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Abstract

We evaluate dissipative effects for a system consisting of a massive

Dirac field confined between two walls, one of them oscillating, in 1+1

dimensions. In the model that we consider, a dimensionless parameter

characterizing each wall is tuned so that bag-boundary conditions are

attained for a particular value. We present explicit results for the

probability of creating a fermion pair, and relate the total probability

to the imaginary part of the effective action.

1 Introduction

Quantum Field Theory predicts many interesting effects in the presence of
nontrivial boundary conditions. The best known example of this phenomenon
is the Casimir effect [1, 2] which, in the static case, manifests itself in forces
due to a non-trivial dependence of the vacuum energy on the geometry of
the boundary. Although, in principle, this effect is relevant for any kind of
fluctuating field, the most frequently studied case corresponds to an Abelian
gauge field. This is hardly surprising since, for the electromagnetic (EM)
field, boundary conditions can be controlled in a rather precise and straight-
forward way. Nevertheless, fields other than the electromagnetic field have
also been studied, like in the fermionic fields describing quarks, since their
vacuum energies play an important role in the bag model of QCD [3], where
part of the mass of a baryon is due to the Casimir energy of the fields which
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are affected by the (bag) boundary conditions. A more straightforward real-
ization arises in the context of Condensed Matter Physics, where Dirac fields
play a preeminent role, specially in 1+1 and 2+1 dimensions [4]. Boundary
conditions may, on the other hand, be also relevant due to the existence of
impurities, domain walls, etc.

We are interested here in the dynamical Casimir effect, whereby a time
dependence of the boundary may induce the creation of particles of the quan-
tum field out of the vacuum. In [5] this has been studied, for a massless Dirac
field in 1+1 dimensions satisfying bag conditions on two moving boundaries.
For massive Dirac fields, higher dimensions, and more general boundary con-
dition, the imaginary part the effective action for a single moving boundary
has been evaluated in [6]. In this paper, we consider a massive Dirac field
coupled to two walls, one them moving, both imposing boundary conditions
which, for a particular value of a parameter describing the coupling of the
fermion to the wall, correspond to the vanishing of the component of the
current which is normal to the boundary: bag conditions.

The structure of this paper is as follows: in Section 2 we introduce the
concepts and define the model that we study in the rest of this work. Then,
in Section 3, we evaluate the probability of pair creation from the vacuum,
assuming a small oscillation amplitude. In Section 4, we compare, and show
the consistency of the previous result with the one that one finds from the
evaluation of the imaginary part of the effective action. Finally, in Section 5
we present our conclusions.

2 The model

In the model that we consider, the (real-time) action S, describing the
fermionic field (ψ, ψ̄) subjected to boundary conditions, is:

S(ψ̄, ψ;V ) =

∫
d2x ψ̄(x)D ψ(x) (1)

with
D ≡ i 6∂ −m− V (x) , (2)

where m is the mass of the fermion field, and V (x) will be used in order to
introduce the boundary conditions (see below). In our conventions, both ~

and the speed of light are equal to 1, the spacetime coordinates are denoted
by xµ, µ = 0, 1, x0 = t, and the metric tensor is gµν ≡ diag(1,−1). Dirac’s
γ-matrices are chosen as follows:

γ0 ≡ σ1 =

(
0 1
1 0

)
, γ1 ≡ i σ3 =

(
i 0
0 −i

)
, (3)
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and

γ5 ≡ γ5 ≡ γ0γ1 = σ2 =

(
0 −i
i 0

)
, (4)

with σi (i = 1, 2, 3) representing the usual Pauli’s matrices.
Following the approach of [7, 8], we can impose boundary conditions by

a special choice of the ‘potential’ V . Namely, V has to be proportional to
a δ-function concentrated on the worldline swept by the point where the
condition is imposed. For example, for a time-like curve C, corresponding
to the solution to the equation F (x) = 0, the potential V shall have the
structure:

V (x) = g |N | δ[F (x)] , (5)

where |N | ≡
√

−NµNµ, Nµ ≡ ±[∂µF (x)]F=0, is defined on C, and everywhere
normal to it (therefore space-like). There is a global sign ambiguity in Nµ,
which corresponds to the two possible orientations of the normal to a curve.
We will fix it by setting it to point towards the interior of the region limited
by two curves.

When C is the union of disconnected curves, V decomposes into a sum of
terms, one for each curve. The factor g, on the other hand, is a constant.

