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Abstract

We study a strongly interacting, fermionic fluid in the presence of an applied mag-
netic field using a holographic framework. At low temperatures, translation symmetry
is spontaneously broken and the resulting phase is a striped Hall fluid. Due to the
magnetic field, an electric field applied parallel to the stripes causes the stripes to slide,
a phenomenon we coin “Hall sliding.” We also investigate the magneto-transport of
the system in the presence of an explicit translation symmetry-breaking lattice which
pins the stripes. Electrical properties are well represented by a hydrodynamical model,
which gives us further insight into particle-like cyclotron and pseudo-Goldstone excita-
tions we observe. The DC conductivities obey a novel semi-circle law, which we derive
analytically in the translationally invariant ground state at low temperature.
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1 Introduction

When subjected to a magnetic field, strongly correlated electrons exhibit a range of interesting
and puzzling behaviors. The fractional quantum Hall (FQH) effect, featuring gapped phases
at non-integer filling fraction ν and with fractionally charged quasiparticles, is perhaps the
most famous. Although phenomenological descriptions of FQH states can be given in terms
of Laughlin wavefunctions or fermions with attached flux quanta, a comprehensive theoretical
description, particularly including transitions between gapped quantum Hall states, remains
elusive.

Although many FQH states have been observed at small filling fractions below the first
Landau level, they become increasingly sparse at filling fractions ν > 2. Near half-filling
between high Landau levels (ν = N+1/2 for N > 4), interactions can lead to a striped, charge
density wave (CDW) ground state, which exhibits a strongly anisotropic charge transport
[1–3].

Under general assumptions and independent of microscopic details, the charge conduc-
tivity in between quantum Hall states obeys non-trivial relations, notably, the semi-circle
law [4]

σDCxx σ
DC
yy +

(
σDCyx − σ0

h

)2
=
(
e2/2h

)2
(1.1)

where σ0
h = e2

h
(N + 1/2) and the end points of the semi-circle are quantum Hall states. This

robust relation holds away from symmetric half-filling point, in the presence of disorder, and
in wide class of striped systems [5, 6].

As a particular example of a strongly correlated electronic material, high Tc cuprate
superconductors demonstrate a number of unexplained features. For example, the Hall angle
θH = tan−1

(
σDCxy /σ

DC
xx

)
, which measures the transverse Hall conductivity relative to the

longitudinal Ohmic conductivity, exhibits surprising temperature scaling. Although the Hall
angle might be expected to have the same temperature dependence as the longitudinal DC
conductivity, which for cuprates scales inversely with temperature σDC ∼ T−1, the Hall angle
instead is found experimentally to scale as tan θH ∼ T−2, which is typical of normal metals.

Gauge/gravity duality provides a tractable method of analyzing strongly interacting sys-
tems. In particular, observables such as charge transport can be reliably computed, and
there has been a strong focus on magneto-transport of holographic models in recent years.
An early holographic-inspired hydrodynamical model of magneto-transport was constructed
in [7], followed by a number of other holographic models [8–22], with attempts made to match
the characteristic strange metallic behavior.

With the goal of investigating the striking magnetic phenomena of strongly correlated
electrons in an explicit top-down holographic construction, we study the magneto-transport
of the D3-D7’ probe-brane model, which holographically describes a strongly coupled (2+1)-
dimensional electron fluid.1 The gapless phase of this model has been suggested as a holo-

1Magnetic fields and the quantum Hall effect have also been investigated in a number of other top-
down [23–28] and bottom-up holographic models [29–33].
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graphic description for graphene [34–36] or other strongly interacting 2D systems, such as the
recently proposed scandium Herbertsmithite [37]. However, a direct application of this type
of (2+1)-dimensional defect model to graphene would be problematic since the 3D Coulomb
interaction is weakly coupled to the graphene and the speed of light is much higher than the
Fermi velocity in graphene, indicating significantly different physics.

The D3-D7’ system has a quantum critical point at zero temperature, magnetic field,
and charge density, which indicates a phase transition between a homogeneous phase and
a spatially modulated striped phase. This striped phase exhibits spontaneous, intertwined
striped order, including charge density waves and spatially modulated, transverse, persistent
currents. Because the translation symmetry breaking is spontaneous, an applied electric field
causes the stripes to slide, leading to collective charge transport [38]. Somewhat surprisingly,
the striped phase with this collective sliding mode was found to have only mildly different
conductivities compared to the homogeneous phase. However, the stripes can be pinned by
the introduction of an explicit background lattice, which significantly impacts the transport
across the stripes [39].

The D3-D7’ model exhibits many interesting properties in the presence of a background
magnetic field. At nonzero charge density, the system is in a gapless metallic state, but
for certain values of the magnetic field, gapped quantum Hall states can appear [40]. At
nonzero fermion mass, the gapless phase displays ferromagnetism and an anomalous Hall
effect [41]. The magnetic field also stabilizes the homogeneous phase against the instability
to form stripes [41,42].

The charge conductivity was first studied in [40], where only the DC conductivities of the
homogeneous gapped and ungapped phases were computed. In [41], the high-temperature
behavior of DC conductivity in the gapless phase was further analyzed. In the related D2-D8’
model, which similarly features a gapped, quantum Hall state at nonzero charge density, the
DC conductivity of the homogeneous phases was shown to partially reproduce the semi-circle
law observed in quantum Hall transitions [26].

In this paper, we extend this earlier analysis and fully analyze the conductivity of the D3-
D7’ model in an applied magnetic field, in both the gapless homogeneous and striped phases.
Furthermore, we also investigate the effects of pinning by adding an explicit symmetry-
breaking lattice. The optical conductivities are obtained numerically by solving for the
linearized fluctuations of the numerically computed background. The DC conductivities,
however, can be computed analytically in terms of the numerical horizon data of the back-
ground solutions. The numerical AC conductivities are shown to match the semi-analytic
DC conductivities in the zero-frequency limit.

The DC conductivity is found to obey a semi-circle law, but not the usual law (1.1)
observed in quantum Hall transitions. For the D3-D7’ model, the roles of σDCxx and σDCxy are
reversed compared with (1.1), and, unlike (1.1), the radius of the semi-circle is proportional
to the charge density over temperature squared. In the low-temperature limit, we are able
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to derive this semi-circle law analytically for the homogeneous phase:(
σDCyy −

√
2πD√
λNcT 2

)2

+
(
σDCxy

)2
=

( √
2πD√
λNcT 2

)2

, (1.2)

where D is the physical charge density and the division by the number of colors Nc, D/Nc,
can be viewed as charge density per fermion species. The ’t Hooft coupling λ can be written
in terms of field theory data λ = g2

YMNc of the ambient N = 4 super Yang-Mills theory.
Numerical evidence indicates the behavior continues to good approximation away from the
low-temperature limit. Note that in here, this novel semi-circle law holds exactly in the limit
of large charge and finite magnetic field, that is, at large filling fraction, while the usual
semi-circle law is found at order-one filling fraction.

For the striped phase, the semi-circle law persists, albeit for the spatially averaged con-
ductivities and with a modified radius. Because the striped phase is anisotropic, there is an
ambiguity in the direction chosen for the longitudinal conductivity. However, the DC con-
ductivities across and along the stripes are approximately equal, so different choices result
in a small change to the semi-circle radius. When the stripes are pinned, the conductivi-
ties are strongly anisotropic but still obey an exact relation which can be interpreted as an
anisotropic analog of the semi-circle law.

The Hall angle θH obtained from the DC conductivities shows the scaling tan θH ∼
T−2 at low temperatures. However, the longitudinal conductivity σDCxx does not exhibit the
characteristic T−1 scaling of strange metals.

Previously, we found [38] that the stripes of the inhomogeneous phase slide due to an
applied electric field. With addition of a magnetic field, the stripes now slide not just when
an electric field is applied across the stripes but also when it applied along them. We find
that this “Hall sliding” has a different velocity than the standard sliding studied in [38].
While the velocity of the usual sliding increases as the magnetic field grows, the velocity of
the Hall sliding decreases.

In addition to DC conductivities, we also investigate the optical, or AC, conductivities,
which give us access to physics associated with nonzero frequency. Our results can be fit well
by the hydrodynamical model of [7]. In particular, we find the predicted cyclotron peak at a
frequency proportional to the magnetic field.

Being at strong coupling, however, it is not clear how far the particle or quasiparticle
picture stretches, and a quasiparticle interpretation of the hydrodynamical model is ques-
tionable. The dual effective near-equilibrium description of the (2+1)-dimensional defect
flavor degrees of freedom (dofs) would necessitate the coupling of the hydrodynamics with
scalar fields that describe the wobbling of the interface. It is also important to remember
that since the defect dofs are treated in the quenched approximation (Nf � Nc), in the
presence of a finite external electric field, the momentum of charged dofs is not conserved
and effectively dissipates into the gluonic sector, even in the translationally invariant case.
Up to time scales parametrically large in Nc , the ambient plasma, consisting of adjoints of
the N = 4 super Yang-Mills sector, continues to approximately sit at rest and acts as a mo-
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mentum reservoir for charged degrees of freedom [43,44]. The longitudinal conductivities can
be finite and take nonzero values at vanishing frequency, contrary to [45]. A hydrodynamical
description without long time tails therefore seems insufficient. Nevertheless, we attempt
to infer lessons of physics interest by matching onto an existing hydrodynamical model at
finite magnetic field, namely [7]. We find that it works surprisingly well, implying that, for
example, higher quasi-normal modes are not relevant, at least in the frequency range studied
here.

