symmetry (30). Given an integer n ∈ Z, define ϕ0(n) : S4
! S4 to be any continuous map of

degree n. Such a map induces a homomorphism, given by multiplication by n:

ϕ0(n)∗ : π4(S
4)−! π4(S

4)

x 7−! nx

on the degree-four homotopy group π4(S
4) of S4. It also induces the identity morphism on π0(S

4). Recall that

π7(S
4) ∼= Z⊕Z12, where the free part may be canonically identified with the subgroup Zy ⊂ π7(S

4), y being the

class of the Hopf fibration S7
! S4. We know how ϕ0(n) acts on y:

ϕ0(n)∗ : y 7! n2y,

because the Whitehead square [x,x] of the generator x ∈ π4(S
4)∼= Zx, the homotopy class of id : S4

! S4, is twice

the generator y of Zy ⊂ π7(S
4) (see [FSS19b] for explanation in this context):

[x,x] = 2y.

When we pass to rational homotopy groups, all torsion disappears, and we have π4(S
4)⊗Q=Qx and π7(S

4)⊗Q=
Qy. Since there are no other rational homotopy groups πi(S

4)⊗Q, i ≥ 1, we see that, when n is nonzero, ϕ0(n) :

S4
! S4 is a rational homotopy equivalence. Hence, it has an inverse ϕ0(n)

−1 : S4
! S4 in the rational homotopy

category. We may denote this morphism ϕ0(1/n) := ϕ0(n)
−1, given that it acts on the generator x ∈ π4(S

4)⊗R as
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x 7!
1

n
x.

Composing a map ϕ0(p) : S4
! S4 of degree p ∈ Z \\{0} and a map ϕ0(1/q) for q ∈N, we are getting an automor-

phism ϕ0(p/q) : S4
! S4 in the rational homotopy category. This way we get a group homomorphism

Q×
−! AutQ S4,

p/q 7−! ϕ0(p/q),

where AutQ S4 stands for the automorphism group in the rational homotopy category. Given our description of

AutM(S4) in Example 3.7 and the fact that the rational homotopy category (of rational, nilpotent, finite-type

spaces) is equivalent (via a contravariant functor) to the category of minimal Sullivan algebras over Q, we see that

(34) actually defines an isomorphism

Q× ∼
−! AutQS4 ∼

−! AutM(S4)(Q),

where AutM(S4)(Q) is the group of rational points of the algebraic group AutM(S4). Since the action formulas

are polynomial, the group isomorphism defines an isomorphism of algebraic groups over Q:

Gm −! AutM(S4), (34)

r 7−! ϕ0(r).

Via the action on the target S4 of L k
c S4, the isomomorphism (34) may be canonically lifted, as in Proposition 3.3,

to a Q-isomomorphism

Gm
∼
−! AutM(L k

c S4),

which is exactly the action of the multiplicative group Gm on M(L k
c S4) coming from the action of Gm on g4 ∈

M(L k
c S4), as in (30) and (32). Summarizing, we have:

Proposition 3.12 (Toroidal symmetries from S4). Consider the degree n maps ϕ0(n) : S4
! S4, for n ∈ Z\{0}.

(i) These maps are invertible in the rational homotopy category.

(ii) The compositions of these maps with their inverses gives a group isomorphism Q× ∼
−! AutM(S4)(Q), which

defines naturally an isomorphism of algebraic groups over Q

Gm
∼
−! AutM(S4) .

(iii) This lifts canonically to an algebraic-group homomorphism Gm
∼
−! AutM(L k

c S4) for k ≥ 1, which provides

an action of Gm on the Sullivan minimal models of the cyclifications of S4.

3.4.2 Toroidal symmetries coming from S1

The situation with the action (29) is subtler. Let us consider the general case of LcZ. For n ∈Z, the n-fold winding

map

S1
−! S1

z 7−! zn (35)

induces a continuous map ψ(n) : L Z ! L Z:

ψ(n)( f )(z) := f (zn)

for f ∈ L Z = Map(S1,Z) and z ∈ S1 ⊂C. For n 6= 0, the map ψ(n) is a rational (and real) homotopy equivalence,

because so is the power map (35). However, ψ(n) is not S1-equivariant, unless n = 1, as, for instance, for the right

action ( f · z′)(z) := f (z′z) of S1 on L Z, we have

ψ(n)( f · z′)(z) = f (z′zn) 6= f ((z′z)n) = (ψ(n)( f ) · z′)(z).
Moreover, we can say that

ψ(n)( f · z′) = ψ(n)( f ) · n
√

z′
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for any choice of the nth root, or, better, just using the rational homotopy inverse of the rational equivalence (35).

Accordingly, the map ψ(n) would not induce a map LcZ ! LcZ of the homotopy quotient LcZ = L Z ×S1 ES1.

Indeed, by definition of the quotient L Z ×S1 ES1, a point ( f · z′,e) ∈ LcZ is equivalent to the point ( f ,z′ · e), but

(ψ(n)( f · z′),e) = (ψ(n)( f ) · n
√

z′,e)∼ (ψ(n)( f ), n
√

z′e), which is not equivalent to (ψ(n)( f ),z′ · e).
What saves the situation is that the map ψ(n) extends in the rational homotopy category to a morphism L Z×

ES1
! L Z×ES1 that respects the equivalence relation

( f · z′,e)∼ ( f ,z′ · e) (36)

and thereby descends to the quotient L Z×S1 ES1. Indeed, note that the topological group morphism (35) induces a

continuous map χ(n) : ES1
! ES1 of the total space ES1 of the universal bundle ES1

! BS1 by functoriality. In the

standard simplicial model of ES1, this map χ(n) can be expressed as [z0, . . . ,zp] 7! [zn
0, . . . ,z

n
p], where [z0, . . . ,zp],

zi ∈ S1, is a p-simplex of ES1. The map χ(n) : ES1
! ES1 is not S1-equivariant, either. Say, for the (left) action

z′ · [z0, . . . ,zp] := [z′z0, . . . ,z
′zp] of S1 on ES1, we have

χ(n)(z′ · [z0, . . . ,zp]) = [(z′z0)
n, . . . ,(z′zp)

n] 6= [z′zn
0, . . . ,z

′zn
p] = z′ ·χ(n)([z0, . . . ,zp]).

What we have is
χ(n)(z′ · e) = (z′)n ·χ(n)(e), e ∈ ES1.

For n 6= 0, the map χ(n) is a rational (and real) homotopy equivalence and therefore has a rational homotopy

inverse χ(n)−1, so that
χ(n)−1(z′ · e) = n

√
z′ ·χ(n)−1(e).