We shall assume that there are two walls, i.e, two curves L and R (which
eventually become boundaries in the bag limit). L is static and given by
x1 = 0, while the other, R, has the trajectory x1 = a+ η(x0) (η(x0) > −a).

Applying the general structure of V discussed above to the case at hand,
it will consist of two terms, namely,

V (x) = gL δ(x
1) + gR γ

−1(η̇(x0)) δ(x1 − q(x0)) , (6)

where γ(u) ≡ 1/
√
1− u2 is the Lorentz factor.

Here, gL and gR are constants which, in order to enforce bag boundary
conditions, have to equal 2 (see [7]). Different values produce ‘imperfect’
boundary conditions, in the sense that some current may escape the cavity.
We recall that the general form of the bag boundary conditions

(
eiθγ5 + i nµγµ

)
ψ
∣∣∣
C

= 0 , (7)

where θ is a real parameter which can be chosen arbitrarily, and nµ ≡ Nµ

|N |
.

Note that, as usual, the boundary condition is assumed to be imposed on the
limit of the function on which it acts, when one approaches the curve from
the interior of the region delimited.

Since we are going to deal with the region limited between L and R, on
L, nµ = δµ1 , while on R, nµ(x0) = −γ(q̇) (δµ0 q̇ + δµ1 ) .
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To see the kind of boundary condition due to a singular term like the one
we are considering, let us observe what happens for a singularity of strength
g at x1 = 0. We see from the Dirac equation, after integrating along a
spatial path from x1 = −ǫ and x1 = ǫ, that the presence of the singular
term introduces a discontinuity in ψ. Therefore, following [9], we replace the
integral of the δ-function times ψ by the average of the two lateral limits:

iγ1(ψ(ǫ)− ψ(−ǫ)) − g

2

(
ψ(ǫ) + ψ(−ǫ)

)
= 0 , (8)

where we have omitted writing the temporal arguments, which are the same
in all the terms.

Setting g = 2, and introducing the orthogonal projectors: P± ≡ 1±iγ1

2
,

this is equivalent to:
P+ψ(−ǫ) = −P−ψ(ǫ) , (9)

and, therefore,
P+ψ(−ǫ) = 0 , P−ψ(ǫ) = 0 . (10)

The second equation is the bag boundary condition one has on the field on
L (assuming θ = 0), assuming the interior of the cavity is between L and R.

This formal argument will be seen to hold true in more concrete terms, in
Section 4, when evaluating different terms in the perturbative expansion of
the effective action Γ(q), that results by functional integrating out the Dirac
field in the vacuum to vacuum transition amplitude:

eiΓ(q) =

∫
DψDψ̄ eiS(ψ̄,ψ;V )

∫
DψDψ̄ eiS(ψ̄,ψ;V0) . (11)

Here V is as defined in (6), and we have introduced V0, the function V
corresponding to q ≡ a, where a is a positive constant. The denominator
thus incorporates the static Casimir effect, which has been evaluated for this
case [7], where it has been shown that it properly reproduces the fermionic
Casimir force for bag boundary conditions, when gL = gR = 2. For different
values of g, the strength of the interaction is weaker.

3 Pair creation

We evaluate there the probability of pair creation out of the vacuum, due to
the motion of one of the walls, which acts as an ‘external source’ injecting
energy into the system. We will consider motions of the R wall which are
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parametrized by means of a function η(x0), which measures the departure of
R from its equilibrium, time average position a > 0, namely,

q(x0) = a + η(x0) . (12)

The object we study is the S-matrix; more specifically, matrix elements of
the T -matrix which describes the non trivial part of the evolution:

S = 1 + i T . (13)

For the perturbative evaluation of those matrix elements, we will make use
of the interaction representation. Note, however, that bag conditions corre-
spond to g = 2, thus, an expansion in powers of g is impossible. We can,
however, use a reliable expansion which captures interesting physics, by tak-
ing as unperturbed system the one corresponding to two static boundaries
(separated by a distance a) and the difference between the real action and
the unperturbed one as perturbation. This may be justified if one assumes,
as we do, that the departure η is sufficiently small. Thus, the action is split
up as follows:

S = S0 + SI (14)

with:
S0 ≡ S(ψ̄, ψ;V0) , V0(x) = 2 δ(x1) + 2 δ(x1 − a) , (15)

and

SI ≡ −
∫
d2x ψ̄(x)ϕ(x)ψ(x) , ϕ(x) ≡ V (x)− V0(x) . (16)

In SI , the fields are in the interaction picture, so that their time evolution
is dictated by the free Hamiltonian, which corresponds to the potential V0:
static walls (at a distance a).