Finally, we investigate the combined effects of a magnetic field and pinning. As we
showed in [39], a symmetry-breaking magnetic lattice pins the stripes, preventing them from
sliding. The DC conductivity across the stripes then drops by an order of magnitude and a
pinning pole at nonzero frequency appears, representing the damped harmonic oscillation of
the stripes in the pinning potential. Surprisingly, the effects of the magnetic field seem to
be suppressed by the pinning potential, and the conductivities closely resemble those found
in [39] at nonzero magnetic field. Unlike in [19] where distinct cyclotron and pinning poles
were observed, we find only evidence of a single pole; the cyclotron pole appears to transition
into a pinning pole as the lattice is introduced.

The outline of the paper is as follows. We first review in Sec. 2 the construction and
phases of the model. In Sec. 3, we describe the conductivity of the homogeneous phase,
describing the inverted semi-circle law and temperature dependance of the Hall angle. Then,
in Sec. 4, we compute the conductivity of the inhomogeneous striped phase, both with and
without the addition of pinning. We conclude with a discussion of open problems in Sec. 5.

2 D3-D7’ Model

2.1 Set-up

The D3-D7’ model is a holographic description of strongly interacting fermions on a (2 + 1)-
dimensional defect interacting with a (3 + 1)-dimensional gauge field [40]. This construction
is a member of the well studied class of #ND=6 brane intersection models [26,46–49], whose
low-energy excitations are purely fermionic. An analysis of the magnetic properties of the
D3-D7’ model was initiated in [41].2 This system exhibits the quantum Hall effect, featuring
a gapped state at nonzero filling fraction [40]. Furthermore, at large charge density, the
ground state is spontaneously striped, with spatially modulated magnetization, persistent
transverse currents, and modulated charge density [38]. We will only briefly review the set
up of the model here. For a more thorough treatment, see [38].

The model consists of a probe D7-brane in a D3-brane background, filling the t, x, and
y boundary dimensions and the holographic radial direction r, and wrapping two 2-cycles in
the internal S5. This embedding completely breaks supersymmetry but can be stabilized by
wrapping internal magnetic fluxes on the internal 2-cycles, labeled by parameters f1 and f2.

2See also [50] for a review of magnetic properties of probe-brane models.
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For definiteness, we will consider f1 = f2 = 1√
2
, unless otherwise specified.

The D7-brane action is the sum of a Dirac-Born-Infeld (DBI) term and a Chern-Simons
(CS) term:

S = −T7

∫
d8x e−Φ

√
−det(gµν + 2πα′Fµν)−

(2πα′)2T7

2

∫
P [C4] ∧ F ∧ F , (2.1)

where T7 is the tension of the D7 brane, Φ = 0 for the AdS5×S5 Schwarzshild background
geometry, and P [C4] is the pullback of potential of the self-dual five-form flux [40]. Bulk
solutions to the equations of motion derived from this action are described by the embedding
functions z(r), the boundary direction in which the defect is localized, and ψ(r), the azimuthal
angle on the internal S5, as well as the worldvolume gauge field components ax and ay.

3 A
chemical potential µ and magnetic field b are included by considering appropriate components
of the bulk gauge field aµ. We will focus our attention on embeddings with zero fermion mass,
and we set the AdS scale to one.

At nonzero temperature T , the D3-brane background has a black hole horizon at rT = πT .
We scale out the temperature by rescaling the spatial coordinates xµ and gauge field aµ by
the horizon radius rT . We also work with a compact radial coordinate

u =
rT
r
, (2.2)

which sets the location of the horizon at u = 1 and the anti-de Sitter (AdS) boundary at
u = 0.

A nonzero chemical potential µ induces a boundary charge density d. This charge is
distributed among two components with very different physical properties. There are frac-
tionalized charges located in the bulk at the horizon and cohesive charges in the form of
D5-branes smeared in the D7-brane worldvolume. In terms of the physical charge density
D, the rescaled charge density is d = 2

√
2πD/(

√
λNcT

2), and the rescaled magnetic field is
b = B/T 2 · 2/(π

√
λ) where B is the physical magnetic field.4

2.2 Background solutions

2.2.1 Homogeneous phase

The D3-D7’ model has, in general, two classes of homogeneous solutions. The black hole
embeddings, in which the D7-brane crosses the horizon, describe gapless conducting states,
and will be the focus of our attention in this paper. In addition, for certain filling fractions,
i.e. ratios of the charge density to the magnetic field, there are Minkowski embeddings, for
which the D7-brane smoothly ends outside the horizon, resulting in a gapped insulator. The

3We work in radial gauge, so that ar = 0.
4For more general internal fluxes f1 and f2 (which still give the fermions non-anomalous mass dimension),

the relation for d in terms of D involves an additional factor of (sin(2ψ∞))−2.
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existence of Minkowski embeddings also relies of the D7-brane fluxes falling within certain
ranges. For the fluxes considered here, f1 = f2 = 1/

√
2, only black hole embeddings exist.

At zero temperature and with b = µ = 0, the D7-brane embedding is trivial and the
induced metric is AdS4 × S2 × S2, which is dual to a CFT [41]. This indicates the presence
of a quantum critical point (QCP) associated with a second-order phase transition from the
homogeneous phase to a spatially modulated striped phase [42,51].

The magnetic properties of the homogeneous conducting phase were studied in [41]. The
DBI and CS terms in the action (2.1) generate competing contributions to the magnetization.
At the QCP, the DBI dominates and gives a negative contribution, so the system is diamag-
netic. Moving away from the QCP, for large enough charge, the positive contribution from
the CS is more important and the homogeneous phase becomes paramagnetic. At nonzero
fermion mass, the system has a spontaneous magnetization and is therefore a ferromagnet.

2.2.2 Striped phase

Above a critical charge density, the ground state is a spontaneously striped phase, with a
wavelength L (or equivalently, spatial frequency k0 = 2π

L
). This spatially modulated state

exhibits several types of intertwined spatial order in the form of coupled charge and spin
density waves as well as modulated persistent currents. Without loss of generality we can
assume that this striped phase has spatial modulation in only one of the spatial coordinates,
x, and all fields are independent of the other coordinate, y.

An applied magnetic field suppresses the spatial modulation, and for a strong enough
field, no striped solution exists. In [42], a magnetic field was shown to increase the critical
charge density and cause the phase transition to become first order. The magnetic field also
spreads the stripes, increasing the wavelength L.

We find the magnetic field reduces the amplitude of the inhomogeneity as well. For
example, the modulated persistent currents flowing along the stripes are suppressed by an
applied magnetic field. Fig. 1 shows the transverse current density Jy as a function of x
for increasing b. In addition, the magnetic field breaks the x → L

2
− x parity symmetry, as

evidenced by the asymmetric form of the modulation in Fig. 1 at nonzero b.

7



The magnetization M of the striped phase 5 is given by

M = − ∂

∂b
Ω(T, µ, b) , (2.4)

where Ω is the grand potential energy of the D7-brane, given by the negative of the on-
shell action (2.1), Ω = −S. Similar to what was found for the homogeneous phase at large
charge [41], the striped phase is paramagnetic. In addition, the striped phase has a spatially
modulated magnetization density m(x), defined by

M =

∫
m(x) dx , m(x) = V6

∫ 1

0

du
∂L
∂b

(2.5)

where L is the Lagrangian density of the full probe brane action, S =
∫
d8xL, and V6 is

the volume of R2 × S2 × S2, arising from integrations over t, y, and the angular variables.
The magnetization density at µ = 4 is shown in Fig. 1. As b is increased, it increases
approximately uniformly, with the modulation remaining approximately constant. In the
analysis of the striped phase we will focus on the results at µ = 4. This value is large enough
for the stripes to be sizeable, but not so large that we would be in the region of asymptotically
high densities.

b = 0

b = 0.25

b = 0.5

b = 0.75

0.2 0.4 0.6 0.8 1.0

x

L

-1.5

-1.0

-0.5

0.5

1.0

1.5

Jy (x)

0.2 0.4 0.6 0.8 1.0

x

L

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

m(x)

Figure 1: The effect of magnetic field on the striped background at µ = 4: (Left) The
persistent transverse current Jy(x), and (Right) the magnetization density m(x) over a spatial
wavelength. The blue, red dashed, magenta dotted, and green dot-dashed curves are the
results at b = 0, 0.25, 0.5, and 0.75, respectively. We chose units here such that T7V6L

5
AdS = 1.

5Notice that the derivatives with respect to b in (2.4) and (2.5) only act on the explicit dependence on
the magnetic field, i.e., the field strength components Fxy = −Fyx. Moreover, in the striped phase it is
often convenient to define the grand potential as the integral over one period L rather than the full space:

Ω = −V6
∫ L

0
dx
∫ 1

0
duL. The period L depends on b and is found by minimizing Ω/L [42]. We can now define

magnetization as

M̂ =
1

L

∫ L

0

dxm(x) =
∂

∂b

(
Ω(T, µ, b, L)

L

)
. (2.3)

One might be worried that this definition is not consistent with (2.4) and (2.5) due to the additional variable
L and its dependence on b. However since L is the found by minimizing Ω/L the derivative with respect to
L vanishes, so the derivatives of Ω/L with respect to b at constant L or along L = L(b) are equal.
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2.2.3 Pinning

In the striped phase, spatial translation symmetry is broken spontaneously, resulting in a
sliding Goldstone mode. However, typical experimental systems feature additional sources
of explicit translation symmetry breaking, such as a lattice or impurities, which lift the
Goldstone mode and effectively pin the stripes. In the D3-D7’ model, two types of pinning
potentials were introduced and studied in [39]: a spatially modulated chemical potential
models an ionic lattice, and a background antiferromagnetic field represents a magnetic
lattice.