Now, the morphism

ψ(n)× χ(n)−1 : L Z ×ES1
! L Z ×ES1,

which is invertible in the rational (real) homotopy category, respects the equivalence relation (36):

ψ(n)× χ(n)−1( f · z′,e)) = (ψ(n)( f ) · n
√

z′,χ(n)−1(e))

∼ (ψ(n)( f ),
n
√

z′ ·χ(n)−1(e)) = ψ(n)× χ(n)−1( f ,z′ · e),
and therefore induces a rational automorphism of LcZ, which we denote by

ϕ1(n) := ψ(n)× χ(n)−1 : LcZ −! LcZ .

As in the case of ϕ0(n) in §3.4.1, the rational homotopy equivalence ϕ1(n) : LcZ
∼
−! LcZ extends to a group

homomorphism

Q×
−! AutQLcZ,

r 7−! ϕ1(r).

From this, we get a Q-algebraic-group homomorphism

Gm −! AutM(LcZ),

so as r ∈Gm acts on w ∈ H2(BS1;R)⊂ M(BS1) as r−1w, because χ(n) induces the action w 7! nw on degree-two

cohomology and we used χ(n)−1, and r ∈Gm acts on sv ∈V [1]⊂ M(L Z) as r(sv). This motivates formulas (29).

Summarizing, we have:

Proposition 3.13 (Toroidal symmetries from S1). The n-fold winding maps S1
! S1, n∈Z\{0}, induce morphisms

ϕ1(n) : LcZ ! LcZ in the rational homotopy category by the construction above.

(i) These morphisms are invertible, and the compositions of them with their inverses give a group homomorphism

Q× ∼
−! AutM(LcZ)(Q), which defines naturally a morphism of Q−algebraicgroups

Gm
∼

−−! AutM(LcZ) .

(ii) For an iterated cyclic loop space L k
c Z, k ≥ 1, the algebraic-group morphisms corresponding to different

iterations commute and thereby define an algebraic-group morphism (Gm)
k ∼
−! AutM(L k

c Z), which provides

an action of (Gm)
k on the Sullivan minimal model of the k-fold cyclification L k

c Z of Z.
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3.5 Toroidal symmetries of type IIB

Since the type IIB model (see §2.6) falls out of the previous sequence of cyclifications of S4, we need to treat it

separately. We will work with our “unstable” model M(IIB) = (S(V ),d) of type IIB; see (20).

By Proposition 3.1, to identify a maximal R-split torus T B of AutM(IIB), we need to start with computing

kerd ∩V =Rh3 ⊕Rω1 in the notation of the system (20). Thus, a maximal R-split torus is at most 2-dimensional.

The explicit formulas below identify a 2-dimensional split torus acting faithfully on M(IIB), which has to be

maximal by the dimension argument.

Take the R-split torus T B := G2
m acting as the group of diagonal matrices on the real plane spanned by h3 and

ω1. Denote by β0 = (1,0) the weight of h3 and by β1 = (0,1) the weight of ω1, so that we have the action

t ·h3 = tβ0 h3, t ·ω1 = tβ1ω1, t ∈ T B =G2
m. (37)

Then, with (20), we have the following:

Proposition 3.14 (Toroidal symmetry in type IIB). The formulas

t ·ω3 = tβ0+β1ω3, t ·ω5 = t2β0+β1ω5, (38)

t ·h7 = t3β0+2β1 h7, t ·ω7 = t3β0+β1ω7

extend the action (37) to an action of the torus T B =G2
m on M(IIB). This identifies T B as a maximal R-split torus

of AutM(IIB).

4 The Ek symmetry of iterated cyclic loop spaces

Here we unravel the Ek symmetry of the iterated cyclic loop spaces L k
c S4, described in §2.5, where Ek for k ≥ 0

is understood in the sense of Table 1 and Table 2 in the Introduction. Our goal is to use the toroidal symmetries

of the cyclic loop spaces L k
c S4 from §3 and build certain canonical combinatorial data: “a lattice Nk with an inner

product (−,−) and a distinguished element K∗
k ∈ Nk”, similar to the triple (Nk,(−,−),Kk) in the theory of del

Pezzo surfaces, see below. This will automatically produce the Ek root system, see Theorem 4.6.

4.1 Reminder: the combinatorial data from del Pezzo surfaces

Let us recall how the triple (Nk,(−,−),Kk) shows up in the del Pezzo theory, for the sake of motivation and setting

up notation. The Picard group PicBk happens to be isomorphic to the 2nd cohomology group H2(Bk;Z). This is a

lattice with basis H ,E1, . . . ,Ek:

H2(Bk;Z)∼= ZH ⊕ZE1⊕·· ·⊕ZEk,

where H is the class of the proper transform of the line (here also a hyperplane) CP1 in CP2 and Ei is the class

of the exceptional divisor over the blowup point xi ∈ CP2. See [Ma74][De80][Be96][KSC04]. The 2nd integral

cohomology has a natural inner product given by the intersection form:

H ·H = 1, H ·Ei = 0, Ei ·E j =−δi j, 1 ≤ i, j ≤ k . (39)

Thus the intersection matrix of Bk is given by the Lorentzian form Q = diag(1,−1,−1, . . . ,−1). Hence H2(Bk;Z)
∼= Z1,k and Bk has Betti numbers b+2 = 1, b−2 = k, with signature σ = 1− k.

The canonical class of Bk may be expressed as

Kk := Ω2
Bk

=−3H +E1 + · · ·+Ek, (40)

while the ample anticanonical class becomes

−Kk = 3H −E1 −·· ·−Ek. (41)
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The degree of a divisor D ∈ Pic(Bk) is measured with respect to the anticanonical map as:

degD :=−Kk ·D . (42)

The “outlier” del Pezzo surface B′
1 := CP1 ×CP1 of degree 8 has Picard group of rank 2:

Pic(CP1 ×CP1)∼= H2(CP1 ×CP1;Z)∼= Zl1 ⊕Zl2 ,

where l1 and l2 are the classes of the two CP1 factors. The intersection pairing works as follows (cf. (39)):

l1 · l1 = l2 · l2 = 0, l1 · l2 = 1 .

The anticanonical class is given by −KB′
1
= 2l1 +2l2.

4.2 The “Cartan subalgebra” and weight lattice

In this section, we will present the first element of the triple arising from L k
c S4, the lattice. The idea is to use the

weight lattice coming from the weight decompositions of Corollary 3.5 and of §3.3 and use the Lie algebra hk =
Lie(T k+1) of the maximal real split torus T k+1 of AutM(L k+1

c S4) with its canonical factorization T
∼
−!Gk+1

m , see

Corollary 3.6. This Lie algebra constitutes the infinitesimal symmetries corresponding to the toroidal symmetries

of §3.2–§3.3 and acts on the Sullivan minimal model M(L k+1
c S4) by derivations. That is, we have a Lie algebra

homomorphism:
hk −! DerM(L k

c S4),

which comes from taking the differential of the action

T k+1
−! AutM(L k

c S4).