Then, we evaluate the transition amplitudes that result by expanding T
in powers of SI , for small departures η. Up to the second order in η, we see
that ϕ = ϕ(1) + ϕ(2) + . . ., with

ϕ(1)(x) = −2 δ′(x1 − a) η(x0) (17)

ϕ(2)(x) = 2
[
δ′′(x1 − a)

(
η(x0)

)2
+ δ(x1 − a)

(
η̇(x0)

)2]
, (18)

where the prime denotes differentiation with respect to x1.
Let us now evaluate, to the lowest non-trivial order in η, the transition

amplitudes and transition probabilities (the latter will be of the second order
in η), assuming the initial state to be the vacuum of the unperturbed system.
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To the first order in η, the transition amplitude from |i〉 to |f〉 is:

T
(1)
fi = 〈f |SI |i〉 = −

∫
d2xϕ(1)(x) 〈f |ψ̄(x)ψ(x)|i〉

= −
∫
d2xϕ(1)(x) 〈f | : ψ̄(x)ψ(x) : |i〉 . (19)

The normal ordering above is justified as follows: using Wick’s theorem in
SI ,

SI =
∫
d2xϕ(1)(x) ψ̄(x)ψ(x) =

∫
d2xϕ(1)(x)

(
: ψ̄(x)ψ(x) :

− Tr[SF (x, x)]
)

(20)

where SF is the fermion propagator in the presence of the static boundaries.
Now, the term involving SF vanishes. Indeed, this object is invariant under
time translations: SF (x

0, x1; x′0, x′1) = SF (x
0 − x′0; x1, x1). Thus,

∫
d2xϕ(1)(x) tr[SF (x, x)] =

∫
d2xϕ(1)(x) tr[SF (0; x

1, x1)]

= −2
(∫

dx0 η(x0)
) ∫

dx1δ′(x1 − a)tr[SF (0; x
1, x1)]

= −2

∫
dx0 〈η〉

∫
dx1δ′(x1 − a)tr[SF (0; x

1, x1)] = 0 , (21)

where 〈η〉 is the time average of η(x0) which, by assumption, vanishes, since
it is the departure with respect to the average position a. On the other
hand, note that 〈η〉 is multiplied by a factor which is divergent. Indeed, the
coincidence limit picks up a logarithmic divergence, so that the UV behavior
of that term is:

∫
d2xϕ(1)(x) tr[SF (x, x)] ∼ −2

∫
dx0 〈η〉 m

a
log(

Λ

m
) , (22)

where Λ is an UV cutoff. The physical meaning of such a term in the action,
is a divergent contribution to the static energy, not to the dynamical process
we want to study and therefore one could have defined the theory with the
normal ordering from the very beginning without affecting transition proba-
bilities. Also, note that, if 〈η〉 were a non-vanishing constant, one could still
absorbe that term, by a redefinition of a: a → a + 〈η〉 in S0 and expanding
to first order in 〈η〉, as it should be.

We want to study particle production out of the vacuum, so that the
initial state is |i〉 ≡ |0〉; on the other hand, to this order, the only kind of
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final state allowed contains a fermion anti-fermion pair. Note that this pair
will not correspond to free space particles, rather, to states contained in the
bag, which are the eigenstates of the unperturbed Hamiltonian. They will be
of the form |f〉 ≡ b†nd

†
l |0〉, with b†n and d†l being creation operators of fermions

and anti-fermions, respectively. They are labelled by discrete indices, n and
l, which correspond to spatial momenta when a → ∞. Indeed, a mode-
expansion of the field operator (interaction picture) may be constructed as
follows:

ψ(x) ≡
∑

n

[
bn e

−iEnx0un(x
1) + d†n e

iEnx0vn(x
1)
]
, (23)

where un(x
1) ≡ ψn,+(x

1) and vn(x
1) ≡ ψn,−(x

1), with ψn,± are normalized
solutions of Dirac equation with bag boundary conditions (7):

ψn,±(x
1) = Nn

( ±En

pn
sin(pnx

1)

cos(pnx
1) + m

pn
sin(pnx

1)