These lattices are implemented holographically via the following boundary conditions for
the world volume gauge field:

Magnetic lattice : ay(x, u = 0) = bx+ αb sin(k0x) (2.6)

Ionic lattice : at(x, u = 0) = µ+ αµ cos(2k0x) (2.7)

where αb and αµ give the amplitudes of the two types of lattices. The inhomogeneity of the
stripe solutions is driven by the modulation of the bulk gauge field ay [42]. Consequently,
a magnetic lattice couples directly to the stripes, giving rise to a robust pinning effect. In
contrast, the modulation of the temporal component at is subleading, causing the pinning
effect of the ionic lattice to be suppressed. In this paper, we will focus on the magnetic lattice
because of its direct coupling to the stripes.

In the presence of a pinning potential, the stripes will dynamically adjust so as to be
commensurate with the periodicity of the potential, at least if the potential is sufficiently
strong. Here, as in [39], in order to simplify the computations, we set the wavelength of
the lattice to be equal to the dynamically preferred wavelength of the stripes, imposing
commensurability by hand.

3 Conductivity in the homogeneous phase

3.1 DC conductivity

The DC conductivities of the gapless, homogeneous phase were computed in [41], using the
Karch O’Bannon technique [52]. For generic internal fluxes f1 and f2, these can be expressed
in terms of horizon data as

σDCxx = σDCyy =
1

1 + b2

√
d̃2 +

1

2
(f 2

1 + 4 cos4 ψT )(f 2
2 + 4 sin4 ψT )(1 + b2) (3.1)

σDCxy =
b

1 + b2
d̃+
√

2c(ψT ) , (3.2)

where d̃ ≡ d−
√

2bc(ψT ), the integration constant d is given by d = −∂uat|u=0, and

c(ψ) = ψ − 1

4
sin (4ψ)− ψ0 +

1

4
sin(4ψ0). (3.3)
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The horizon value of ψ is denoted ψT = ψ(u = 1), and ψ0 = ψ(u = 0) is the value at the UV
boundary. For the choice of equal fluxes f1 = f2, the boundary value is ψ0 = π

4
.

3.1.1 The inverted semi-circle law

Plotting the Hall conductivity (3.2) versus the longitudinal conductivity (3.1) for different
values of b, yields Fig. 2. We find the result produces, to good approximation, a semi-circle
in the σDCyy − σDCxy plane.6 The curve begins at zero magnetic field on the σDCyy axis, and
proceeds counterclockwise toward the origin as b is increased. Interestingly, roles of σDCxx and
σDCxy in the semi-circle law are reversed with respect to the law (1.1) which has been found
in transitions between quantum Hall states [5, 6].

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●

0 2 4 6 8
〈σyy

DC 〉0

1

2

3

4

〈σxy
DC 〉

Figure 2: The semi-circle law for the DC conductivities. The homogenous phase is shown in
blue and the striped phase in red. For the striped phases the spatially averaged conductivities
〈σDCxy 〉 and 〈σDCyy 〉 are plotted. The dots are the numerically computed data points at µ = 4.
The dashed lines illustrate a semi-circular fit constrained to go through the origin, while the
solid curve is a semi-circular fit of the low-b data points.

The high temperature limit of the DC conductivities was studied in [41]. As it turns out,
the limit of low temperatures and small magnetic fields is also interesting. As temperature
has been scaled out, this is equivalent to the limit of large charge densities, d → ∞ in our
setup. At finite charge density, the curve only approximates a semi-circle. However, in the
limit where d→∞, the semi-circle law becomes exact, as we will now show.

In the large-d limit, the equation of motion for the embedding scalar ψ(u) simplifies to

∂u

(
h(u)ψ′(u)

1 + u2h(u)(ψ′(u))2

)
= O

(
1

d

)
, (3.4)

6For the homogenous phase, the choice of which longitudinal conductivity to plot is irrelevant. However,
for the striped phase σDC

xx and σDC
yy are only approximately equal. Plotting σDC

xy against σDC
xx is qualitatively

the same, but the semi-circle radius is slightly smaller. See Sec. 4.1.1 for more details.
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where h(u) = 1−u4 is the blackening factor. Therefore the regular solution is simply constant
up to subleading corrections:

ψ(u) = ψ∞ +O
(

1

d

)
, (3.5)

with the value of the constant determined by the UV behavior.7 Substituting ψT = ψ∞ +
O (1/d) in to equations (3.1) and (3.2), and using the fact that c(ψ∞) = 0, we find8

σDCxx =
d

1 + b2
+O

(
1

d

)
(3.7)

σDCxy =
bd

1 + b2
+O

(
1

d

)
. (3.8)

In this high-density limit, the leading-order conductivities, (3.7) and (3.8), satisfy an
exact semi-circle law: (

σDCxx −
d

2

)2

+
(
σDCxy

)2
=

(
d

2

)2

. (3.9)

The conductivities trace out a complete semi-circle of radius d/2 as b varies from zero to
infinity, with the maximal value of σDCxy obtained at b = 1. The resistivity matrix takes a
very simple form: (

ρxx ρxy
ρyx ρyy

)
=

1

d

(
1 −b
b 1

)
. (3.10)

As these results hold for generic values of the fluxes fi, they may seem to be in tension
with the quantum Hall states which have been found in the model [40]. However, here we are
taking d � b, which takes us far away from the possible QH states which have fixed filling
fractions ∝ d/b. At fixed large d, the regime of QH states is entered for b ∼ d, i.e., near the
origin in the conductivity plane, where the above approximations fail.

It is worth noting that the semi-circle observed here has some important differences with
the usual law seen in quantum Hall transitions. The usual semi-circle law has a fixed density-
independent radius and is observed at low temperature and with charge density and magnetic
field of the same order, at a filling fraction of order one. Here, the radius scales as the physical
charge density over the temperature squared, and the limit of large d but finite b corresponds
to large filling fraction.

7This conclusion may appear premature because the solution may in principle have irregular behavior
near the boundary or near the horizon which could alter the value of the constant, which is not captured by
the simple minded analysis where u does not scale with d. A careful analysis of the subleading corrections
however verifies that (3.5) is correct.

8Notice that the leading-order result holds regardless of the horizon value ψT , but the condition ψT =
ψ∞ +O (1/d) ensures that the O

(
d0
)

corrections vanish. Moreover inserting the constant solution for ψ in
the gauge field equation of motion, and integrating, we find

µ =
Γ
(
1
4

)
Γ
(
5
4

)√
d

√
π sin(2ψ∞)

+O
(

1√
d

)
. (3.6)
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Note also that the limit d � b is well within the regime where striped instabilities are
present (for appropriate choices of the fluxes fi). We will study in Sec. 4.1.1 below how this
semi-circle law is modified in the striped phase.

3.1.2 Hall angle

Using equations (3.1) and (3.2), the Hall angle θH , defined by

tan θH =
σDCxy
σDCxx

, (3.11)

can be computed numerically. Both the rescaled charge d and magnetic field b scale with
temperature as T−2. Because the temperature has been scaled out, the temperature can be
changed by varying d and b while holding the physical charge density and magnetic field fixed,
which operationally means keeping d/b fixed. The result, shown in Fig. 3, shows different
scaling regimes at high and low temperatures.

0.01 1 100 10
4

d

10
-6

10
-4

0.01

1

100

10
4

tan θH

Figure 3: A log-log plot of the tangent of the Hall angle as a function of d, with fixed
d/b = 2. The dots are numerically computed data points. The blue line shows the scaling
at large d, corresponding to low temperatures, tan θH ∼ d ∼ T−2. At small d, which is high
temperature, tan θH ∼ d2 ∼ T−4, as shown by the red line.

The high-temperature limit, which was addressed in [41], corresponds to d and b both
going to zero with d/b held fixed. In this case, ψT → ψ∞ and c(ψT ) ∼ d2, and so the Hall
conductivity goes to zero as σDCxy ∼ d2 ∼ T−4. However, the longitudinal conductivity goes
to a temperature-independent constant:

σDCxx =
1√
2

√
(f 2

1 + 4 cos4 ψ∞)(f 2
2 + 4 sin4 ψ∞) . (3.12)
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Together this gives

tan θH ∼ T−4 . (3.13)

The low-temperature limit, which is of more interest for comparison with experiments,
corresponds to the opposite: d and b both going to infinity with d/b held fixed. In this limit,
c(ψT ) is constant, and so the Hall conductivity (3.2) is

σDCxy =
d̃

b
+
√

2c(ψT ) (3.14)

=
d

b
, (3.15)

which is temperature independent. The longitudinal conductivity (3.1) now scales as σDCxx ∼
1/b ∼ T 2, which gives

tan θH ∼ T−2 . (3.16)

The T−2 scaling at low temperature matches the measured scaling in strange metals.9 Note,
however, that we do not obtain the signature T−1 scaling for σDCxx . The underlying physics
can be best understood by looking at the individual longitudinal and Hall conductivities.
Taking their ratio may serve to obscure rather than clarify the physics.