Under the action of the Lie algebra hk on M = M(L k
c S4), the weight decomposition of §3.1 and Corollary 3.5

becomes

M =
⊕

α∈P(hk)

Mα ,

where P(hk)⊆ h∗k = HomR(hk,R) is the weight lattice, the image of the character group

X(T ) = HomR(T,Gm)∼= Zk+1

under the differential map

X(T )−! h∗k ,

β 7−! dβ .

The Lie algebra hk acts on each weight space Mα with the weight α :

Mα = {m ∈ M | h ·m = α(h)m for all h ∈ hk}.

As we will see soon, the Lie algebra hk is an avatar of the Cartan subalgebra of the Lie algebra of type Ek of

“hidden” symmetries of the cyclic loop spaces of the four-sphere.

Theorem 4.1 (Bases for the Lie algebra of symmetries and its dual).

(i) The (k+ 1)-dimensional real abelian Lie algebra hk = Lie(T k+1) ⊆ DerM(L k
c S4) of the maximal R-split

torus T = T k+1 of the algebraic group AutM(L k
c S4) has a canonical basis {h0,h1, . . . ,hk}.

(ii) The weights ε0 of g4 and εi of wi for 1 ≤ i ≤ k give a canonical basis {ε0,ε1, . . . ,εk} of the vector space h∗k .

This is also a basis of the weight lattice P(hk)⊆ h∗k .
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Proof. (i) The factorization T = Gk+1
m of the maximal split torus of AutM(L k

c S4) was canonically defined from

compatibility with the iterated cyclic loop space structure (see Corollary 3.6):

T = {(t0, t1, . . . , tk) | ti ∈Gm} ,

with t0 acting on g4 by t0g4 and trivially on w1, . . . ,wk and ti acting on wi by t−1
i wi and trivially on the other w j’s and

g4. This factorization implies a canonical factorization of the tangent space hk at id ∈ T : hk = Rk+1. It determines

a basis {h0,h1, . . . ,hk}, the standard basis of Rk+1.

(ii) The identification of T as Gk+1
m in Corollary 3.6 was derived iteratively from Theorem 3.4 as coming from

the action of the torus on the generators g4, w1, . . . , and wk of M(L k
c S4). Therefore, the weights of these generators

provide a natural set of weights ε0,ε1, . . . ,εk. Differentiating the action of T on these generators (see the previous

paragraph), we obtain

h0 ·g4 = g4, h0 ·wi = 0 for i = 1, . . . ,k,

hi ·g4 = 0, hi ·w j =−δi j for i, j = 1, . . . ,k.

This implies that

ε0(h0) = 1, εi(h0) = 0 for i = 1, . . . ,k,

ε0(hi) = 0, ε j(hi) =−δi j for i, j = 1, . . . ,k.

From these equations, we conclude that {ε0,ε1, . . . ,εk} form a basis of the dual vector space h∗k as well as the

weight lattice P(hk)⊆ h∗k .

From §3.3, we can compute the action of the Lie algebra hk on the other generators of the minimal DGCA

M(L k
c S4). For instance:

Example 4.2 (Action of the Lie algebra on the cyclic loop space in type IIA). For k = 1, we have

h ·g4 = ε0(h)g4, h ·g7 = 2ε0(h)g7, h · sg4 = (ε0(h)− ε1(h))sg4,

h · sg7 = (2ε0(h)− ε1(h))sg7, h ·w = ε1(h)w,

where

ε0(h0) = 1, ε0(h1) = 0,

ε1(h0) = 0, ε1(h1) =−1.

Corollary 4.3 (The dual lattices and inner product).

(i) The lattice hZk := Zh0 ⊕Zh1 ⊕·· ·⊕Zhk ⊂ hk is the dual of the weight lattice P(hk) = Zε0 ⊕·· ·⊕Zεk ⊂ h∗k .

(ii) The nondegenerate bilinear form hk ⊗hk ! R determined by the isomorphism

hk ! h∗k
hi 7! εi

provides the vector space hk with a canonical Lorentzian inner product (−,−). This inner product satisfies

the formulas:
(h0,h0) = 1, (hi,h j) =−δi j for i ≥ 0, j ≥ 1.

(iii) The inner product induced on the dual space h∗k is given by the formulas:

(ε0,ε0) = 1, (εi,ε j) =−δi j for i ≥ 0, j ≥ 1.

28



4.3 The “anticanonical class”

In this section, we identify a distinguished element −Kk ∈ hZk , analogous to the anticanonical class −Kk (see the

Introduction, §1, and §4.1) of the del Pezzo surface Bk. Recall, that the anticanonical class −Kk of the del Pezzo

surface “acts” on the Picard group Pic(Bk)∼= H2(Bk;Z) by degree:

degD :=−Kk ·D , D ∈ Pic(Bk). (43)

Here the “action” is understood as the intersection product Pic(Bk)⊗Pic(Bk)! Z. The degree of a divisor D ∈
Pic(Bk) is defined using the anticanonical morphism f : Bk ! CPd, and

d = h0(Bk,−Kk)−1 = (−Kk) · (−Kk) = 9− k

is known as the degree of the del Pezzo surface Bk, whence −Kk is the pullback f ∗H of the hyperplane class

H ∈ Pic(CPd) and formula (43) makes sense; see, e.g., [Do12] and also §4.1.

In the case of cyclic loop spaces, we have been dealing with one notion of degree, in the sense of Z-grading

of the Sullivan minimal model M(L k
c S4). There is another one, natural for the Quillen minimal model. The

significance of that other notion of degree for us is coming from the fact that it corresponds to the degree of the

C-fields, i.e., the potentials C3 and C6 of the basic fields G4 and G7, see (4), and thereby to the dimension of

the corresponding branes, the M2- and M5-branes, respectively. This other notion of degree just differs from the

degree we have been using on the generators of the Sullivan minimal model by one, but has a homotopy-theoretic

origin, as we now explain.

We have seen the Quillen model in §2.3 and at the end of §2.4. The maximal split torus T k+1 and its Lie

algebra hk act on the Quillen minimal model Q(L k
c S4) with the same weights as on the generators of the Sullivan

minimal model M = M(L k
c S4). Indeed, the weights on the space V = M+/(M+)2 of generators, its dual V ∗ and

its degree shift V ∗[1] = Q(L k
c S4) will just be the same as those on V . Let us denote the elements of the basis of

V ∗[1] = Q(L k
c S4) dual to the basis

{g4, g7, w1, s1g4, s1g7, s1w1, . . . , wk} by e3, e6, x1, s1e3, s1e6, s1x1, . . . , xk,

respectively. From the fact that S(Q(Z)[−1]∗),d) is the Chevalley-Eilenberg cochain complex of the graded Lie

algebra Q(Z), one can deduce that the subspace dual to ker d∩V [1] = kerd∩Q(Z)∗ generates the Quillen minimal

model as a graded Lie algebra.