)
,

Nn ≡
√
2 p2n [p

2
n (m+ 2aE2

n) +mE2
n sin

2(pna)]
−1/2,

(24)

where En ≡
√
p2n +m2 and the values of pn are determined by a transcenden-

tal equation. In terms of the dimensionless quantities ρn ≡ pna and µ ≡ ma,
the energies may also be rendered in units of 1/a, introducing dimensionless
energies ǫn: En = 1

a
ǫn, ǫn =

√
ρ2n + µ2, while the transcendental equation is:

µ sinc ρn + cos ρn = 0, (25)

with the sinc function defined as sinc x = sinx
x

. This yields a discrete spec-
trum [10, 11]. In the massless (µ → 0) limit, this spectrum is simply
pn = (n + 1

2
)π
a

with n = 0, 1, . . ., and energies ǫn = ρn. In the opposite
regime, µ ≫ 1, the spectrum is in turn determined by the zeros of the sinc
function, namely: pn = nπ

a
, n = 1, 2, . . .. Note that the lowest energy is, in

this limit, the mass of the fermions.
Taking into account the mode expansion above, the transition amplitude

for this kind of process becomes:

T
(1)
fi ≡ Tnl = −2 η̃(En + El)

(
ūn(x

1)vl(x
1)
)′ ∣∣∣

x1=a
, (26)

where the Fourier transform of the departure is defined as: η̃(ν) ≡
∫
dx0eiνx

0

η(x0).
Using the explicit form of the eigenstates u and v, we may write:

Tnl = − 4

a2
η̃(En + El) ξn ξl (ǫn − ǫl) , (27)
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with

ξn ≡ ǫnsin(ρn)√
2ǫ2n + µ

(
1 + ǫ2n sinc

2ρn
) . (28)

From the form of the matrix element of T it is clear that, for the transition
to be possible, the energies En and El must be different.

We then write the probability of creation of a specific pair in a spectral
form, as follows:

P
(1)
nl =

∫
dν

2π
γnl(ν)

∣∣η̃(ν)
∣∣2 . (29)

where:

γnl(ν) =
32π

a4
δ[ν − (En + El)]

[
ξn ξl (ǫn − ǫl)

]2
. (30)

For strictly massless fermions, this becomes:

γnl(ν) =
8π3

a4
δ[ν − (n+ l + 1)π

a
] (n− l)2 . (31)

In this case, the frequency threshold ν0 required to produce a pair is then
given by considering n = 0 and l = 1. Thus ν0 =

π
2a

+ 3π
2a

= 2π
a

.
In the µ → ∞ limit, on the other hand, the probability is of course 0,

since sin ρn (and therefore ξn) vanishes.
Finally, the total probability of pair creation P is obtained by summing

over all values of n and l which give non-vanishing contributions.

P =
∑

n,l

P
(1)
nl =

∫
dν

2π
γ(ν)

∣∣η̃(ν)
∣∣2 , (32)

with
γ(ν) =

∑

n,l

γnl(ν) . (33)

In particular, for the massless case, we may write:

γ(ν) =
8π3

a4

∞∑

k=1

δ[ν − (k + 1)π

a
] f(k) , (34)

with

f(k) =

k∑

j=0

(2j − k)2 , (35)

where we have taken into account the fact that the minimum value of the
frequency threshold is 2π

a
.

The sum over j may be explicitly evaluated, leading to the result:

f(k) =
1

3
k (k + 1) (k + 2) . (36)
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4 Imaginary part of the effective action

Let us here consider the (in-out) effective action Γ, in order to check the con-
sistency of its imaginary part with the pair creation probability just derived.
Γ may be written as a functional trace, in terms of the fermion propagator
SF in the presence of the static boundaries, and of ϕ ≡ V − V0, as follows:

Γ(q) = −iTr log (1 + i SF ϕ) . (37)

In our conventions, SF is determined by
[
i 6∂ −m− V0(x)

]
SF = iI, where I

is the identity operator in both functional and spinorial spaces, also refer to
its kernel. Since V0 is time-independent, we will use its Fourier transform

SF (x
0 − y0; x1, y1) =

∫
dω

2π
e−iω(x

0−y0) S̃F (ω; x
1, y1) . (38)