3.2 Optical Conductivity

The optical conductivity can be computed by analyzing the fluctuations on top of the back-
ground solutions: The D7-brane gauge fields are perturbed, and the equations of motion for
the linear fluctuations are solved numerically with appropriate boundary conditions. From
these solutions, the conductivity can be extracted. Further details are given in [38]. The
homogeneous phase is also isotropic, so without loss of generality, we consider an applied
electric field in the x direction and compute the resulting longitudinal current jx and Hall
current jy.

The optical conductivity of the homogeneous phase at zero magnetic field is in many
ways similar to what was found for the striped phase in [38]. The longitudinal conductivity
σxx exhibits a Drude peak around zero frequency. The width of this peak is due to the
dissipation provided by the background D3-branes, which act like smeared impurities. The
Hall conductivity σxy vanishes at b = 0, as required by parity conservation.

There are, however, some important differences between the conductivities of the striped
and homogeneous phases. In the striped phased, the Hall current along the stripes σyx had a
nonzero spatially modulation but the spatial average vanished. It also featured an additional

9A T−2 scaling was obtained in the Hall angle in a bottom-up holographic model featuring a similar
DBI + CS action to the one used here, but with a specific choice of Lifshitz scaling and anisotropic scaling
exponent [8].

13



spatially-modulated delta function at zero frequency. This was due to persistent transverse
currents in the striped background which slide along with the stripes as a result of an applied
electric field. The homogeneous phase lacks these persistence currents, and, not surprisingly,
the delta function is absent in the Hall conductivity, even at nonzero b.

When a magnetic field is turned on, the peak in the conductivity moves to higher fre-
quency. The location of this peak ωc is found to be nearly proportional to b and can be
interpreted as the cyclotron frequency of the charge carriers. As shown in Fig. 4 (left), our
results match to good accuracy the hydrodynamical model of [7]. At low frequency, the
longitudinal conductivity can be fit by10

σxx(ω) = σQ

[
(ω + i/τ) (ω + iγ + iω2

c/γ + i/τ)

(ω + iγ + i/τ)2 − ω2
c

]
. (3.17)

Here, τ is the momentum dissipation time due to scattering off impurities. The quantity
γ is interpreted as the cyclotron damping due to collisions of current carriers and their
antiparticles. This cyclotron damping frequency is predicted to scale with magnetic field
as γ ∝ b2. To make the b-dependence explicit, we write ωc = κωb and γ = γ̂b2. Rather
than numerically fitting our results to γ̂, we use the damping frequency due to vortices
γV = ω2

c/γ = κ2
ω/γ̂ because it is less sensitive to the details of the fit. We fix the parameter

σQ by requiring that the DC conductivity σxx(0) is given by the results obtained from (A.35)
after inserting the background geometry and the sliding speed v̂x.

In the limit of zero magnetic field, (3.17) reduces to the usual Drude form plus a constant

σxx(ω) = σQ +
σD

1− iωτ
, (3.18)

where the height of the Drude peak is given by σD = σQκ
2
ωτ/γ̂ = σQτγV .

Our results for the optical Hall conductivity are shown in Fig. 4 (right). These also closely
match the hydrodynamical model of [7]

σxy(ω) = −σyx(ω) = −ρ
b

[
(ω2

c + γ2 − 2iγ(ω + i/τ))

(ω + iγ + i/τ)2 − ω2
c

]
, (3.19)

where the parameters τ , ωc, and γ are the same as for the longitudinal conductivity. However,
for the Hall conductivity, the overall coefficient ρ, rather than σQ, is determined from the
result for the DC conductivity. The small-b limit also gives a Drude-like form

σxy(ω) =
2γ̂ρτb

1− iωτ
− ρκ2

ωb

(ω + i/τ)2
, (3.20)

which vanishes in the b = 0 limit as required by parity conservation.

After fixing σQ and ρ, there are three parameters γV , τ , and κω, which we numerically fit
to (3.17) and (3.19). The curves in Fig. 4 show the fit for b = 2, which uses data points with

10See Eq. (3.37) in [7].
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Figure 4: The (left) longitudinal and (right) Hall optical conductivities of the homogeneous
phase (µ = 4) with b = 2, with the real part shown in blue and the imaginary part in red.
Dots are the numerically computed points, and the curves show the fits to (3.17) and (3.19).

ω ≤ 0.65. In Fig. 5, we show the dependence of the fit parameters on b. After scaling out the
expected scaling of ωc and γ with b, the fit parameters still exhibit a mild b dependence. The
sharp growth of κω at small b is, however, a numerical artifact. The conductivity becomes
insensitive to κω at small b so κω is poorly determined by the fit there.

The fit using the hydrodynamic model in Fig. 4 is arguably good, and the dependence
on the magnetic field of the various parameters in Fig. 5 appears natural. But since our fits
have a large number of parameters, despite their high quality, it is not obvious that they
confirm the validity of the hydrodynamic model. In order to analyze this in more detail, we
have considered more general fits with a leading pair of quasi normal modes, i.e., fits having
two poles in the complex plane

σ = c+
Ar + iAi

ω − ωc + iΓ
− Ar − iAi
ω + ωc + iΓ

(3.21)

both for longitudinal and for Hall conductivities. We do not present the results here since
they do not differ significantly from those given by the hydrodynamic model: the fit quality
is improved due to the additional parameters, but key parameters such as the cyclotron
frequency are essentially unchanged. We find that the additional terms introduced in (3.21)
with respect to the hydrodynamic model are essentially fit to zero, but in order to see this
clearly, one needs to go to relatively high values of the magnetic field (around b = 2 or b = 3).11

Therefore, the results from the more general fit support the validity of the hydrodynamic
model, even at high values of the magnetic field.

11At smaller values of b, the two poles are very close to each other due to the small cyclotron frequency,
and the detailed structure near poles cannot be resolved.

15



1 2 3 4 5
b

2

4

6

8

10

12

γV

1 2 3 4 5
b

4.5

5.0

5.5

6.0

6.5

τ

1 2 3 4 5
b

0.240

0.245

0.250

0.255

κω

1 2 3 4 5
b

0.2

0.4

0.6

0.8

1.0

1.2

ωc

Figure 5: The three fit parameters (γV , τ , κω) and the cyclotron frequency ωc = κωb for
homogeneous optical conductivities as a function of b. The solid blue, dashed red, and
dotted magenta curves were fitted to the data for the longitudinal conductivity, the Hall
conductivity, and to both the conductivities simultaneously, respectively.

4 Inhomogeneous conductivity

4.1 DC conductivity: sliding stripes

An electric field applied to the striped phase causes the stripes to move. This sliding mode
is precisely the Goldstone mode for the spontaneously broken translation symmetry. In [38],
the electrical conductivities were derived at vanishing magnetic field. The stripes were found
to slide at a constant velocity proportional to the electric field and carry a significant fraction
of the current.

Here, we generalize the computation of the DC conductivity to nonzero magnetic field.
As in [38], a conserved bulk quantity allows the current across the stripes (i.e. in the x
direction) to be computed in terms of analytic expressions of the horizon values of the striped
solution. For the current parallel to the stripes (i.e. in the y direction), there is no analogous
conserved bulk quantity, and only spatially-averaged DC conductivities can be computed in
terms of horizon data. The details of the computation are relegated to Appendix A, with
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the expressions for the components of the DC conductivity given in (A.35), (A.36), (A.37),
and (A.38).

At nonzero b, an electric field applied in the x direction still causes the stripes to slide.
However, in the presence of a magnetic field, the stripes also slide due to an electric field
applied in the y direction, which we term “Hall sliding.” As defined in (A.34), the total
sliding speed, to linear order in the electric fields Ex and Ey is

vs = v̂xEx + v̂yEy , (4.1)

where the coefficients v̂x and v̂y are independent of the electric field. The sliding speed is
not determined as part of the computation described in Appendix A but must be obtained
numerically from the DC limit of the fluctuations. As was the case in [38], we extracted the
sliding speed by comparing the x-derivatives of the background fields ψ and ay, for which
the modulation is strongest, to the fluctuation solutions of the same fields, extrapolated to
ω = 0. Alternatively, because modulated persistent currents slide along with the stripes, the
sliding speed can also be obtained from the coefficients of the zero-frequency delta functions
of the optical conductivities σyx and σyy (see Sec. 4.3 for more details).
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Figure 6: The sliding speed coefficients v̂x (solid blue curve) and v̂y (dashed red curve)
as functions of magnetic field b for µ = 4. The curves were extracted directly from the
fluctuations of ψ and ay. As a cross-check, the dots were extracted independently from the
weights of the delta functions of the optical conductivities. For b > 0.864, the striped phase
is no longer thermodynamically stable, and for b > 0.95, no striped solution exists.