A remarkable fact is that the degree operator

x 7! |x| · x, x ∈ Q(L k
c S4), (44)

in the Quillen minimal model singles out a distinguished element of the Lie algebra hk. Here is a more precise

statement.

Theorem 4.4 (Degree in the k-fold cyclic loop space of S4). There is a unique element of the Lie algebra hk,

namely,

−Kk := 3h0 −h1 −·· ·−hk, (45)

which acts on the Quillen minimal model Q(L k
c S4) as the degree operator:

−Kk · x = |x| · x.

Proof. Indeed, the operator 3h0 acts on g4 and thereby e3 with weight 3 and on xi, i = 1, . . . ,k, with weight zero:

3h0 · e3 = 3e3, 3h0 · xi = 0,
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whereas the operator −hi acts on g4, e3, and x j by zero, except for xi, on which it acts by 1:

−hi · xi = xi.

Likewise, the element (45) acts on e6 via multiplication by its degree, which is 6. Also the degree of six for x∈Q(Z)
will be one less than the degree of x and the weight of six will be α − εi for x of weight α . Since εi(3h0) = 0 and

εi(−h j) = δi j, the element (45) will act on six by its degree, provided we know that it acts on x by the degree of

x. This way we get a complete matching between the action of 3h0 −h1 −·· ·−hk and the degree operator on the

Quillen minimal model Q(L k
c S4).

The uniqueness of an element of hk which acts on Q(L k
c S4) by degree comes from the fact that an arbitrary

element a0h0 +a1h1 + · · ·+akhk ∈ hk acts on e3 by a0 and on each xi by −ai, which forces a0 to be 3 and each ai

to be −1, because the degree of e3 is 3 and the degree of xi is 1.

Recall from (43) that the anticanonical class −Kk of the del Pezzo surface Bk acts on the Picard group via

intersection pairing by degree. Thus, it makes all sense to use the element

Kk =−3h0 +h1 + · · ·+hk ∈ hk

as a distinguished element, the analogue of the canonical class. Extending the analogy with del Pezzo surfaces,

Definition 4.5 (Degree of cyclification). We define the degree of the cyclic loop space L k
c S4 of the four-sphere as

degL
k

c S4 = (−Kk,−Kk) = 9− k. (46)

4.4 The Ek root system and its Weyl group

We now explain the role of the Weyl group and how we obtain the exceptional root data from L k
c S4.

Theorem 4.6 (Exceptional root data from cyclic loop spaces of the 4-sphere).

(i) For each k ≥ 0, the data (
h∗k,{εo,ε1, . . . ,εk},(−,−),K∗

k

)

associated to the cyclic loop space L k
c S4 and its Sullivan minimal model M(L k

c S4) consists of

(a) a real vector space h∗k with a basis {ε0,ε1, . . . ,εk}, which generates a lattice P(hk)⊂ h∗k;

(b) a symmetric bilinear form h∗k ⊗h∗k ! R given by

(ε0,ε0) = 1, (εi,ε j) =−δi j, i > 0, j ≥ 0;

(c) a distinguished element K∗
k =−3ε0 + ε1 + · · ·+ εk.

(ii) This data replicates the data (
H2(Bk;R),{H ,E1, . . . ,Ek},(−,−),Kk

)

determined by the rational surface Bk, considered as the blowup of CP2 at k points; see §4.1 in the del Pezzo case,

when k ≤ 8. For k ≤ 8, the data produces the root system

Rk :=
{

α ∈ P(hk) | (α ,K∗
k ) = 0,(α ,α) =−2

}
⊂ (K∗

k )
⊥ ⊂ h∗k (47)

of type 6 Ek and the Weyl group W (Ek), generated by the reflections in the hyperplanes orthogonal to the roots

r ∈ Rk, now in the context of cyclic loop spaces of S4.

This result has an independent interest, apart from Mysterious Duality, as it uncovers a new symmetry pattern

for the series L k
c S4, 0 ≤ k ≤ 8, of cyclic loop spaces of the 4-sphere. This should have a number of topological

consequences shedding new light on these spaces. For instance, one may wonder: what is the analogue of an

exceptional curve on a del Pezzo surface? What corresponds to the famous statement about the 27 lines on the

cubic surface B6 on the topological side, the six-fold cyclification L 6
c S4 of S4? We investigate these intriguing

questions in §4.6.

6True/genuine Ek for k = 6,7, and 8, and using the conventions of Table 1 for 0 ≤ k ≤ 5.
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Remark 4.7 (Why k ≤ 8 vs. k ≥ 9). The construction of the data
(
h∗k ,{ε0, . . . ,εk},(−,−),K∗

k

)
of Theorem 4.6

above extends beyond k = 8 verbatim. However, the identification of the root system for k > 8 needs to be treated

with care. For 0 ≤ k ≤ 8, the degree deg(L k
c S4) = (Kk,Kk) = (K∗

k ,K
∗
k ) = 9− k of the cyclic loop space is positive,

just like the degree of the del Pezzo surface Bk. From simple linear algebra of Lorentzian inner products, we can

see that (Kk,Kk) > 0 implies that the inner product induced on the subspace K⊥
k = {x ∈ hk | (x,Kk) = 0} of hk

by the Lorentzian inner product (−,−) is negative-definite. (If we switch the sign and use −(−,−), it would be

a more familiar positive-definite inner product). This also implies that the root system Rk is finite; see [Ma74].

For k ≥ 9, the inner product loses its negative-definiteness, and the root system Rk becomes infinite and can be

identified as the set of real roots of a more general Kac-Moody algebra. In fact, for k = 9, the subspace K⊥
k is

negative semi-definite of nullity 1. For k > 9, the orthogonal complement K⊥
k gets a Lorentzian inner product. See

the discussion of the k ≥ 9 cases in §4.7.

Weyl group as symmetry of symmetries. For each root α, an element of the set Rk (see expression (47)) define

a reflection

σα : β 7−! β −2
(β ,α)

(α ,α)
α = β +(β ,α)α , β ∈ h∗k ,

of the Lorentzian space h∗k . The reflections {σα | α ∈ Rk} generate a group, known to be the Weyl group W (Ek)
of the root system Ek. It is also known that W (Ek) is the group of all linear isometries of P(hk) which preserve

the element K∗
k [Ma74]. Thus, the Weyl group, being an isometry group of (the dual of) the abelian Lie algebra hk

of infinitesimal symmetries of M(L k
c S4), is a “second derived” object with respect to L k

c S4: W (Ek) is the group

of “symmetries of symmetries” of L k
c S4. This is typical for the role of Weyl groups in Lie theory: a Lie group

is usually a group of symmetries of a certain mathematical object, the Cartan subalgebra is the maximal abelian

Lie algebra of infinitesimal symmetries of that object. The Weyl group is a group of symmetries of the Cartan

subalgebra.