Expanding for small departures, as in the previous Section,

Γ = Γ(0) + Γ(1) + Γ(2) + . . . (39)

where the index denotes the order of the term. It is rather straightforward
to see that, since in our definition of Γ the static contribution is subtracted,
then Γ(0) = 0. Besides, from the assumption that the time average position
of R is a, it follows that also the first order term vanishes. We thus only need
to evaluate Γ(2). On the other hand, we see that in its second-order term
there will be two qualitatively different contributions:

Γ(2) = Γ(2,1) + Γ(2,2) , (40)

with

Γ(2,1) = Tr
(
SF ϕ

(2)
)
, Γ(2,2) = − i

2
Tr

(
SF ϕ

(1) SF ϕ
(1)
)
. (41)

Γ(2,1) produces a renormalization of the would be Lagrangian for the R
wall, since it correspond to terms which are proportional to the square of
η and of its time derivative. They are local in time, and therefore they
will not contribute to any dissipative effect (which necessarily correspond to
non-analyticities in the frequency space).

Let us then extract from the second order term its imaginary part, which
is related to the total probability of pair creation P . Indeed, the vacuum
persistence probability is related to Γ by:

| 〈0out|0in〉 |2 = e−2 ImΓ ≃ 1− P, (42)
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where the last equality is valid for ImΓ ≪ 1. This is essentially the equation
for probability conservation, where P = 2 ImΓ is the probability of the tran-
sition of the vacuum to a state with a non-vanishing particle content. Because
the first non-trivial process is the creation of a particle and anti-particle pair,
by computing ImΓ we should obtain the pair-production probability.

In Γ(2,2), for bag boundary conditions, and evaluating the trace over the
spatial coordinates

Γ(2,2) = −2i

∫

x0,y0
η(x0)η(y0) ∂x1∂y1tr [SF (x, y)SF (y, x)]

∣∣
x1=y1=a

. (43)

To evaluate the integrals in the last expression, rather than using the time
Fourier transforms, and evaluate the convolution of the propagators, we take
into account that we are interested in a process whereby real particles are
created. Therefore, the flux of energy will have a definite sense in the dia-
gram and, in the spirit of the ‘largest time equation’ [12], we have found it
convenient to use the following decomposition of the propagator in terms of
positive- and negative-energy projectors:

SF (x, y) =
∑

n

[
θ(x0 − y0) e

−En(x0−y0)P+
n (x1, y1)

− θ(y0 − x0) e
−En(y0−x0)P−

n (x1, y1)
]
.

(44)

The energy projectors are written in terms of the solutions of the Dirac
equation with bag boundary conditions:

P+
n (x1, y1) = un(x

1)ūn(y
1), P−

n (x1, y1) = vn(x
1)v̄n(y

1). (45)

Evaluating the effective action with the previous representation for the prop-
agator, we obtain the expression:

Γ(2,2) =2i
∑

n,l

∣∣ (ūn(x1)vl(x1)
)′ ∣∣2∣∣

x1=a

∫

x0,y0
η(x0)η(y0)

[θ(x0 − y0) e−i(En+El)(x
0−y0) + θ(y0 − x0) e−i(En+El)(y

0−x0)].

(46)

Finally, using the integral representation of Heaviside’s step function, and
expressing the function η in terms of its Fourier transform we get:

Γ(2,2) = −4
∑

n,l

∣∣ (ūn(x1)vl(x1)
)′ ∣∣2∣∣

x1=a

∫
dν

2π

|η̃(ν)|2
ν − (En + El) + iε

. (47)

The imaginary part of the last result may be taken in a rather straightforward
way, leading to the result:

P = 2 ImΓ(2,2) = 4
∑

n,l

|η̃(En + El)|2
∣∣ (ūn(x1)vl(x1)

)′ ∣∣2∣∣
x1=a

. (48)
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Namely,

P =
∑

n,l

|Tnl|2 , (49)

with Tnl as given in (26); therefore in total agreement with the results pre-
viously obtained.

5 Conclusions

In this work, using an S-matrix approach, we have evaluated the fermion
pair creation propability for a trembling cavity which enforces bag boundary
conditions on the Dirac field, in 1 + 1 dimensions. The results may be ex-
pressed in a rather general form in terms of the eigenenergies of the static
cavity, which in turn correspond to the roots of a transcendental equation.
In the massless case, results may be written more explicitly.

We have shown the consistency of those results with the ones stemming
from the imaginary part of the effective action, for the evaluation of which
we have used a shortcut approach.
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