Our results for v̂x and v̂y are shown in Fig. 6. The magnetic field b ranges from zero to
b = 0.864, at which point there is a first-order phase transition to the homogeneous phase.
A thermodynamically unstable striped phase only exists up to b = 0.95. The two methods of
obtaining the sliding speeds, indicated by the curves and the dots, closely agree. For small b,
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Figure 7: The averaged DC conductivities as functions of the magnetic field for µ = 4:
(Left) 〈σxx〉 is dashed red and 〈σyy〉 is solid blue; (Right) 〈σxy〉 and −〈σyx〉, whose values
are equal to precision of our numerics, are both shown by solid blue. The curves show
the DC conductivities obtained from the analytic results of Appendix A, and the dots are
the numerical results for optical conductivities extrapolated to ω = 0. For both plots, the
black dashed curve shows the DC conductivity of the homogenous phase (also at µ = 4) for
comparison.

the Hall sliding speed v̂y increases linearly before leveling off, while v̂x decreases substantially
with b.

Having obtained the sliding speeds, we can compute the DC conductivities as described
in Appendix A. Fig. 7 shows the spatially averaged conductivities as functions of magnetic
field. The curves show the values computed with (A.35), (A.36), (A.37), and (A.38), while
the dots are the ω → 0 limit of the optical conductivity computed in Sec. 4.3.

The spatially-averaged longitudinal conductivity across the stripes 〈σDCxx 〉 decreases with
b, in line with the decreasing sliding speed v̂x. This current is largely carried by the stripes
sliding, as is evident from the dependence of 〈σDCxx 〉 on v̂x in (A.35). As was observed in [38]
at b = 0, the longitudinal conductivity parallel to the stripes 〈σDCyy 〉 is very nearly equal to
〈σDCxx 〉, in spite of the broken rotational symmetry in the striped phase. Evidently, this not an
artifact of zero magnetic field, as the near equality extends to nonzero b. The close similarity
is even more surprising considering that 〈σDCyy 〉 depends not on v̂x, but only on v̂y, which is
increasing with b.

The averaged Hall conductivity 〈σDCxy 〉, given by (A.36), depends linearly on v̂y, at least
for small b. This relationship is evident comparing Fig. 7 (right) and Fig. 6; the growth of
〈σDCxy 〉 closely matches that of v̂y and implies that Hall sliding is largely responsible for the
Hall current.

The other Hall conductivity 〈σDCyx 〉 is numerically equal to 〈σDCxy 〉 up to a sign, as shown
in Fig. 7 (right); the curves for −〈σDCyx 〉 and 〈σDCxy 〉 overlap. The analytic expressions (A.36)
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and (A.38), however, do not appear to be obviously the same.12 This situation is like the
near equality of the longitudinal conductivities 〈σDCxx 〉 and 〈σDCyy 〉 despite the clear asymmetry
of the striped phase between the x and y directions. In the Hall case, however, the equality
between −〈σDCyx 〉 and 〈σDCxy 〉 is exact, at least up to the precision of our numerics.

Comparing with the homogenous phase, the conductivity in the striped phase is higher
at the same chemical potential. This is largely because, for a given value of µ, the striped
phase has approximately 1 percent larger charge density d [42].

4.1.1 Inverted semi-circle law for stripes

In the homogenous phase, we saw above in Sec. 3.1.1 that the DC conductivities trace out
a semi-circle in the Hall conductivity-longitudinal conductivity plane. This relation is ap-
proximate for finite charge but becomes exact in the large d limit. However, at large d the
homogenous phase has a modulated instability and develops stripes.

We find that the semi-circle law persists in the striped phase in a modified form for the
spatially averaged conductivities. Plotting the numerical values of 〈σDCxy 〉 against 〈σDCyy 〉 for
various values of b produces a portion of a semi-circle, as shown in Fig. 2. At finite µ, the
striped phase does not exist beyond a maximum b, so the part of the semi-circle extending
toward the origin is missing.

Now that the system is no longer isotropic, there is an ambiguity in the longitudinal con-
ductivity. We somewhat arbitrarily chose to plot 〈σDCyy 〉 rather than 〈σDCxx 〉. However, because
〈σDCxx 〉 and 〈σDCyy 〉 are approximately equal and have similar b dependence, this ambiguity is
relatively minor. If we had used 〈σDCxx 〉 instead, the semi-circle radius would be smaller but
qualitatively the same.

4.2 DC conductivity: pinned stripes

When either a magnetic or an ionic lattice is added to the inhomogeneous phase, αb 6= 0
or αµ 6= 0, the stripes become pinned and no longer slide.13 Because the pinning prevents
the stripes from sliding, it effectively distinguishes the portion of the current carried by the
stripes from the portion which is not.

To determine the pinned DC conductivity, we simply set the sliding speed vs = 0, as was
described in [39] for vanishing magnetic field. The (averaged) conductivities at nonzero b can

12As we will see in Sec. 4.2, once the stripes are pinned the analytic expressions for −〈σDC
yx 〉 and 〈σDC

xy 〉
do become identical.

13As noted in [39], the discontinuous change in behavior from α = 0 to α > 0 is an artifact of computing
the linear response to an infinitesimal electric field. In the full, nonlinear conductivity we expect to see a
de-pinning transition at some finite electric field.
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be read off from the formulas (A.35), (A.37), (A.36), and (A.38):

〈σDC
xx 〉 = 〈σ̂−1〉−1 (4.2)

〈σDC
yy 〉 =

〈
σ̂(1 + z′20 + ψ′20 ) +

1

σ̂

(√
2c(ψ0)− σ̂at,0(b+ a′y,0(x))

)2
〉

− 〈σ̂−1〉−1
(√

2〈c(ψ0)σ̂−1〉 − 〈at,0(b+ a′y,0)〉
)2

(4.3)

〈σDC
xy 〉 = −〈σDC

yx 〉 =
[√

2〈c(ψ0)σ̂−1〉 − 〈at,0(b+ a′y,0)〉
]
〈σ̂−1〉−1 . (4.4)

Note that the Hall conductivities 〈σDCxy 〉 and −〈σDCyx 〉 are now exactly equal.

Interestingly, the conductivities satisfy

〈σDC
xx 〉〈σDC

yy 〉+ 〈σDC
xy 〉2 = 〈σDC

xx 〉σ0
yy , (4.5)

where

σ0
yy =

〈
σ̂(1 + z′20 + ψ′20 ) +

1

σ̂

(√
2c(ψ0)− σ̂at,0(b+ a′y,0(x))

)2
〉

(4.6)

is the term with parity-even averages in 〈σDC
yy 〉. The relation (4.5) can be viewed as the

analog of the semi-circle law, modified for the anisotropic striped phase; for an isotropic
phase, 〈σDC

xx 〉 = 〈σDC
yy 〉, and (4.5) would resemble a semi-circle.

The DC conductivities at nonzero b, pinned by a magnetic lattice of varying strength αb
are shown in Fig. 8. As expected, the currents across the stripes and the lattice are signif-
icantly reduced. Compared with the unpinned results, shown in Fig. 7, the conductivities
〈σDCxx 〉 and 〈σDCxy 〉 are both an order of magnitude smaller and decrease with αb. As was seen
in [39], the longitudinal conductivity parallel the stripes 〈σDCyy 〉 actually increases with the
strength of the lattice. However, the Hall conductivity −〈σDCyx 〉, which is equal to 〈σDCxy 〉,
decreases with αb.

4.3 Optical Conductivity for stripes

We compute the optical conductivity of the striped phase as in [38], but now with a nonzero
magnetic field. As in the homogeneous phase in Sec. 3.2 above, we perform a linear fluctuation
analysis, but with applied electric fields in both the x and y directions. As was discussed
above in Sec. 4.1, the range of the magnetic field is limited because, at a critical b, there is a
phase transition to the homogenous phase, and just beyond that, the striped phase no longer
exists.

As a representative example, the spatially averaged conductivities for b = 0.5 are shown in
Fig. 9. On the left, 〈σxx(ω)〉 and 〈σyy(ω)〉 continue to be just similar at nonzero frequency as
was seen in see Sec. 4.1) at ω = 0, in spite of the spontaneously broken rotational symmetry.
On the right, 〈σxy(ω)〉 is still equal to −〈σyx(ω)〉, to the precision of our numerics.

For comparison, the thin solid curves represent the analogous conductivities for the homo-
geneous phase at the same values of µ and b. Again, the difference between the homogeneous
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Figure 8: The averaged pinned DC conductivities for magnetic lattice at b = 0.5. The curves
show the analytic results from Eqs. (4.2)–(4.4), and the dots are are the optical conductivities
extrapolated to ω = 0.

and striped results is due primarily to the striped phase having a slightly larger charge density
at a given chemical potential.

Our results once again match, to reasonable accuracy, the hydrodynamical model of [7].
Both longitudinal conductivities, σxx and σyy, are fit to (3.17), and the Hall conductivities, σxy
and σyx, are fit to (3.19). As in Sec. 3.2, the values of σQ and ρ are fixed by matching the zero-
frequency limit with the DC conductivities obtained in Sec. 4.1. The remaining parameters
to be fit by the data are γv, τ , and κω. We fit the parameters separately for each component
of the conductivity. In principle, γv, τ , and κω should be the same for each component, and
the similarity of different curves indicates the degree of accuracy of the model. For example,
the proportionality constant κω of the cyclotron frequency is approximately 0.25 for all three
components, at least for b sufficiently large,14 which is roughly the same value found in the
homogenous case (see Fig. 5).