The moduli space of k-fold cyclifications of S4. We can interpret an element ω of the linear dual space h∗k
∼=Rk+1

of the abelian Lie algebra hk of infinitesimal symmetries of M(L k
c S4) as some sort of an extra, geometric ingredient

complementing the purely topological data carried by the real homotopy type of the k-fold cyclification L k
c S4.

Indeed, an element ω ∈ h∗k is a weight, and as such, it tells us which “spectral parameters” we might want to assign

to the basic infinitesimal symmetries h0,h1, . . . ,hk.

For instance, recall from §3.4.1 that h0 comes from the action of the real 1-torus R× by automorphisms of

the real homotopy type of S4 and the resulting action of R× on L k
c S4. That action originates ultimately from the

folding self-maps of S4. The value ω(h0) ∈ R tells us how much we shall value the effect of the folding self-maps

of S4. In this sense, ω(h0) is akin to the size of S4, such as its radius R0, or rather the logarithm log R0 thereof,

since ω(h0) is not necessarily positive. This value ω(h0) is analogous to the logarithmic Planck scale logℓp in the

11-dimensional supergravity and the generalized Kähler volume ω(H) =
∫

H ω of the line H = CP1 in CP2 and its

image in Bk in the del Pezzo story; cf. [INV02, §3.1].

Similarly, as per §3.4.2, the element hi for each i, 1 ≤ i ≤ k, comes from the action of R× by the folding self-

maps of the ith source circle of the cyclic loop space L k
c S4. Assigning hi a real value ω(hi) tells us how much we

shall value the effect of the folding self-maps of the ith source circle of L k
c S4. In this way, ω(hi) is analogous to

the logarithm logRi of the radius Ri of the ith source circle and the ith compactification circle in M-theory wrapped

on T k = (S1)k, as well as the generalized Kähler volume ω(Ei) of the exceptional divisor Ei in Bk in the del Pezzo

story; cf. [INV02, §3.1] again.

In this sense the choice of a weight ω ∈ h∗k adds a certain ingredient of metric flavor, missing in the real

homotopy model M(L k
c S4) of L k

c S4. For example, an arbitrary weight ω ∈ h∗k will not be a real homotopy

invariant of L k
c S4. The values ω(hi), i = 0,1, . . . ,k, that is to say, the logarithmic radii of the target sphere S4 and

the source circles S1, may be thought of as the coordinates of the weight ω in the space of all weights.
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The Weyl group W (Ek), being the group of symmetries of the Ek data (P(hk),(−,−),K∗
k ), acts on the vector

space h∗k . Thus, it makes sense to identify the weights ω brought together by this action. We call the corresponding

quotient orbifold the moduli space Mk of k-fold cyclifications of S4:

Mk = Mk(L
kS4) := [h∗k/W (Ek)].

This is a stacky quotient [h∗k/W (Ek)], which is different from the naive, topological quotient h∗k/W (Ek). Another

reincarnation of the quotient orbifold [h∗k/W (Ek)] is the familiar homotopy quotient h∗k//W (Ek), which may be

realized via the Borel construction, cf. (11), but in this context, the orbifold viewpoint would be more common.

The (k + 1)-dimensional topological quotient h∗k/W (Ek) contains the k-dimensional quotient K⊥
k /W (Ek), which

for k ≤ 8 may be identified with the closure of a Weyl chamber for the Weyl group action in the Euclidean space

K⊥
k = {ω ∈ h∗k | ω(Kk) = 0} ⊂ h∗k , cf. [Hal15, Prop. 8.29].

Remark 4.8 (Further interpretation). We highlight the following:

(i) Identifying the weights ω under a permutation of the radii of the circles entering L k
c S4 is similar to identifying

punctured Riemann surfaces under a permutation of the punctures, if we wish to consider the moduli space of

Riemann surfaces with unlabeled punctures. The identification of weights under the Weyl group action is also

analogous to identifying the Planck scale and the sequence of radii of the circle components in compactified M-

theory under U-duality. In the del Pezzo story, one also identifies generalized Kähler classes on a del Pezzo surface

under the action of the Weyl group, see [INV02, §3.1], and the fundamental Weyl chamber in the Picard group of

a del Pezzo surface plays a prominent role in studying Cremona isometries [Do12, §8.2.8].

(iii) Ultimately, physical configurations have to be U-duality invariant, so it makes sense to mod out by that sym-

metry. The Weyl group W = W (Ek) is traditionally taken as a subgroup of the discrete Z-form of the U-duality

group Ek(R); see the discussion before (1). And since W already contains a substantial part of that symmetry,

modding out by W makes sense and is also ‘close’ to the ultimate moduli space, in the sense of (1). We will

consider this in more detail in [SV22].

4.5 The Ek symmetry of type IIB

Given that the real homotopy type IIB was worked out so as to match with type IIA via T-duality (23) and (24), we

would like to choose a compatible trivialization T B ∼=Gm ×Gm of the maximal R-split torus of AutM(IIB) and a

compatible basis of weights of the action of T B on M(IIB).

We have been identifying the weights corresponding to the maximal R-split tori actions on M(L k
c S4) in Corol-

lary 3.6 starting from k = 0 and moving up to higher k with the use of Theorem 3.4, which related the toroidal

symmetries of M(L k+1
c S4) to those of M(L k

c S4). The real homotopy type IIB is connected to this sequence by

a single cyclification: M(LcIIB) is closely related to M(LcIIA) = M(L 2
c S4), expressing T-duality; see Equa-

tion (23). Thus, if T B
c is the maximal R-split torus of AutM(LcIIB), then it maps naturally to the maximal split

torus T B of AutM(IIB), because R[w], where w is as in the extension (13), is T B
c -invariant. Since the differential

ideal (h7,ω7,dh7,dω7) of M(LcIIB) is also T B
c -invariant, T B

c acts on the quotient M(LcIIB)/(h7,ω7,dh7,dω7) in

(23). The maximal R-split torus T A
c of AutM(LcIIA) also keeps the differential ideal (h7,dh7) invariant and maps

naturally to T B
c . This way, we have a map

T A
c −! T B

c −! T B.

One can reverse these maps and get a natural map T B
! T A

c . This also implies that the weights of T A
c pull back to

the weights of T B.