As was seen in Sec. 3.2 for the homogeneous phase, the peak in the longitudinal conduc-
tivity is at the cyclotron frequency ωc. As can be seen in Fig. 10, ωc is again proportional to

14As noted above in Sec. 3.2, because the scaling with b was factored out, the fit becomes insensitive to κω
at small b and the growth as b→ 0 is a numerical artifact of this.
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Figure 9: The spatially-averaged longitudinal (left) and Hall (right) optical conductivities of
the striped phase, fit to analytic formulas at b = 0.5 and µ = 4, with the real parts shown
in blue and the imaginary parts in red. Dots are the numerically computed data, and the
curves show the fits. (left) The dashed curve is 〈σxx〉, and the solid is 〈σyy〉. (right) The solid
curve is 〈σxy〉 which is numerically equal to −〈σyx〉. In both plots, the thin, solid curves are
the analogous conductivities of the homogenous phase, shown for comparison.

b to good accuracy. In Fig. 9, the relatively small magnetic field produces a cyclotron peak
close to zero frequency which, as a result, is less visible in the plot.

A notable feature observed in [38] was a delta function at ω = 0 in the Hall conductivity
σyx. A perturbative electric field in the x direction causes the stripes to slide with a speed
proportional to vx, carrying along the persistent transverse current and changing the local
current in the y direction by a finite, non-perturbative amount equal to the divergence of the
background current J ′y(x). This divergence is spatially modulated and is eliminated by spatial
averaging. Numerically, the presence of the delta function was observed in the presence of a
pole in the imaginary part of σyx(x):

σyx(x) ∼ −iKyx(x)

ω
, (4.7)

where the weight of the pole is Kyx(x) = v̂xJ
′
y(x)

With the addition of a background magnetic field, an electric field applied in the y di-
rection also causes the stripes to slide. This Hall sliding also carries along the persistent
transverse current, changing the local current in the y direction and resulting in a spatially
modulated delta function in σyy(x):

σyy(x) ∼ −iKyy(x)

ω
, (4.8)

22



0.2 0.4 0.6 0.8
b

5.0

5.5

6.0

γV

0.2 0.4 0.6 0.8
b

4.8

4.9

5.0

5.1

5.2

τ

0.2 0.4 0.6 0.8
b

0.24

0.26

0.28

0.30

0.32

0.34

0.36

κω

0.2 0.4 0.6 0.8
b

0.05

0.10

0.15

0.20

ωc

Figure 10: The fit parameters for averaged optical conductivities of the striped phase as
functions of b, for µ = 4. The dotted blue, dot-dashed green, and dashed red curves are fits
to data for 〈σxx〉, 〈σyy〉, and 〈σxy〉, respectively.

where the weight of the pole is proportional to the sliding speed v̂y, Kyy(x) = v̂yJ
′
y(x).

The conductivities σyx and σyy at x = 0 (i.e. not spatially averaged) are shown in Fig.
11. The imaginary parts, shown as solid red curves, clearly exhibit a pole at ω = 0. The
weights Kyx(x) and Kyy(x), for various values of b are shown in the top row of Fig. 12. At
zero b, Kyy(x) = 0, because the Hall sliding only occurs at nonzero magnetic field. As the
magnetic field is increased, the amplitude of the modulated pole |Kyx| decreases because the
sliding speed vx decreases (see Fig. 6). The Hall sliding speed vy, however, increases with b,
causing |Kyy| also to increase. In addition, the x dependence of J ′y(x) becomes asymmetric
(see the bottom plot in Fig. 12), making Kyx(x) and Kyy(x) similarly distorted.

4.4 Optical Conductivity for pinned stripes

With the addition of a lattice, we can investigate the interplay between the effects of the
constant magnetic field and the pinning effect of the lattice. We numerically computed the
optical conductivity, as above in Sec. 4.3, but with the addition of a background magnetic
lattice of strength αb. To illustrate a representative example, the optical conductivities at
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Figure 11: The components of the conductivity (left) σyx and (right) σyy at b = 0.5 featuring
spatially modulated delta functions at zero frequency, shown at x = 0. Real parts are blue,
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numerically, the corresponding pole in the imaginary part is visible.
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Figure 12: (Top row) The x-dependence of the weights of the delta functions: (Left) The
weight Kyx(x) in the optical conductivity σyx(ω); (Right) The weight Kyy(x) in the optical
conductivity σyy(ω). (Bottom) The derivative of the background current J ′y(x). The blue,
red dashed, magenta dotted, and green dot-dashed curves are for b = 0, 0.25, 0.5, and 0.75,
respectively.
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fixed b = 0.5, with several values of αb, are shown in Figs. 13 and 14.
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Figure 13: The pinning effect due to the magnetic lattice on the components of the conduc-
tivity that do not feature delta peaks, at b = 0.5 and x = 0. The blue (red) curves are real
(imaginary) parts, and the solid, dashed, dotted, and dot-dashed curves are for αb = 0, 0.1,
0.25, and 0.5, respectively. Left: the behavior of σxy at x = 0. Right: the behavior of σxx at
x = 0.
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Figure 14: The pinning effect due to the magnetic lattice on the components of the conduc-
tivity that do feature delta peaks, at b = 0.5 and x = 0. The blue (red) curves are real
(imaginary) parts, and the solid, dashed, dotted, and dot-dashed curves are for αb = 0, 0.1,
0.25, and 0.5, respectively. Left: the behavior of σyx at x = 0. Right: the behavior of σyy at
x = 0.

When αb > 0, the pinned stripes no longer slide, as we saw at b = 0 in [39], which can
be observed in the conductivity in two ways. As was found in Sec. 4.2, the DC conductivity
drops by an order of magnitude when the lattice is turned on. In addition, the modulated
delta function resulting from the sliding of the persistent current disappears. As shown in
Fig. 14, the associated pole at ω = 0 in the imaginary parts of σyx and σyy only exists for
αb = 0. At nonzero αb, the imaginary parts of σyx and σyy are suppressed at zero frequency.

In the absence of a constant background magnetic field, we found in [39] that pinning
causes the Drude peak in σxx to move to nonzero frequency. This pinning pole is due to the
damped harmonic oscillation of the stripes in the lattice potential.
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Here, we find that the conductivity in a constant background magnetic field closely re-
sembles the results found in [39]. For the unpinned stripes, the cyclotron pole at b = 0.5
is located at ωc ≈ 0.12, and when pinning is turned on, the peak in the real part shifts to
higher frequencies just as in [39]. The peak also broadens and shrinks, as the corresponding
pole moves further off the real axis.

These results are in contrast to the two separate poles observed in [19]. In [19], the
cyclotron pole observed in the absence of pinning and the pinning pole seen at zero magnetic
field remained distinct when the two effects were combined. The disparity could be due to
differences in the holographic construction and implementation of the pinning. Alternatively,
it could be that, in the D3-D7’ model, the cyclotron and pinning poles are not well separated.
In particular, the strength of the magnetic field in the striped phase is limited; at large
magnetic field, the system is in the homogenous phase.15

In [39], the conductivity at b = 0 was accurately fit by a Drude-Lorentz model. The
Lorentzian described the damped, driven oscillation of the pinned stripes, while the Drude
term captured the residual metallic current across the stripes. As seen above, the conductivity
at nonzero b is fit by the hydrodynamical model (3.17) and (3.19). When pinned, these
expressions are expected to be modified to include an additional pinning peak [53] (see
also [54]). However, our results at nonzero b also appear to be well fit by the Drude-Lorentz
model used at b = 0 in [39], making it challenging to differentiate between the (3.17) and
(3.19) and the results of [53].

5 Discussion and open problems

In this paper, we investigated the electrical conductivity of a strongly-coupled (2+1)-dimen-
sional fermionic fluid in a background magnetic field. The hydrodynamic model of [7] seems
to closely match our results. In particular, we observe a cyclotron peak in the conductivity
at a frequency proportional to the magnetic field. We observed Hall sliding due to an electric
field along the stripes, which is an expected generalization of the sliding due to an electric field
across the stripes seen in [38]. The sliding stripes, in both the longitudinal and Hall cases,
carry significant amounts of charge and remain important contributors to the conductivity.

We encountered a number of puzzling phenomenological observations for which we lack
a fundamental theoretical explanation. One notable discrepancy with similar holographic
studies is the lack of separate cyclotron and pinning poles, as was found in [19,53]. Although
differences in the models could be the reason, the single pole we find may be an artifact
of our necessarily limited parameter space. For example, in [20], the magneto-conductivity
exhibited a single magnetophonon pole while the cyclotron pole was absent, having been
pushed to large frequency. A more thorough investigation of the QNM spectrum of our
model would clarify this issue.

15For the small values of αb . 1 used here, the pinning pole is found at ω . 1. For a cyclotron pole with
ωc > 1, a magnetic field with b of order 10 would be needed. However, for the charge density µ = 4, the
magnetic field in striped phase can be at most 0.95.
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The symmetry or approximate symmetry between conductivities across and along the
stripes, in spite of the broken rotational symmetry of the stripe phase and also the broken
parity due to the magnetic field, remains unexplained. The longitudinal conductivities σxx
and σyy were found to be approximately equal in [38] and continue to be so in the presence
of a magnetic field. Perhaps more surprisingly, we found that the spatially averaged Hall
conductivities 〈σxy〉 and −〈σyx〉 resulting from the applied magnetic field appear to be exactly
equal. This symmetry is especially puzzling considering the large role the sliding plays in
transporting charge in the x direction but not the y direction.

Although the novel semi-circle law in the DC conductivity is described analytically, at
least in certain limit, we lack an understanding of its theoretical origin. The behavior is dis-
tinct enough from the usual semi-circle law to suggest a rather different physical explanation.

Having obtained surprisingly good results using a hydrodynamical description, it would
be an interesting exercise to understand it better in the probe brane case as studied here.16

The underlying momentum sink of the adjoints makes hydrodynamic effective modeling un-
trustworthy at late times, unless the finite-Nc corrections that are behind the long-time power
law tails [55] are considered. To this vein, a less arduous approach would be to consider con-
structing a stationary state by forming an appropriate combination of a temperature gradient
and an electric field [56]. This stationary state construction can be performed even in the
translationally invariant system: the cancellation of the electric and heat currents causes zero
net force and hence no momentum change. Then, the relativistic hydrodynamics descrip-
tion given in [57] will allow one to find finite DC conductivities both in the quenched and
in the fully unquenched case, corresponding to the ’t Hooft limit Nc → ∞ and Veneziano
limit Nf , Nc → ∞, Nf/Nc fixed, respectively. This approach suggests that relativistic hy-
drodynamic models, perhaps coupled with scalar fields, should in principle be valid even at
asymptotically large times.

We also wish to extend our search for striped phases in the gapped fractional quantum Hall
(FQH) phases present in the current model when the internal fluxes are properly adjusted [40].
A distinctive, novel property of the FQH phase is the presence of gapless neutral modes (but
not charged modes) in the bulk,17 in sharp contrast to all known QH or compressible states.
A direct experimental observable consequence would then be that this electronic system
is a bulk thermal conductor and a bulk charge insulator at the same time. This would
interestingly contrast the known QH states that transport heat and charge along the edge
but not in the bulk, and compressible states in which the bulk conducts both charge and
heat.

More specifically, in an inhomogeneous FQH phase with orderly aligned stripes, we can
ask whether the stripes slide in presence of a temperature gradient and whether, in doing so,

16We note that the theoretical foundation of the hydrodynamic framework of [7], to which we match with
good accuracy, has been recently revisited in [18]. The results in our case differ somewhat from those in [18].
Notably they argue for the vanishing longitudinal DC conductivity; this corresponds to the limit τ → ∞ of
(3.17).

17The existence of bulk neutral modes was found in a recent experiment [58], in which highly sensitive noise
measurement revealed the unexpected heat propagation through the incompressible FQH bulk at various
filling factors.
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they support a heat current. Furthermore, we could investigate whether the heat flows easier
along the stripes than across them, as might be expected for a striped phase, or whether the
heat transport stays surprisingly isotropic, as was observed for the charge transport in the
gapless phase. This avenue therefore adds motivation to compute the heat currents in the
D3-D7’ system, in addition to trying to understand the effectiveness of the hydrodynamic
considerations discussed above.
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A Derivation of the DC conductivities

In this Appendix, we consider the DC conductivities for the striped background in the pres-
ence of a magnetic field. We concentrate on the unpinned case, in which the translation
symmetry is not explicitly broken. However, the results will also be useful for the pinned
case, which essentially amounts to setting the sliding speed to zero, as we explain in the text.
The derivation follows closely [38], where the expressions for the conductivities were derived
at vanishing magnetic field.

We separate the explicit dependence on the magnetic field in the background by writing
ay(x, u) = bx+ ây(x, u). For the gauge field fluctuations we use the Ansatz [38,39,59]

δay(t, x, u) = −Eyt+ δay(x, u)− vst∂xây(x, u) (A.1)

δax(t, x, u) = −(Ex − p′(x))t+ δax(x, u) (A.2)

δat(t, x, u) = p(x) + δat(x, u)− vst ∂xat(x, u) (A.3)

δψ(t, x, u) = δψ(x, u)− vst ∂xψ(x, u) (A.4)

δz(t, x, u) = δz(x, u)− vst ∂xz(x, u) . (A.5)

Here the fluctuations, the electric fields Ex and Ey, and the function p (which corresponds
to the modulation of the chemical potential) are treated at linear order. The variation of
the (averaged) chemical potential is set to zero, 〈p〉 = 0, where 〈 · · · 〉 denotes average over x.
Notice that, due to gauge covariance, p does not appear in the fluctuation equations but it
does affect the boundary conditions, as we shall see below.

As usual, the DC conductivities can be expressed in terms of horizon data by using
conserved bulk currents. As it turns out, this works in a slightly different way for the (field
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theory) currents generated in x and y direction by the electric fields. We consider first the
case of current in x direction.

It was shown in [38] that, even in the presence of the sliding stripes (i.e., even at nonzero
vs), there is a quantity Jx which can be defined in terms on the fluctuations and is indepen-
dent of both x and u on-shell. That is, the fluctuation equation for ax, and the constraint
corresponding to au, can be shown to imply

∂Jx(x, u)

∂x
= 0 =

∂Jx(x, u)

∂u
, (A.6)

where

Jx(x, u) =
1√
2

(
G1(x, u) ∂uδax(x, u) + vsG̃2(x, u) + EyG3(x, u)

)
(A.7)

so that Jx is constant when evaluated on the solutions to the fluctuation equations. Here
the coefficients G1, G̃2, and G3 are functions of the background only. The expressions are
somewhat unilluminating, but we include them here for completeness:

G1 =

√
h
(

1
2

+ 4 sin4 ψ
) (

1
2

+ 4 cos4 ψ
)

√
R

h (A.8)

G̃2 = −2bc(ψ) +

√
h
(

1
2

+ 4 sin4 ψ
) (

1
2

+ 4 cos4 ψ
)

√
R

[
∂uat

(
1 + bu4∂uây + b2u4

)
− bu4∂xat∂uây

]
(A.9)

G3 = 2c(ψ)−

√
h
(

1
2

+ 4 sin4 ψ
) (

1
2

+ 4 cos4 ψ
)

√
R

u4 [∂uat (∂xây + b)− ∂xat∂uây] (A.10)

with

R = −h
[
u4(∂uat)

2
(
2bu4ây + u4â2

y + u2ψ2 + z2 + b2u4 + 1
)

− 2u4∂uatat
(
u4∂uây (∂xây + b) + u2∂uψ∂xψ + ∂uz∂xz

)
+ u8(∂xat)

2(∂uây)
2

+ u6(∂xat)
2(∂uψ)2 + u4(∂xat)

2(∂uz)2 − 2bu4∂xây − u4(∂xây)
2 − u2(∂xψ)2 − z2 − b2u4 − 1

]
− u4(∂xat)

2 + h2
[
u2(∂uψ)2

(
2bu4∂xây + u4(∂xây)

2 + (∂xz)2 + b2u4 + 1
)

+ (∂uz)2
(
2bu4∂xây + u4(∂xây)

2 + u2(∂xψ)2 + b2u4 + 1
)

− 2u4∂uây (∂xây + b)
(
u2∂uψ∂xψ + ∂uz∂xz

)
+ u4(∂uây)

2
(
u2(∂xψ)2 + (∂xz)2 + 1

)
− 2u2∂uψ∂xψ∂uz∂xz

]
. (A.11)

The boundary value of the conserved bulk charge evaluates to

lim
u→0
Jx(x, u) = jx(x)− vsd(x) , (A.12)

where jx(x) = ∂uδax(x, 0) is the electric current, and the second term appears due to the
sliding of the (inhomogeneous) background charge density d(x) = −∂uat(x, 0). Because Jx is
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independent of u when evaluated on the solution, the modulation of the current is therefore
only given by the movement of the charge density in the stripes.

At the horizon we define

δax(x, u) = δax,0(x) log(1− u) +O
(
(1− u)0

)
. (A.13)

for the fluctuations and

ψ(x, u) = ψ0(x) +O (1− u) , z(x, u) = z0(x) +O (1− u) , (A.14)

ay(x, u) = bx+ ay,0(x) +O (1− u) , at(x, u) = at,0(x)(u− 1) +O
(
(1− u)2

)
(A.15)

for the background. We find that

lim
u→1
Jx(x, u) =

√
2 (Ey − vsb) c(ψ0(x))

−
(
4δax,0(x) + (Ey − vsb) at,0(x)(b+ a′y,0(x))− vsat,0(x)

)
σ̂(x) , (A.16)

where

σ̂(x) =

√(
1 + 8 sin4 ψ0(x)

)
(1 + 8 cos4 ψ0(x))

2
√

2 (1− at,0(x)2)
(
1 + (b+ a′y,0(x))2 + ψ′0(x)2 + z′0(x)2

) . (A.17)

Notice that the combination Ey − vsb is the (Galilean) boosted electric field. Further IR
regularity implies that (see [38])

δax,0(x) = −1

4
(Ex − p′(x)) . (A.18)

Equating the UV and IR values of the conserved quantity Jx gives

jc = jx(x)− vsd(x) (A.19)

=
√

2c(ψ0(x)) (Ey − vsb)
+
(
Ex − p′(x) + vsat,0(x)− (Ey − vsb) at,0(x)(b+ a′y,0(x))

)
σ̂(x) , (A.20)

where jc denotes the constant value of the current. We can eliminate p by taking the average
over x, after dividing first by σ̂. This leads to

jc〈σ̂−1〉 = Ex + vs〈at,0〉+
[√

2〈c(ψ0)σ̂−1〉 − 〈at,0(b+ a′y,0)〉
]