Now, let us use these maps to create distinguished bases of the Lie algebra hB of the maximal R-split torus T B

and the dual space vector space h∗B of weights. We will use the weights of the elements h3 and ω3 as fundamental

(corresponding to spacetime fields H3 and F3 associated with the fundamental string and its S-dual, the D1-brane).

With that, we write

t ·h3 = tγ1h3, t ·ω3 = tγ2 ω3,
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where

γ1 := ε0 − ε1, and γ2 := ε0 − ε2,

given that

h3 7! s1g4, and ω3 7! s2g4

in the correspondence between M(LcIIB) and M(LcIIA) = M(L 2
c S4). Here ε0, ε1, and ε2 are the generating

weights of h∗2, the Lie algebra of the maximal R-split torus T A
c of AutM(LcIIA) = AutM(L 2

c S4). We view these

weights as being pulled back to T B (and hB) via the homomorphism T B
! T A

c . Since γ1 = β0 and γ2 = β0 +β1 by

Equations (38), γ1 and γ2 form a basis of h∗B and, moreover, of the weight lattice P(hB) := Zγ1 ⊕Zγ2 ⊆ h∗B.

We will use the inner product induced on h∗B from h∗2:

(γ1,γ1) := (ε0 − ε1,ε0 − ε1) = 0, (γ2,γ2) := (ε0 − ε2,ε0 − ε2) = 0, (γ1,γ2) := (ε0 − ε1,ε0 − ε2) = 1 .

The dual basis of hB will be given as {l1 := h0 − h1, l2 := h0 − h2}, where we used the images of the generators

h0,h1,h2 of h2 under the linear map h2 ! hB linearizing the above group homomorphism T A
c ! T B. Then one can

check from Equations (38) that there exists a unique element −KB ∈ hB which acts as the degree operator (44) on

the Quillen model Q(IIB), namely, the element

−KB = 2l1 +2l2.

Indeed, 2(h0 − h1)+ 2(h0 − h2) acts on s1g4 in M(LcIIA) by scaling by 2(1− 1)+ 2(1− 0) = 2 and the same

way on s2g4. This implies that −KB acts on h3 and ω3 in M(IIB) by a factor of 2, which is the degree of the dual

elements in the Quillen model Q(IIB). The element 2(h0 − h1)+ 2(h0 − h2) acts on s2w1 in M(LcIIA) by zero,

and this implies that −KB acts on ω1 ∈ M(IIB) also trivially, just as it is supposed to act on an degree-zero element

of Q(IIB). Equations (20) and the fact that hB acts on M(IIB) by derivations then imply that −KB ∈ hB acts on

the remaining generators ω5, h7, and ω7 by 4, 6, and 6, respectively, again compatible with acting as the degree

operator on the Quillen model Q(IIB).

As concerns uniqueness of an element realizing the degree operator, an arbitrary element a1l1 +a2l2 ∈ hB acts

on ω1 by a factor of a1−a2 and on h3 by a2. Thus, if it acts by the Quillen-model degree, we must have a1−a2 = 0

and a2 = 2, whence a1 = a2 = 2.

This way, as in Theorem 4.6, we create a root system RB, which we might denote by EB, corresponding to the

real homotopy type IIB. In contrast with the type IIA root system, which is empty (in the notation of Table 1):

E1 = R1 =
{

α ∈ P(h1) | (α ,3ε0 − ε1) = 0, (α ,α) =−2
}
=∅= A0 ,

we have:

Proposition 4.9 (Exceptional root data from the rational model for type IIB). The data, as in Theorem 4.6, asso-

ciated to the Sullivan minimal model M(IIB) of type IIB replicates the data determined by the del Pezzo surface

B′
1 = CP1 ×CP1 and produces the root system

EB = RB :=
{

α ∈ P(hB) | (α ,2γ1 +2γ2) = 0, (x,x) =−2
}
=

{
γ1 − γ2, γ2 − γ1

}

which is nonempty and may be identified as a root system of type A1.

This justifies the type IIB row of Table 1.
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4.6 27 “Lines” in the cyclic loop space L 6
c S4

In this section we show that our discovery of at least the toroidal part of Ek symmetry of the rational homo-

topy type of L k
c S4 may lead to surprising consequences, such as the existence of 27 “lines” in L 6

c S4: shortly,

dimπR
2 (L

6
c S4) = 27. Since 27 is also remarkable as the dimension of a fundamental representation of the Lie

algebra e6, this is suggestive of the possibility of extending the rational homotopy symmetries of L k
c S4 outside of

the toroidal part of Ek, if not to the whole Lie algebra ek.

Given that the data
(
h∗6,{ε0, . . . ,ε6},(−,−),K∗

6

)
arising in Theorem 4.6 is exactly the same as that for the del

Pezzo surface B6, we can identify the 27 “lines” in L 6
c S4. These lines are generated by the R-homotopy classes

of 27 maps CP1
! L 6

c S4 (to be more precise, linear combinations of such, i.e., 27 elements of πR
2 (L

6
c S4) =

π2(L
6

c S4)⊗R) supplied by the following result.

Theorem 4.10 (27 lines via rational homotopy of 6-fold cyclic loop space). The 27 exceptional vectors α ∈ P(h6),
(α ,α) = (α ,K∗

6 ) =−1, give rise to 27 canonically defined lines in the R-vector space πR
2 (L

6
c S4). Moreover, these

lines freely generate πR
2 (L

6
c S4) and thus dimπR

2 (L
6

c S4) = 27.

Proof. The 27 exceptional vectors for the data
(
h∗6,{ε0, . . . ,ε6},(−,−),K∗

6

)
associated with the space L 6

c S4 by

Theorem 4.6 are the elements α of the weight lattice P(h6) = Zε0 ⊕ ·· · ⊕Zε6 which pair to 1 with −K∗
6 or,

equivalently, evaluate to 1 at −K6 ∈ h6: α(−K6) = 1. By the definition of the “anticanonical class” −K6, for

any weight α ∈ P(h6), an element x of the weight space Qα of the Quillen minimal model Q = πR
• (L

6
c S4)[1] has

degree |x|= α(−K6):
hx = α(h) · x for any h ∈ h6,

−K6x = |x| · x for h =−K6.

Thus, the weights α ∈ P(h6) which evaluate to 1 at −K6 are precisely the weights of the degree-one component of

πR
• (L

6
c S4)[1], (

πR
• (L

6
c S4)[1]

)
1
= πR

2 (L
6

c S4).

The vector space πR
2 (L

6
c S4) is linear dual to the degree-two component V 2 of the generator vector space V =

Q∗[1] = πR
• (L

6
c S4)∗ of the Sullivan minimal model M(L 6

c S4) = (S(V ),d). Note that in the weight decomposition

V 2 =
⊕

α∈P(h6)

V 2
α ,

the weights that actually occur, i.e., V 2
α 6= 0, are exactly on the following list:

ε1, . . . ,ε6,

ε0 − εi − ε j, 1 ≤ i < j ≤ 6, (48)

2ε0 − ε1 −·· ·− ε̂i −·· ·− ε6, 1 ≤ i ≤ 6.