(Ey − vsb) , (A.21)

The generic expression for p′(x) becomes

p′(x) = Ex

(
1− 〈σ̂

−1〉−1

σ̂(x)

)
+ vs

(
at,0(x)− 〈at,0〉

〈σ̂−1〉−1

σ̂(x)

)
+ (Ey − vsb)

(√
2c(ψ0(x))

σ̂(x)

−
√

2〈c(ψ0)σ̂−1〉〈σ̂−1〉−1

σ̂(x)
− at,0(x)(b+ a′y,0(x)) + 〈at,0(b+ a′y,0)〉〈σ̂

−1〉−1

σ̂(x)

)
. (A.22)
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After eliminating p, the current jx(x) is solved as

jx(x) =
(
d(x) + 〈at,0〉〈σ̂−1〉−1

)
vs + 〈σ̂−1〉−1Ex

+
[√

2〈c(ψ0)σ̂−1〉 − 〈at,0(b+ a′y,0)〉
]
〈σ̂−1〉−1 (Ey − vsb) . (A.23)

The current cannot be expressed solely in terms of horizon quantities, but as for b = 0, we
can use the relation (see [38])

〈d〉 =
√

2〈c(ψ0)(b+ a′y,0)〉 − 〈at,0σ̂
(
1 + (b+ a′y,0)2 + ψ′20 + z′20

)
〉 (A.24)

to write it in a form where the only boundary quantity is the modulation of charge density:

jx(x) = (d(x)− 〈d〉) vs +

[√
2〈c(ψ0)(b+ a′y,0)〉

− 〈at,0σ̂
(
1 + (b+ a′y,0)2 + ψ′20 + z′20

)
〉+ 〈at,0〉〈σ̂−1〉−1

]
vs

+ 〈σ̂−1〉−1Ex +
[√

2〈c(ψ0)σ̂−1〉 − 〈at,0(b+ a′y,0)〉
]
〈σ̂−1〉−1 (Ey − vsb) . (A.25)

The separation of the charge to two terms in (A.24) suggests that the first term should be
interpreted as the induced charge and the second as the ordinary charge.

We then analyze the current jy. One can define a quantity analogous to Jx but related
to ay rather than ax:

Jy(x, u) =
1√
2

δS

δ(∂uδay(t, x, u))
. (A.26)

However, unlike Jx, this quantity does not take a constant value everywhere, which means
that we cannot relate the current jy to horizon quantities pointwise in x. Instead, because
the action depends on δay only through its derivatives, the fluctuation equation for δay takes
the form √

2
∂

∂u
Jy(x, u) +

∂

∂x

δS

δ(∂xδay(t, x, u))
= 0 , (A.27)

where the second term is periodic in x. That is, there is a bulk current with two components
that is conserved. Therefore, integrating this equation over x, we find that the spatially
averaged charge 〈Jy(x, u)〉 is conserved; i.e., it is independent of u when evaluated on the
solutions to the fluctuation equations. Consequently, we can compute averaged Hall currents
using a similar procedure as used above for the longitudinal currents. We do not include
the explicit expression for Jy because it is very complicated. It can be expressed as a linear
combination of Ex and (derivatives of) the various fluctuations, with coefficients depending
on the background.

The UV limit is given by

lim
u→0
Jy(x, u) = ∂uδay(x, 0) ≡ j̄y(x) = jy(x, t) + vstJ

′
y(x) , (A.28)

where j̄y(x) is the current due to the time-independent fluctuation δay(x, u), jy(x, t) is the full
fluctuated current corresponding to (A.3), and Jy(x) = ∂uay(x, 0) is the modulated current
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of the background. The time-dependent background current term reflects the delta peaks of
the optical conductivities at zero frequency. As pointed out in [38], the current jy is actually
ambiguous because of the freedom in the choice of the origin of the time-dependent term (we
used above t = 0). The ambiguity however disappears when averaging over x, since 〈J ′y〉 = 0,
so that also 〈j̄y〉 = 〈jy〉. That is, we are able to compute only averaged conductivities for
current in the y direction, but actually only the average is well-defined.

In order to compute the IR limit, we need the IR expansions for all fluctuations (expect
for δax). We write18

δat(x, u) = −p(x) +O (1− u) (A.29)

and
δf(x, u) = δf0(x) log(1− u) +O

(
(1− u)0

)
(A.30)

for the other fields. Then the IR limit becomes

lim
u→1
Jy(x, u) = −

√
2c(ψ0(x)) (Ex − p′(x)) (A.31)

+σ̂(x)
[
− 4(1 + z′0(x)2 + ψ′0(x)2)δay,0(x) + (Ex − p′(x))at,0(x)(b+ a′y,0(x))

+4(b+ a′y,0(x))(z′0(x)δz0(x) + ψ′0(x)δψ0(x))
]
.

The regularity conditions at the horizon, which generalize (A.18), arise from the terms pro-
portional to t in our Ansatz,

δay,0(x) = −Ey
4
− vs

4
a′y,0(x) , δψ0(x) = −vs

4
ψ′0(x) , δz0(x) = −vs

4
z′0(x) . (A.32)

Inserting these and p′(x) from (A.22) in (A.31), taking the average over x, and equating with
the UV limit (A.28) we find

〈jy〉 =

[〈
σ̂(1 + z′20 + ψ′20 ) +

1

σ̂

(√
2c(ψ0)− σ̂at,0(b+ a′y,0(x))

)2
〉

− 〈σ̂−1〉−1
(√

2〈c(ψ0)σ̂−1〉 − 〈at,0(b+ a′y,0)〉
)2
]

(Ey − vsb)

−
[√

2〈c(ψ0)σ̂−1〉 − 〈at,0(b+ a′y,0)〉
]
〈σ̂−1〉−1Ex

+

[(
〈at,0(b+ a′y,0)〉 −

√
2〈c(ψ0)σ̂−1〉

)
〈at,0〉〈σ̂−1〉−1

+
√

2〈at,0c(ψ0)〉+ 〈σ̂(b+ a′y,0)
(
1− a2

t,0

)
〉

]
vs (A.33)

When parity is broken by the magnetic field, the speed vs will be induced both by Ex
and by Ey. That is, we write

vs = v̂xEx + v̂yEy (A.34)

18Notice that the term −p(x) here cancels a similar term in (A.5) so that the full fluctuation δat(t, x, u)
vanishes at the horizon, which is expected because the background field at also vanishes.
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where the coefficients v̂i are independent of the electric field (at linear order). In terms of
these coefficients, the final expressions for the DC conductivities read:

σDC
xx (x) = (d(x)− 〈d〉) v̂x +

[√
2〈c(ψ0)(b+ a′y,0)〉

− 〈at,0σ̂
(
1 + (b+ a′y,0)2 + ψ′20 + z′20

)
〉+ 〈at,0〉〈σ̂−1〉−1

]
v̂x

+ 〈σ̂−1〉−1 −
[√

2〈c(ψ0)σ̂−1〉 − 〈at,0(b+ a′y,0)〉
]
〈σ̂−1〉−1v̂xb (A.35)

σDC
xy (x) = (d(x)− 〈d〉) v̂y +

[√
2〈c(ψ0)(b+ a′y,0)〉

− 〈at,0σ̂
(
1 + (b+ a′y,0)2 + ψ′20 + z′20

)
〉+ 〈at,0〉〈σ̂−1〉−1

]
v̂y

+
[√

2〈c(ψ0)σ̂−1〉 − 〈at,0(b+ a′y,0)〉
]
〈σ̂−1〉−1 (1− v̂yb) (A.36)

〈σDC
yy 〉 =

[〈
σ̂(1 + z′20 + ψ′20 ) +

1

σ̂

(√
2c(ψ0)− σ̂at,0(b+ a′y,0)

)2
〉

− 〈σ̂−1〉−1
(√

2〈c(ψ0)σ̂−1〉 − 〈at,0(b+ a′y,0)〉
)2
]

(1− v̂yb)

+

[(
〈at,0(b+ a′y,0)〉 −

√
2〈c(ψ0)σ̂−1〉

)
〈at,0〉〈σ̂−1〉−1

+
√

2〈at,0c(ψ0)〉+ 〈σ̂(b+ a′y,0)
(
1− a2

t,0

)
〉

]
v̂y (A.37)

〈σDC
yx 〉 = −

[〈
σ̂(1 + z′20 + ψ′20 ) +

1

σ̂

(√
2c(ψ0)− σ̂at,0(b+ a′y,0)

)2
〉

− 〈σ̂−1〉−1
(√

2〈c(ψ0)σ̂−1〉 − 〈at,0(b+ a′y,0)〉
)2
]
v̂xb

−
[√

2〈c(ψ0)σ̂−1〉 − 〈at,0(b+ a′y,0)〉
]
〈σ̂−1〉−1

+

[(
〈at,0(b+ a′y,0)〉 −

√
2〈c(ψ0)σ̂−1〉

)
〈at,0〉〈σ̂−1〉−1

+
√

2〈at,0c(ψ0)〉+ 〈σ̂(b+ a′y,0)
(
1− a2

t,0

)
〉

]
v̂x . (A.38)

Notice that for the first two conductivities (A.35) and (A.36), taking the spatial average
simply eliminates the first terms proportional to d(x)− 〈d〉.
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