Moreover, the corresponding weight spaces are all one-dimensional and generated by the elements

w1, . . . ,w6,

s jsig4, 1 ≤ i < j ≤ 6, (49)

s6 . . . ŝi . . . s1g7, 1 ≤ i ≤ 6,

respectively, just as in the table which presented the 27 spacetime fields earlier in this section. The corresponding

one-dimensional linear-dual subspaces (V 2
α )

∗ = (Q1)α ⊂ πR
2 (L

6
c S4) are canonically defined as weight spaces, and

we have

V 2 =
⊕

α on the list (48)

V 2
α ,

πR
2 (L

6
c S4) =

⊕

α on the list (48)

πR
2 (L

6
c S4)α .

These are the 27 lines in πR
2 (L

6
c S4). For each line, a generator, defined up to a nonzero real factor, is represented

by a real homotopy class in πR
2 (L

6
c S4), a “line CP1 = S2

! L 6
c S4”.
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Remark 4.11 (Other cases). A similar count of “lines in L k
c S4” works for all k, 0 ≤ k ≤ 6, with the same numbers

as those for the exceptional vectors Ik ⊂ Nk and exceptional curves on del Pezzo surfaces Bk, cf. [Ma74, Theorem

4.3]. This count starts to break for k > 6, because some of the exceptional vectors will start having trivial weight

spaces. In particular, for k = 7, instead of 28 pairs of lines in B7, we will have 28 “lines,” 21 of which are paired to

other 21 “lines” in L 7
c S4, with 7 “lines” missing a pair. We will address this in an upcoming paper [SV22].

4.7 Cyclifying ≥ 9 times and Kac-Moody algebras

Nothing prevents us from cyclifying the 4-sphere 9 times and more, just like blowing up CP2 at k ≥ 9 points makes

perfect sense — the resulting surfaces are just no longer del Pezzo [Do08][Do20]. In our case, it is interesting to

see what “phase transition” is happening between k = 8 and 9. It is also reasonable to expect the emergence of

Kac-Moody algebras of type Ek for k ≥ 9 in relation to higher cyclifications L k
c S4. These Lie algebras play a role

in further blowups of CP2, as well as in reductions of 11d supergravity to dimensions 2, 1, and 0 [Ju86][N92]. We

plan to address the relation to algebraic geometry and physics in [SV22].

The Lie algebras ek of type Ek for k ≥ 9. For k ≥ 9, the Dynkin diagram

Dynkin diagram Ek

σ1 σ2 σ3 σ4 σk−2 σk−1

σ0

corresponds to Kac-Moody algebras: the affine Lie algebra of type E9 = Ê8 = E
(1)
8 , the hyperbolic Kac-Moody

algebra of type E10, and the Lorentzian Kac-Moody algebras of type Ek for k ≥ 11.

The k-fold cyclifications L k
c S4 and root lattices for k ≥ 9. The Ek root system data arises from L k

c S4 according

to Theorem 4.6: the maximal split real torus of AutL k
c S4 is (k + 1)-dimensional; the dual space h∗k of its Lie

algebra has a natural basis ε0,ε1, . . . ,εk, Lorentzian inner product, and distinguished element K∗
k . The sublattice

(K∗
k )

⊥ ⊂ P(hk) is a root lattice of type Ek, see table 2.

Exceptional vectors for L k
c S4 for k ≥ 9. In contrast to the k ≤ 8 case, for k ≥ 9 the set

Ik = {α ∈ P(hk) | (α ,K∗
k ) = (α ,α) =−1}

of exceptional vectors is infinite for L k
c S4. Indeed, the Weyl group Wk acts on the dual of the Lie algebra hk of the

maximal R-split torus T k+1 of AutM(L k
c S4) by isometries preserving K∗

k = −3ε0 + ε1 + · · ·+ εk and the lattice

P(hk). In particular, the Weyl group acts on the exceptional vectors. Examples, such as in (48), show there are

enough exceptional vectors to generate the whole vector space h∗k . This implies that an element of Wk is determined

by its action on the exceptional vectors. Then the fact that the group Wk is infinite for k ≥ 9 implies that there are

infinitely many exceptional vectors.

Recall from Theorem 4.10 that in the k = 6 case, the 27 exceptional weight spaces of the action of hk on the

Quillen model Q(L 6
c S4) = πR

• (L
6

c S4)[1], i.e., on πR
2 (L

6
c S4) are all one-dimensional and present 27 lines in L 6

c S4.

On the contrary, for k ≥ 9, only finitely many exceptional weights will be populated, both in Q(L k
c S4) and

M(L k
c S4). This is because the underlying real vector space πR

• (L
k

c S4) of the Quillen model and the subspaces

of bounded degree of the Sullivan model of M(L k
c S4) are finite-dimensional for all k ≥ 0, as follows from the

identification of M(L k
c S4) in §2.5.

The “phase transition” from k ≤ 8 to k ≥ 9 is summarized in the following table.

Case degL k
c S4 Inner product on K⊥

k Kk and K⊥
k Weyl group Wk Exceptnl vectors for L k

c S4

k ≤ 8 > 0 negative-definite Kk 6∈ K⊥
k finite finitely many

k = 9 0 negative semi-definite Kk ∈ K⊥
k infinite infinitely many

k ≥ 10 < 0 Lorentzian Kk 6∈ K⊥
k infinite infinitely many
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[LLPS99] I. Lavrinenko, H. Lü, C. N. Pope, and K. S. Stelle, Superdualities, Brane Tensions and Massive IIA/IIB

Duality, Nucl. Phys. B 555 (1999), 201-227, [doi:10.1016/S0550-3213(99)00307-7],

[arXiv:hep-th/9903057].

[LP96] H. Lu and C. N. Pope, p-brane Solitons in Maximal Supergravities, Nucl. Phys. B465 (1996), 127-156,

[doi:10.1016/0550-3213(96)00048-X], [arXiv:hep-th/9512012].

[Maj00] M. Majewski, Rational homotopical models and uniqueness, Mem. Amer. Math. Soc. 143 (2000), no.

682, [https://www.ams.org/books/memo/0682/].

[Ma64] Y. Manin, The Tate height of points on an abelian variety: its variants and applications, Izv. Akad. Sci.

SSSR 28 (1964), 1363–1390; Amer. Math. Soc. Transl. 59 (1966), 82–119, [ams.org/trans2-59].

[Ma74] Y. I. Manin, Cubic forms, 2nd ed., North-Holland, Amsterdam, 1986, [ISBN:0-444-87823-8].

[Ma97] Y. I. Manin, Gauge field theory and complex geometry, 2nd ed., Springer-Verlag, Berlin, 1997,

[doi:10.1007/978-3-662-07386-5].

[MS83] N. Marcus and J. H. Schwarz, Three-dimensional Supergravity Theories, Nucl. Phys. B 228 (1983), 145-

162, [doi:10.1016/0550-3213(83)90402-9].

[MS03] V. Mathai and H. Sati, Some relations between twisted K-theory and E8 gauge theory, J. High Energy

Phys. 0403 (2004), 016, [doi:10.1088/1126-6708/2004/03/016], [arXiv:hep-th/0312033].

[N92] H. Nicolai, A hyperbolic Kac-Moody algebra from supergravity, Phys. Lett. B 276 (1992), 333-340,

[doi:10.1016/0370-2693(92)90328-2].

[OP99] N. A. Obers and B. Pioline, U-duality and M-theory, Phys. Rep. 318 (1999) 113-225,

[doi:10.1016/S0370-1573(99)00004-6], [arXiv:hep-th/9809039].

[Qu69] D. Quillen, Rational Homotopy Theory, Ann. Math. 90 (1969), 205–295, [doi:10.2307/1970725].

[Re78] L. E. Renner, Automorphism groups of minimal models, Masters Thesis, U. British Columbia, 1978,

[https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0080346].

[RW07] F. Riccioni and P. West, Dual fields and E11, Phys. Lett. B645 (2007), 286-292,

[arXiv:hep-th/0612001].

38

https://doi.org/10.1088/1126-6708/2002/04/049
http://arxiv.org/abs/hep-th/0203070
https://arxiv.org/abs/hep-th/0203070
https://doi.org/10.1088/1126-6708/2003/04/060
http://arxiv.org/abs/hep-th/0212346
https://arxiv.org/abs/hep-th/0212346
https://doi.org/10.1016/0550-3213(84)90472-3
https://doi.org/10.1016/0550-3213(94)00559-W
http://arxiv.org/abs/hep-th/9410167
https://arxiv.org/abs/hep-th/9410167
https://doi.org/10.1088/0264-9381/2/3/007
https://dx.doi.org/10.4310/ATMP.2001.v5.n4.a5
http://arxiv.org/abs/hep-th/0111068
https://arxiv.org/abs/hep-th/0111068
https://inspirehep.net/literature/231520
https://doi.org/10.1007/BF01403155
https://doi.org/10.1017/CBO9780511626234
https://doi.org/10.1016/S0393-0440(03)00027-5
http://arxiv.org/abs/hep-th/0212081
https://arxiv.org/abs/hep-th/0212081
https://doi.org/10.1017/CBO9780511734991
https://doi.org/10.1088/0264-9381/15/8/008
http://arxiv.org/abs/hep-th/9710243
https://arxiv.org/abs/hep-th/9710243
https://doi.org/10.1016/S0550-3213(99)00307-7
http://arxiv.org/abs/hep-th/9903057
https://arxiv.org/abs/hep-th/9903057
https://doi.org/10.1016/0550-3213(96)00048-X
http://arxiv.org/abs/hep-th/9512012
https://arxiv.org/abs/hep-th/9512012
https://www.ams.org/books/memo/0682/
https://bookstore.ams.org/trans2-59
https://www.elsevier.com/books/cubic-forms/manin/978-0-444-87823-6
https://www.springer.com/gp/book/9783540613787
https://doi.org/10.1016/0550-3213(83)90402-9
https://doi.org/10.1088/1126-6708/2004/03/016
http://arxiv.org/abs/hep-th/0312033
https://arxiv.org/abs/hep-th/0312033
https://doi.org/10.1016/0370-2693(92)90328-2
https://doi.org/10.1016/S0370-1573(99)00004-6
http://arxiv.org/abs/hep-th/9809039
https://arxiv.org/abs/hep-th/9809039
https://doi.org/10.2307/1970725
https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0080346
http://arxiv.org/abs/hep-th/0612001
https://arxiv.org/abs/hep-th/0612001


[Ro20] D. M. Roberts, Topological sectors for heterotic M5-brane charges under Hypothesis H, J. High Energy

Phys. 2020 (2020), 52, [doi:10.1007/JHEP06(2020)052], [arXiv:2003.09832].

[Sa06] H. Sati, Duality symmetry and the form fields of M-theory, J. High Energy Phys. 0606 (2006) 062,

[doi:10.1088/1126-6708/2006/06/062], [arXiv:hep-th/0509046].

[Sa10] H. Sati, Geometric and topological structures related to M-branes, Proc. Symp. Pure Math. 81 (2010),

181-236, [ams:pspum/081], [arXiv:1001.5020].

[Sa13] H. Sati, Framed M-branes, corners, and topological invariants, J. Math. Phys. 59 (2018), 062304,

[https://doi.org/10.1063/1.5007185], [arXiv:1310.1060].

[SS19a] H. Sati and U. Schreiber, Equivariant Cohomotopy implies orientifold tadpole cancellation, J. Geom.

Phys. 156 (2020) 103775, [doi:10.1016/j.geomphys.2020.103775], [arXiv:1909.12277].

[SS19b] H. Sati and U. Schreiber, Differential Cohomotopy implies intersecting brane observables via configura-

tion spaces and chord diagrams, [arXiv:1912.10425].

[SS21] H. Sati and U. Schreiber, M/F-theory as Mf-theory, [arXiv:2103.01877].

[SV22] H. Sati and A. A. Voronov, Mysterious Triality and M-Theory, [arXiv:2212.13968

[Sch83] J. Schwarz, Covariant field equations of chiral N = 2 D = 10 supergravity, Nucl. Phys. B226 (1983),

269-288, [doi:10.1016/0550-3213(83)90192-X].

[SW83] J. Schwarz and P. West, Symmetries and transformations of chiral N = 2 D = 10 Supergravity, Phys. Lett.

126B (1983), 301-304, [doi:10.1016/0370-2693(83)90168-5].

[ST17] B. Souéres and D. Tsimpis, Action principle and the supersymmetrization of Chern-Simons terms in

eleven-dimensional supergravity, Phys. Rev. D 95 (2017), 026013, [arXiv:1612.02021],

[doi:10.1103/PhysRevD.95.026013].

[Su77] D. Sullivan, Infinitesimal computations in topology, Publ. Math. Inst. Hautes Études Sci. 47 (1977), 269–

331, [http://www.numdam.org/item/?id=PMIHES_1977__47__269_0].

[Ta98] Y. Tanii, Introduction to supergravities in diverse dimensions, YITP Workshop on Supersymmetry, 27-30

March 1996, Kyoto, Japan, [arXiv:hep-th/9802138].
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